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Abstract

Soil emissions of nitrogen compounds, including NO and HONO, play a
significant role in atmospheric nitrogen budget. However, HONO has been overlooked
in previous research on soil reactive nitrogen (Nr) emissions and their impacts on air
quality in China. This study estimates both soil NOx and HONO emissions (SNOy and

SHONO) in North China_during July 2018 with an updated soil Nr emissions scheme

in a chemical transport model, the Unified Inputs for WRF-Chem (UI-WRF-Chem).
The effects of soil Nr emissions on O3 pollution, air quality and temperature rise are
also studied, with a focus on two key regions, Beijing-Tianjin-Hebei (BTH) and Fenwei
Plain (FWP), known for high soil Nr and anthropogenic emissions. We find that the flux
of SNOx is nearly doubled those of SHONO; the monthly contributions of SNOx and
SHONO account for 37.3% and 13.5% of anthropogenic NOx emissions in the BTH,
and 29.2% and 19.2% in the FWP during July 2018, respectively. Soil Nr emissions
have a significant impact on surface O3 and nitrate, exceeding SNOx or SHONO effects
alone. On average, soil Nr emissions increase MDAS8 O; by 16.9% and nitrate
concentrations by 42.4% in the BTH, 17.2% for MDAS O3 and 42.7% for nitrate in the
FWP. Reducing anthropogenic NOx emissions leads to a more substantial suppressive
effect of soil Nr emissions on O3 mitigation, particularly in BTH. Soil Nr emissions,
via their role as precursors for secondary inorganic aerosols, can result in a slower

increase rate of surface air temperature- under future emission reduction scenarios. This

study suggests that mitigating O3 pollution and addressing climate change in China

should consider the role of soil Nr emission, and their regional differences.
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1. Introduction

Surface ozone (O3) is a major air pollutant harmful to human health, terrestrial
vegetation, and crop growth (Feng et al., 2022b; Turner et al., 2016; Unger et al., 2020;
Yue et al., 2017). China is confronting serious O3 pollution, with the surface O3
concentrations routinely exceeding air quality standards (Li et al., 2019). Although the
Chinese Action Plan on Air Pollution Prevention and Control implemented in 2013 has
significantly reduced the nationwide anthropogenic emissions of primary pollutants
including particulate matter (PM) and nitrogen oxides (NOx = NO + NO3), the
summertime O concentrations observed by national ground sites and satellite
observations both show an increasing trend of 1-3 ppbv a’! in megacity clusters of
eastern China from 2013 to 2019 (Wang et al., 2022b; Wei et al., 2022). Many studies
have explored the causes of Os; pollution from the perspective of changes in
meteorology and anthropogenic emissions, and attributed the O3 increase to decreased
PM levels and anthropogenic NOx emissions, and adverse meteorological conditions

(Li et al., 2024b:+Eietal5-2019; Li et al., 2020; Li et al., 2021b; Liu and Wang, 2020a,

b; Lu et al., 2019).

Soil emissions are an important natural source of reactive nitrogen species,
including N>O, NOx, HONO and NH3s, and can strongly affect the atmospheric
chemistry, air pollution and climate change (Elshorbany et al., 2012; Pinder et al., 2012).
It has been acknowledged that the soils emissions account for 12-20% of total emissions
of NOx iron global average (Vinken et al., 2014; Yan et al., 2005), and 40-51% in

agricultural regions during periods in which fertilizers are applied to soils, resulting in
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a significant increase in O3 and NO» concentrations in US (Almaraz; et al., 2018; Romer
et al., 2018; Sha et al., 2021; Wang et al., 2021a), Europe (Skiba et al., 2020) and sub-
Saharan Africa (Huang et al., 2018).

China has a large area of cultivated land (~1.276 x10° km?

http://gi.mnr.gov.cn/202304/t20230414 2781724.html, last access: 18" December

2023), which contributes to one-third of the global nitrogen fertilizer use and has
extensive nitrogen deposition (Liu et al., 2013; Lu and Tian, 2017; Reay, 2008). So far,
only a limited studies focused on the impact of soil NOy emissions (denoted as SNOx)
on O3 pollution in China (Huang et al., 2023; Lu et al., 2021; Shen et al., 2023; Wang

etal., 2008; Wang et al., 2022a; Wang et al., 2023a;-Wanget-al;2022a). Lu et al. (2021)

demonstrated that the presence of SNOx in the North China Plain significantly reduced
the sensitivity of surface O3 to anthropogenic emissions. Huang et al. (2023) suggested
that substantial SNOx could increase the maximum daily 8 h (MDAS) O3 concentrations
by 8.0-12.5 ug m™ on average for June 2018 in China. These studies focused only on
NOx emitted from soils; and neglected that similar soil microbial activities also emit
nitrous acid (HONO). The measurements in laboratory showed that the emission rates
of soil HONO were comparable to those of NO (Oswald et al., 2013; Weber B, 2015).
The photolysis of HONO has been identified to be an important source of atmospheric
hydroxyl radical (-OH), which enhances concentrations of hydroperoxyl (HO2) and
organic peroxy radicals (RO.), accelerating the conversion of NO to NO», resulting in
more concentrations of Oz and secondary pollutants. Although the sources and

formation mechanisms of HONO are still not fully understood, recent model studies
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suggested that HONO emission from soils in the agriculture-intensive North China
Plain could increase the regionally averaged daytime -OH, Os, and daily fine particulate
nitrate concentrations (Feng et al., 2022a; Wang et al., 2021b).

Only a few studies simultaneously considered the impact of soil HONO emissions
(denoted as SHONO) along with SNOx on O3 and other secondary pollutants (Tan et

al., 2023; Wang et al., 2023b2023¢c). Wangetal(206235)Wang et al. (2023¢) found that

the NOx and HONO emissions from natural soils (i.e., soil background emissions)
increased daily average O3 concentrations by 2.0% in the Northeast Plain during August
2016 without considering the contribution from fertilized croplands. Tan et al. (2023)
believed that the contribution of soil NOx and HONO to O3 pollution has been in an
increasing trend from 2013 (5.0 pptv) to 2019 (8.0 pptv) in the summer season over the
North China Plain by using the GEOS-Chem model; however the coarse resolution of
GEOS-Chem simulation may not insufficient to resolve the spatial heterogeneity in soil
emission distribution (Lu et al., 2021). Associated with the decreasing anthropogenic
emissions is the increasing contribution of soil emissions to the atmospheric nitrogen
budget in China. Therefore, it is critical to quantify the impact of soil reactive nitrogen
(Nr: NOx and HONO) emissions on O3 and secondary pollutants.

In this study, we improve the soil Nr emissions scheme in the Unified Inputs
(initial and boundary conditions) for Weather Research and Forecasting model coupled
with Chemistry (UI-WRF-Chem) by considering all potential sources of HONO

published in the literature. Sinee—seriousJuly 2018 was chosen as the study period

because of severe O3 pollution during this month, as well as higher air temperatures and




117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

highmore frequent precipitation compared to June and August (Figure S1 and S2),

which could contribute to enhanced the soil Nr emissions always—eeeurred—in

summer;(Figure S3). We conduct a series of sensitivity experiments-are-condueted to

quantify the coupled and separate impact of SNOx and SHONO on O3 and secondary
pollutants during July 2018 over the North China, focusing on two city clusters, the
Beijing-Tianjin-Hebei (BTH) region and Fenwei Plain (FWP) region, both of which
have the vast areas of croplands and dense populations and experiencing severe O3 and
PM; 5 pollutions. In addition, by quantitatively analyzing the difference in the response
of surface O3 concentrations and surface air temperature to the anthropogenic NOy
emissions reductions in the presence vs. absence of soil Nr emissions, the roles of soil
Nr emissions on O3 mitigation strategies and climate change are also studied. Our study
is designed to address the underestimated role of soil Nr emission in O3 pollution,
thereby providing the scientific basis for O3 mitigation strategies and climate change.
2. Methodology
2.1 Model description
2.1.1 Model configurations, input data, and non-soil HONO emission

The UI-WRF-Chem model, developed upon the standard version of WRF-Chem
3.8.1 (Grell et al., 2005), was used in this study. The 0.625°x0.5° Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis
data provide both the meteorological and chemical boundary and initial conditions
(Gelaro et al., 2017). The 0.25° x 0.25° Global Land Data Assimilation System

(GLDAS) data provides the initial and boundary conditions of soil properties, i.e., soil
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moisture and temperature (Redel;2004)(Rodell et al., 2004). Details of Unified Inputs

of meteorological and chemical position data for UI-WRF-Chem, can be found in recent
publications (Li et al., 2024; Wang et al., 2623e2023d). Anthropogenic emissions are
imported from the Multi-resolution Emission Inventory for China (MEIC:

http://www.meicmodel.org/) with a spatial resolution of 0.25° % 0.25° for the year 2017.

Due to the differences in spatial resolution and map projection between the MEIC

inventory and model erid, we applied a spatial interpolation method to convert the

MEIC inventory to the model-ready formats. The descriptions are detailed in Text S1.

Biomass burning emissions are from the Fire Inventory from NCAR version (FINN,

version 1.5, https://www.acom.ucar.edu/Data/fire/). Biogenic emissions are calculated

using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version
2.1 (Guenther et al., 2012).

The physical and chemical schemes include the Morrison 2-moment
microphysical scheme (Morrison et al., 2009), Grell 3-D cumulus scheme (Grell and
Dévényi, 2002), RRTMG for both longwave and shortwave radiation scheme (Iacono
et al., 2008), Yonsei University planetary boundary layer scheme (Heng,2006)(Hong

et al., 2006), Noah land surface model (Fewari; 2004)(Tewari et al., 2004), and the

Carbon Bond Mechanism (CBMZ) for gas-phase chemistry and the Model for

Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol module with four

sectional aerosol bins and aqueous reactions (Zaveri-et-al;2008;Zaveri-and Peters;

1999)(Zaveri and Peters, 1999; Zaveri et al., 2008) are adopted in the UI-WRF-Chem

model. Two nested domains are used, domain one covers China with a horizontal


http://www.meicmodel.org/
https://www.acom.ucar.edu/Data/fire/

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

resolution of 27 km and contains 112x112 grid cells, and domain two covers central
and eastern China and its surrounding area with a horizontal resolution of 9 km,
containing 196x166 grid cells (study region are shown in Figure S+S4), both domains
have 74 vertical levels from surface to 50 hPa and 4 levels of soil. The simulations are
conducted from 29" June to 31" July in 2018 with the first 2 days as the spin-up period.
The model outputs from 1" to 31" July in 2018 are analyzed.

The default WRF-Chem model only considers the gas-phase formation of HONO
(NO + OH — HONO), thus underestimating the HONO concentrations. In this study, in

addition to considering SHONO (details in Section 2.1.2), potential sources of HONO

recognized in recent studies are also taken into account in the current model (Fu-etals

20228 /Zhang-et-al; 2016 Zhanget-al; 2021 Zhangetal2020)(Fu et al., 2019; Li et

al.. 2010: Ye et al., 2016; Ye et al.. 2017: Zhang et al.. 2016: Zhang et al., 2020; Zhang

et al., 2021; Zhang et al., 2022a, b), including traffic emissions, NO> heterogeneous

reactions on ground and aerosol surfaces, and inorganic nitrate photolysis in the
atmosphere. Through a series of tests and comparisons with observed surface HONO
concentrations, the specific parameterization schemes of HONO sources adopted in this
study are shown in Text S+S2.
2.1.2 Parameterization of soil Nr emissions

The soil Nr emissions schemes in the UI-WRF-Chem model are updated in this
study. The default SNOy scheme in UI-WRF-Chem, MEGAN v2.1, is replaced by the

Berkeley—Dalhousie—lowa Soil NO Parameterization (BDISNP), and the
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implementation of BDISNP can be found in Sha et al. (2021). Considering that the
baseline year of N fertilizer data is 2006, and the amount of N fertilizer application in
China has changed in the past ten years, we update the N fertilizer data to the year 2018
based on the N fertilizer application data at the province level from the statistical
yearbook (Table S1).

The process of soil HONO emission is similar to that of NOx, as both are
influenced by the physical and chemical characteristics of soils. Consequently, soil
emissions of HONO with consideration of their dependence on land type, soil humidity,
and temperature are also parameterized into the UI-WRF-Chem model. We first map
the soil types measured in Oswald et al. (2013) (collected from 17 ecosystems in Table
S2) into the most closely matching MODIS land cover types in the model following
Feng et al. (2022a), described in Table S3. The optimal emission flux for each MODIS
land cover type is calculated as the average of the measured fluxes from the
category/categories in Oswald et al. (2013) that is/are been mapped into a specific
MODIS classification. We also collect the SHONO data from various ecosystems in
China published in different studies to correct the optimal SHONO fluxes in the model
(Table S4). These ecosystems include semi-arid, fertilized and irrigated farmland in
China. Consequently, the parameterization scheme takes into account the effect of
fertilizer application on the SHONO. After that, the optimal fluxes over the domains
are digested into the model and further scaled online according to the soil temperature
and water content in each model grid at each time step throughout the simulation period
by the following of equation from (Zhang et al., 2016):

10
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Fy(HONO) = FN,opt(HONO) f(T) - fF(SWC)
where Fy 5, (HONO) is the optimum flux of SHONO in terms of nitrogen. f(T) and

f(SWC) are the scaling factors of soil temperature (7)) and water content (SWC).

Ea T__1,
f(T) =R Tore T

E, is the activation energy of HONO (80 kJ mol!), R is the gas constant, Topt 1s
the temperature at which optimum flux is emitted (298.15 K), T is the soil temperature
calculated online by the model, f(SWC) is fitted based on the data curves in Figures
1 and 3 in (Oswald et al., 2013) and the equation is as follows:

SWC-11.32586 _
-SWES 32586 SWC-11.32586

FSWC) = 1.04 x exp® 527335 TV

2.2 Model experiment design

The descriptions of the sensitivity simulations are shown in Table S51. Default
simulation uses MEGAN scheme to estimate SNOx and no SHONO is considered. Base
simulation uses soil Nr emissions schemes with the improvement of using BDISNP
scheme for SNOx and consideration of SHONO and other four HONO sources (as
described above). Comparison of results from Default and Base simulations is used to
show the improvement in the model performance after updating the soil Nr emissions
schemes and incorporating HONO potential sources. To explore the impact of soil Nr
emissions on O3 and secondary pollutants, we conduct a series of sensitivity simulations
with soil NOx and HONO emissions turned on/off separately and jointly (anthropogenic
emissions for the year 2017), i.e., NoSoilNr, NoOSHONO and NoSNOy. Fe-evaluate-the

role—of—seil Nr—emisstons—on—Os—mitigation—strategies o _investigate the relative

importance and air—temperature—change —under—differentinteraction between

11
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anthropogenic emission—reduction—seenarios,—we—furtherand natural emissions of

nitrogen-containing pollutants, we conduct the Base red ANOyx and NoSoil red ANOx

simulations withto evaluate the role of soil Nr emissions on O3 mitigation strategies, in

which anthropogenic NOx emissions reduced by 20%, 40%, 60%, 80%%. and 100%,

respectively._Furthermore, considering the co-control of multiple air pollutants and

oreenhouse gas reductions in future emission reduction scenarios, the Base redAnt and

NoSoil_redAnt simulations are conducted to evaluate the role of soil Nr emissions on

air temperature change. and the anthropogenic reduction scenarios simultaneously

consider SO», NOy, primary PM->s, VOCs, and CO emissions reductions (reduced by

20%, 40%. 60%. 80%, and 100%).

2.3 Observational data
The tropospheric column densities of NO> from TROPOMI (TROPOspheric
Monitoring Instrument) level-2 in version 1 with the horizontal spatial resolution of 3.5

x 7 km? are used-_ (Van Geffen et al., 2021). The quality controls, i.e., cloud-screened

(cloud fraction below 30%) and quality-assured (qa_value above 0.50), and averaging
kernels (AK) are applied in the comparison of the TROPOMI and UI-WRF-Chem
simulated tropospheric NO: vertical column densities (defined as NO2 VCD).

To evaluate the model performance on simulating surface air pollutants, we use
the hourly surface O3 concentrations at 888 monitoring sites from the China National
Environmental Monitoring Center (CNEMC), and hourly surface HONO
concentrations measured by the In-situ Gas and Aerosol Compositions monitor (IGAC)

(Zhan-etal;2021)(Zhan et al., 2021) at Nanjing University of Information Science &

12
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Technology (NUIST) (32.2° N, 118.7° E; 22m above sea level) (Xu et al., 2019).

3. Results and discussions

3.1 Soil nitrogen emissions and air pollution evaluation

doubled-that o£ SHONOThe soil Nr emissions in July are much higher than the other

seasons due to higher air temperatures and frequent precipitation, accounting for 39.5%

of anthropogenic NOy emissions over the study region, and 50.2% in the BTH. 47.4%

in FWP, which is consistent with the previous studies (Huang et al., 2023: Shen et al.,

2023: Wang et al., 2023¢). And the proportions can increase to 58.9%., 57.0%. and

65.0%, respectively, when only statistics over the cropland in these regions (Figure S3).

Given the substantial contribution of soil emissions to the atmospheric nitrogen budget

in July, we thus choose this month to assess the impact of soil Nr emissions on air

quality and climate change. From the spatial distribution of simulated monthly mean

SNOyx and SHONO fluxes across North China in July 2018 (Figure 1), it is shown that

SNOx flux is nearly doubled that of SHONO in most regions, and higher SNOx and

SHONO are concentrated in areas dominated by cropland. The monthly total soil
emissions over the whole study domain (cropland) are 104.5 (82.4) Gg N mon! for NOx
and 52.7 (45.9) Gg N mon™! for HONO. In the densely populated BTH region, the
monthly total SNOx are 18.7 Gg N mon™'_in July, which is equivalent to 37.3% of
anthropogenic NOx emissions for the year 2017. For the FEW region, where also
experiences severe O3 and PM, 5 peHutienpollutions, the monthly total SNOy (7.0 Gg

13
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292

N mon) account for 29.2% of anthropogenic NOx emissions. The monthly total
SHONO in both study regions are much lower than their SNOx counterparts, with the
emissions of 6.9 and 4.6 Gg N-mon!, accounting for 13.5% and 19.2% of anthropogenic
NOx emissions in BTH and FWP regions, respectively.

To evaluate the model performance, Figure 2 shows the tropospheric NO> VCD
from TROPOMI satellite products and UI-WRF-Chem simulations (Default and Base)

in North China during July 2018-Nerth-China. Default and Base can both reproduce

the hot spots of NO> VCD in urban areas shown in the TROPOMI observations.
However, the Default significantly underestimates the NO2 VCD, especially in regions
surrounding urban areas. It is found that Default underestimates NO2 VCD by 48% over
the regions where soil emissions dominate (i.e., soil Nr emissions contribute more than
half to the atmospheric nitrogen emissions), while the Base reduced the bias to 13%
(Figure S2S5). Overall, Base shows the improved performance in simulating NO, VCD
in comparison to Default with a decreasing bias from -30% (-21%) to +4% (+17%) and

an increasing spatial correlation coefficient (R) from 0.62 (0.50) to 0.65 (0.54) in the

study region (cropland). Fhe—everestimatedHowever, there is still a discrepancy

between the Base simulation and TROPOMI NO; VCD. This discrepancy could be

driven by the combined effects from uncertainties in Base—is—mestlikelyattributed

tesimulations and observations, associated with the time lag in anthropogenic emissions

inventory used in the stadymodel (Chen et al., 2021), uneertaintiesin-thestratospherie
portion of NO:2 VCD and AK caused the retricval crrors (Van Geffen et al,

2020)-instantaneous uncertainties in TROPOMI tropospheric NO> VCD at the pixel
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level (up to 25-50% or 0.5~0.6x10"> molecules cm™?), as well as uncertainties of

stratospheric portion of NO> VCD and AK caused the retrieval errors (Van Geftfen et al.,

2020; Van Geffen et al., 2021). Additionally, the estimated SNOy are also subjected to

certain limitations and uncertainties. The first uncertainty comes from the amount of N
fertilizer application, which has been identified as the dominant contributor to SNOx.
In this study, we use the amount of agricultural N fertilizer application at the province
level from the statistical yearbook to update the default N fertilizer application data in
the model (the baseline year for 2006), but a recent study showed that compound
fertilizer, usually with nitrogen (N), phosphorus (P), and potassium (K), were more
commonly used in China; if only N fertilizer is considered to nudge the N fertilizer
application data in the model, the estimated SNOx may be underestimated by 11.1%—
41.5% (Huang et al., 2023). Furthermore, although we use the modeled green
vegetation fraction (GVF) to determine the distribution of arid (GVF < 30%) and non-
arid (GVF > 30%) regions. Huber et al. (2023) showed that the estimated SNOx based
on the static classification of arid vs. non-arid is very sensitive to the soil moisture, and
thus could not produce self-consistent results when using different input soil moisture
products unless a normalized soil moisture index to represent. Therefore, more direct
measurements of soil Nr fluxes are crucial to better constrain soil emissions and

improve the parametrization in the model._Nevertheless, the improved simulation

performance of NO; VCD with a reduced bias and increased spatial correlation

coefficient in Base is credible, and soil Nr emission scheme has the fidelity needed to

study the implication of soil Nr emissions to air quality in North China.
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We evaluate the simulation with the surface Os; observations from the China
National Environmental Monitoring Centre (CNEMO) network

(http://www.cnemc.cn/en/) (Figure 3). Over the whole study region, the Base can better

capture the spatial distribution of observed surface MDAS O3 with a relatively higher
spatial correlation of R = 0.68 than that in Default (R = 0.46). The simulated monthly
averaged MDAS O3 concentrations across the 888 sites in the study region are 123.0 pg
m™ in Default and 132.5 pg m™ in Base, respectively, which are both slightly higher
than the observed concentrations (120.7 pg m>). Overprediction is also observed for

the FWP and BTH regions in the Base simulation, with the normalized mean bias (NMB)

of 6.1% and 4.9%, respectively (Figure S3)—These-peositive-biases-are-mainly-duete

modeHSun-et-al;2049).S6). Previous studies showed that the NMB of simulated O3

concentrations were within £30% for nearly 80% of the cases collected from air quality

model studies (Yang and Zhao, 2023). These discrepancies may arise from

simplifications of complex chemical mechanisms and physical processes. such as dry

deposition and vertical mixing (Akimoto et al., 2019: Travis and Jacob, 2019). The

uncertainties of input data, including emission inventories, meteorological fields, and

other parameters, may also contribute to these discrepancies (Sun et al., 2019: Ye et al.,

2022). suggesting a potential systematic O3 bias in air quality models. Therefore, the

increased spatial correlation and reasonable bias found in the Base indicate that the

application of the soil Nr emission schemes can effectively improve the simulation
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performance of MDAS Os.

We also compare the simulated surface HONO and nitrate concentrations to the
observations at a rural station in Nanjing during July 2018. Figure 4 shows that the
simulated HONO concentrations in Default are 98.3% lower than the observations. In
comparison, the Base with considering SHONO and other HONO potential sources
significantly improves the simulation performance and reduces the bias to 47.8%, and
also reproduces the diurnal variation of HONO with the temporal correlation of R =
0.76. It is worth noting that the simulated concentrations of HONO from 08 am to 18
pm are lower than the observations, this discrepancy may be attributed to the
underestimated contribution from the predominant sources of HONO during the
daytime, such as NO; heterogeneous reactions on ground and aerosol surfaces.
Moreover, the contributions of different sources to ambient HONO concentrations at
this rural station are also evaluated, the soil emissions could contribute almost 25.8%

to the surface HONO_concentrations, which may be partially attributed to the high

emissions of HONO from croplands around the city of Nanjing (Figure S4S7). The
results that soil emissions contribute less to the daytime positive flux than the other
source is consistent with previous studies (Skiba et al., 2020; Wang et al., 2023b2023¢).
For nitrate concentration, the Base simulation shows a lower bias (5.6%) and an
improved diurnal variation (temporal correlation of R = 0.92) compared to the Default
simulation (bias = 27.8%, R = 0.85). We acknowledge that there are certain
uncertainties in the current model. Nevertheless, the improved simulation performance

of NO» VCD, surface HONO, MDAS Os, and nitrate concentrations compared to the

17



359  Default illustrates the credibility of the results obtained from the Base simulation.

360 3.2 Impact on O3 formation and air quality

361 To quantify the effects of SNOx and SHONO on atmospheric oxidation capacity,
362 O3 formation and air quality as well as their combined effect, the conventional brute-
363  force method was used, i.e., the impact of a specific source is determined in atmospheric
364 chemistry models as the differences between the standard/base simulation with all
365 emissions turned on and a sensitivity simulation with this source turned off or perturbed
366  (Table S51). As shown in Figure 5, the contribution of SNOx and SHONO to surface
367 NO; and HONO has a different spatial pattern from that of the fluxes of SNOx and
368  SHONO in July. Overall, the maximum contribution of SNOx to the monthly average
369 surface NO: concentrations is 78.6%, with a domain-averaged value of 30.3%.
370  Regionally, SNOx contribute 5.5 pg m= (37.1%) and 2.5 pg m (31.8%) to the surface
371 NO:2in the BTH and FWP regions, respectively, which are both higher than the domain-
372 averaged contribution. Although SHONO fluxes are lower than that of SNOx in this
373  period, its effect on ambient HONO cannot be ignored. Over the study region, the
374  contribution of SHONO to surface HONO concentration ranges from 0 to 49.0%, with
375 a domain-averaged value of 35.6%. For the selected key regions, there are 1.8 pg/m?
376 (36.7%) and 1.5 pg/m® (38.0%) of the monthly average HONO concentrations in the
377  BTH and FWP regions, respectively, from soil emissions. It is noteworthy that, despite
378  the surface NO, (HONO) concentrations in the study regions being impacted by less
379  than 13% (17%) due to SHONO (SNOy), the combined effects of soil Nr emissions on
380 surface NO2 (HONO) are found to be greater than the individual effects, which are 38.4%
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(40.3%) for BTH and 33.9% (40.1%) for FWP region, respectively (Table S6S5). These
results highlight the importance of considering the cumulative impacts of multiple
reactive nitrogen emissions from soils on air pollution.

Consequently, substantial soil Nr emissions_in July have a non-negligible effect on
atmospheric oxidation and the formation of secondary pollutants. For atmospheric
oxidation, we assess the impact of soil Nr emission on the maximum 1 h (max-1h) -OH
levels and find that SHONO have a potential to increase the max-1h -OH in most areas,
with a domain-averaged increase of 10.0%. On the contrary, the inclusion of SNOx
results in a significant reduction of 31.3% in the max-1h -OH across the entire study
domain. Considering the combined effect of SNOx and SHONO, there is an overall
decrease of 24.3% in the max-1h ‘OH over the study domain, with the BTH region
experiencing a decrease of 22.6% and FWP region showing a relatively greater
reduction of 32.2% (Table S7S6). These findings are different from the previous study,
which showed that soil background emissions including NOx and HONO led to a 7.5%

increase in max-lh -OH in China (Wang-et-al;2023b)—We(Wang et al., 2023c). The

discrepancy between our findings and those of other studies regarding the impact of

SNOx on ‘OH levels could be attributed to the abundance of ambient NH3 in China

during summer, where soil emissions may lead to a significant increase in nitrate, and

the increased aerosols can affect the concentrations of -‘OH through photochemical

reactions (Wang et al., 2011: Xu et al., 2022). Additionally, after taking into account the

SNOx in the model, the environment may shift to a relatively NOy-saturated regime,

thus the termination reaction for Os production could be NO> and ‘OH to generate
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HNO3 (Chen et al., 2022: Wang et al.. 2023b).We also stress the crucial role of SNOy in

influencing -OH concentrations and highlight the varying impacts across different
regions. For secondary pollutants, substantial O3z enhancement is found in Henan and
Hubei provinces, while the increase in nitrate is consistent with the spatial pattern of
surface NO, from soil emissions. Specifically, soil Nr emissions increase the monthly
average MDAS O3 and nitrate concentrations by 18.2% and 31.8%, respectively, across
the study domain, with the increase of 16.9% and 42.4% in the BTH region and 17.2%
and 42.7% in the FWP region. Moreover, set-emisstonsofNOSNOy have a stronger
effect on O3 and nitrate in North China in July than those of SHONO.

The ratio of surface H>O, to HNO3 concentrations (hereafter H;O2/HNO3) was
used as an indicator of the O3 formation regime to study the changes in sensitivity of
summer Os to its precursors after considering the soil Nr emissions. The threshold of
H>O02/HNO;s for determining Os formation regime varies regionally (Sillman;

1995)(Sillman, 1995), thus in this study, we identify the regions with H>O2/HNO3

values greater than 0.65 as NOx-sensitive regime, H>O2/HNOj3 values lower than 0.35
as VOCs-sensitive regime, and H2O2/HNOs3 values between 0.35 and 0.65 as VOCs-
NOx mixed sensitive regime (Shen et al., 2023). Figure 6 illustrates that the majority of

BTH region has HoO2/HNOs values lower than 0.35 in Base simulation, indicating a

VOCs-sensitive regime or NOx-saturated regime;-which-is-censistent-with-the previeus

et-al52047—Fhe in July. In contrast, the distribution of sensitivity of O3 to precursor

emission in FWP regions areis more complex with a mix of three O3 formation regimes;
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425

426  The spatial patterns of O3 formation regimes presented in this study are consistent with

427  the previous studies based on satellite observations and model simulations during

428 summer seasons, despite using a different method (Wang et al.. 2019:; Wang et al.,

429  2023b). This agreement across multiple approaches strengthens the confidence in the

430  spatial patterns of O3 formation regimes in the key regions of China. However, when

431  soil nitrogen emissions are excluded, the H2O2/HNOj values mostly increase within 40%
432 and the O3 formation regime shifts to VOCs-NOx mixed sensitive regime and NOx-
433  sensitive regime in both BTH and FWP regions. Although soil Nr emissions are lower
434  than anthropogenic emissions, they still could affect the sensitivity of O3 to its
435  precursors and thus have an impact on the effectiveness of emission reduction policies.
436  Therefore, soil emissions must be considered in formatting policies for the prevention
437  and management of O3 pollution.

438 3.3 Implication on O3 mitigation strategies and temperature rise

439 Due to the influence of soil Nr emissions, the sensitivity of O3z pollution to its
440  precursors varies spatially, depending on the local levels of anthropogenic emissions. It
441 s thus important to quantify the role of soil Nr emissions in O3 pollution regulation for
442  improving the effectiveness of air control measures. We conduct a series of sensitivity
443  experiments with anthropogenic NOx emissions reduced by 20%, 40%, 60%, 80% and
444 100%, respectively, relative to the Base simulation (Table S51), and analyze the
445  difference in the response of surface O3 concentrations to the anthropogenic NOx
446  emissions reductions in the presence and absence of soil Nr emissions. Figure 7 shows
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that with the reduction of anthropogenic NOy emissions, MDAS8 O3 concentrations show
an accelerated decreasing trend, suggesting increasing efficiency of anthropogenic NOx
control measures. And MDAS O3 response to anthropogenic NOx emissions in the BTH
region is more curved (nonlinear) than that in the FWP region, which is consistent with
the fact that the BTH tends to have more NOy-saturated Os-preduetionregime (Figure
6).

It is noted that the reduction of anthropogenic NOx emissions in the presence of
soil Nr emissions leads to a slower decrease in MDAS O3 compared to when soil Nr
emissions are excluded. We further analyze the details of the domain-averaged MDAS
O3 changes under different anthropogenic reduction scenarios for the two key regions.
Specifically, in the BTH region, MDAS O3 decrease by 1.3% (1.8 pg m™~), 3:4%4-6
pe-m~)-6.3% (8.7 ng m?), 107% (47 pe-m>)-and 17.4% (24.0 pg m>) with
anthropogenic NOx emission reductions by 20%, 40%;—60%—80%, and 100%,
respectively, in the present of soil Nr emissions. Comparatively, in the absence of soil
Nr emissions, the reductions in MDAS8 O3 are more pronounced and decrease by 2.3%
(2.7 pg m3), 5:6%(6-6-pem>)-10.7% (12.8 pg m~), 194%(232 e m=>)-and 42.3%
(50.6 pg m), respectively. In the FWP region, with a 20% reduction in anthropogenic
NOx emissions, MDAS Os levels only exhibit a slight decrease of 1.7% (2.3 pg m™) in
the presence of soil Nr emissions, whereas a decrease of 2.3% (2.6 pg m™) is found in
the absence of soil Nr emissions. When anthropogenic NOy emissions are removed
entirely, MDAS8 Os decreases by 13.6% (17.7 pg m™) in the presence of soil Nr
emissions, and more significant decreases are found in the absent of soil Nr emissions
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with a reduction of 27.4% (34.0 pg m™) (as shown in Figure 7b-c, e-f). We conclude
that the existence of soil Nr emissions could contribute to an additional part of O3
production, amounting to a range of 0-24.9% in the BTH and 0-13.8% in the FWP
region in July, and these suppressions could be enlarged over the rural areas where have
more substantial soil Nr emissions—, i.e-g-., 0-32.3% in cropland over the BTH and 0-
15.0% in croplands over the FWP region).. These findings suggest that soil Nr
emissions have the potential to suppress the effectiveness of measures implemented to
mitigate O3 pollution, and this effect becomes more significant as anthropogenic NOx
emissions iereasedecrease.

We also quantify the O3 generated from soil Nr emission source (denoted as the
soil O3) in July under the different anthropogenic NOx emission reduction scenarios.
Overall, soil O3 concentrations in croplands are higher than in non-croplands.
Regionally, in the BTH region, the soil O3 concentrations are 19.8 pg m> under high
anthropogenic emissions level (referred to as the Base simulation), while the soil O3
concentrations significantly increase to 46.4 pug m> when all anthropogenic NOx
emissions are cut down (shown as red bar in Figure 7b). A similar trend is also found
in the FWP region, although soil Os-concentrationsNr emissions are relatively lower
than that in the BTH region, the soil O3 concentrations are 19.0 pg m™ in the Base
simulation, and do not change significantly with the reduction of anthropogenic
emissions, but increase to 31.9 pg m™ when anthropogenic NOx emissions are excluded
(shown as red bar in Figure 7c). The reduction in anthropogenic NOx emissions results
in a shift of the O3 formation regime towards a more NOx-sensitive ehemieal-regime,
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leading to a higher contribution of O3 from soil emission sources. We conclude that
with stricter anthropogenic emission reduction measures, the contributions of soil Nr
emissions to O3 production in both absolute and relative value would increase and
further hamper the effectiveness of anthropogenic emission reductions. To effectively
mitigate the-desired-level-e£03 eeneentrationspollutions, it is necessary to implement

much stricter control measures for anthropogenic emissions including coal burning and

transportation due to the synergistic effects of SNOx and SHONO.

Here we show that the substantial soil Nr emissions present an additional challenge
for O3 pollution regulation in the North China. We further assess the impact of soil Nr
emissions on air temperature change under different anthropogenic emission reduction

scenarios. Under the background of climate change, future emission reduction scenarios

should focus on the co-control of multiple air pollutants and greenhouse gas reductions.

Therefore, we conduct multi-pollutant co-control reduction scenarios, taking into

account the SO», NOx, primary PM» 5, VOCs., and CO emissions reduced by 20%, 40%.,

60%, 80%., and 100%, respectively, to investigate the impact of soil Nr emissions on

air temperature change under different anthropogenic reduction scenarios (Table 1). By

comparing changes in air temperature at 2m (T2) with and without soil Nr emissions

under different anthrepegenie—emissten—reduction scenarios, Figure 8 shows that

incorporating soil Nr emissions results in a slower rate of T2 increase compared to

scenarios without soil Nr emissions, especially when multi-pollutant emissions are

reduced to more than a half, and this phenomenon is consistent across all study regions.

In the FWP region, when anthropogenic NOx-emissions are eliminated, T2 increases by
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0.656073 °C in the presence of soil Nr emissions, compared to 0.892095 °C in the
absence of soil Nr emissions. In the BTH region, which has relatively high

anthropogenic emissions, reducing anthrepegente NOmulti-pollutant emissions by the

same proportion could result in relatively greater warming, and T2 increases by
0.684098 °C in the presence of soil Nr emissions, compared to 0.4514 °C in the absence
of soil Nr emissions when anthropogenic NOx-emissions are excluded. This is attributed

to aeresels(such—as—sulfate—and nitrate)and NO,—emissions—and—theirthe effective

radiative forcing (ERF) associated with athe cooling effeeteffects of primary pollutants

(e.g. SO, NOx) and secondary inorganic aerosols (SIA), and positive ERF associated

with the warming effects of CO and VOCs (high confidence) (Liaeo—andXie; 2021

Belouin—et—al—2020).(Bellouin et al., 2020; Liao and Xie, 2021). Decreases in

aeroselprimary pollutants emissions and SIA concentrations andNOy-emissions-could

weaken the cooling effect and potentially accelerate warming to some extent, whiteand

the decrease in CO and VOCs emissions may still lead to temperature rise in a short-

term. However, the soil Nr emissions ean-offsetcould contribute to a certain backeround

concentration of aerosol, partially offsetting the temperature rise caused by declining

anthropogenic NOx-emissions of primary pollutants and greenhouse gas (Figure S5S8).

Therefore, although soil Nr emissions are relatively low compared to anthropogenic
emissions, the combined effects of NOx and HONO emissions from natural soil and
agricultural land should be considered when assessing climate change and
implementing strategies to mitigate O3 pollution.

4. Conclusions

25



535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

In this study, the updated soil Nr emission scheme was implemented in the UI-
WRF-Chem model and used to estimate the combined and individual impact of SNOx
and SHONO on subsequent changes in air quality and air temperature rise in North
China, with a focus on two key regions (the BTH and FWP regions) because of high
levels of soil Nr and anthropogenic emissions. We show that the SNOyx flux—isnearly

deubled-thateffluxes are almost twice as high as SHONO during July 2018, with higher

soil emissions in areas with extensive cropland. The contribution of soil Nr emissions

in July to monthly average surface-NO2 and HONO are 38.4% and 40.3% in the BTH,

and 33.9% and 40.1% in the FWP region, respectively, and the substantial soil Nr
emissions lead to a considerable increase in the monthly average MDAS O3 and nitrate
concentrations, with the values of 16.9% and 42.4% in the BTH region and 17.2% and
42.7% in the FWP region, which both exceed the individual SNOx or SHONO effect.
The presence of soil Nr emissions, acting as precursors of O3 and secondary-inorganie
aeroselsSIA, has a suppressing effect on efforts to mitigate summer O3 pollution,
particularly in the BTH region, and also leads to a slower increase rate of T2 (0.098 °C)

in July compared to scenarios without soil Nr emissions_(0.14 °C) when anthropogenic

emissions are excluded. We note that the effect of soil Nr emissions shows spatial

heterogeneity under different anthropogenic NOx-emissions reduction scenarios.
However, we admit that uncertainties_exist in both soil Nr and anthropogenic
emissions, as well as the parameterization scheme of HONO sources. The agricultural
emissions of another important reactive nitrogen gas, NH3, may also be underestimated
due to uncertainties in agricultural fertilizer application and livestock waste in MEIC
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inventory (Li et al., 2021a). These uncertainties could impact the aerosol formation and
local cooling effect. Also, the discrepancies between simulated and observed NO», O3,
and other air pollutants in the model may affect the assessment of the role of soil Nr
emissions in O3 mitigation strategies and their impact on climate change. Thus, more
direct measurements of soil Nr fluxes are crucial to better constrain soil emissions and
improve the parametrization in the model.

Our study highlights that despite soil Nr emissions being lower than anthropogenic
emissions, they still have a substantial impact on the effectiveness of O3z pollution
mitigation measures, and this effect becomes more significant as anthropogenic
emissions decrease. Therefore, reactive nitrogen from soil emission seureesources must
be considered in formatting measures for the prevention and management of Os

pollution, as well as addressing climate change.
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Table 1. Description of model simulation experiments.
Soil emissions Anthropogenic emissions
Simulation
Soil NO,  Seil HONO NO, VOCs Others
Default 1(MEGAN) 0 1 1 1
Base 1(BDISNP) 1 1 1 1
NoSoilNr 0 0 1 1 1
NoSHONO 1 0 1 1 1
NoSNO, 0 1 1 1 1
Base redANO, 1 1 0.8/0.6/0.4/0.2/0? 1 1
NoSoil redANOy 0 0 0.8/0.6/0.4/0.2/0° 1 1
Base redAnt 1 1 0.8/0.6/0.4/0.2/0°  0.8/0.6/0.4/0.2/0¢  0.8/0.6/0.4/0.2/0°
NoSoil redAnt 0 0 0.8/0.6/0.4/0.2/0"  0.8/0.6/0.4/0.2/0¢  0.8/0.6/0.4/0.2/0"

882

883
884

ah The values represent the reduction ratios applied to the anthropogenic emissions in the sensitivity

simulations compared to the Base.
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891  Figure 2. (a) Monthly mean tropospheric NO2 VCD retrieved by TROPOMI measured
892  at 12:00—14:00 LT and simulated by (eb) Default and (fc) Base averaged over the same

893  periods in July 2018 in North China.
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Figure 3. Distribution of observed (dots) and simulated (shaded) surface MDAS O3
from (a) Default and (b) Base in North China in July 2018. Statistics in the upper corner
of panels are the monthly mean MDAS8 Os concentrations averaged over the study

region and the spatial correlation coefficient R between observations and simulations.

42



(@) (b)

[=>)
e
o

OBS: 2.3 Default: 0.04 —e—Obs OBS: 5.4 Default: 3.9 (R=0.85) ~ —*— Obs

& Base: 1.2 (R=0.76) —o— Default | ¢~ Base: 5.1(R=0.92) —e— Default

i —o—Base g —>—Base

2 2 154

2 41 f o 2 2

% / '\ oo \." % N i:

£ L \ £ 10+ o 3 \

g1 g N

8§21,/ J |8 ./“ o N

% 4 N . / ° % 51 / .Iﬁ/ \° §.\o

@] N ®o—0—0" .\'/‘;-. /0’“, E= r éo \o w\g)(:\o o e

e ° s b= S NN,/
o o a ¢ §
a~o—°-‘°"‘ﬁ‘-Q—Q—Q’°/ %=5=¢

0 T 2 T T T- T 0_? T T T T T 0 T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Hour Hour

901
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Figure 5. Simulated effects of soil Nr emissions on air quality in North China in July

2018. The first and second rows show the contributions of soil NOx and soil HONO
emissions on monthly average concentrations of NO,, HONO, MDAS8O3, max-1h -OH,
and nitrate, respectively. The third row shows the combined effect of soil Nr emissions

on the species listed above. Statistics in the-upper right corner of each panel are the

mean values averaged over the study region.
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919  Figure 6. Distribution of the O3 formation regimes (represented as HoO2/HNO3 ratios)

920 in North China in July 2018 for (a) Base simulation with the addition of soil Nr

921  emissions and (b) NoSoilNr simulation without the addition of soil Nr emissions. (c)

922  Changes in the distribution of O3 formation regimes due to the soil Nr emissions
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Figure 7. Role of soil Nr emissions in O3 pollution regulation_in North China in July

2018. The responses of MDAS O3 concentrations to the reductions of anthropogenic
NOx emissions (20%, 40%, 60%, 80% and 100%) relative to July 2018 levels, in the
presence (solid line) and absence (dotted line) of soil Nr emissions in the study region,
BTH and FWP region. (The lines in panels a-c and d-f are MDAS8 O3 concentrations

and the relative reductions in MDAS8 O3 under different anthropogenic NOx emission
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reductions, respectively. The red bars (right y-axis) in panels a-c show the
corresponding O3 contribution from soil Nr emissions, which is determined as the
difference between the solid and dotted lines, and the blue bars are the same as the red
bars but for statistics in cropland. The red bars (right y-axis) in panels d-f show the
suppression of O3 pollution mitigated due to the existence of soil Nr emissions, which
are determined as the difference between the solid and dotted lines, and the blue bars

are the same as the red bars but for statistics in cropland.)
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Figure 8. The responses of air temperature at 2m (T2) to the reductions of

anthropogenic NOx-emissions (taking into accounting the SOz, NOy, primary PMzs,

VOCs, and CO reduced by 20%, 40%, 60%, 80%%. and 100%) relative to July 2018

levels in the presence (solid line) and absence (dotted line) of soil Nr emissions (a) in

the study region, (b) BTH and FWP region.
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