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Abstract. Aerosol acidity (or pH) plays a crucial role in atmospheric chemistry, influencing the interaction of air 

pollutants with ecosystems and climate. Aerosol pH shows large temporal variations, while the driving factors of 

chemical profiles versus meteorological conditions are not fully understood due to the intrinsic complexity. Here, 

we propose a new framework to quantify the factor importance, which incorporated interpretive structural 15 

modelling approach (ISM) and time series analysis. Especially, a hierarchical influencing factor relationship is 

established based on the multiphase buffer theory with ISM. Long-term (2018 to 2023) observation dataset in 

Changzhou, China is analyzed with this framework. We found the pH temporal variation is dominated by the 

seasonal and random variations, while the long-term pH trend varies little despite the large emission changes. This 

is an overall effect of decreasing PM2.5, increasing temperature, and increased alkali-to-acid ratios. Temperature 20 

is the controlling factor of pH seasonal variations, through influencing the multiphase effective acid dissociation 

constant Ka
*, non-ideality cni and gas-particle partitioning. Random variations are dominated by the aerosol water 

contents through Ka
* and chemical profiles through cni. This framework provides quantitative understanding on 

the driving factors of aerosol acidity at different levels, which is important in acidity-related process studies and 

policy-making. 25 

Short summary: Aerosol acidity is an important parameter in atmospheric chemistry, while its driving factors, 

especially chemical profiles versus meteorological conditions, are not yet fully understood. Here, we established 

a hierarchical quantitative analysis framework to understand the driving factors of aerosol acidity on different 

time scales. Its application in Changzhou, China revealed distinct driving factors and corresponding mechanisms 

of aerosol acidity from annual trends to random residues.  30 
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1. Introduction 

Aerosol acidity strongly influences particle mass and chemical constituents by regulating thermodynamic and 

chemical kinetic processes (Cheng et al., 2016; Pye et al., 2020; Su et al., 2020; Tilgner et al., 2021; Zheng et al., 

2020). It is therefore an important parameter in the atmosphere for assessing the impact of atmospheric aerosols 

on human health, ecosystems and climate (Nenes et al., 2021; Pye et al., 2020). As direct measurements of aerosol 35 

pH in real atmosphere remain unavailable, thermodynamic models are widely adopted to estimate aerosol acidity 

and investigate its influencing factors (Clegg et al., 2001; Fountoukis and Nenes, 2007; Tao and Murphy, 2021; 

Zaveri et al., 2008; Zuend et al., 2008).  

Driving factors of aerosol pH, especially the relative importance of chemical profiles versus meteorological 

conditions, have been widely investigated but still not fully understood. For example, based on long-term 40 

observations at six Canadian sites, Tao et al. (Tao and Murphy, 2019) found that temperature largely regulates the 

aerosol pH in summer, which the chemical profiles may also play a role in winter. Ding et al.(Ding et al., 2019) 

employed controlled variable tests with the thermodynamic model and concluded that in the North China Plain, 

sulfate, total ammonia and temperature are the common drivers of pH variations, while total nitrate barely 

influence the pH. In comparison, Zhou et al. (Zhou et al., 2022) demonstrated that in the Yangtze River Delta 45 

region, non-volatile cations (NVCs, including Na+, Ca2+, K+ and Mg2+) and sulfate are crucial for annual pH 

trends, while the seasonal and diurnal variations are determined by meteorological conditions of temperature and 

RH. Nevertheless, an in-depth investigation into the underlying mechanisms and quantitative attributions of how 

the meteorology or chemical compositions would influence the aerosol pH is still lacking. 

Following the Air Pollution Prevention and Control Action Plan in 2013, the Chinese government continued to 50 

introduce the Three-Year Action Plan to Fight Air Pollution (hereinafter referred to as the Action Plan) in 2018. 

With the implementation of these action plans, both the PM2.5 concentration and its chemical components have 

changed considerably (Bae et al., 2023; Nah et al., 2023; Zhang et al., 2022), which in turn affects aerosol pH. 

Variation in pH would influence the formations of PM2.5 via affecting the gas-particle partitioning of semi-volatile 

species (e.g. HNO3) and chemical kinetics, thereby feeding back into the air quality, climate and human health 55 

(Cheng et al., 2016; Li et al., 2017; Pye et al., 2020; Su et al., 2020). 

The recently proposed multiphase buffer theory offers a new quantitative insight into the aforementioned issue, 

which shows how and why the chemical profiles and meteorological parameters would influence the aerosol 

acidity(Zheng et al., 2020, 2022a, 2024b). Here, we established a hierarchical influencing factor relationship of 
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aerosol pH based on the multiphase buffer theory with interpretive structural modelling approach (ISM). 60 

Combining this model with time series analysis, we proposed a new hierarchical quantitative analysis framework 

to quantify driving factors, and applied it to the long-term observations in Changzhou, China. Distinct driving 

factors were found for pH variations across different time series components, the underlying mechanisms were 

quantified, and future implications were also discussed. 

2. Methods 65 

2.1 Ambient measurements and aerosol acidity prediction 

Long-term observations of aerosol chemical components and precursor gases are conducted at an urban site of 

Changzhou Environmental Monitoring Center (31.76° N, 119.96° E), which is located in Changzhou, an important 

city in the center of Yangtze River Delta (YRD) region. Further details regarding the sampling site and instruments 

information are described elsewhere(Li et al., 2023; Yi et al., 2022). Briefly, the PM2.5 is measured by a Continuous 70 

Particulate Matter Monitor (BAM1020, Met One Inc., US) using β-ray technology, and the meteorological 

parameters are obtained from a meteorological monitor (WXT520, VAISALA Inc., FL). The water-soluble 

inorganic ions and the gas species, including NH3, HNO3, and HCl, etc., are measured by a MARGA ion online 

analyzer (ADI2080, Metrohm Inc., CHN). Here the data from 2018 to 2023 are analyzed.  

The thermodynamic model ISORROPIA v2.3 (Fountoukis and Nenes, 2007) is employed to predict the aerosol 75 

water content (AWC) and aerosol acidity, which is defined as the free molality of protons (Fountoukis and Nenes, 

2007; Pye et al., 2020). Input parameters include SO4
2-, total nitrate (gas HNO3 + particle NO3

-), total ammonia 

(gas NH3 + particle NH4
+), total chloride (gas HCl + particle Cl-), NVCs and meteorological parameters like the 

temperature T and relative humidity RH. The ISORROPIA model is run in the forward mode and metastable state 

(Zheng et al., 2022b). 80 

The ISORROPIA-predicted concentrations of NH3, NH4
+ and NO3

- agreed well with measurements (R2 all above 

0.95 and slopes all close to 1.0; Fig.S1). This demonstrate that thermodynamic analysis accurately reflects the 

aerosol state. However, the predicted HNO3 concentration does not correlate well with the observed concentrations, 

as has been observed in many other studies (Ding et al., 2019; Zhou et al., 2022). This discrepancy may be 

attributed to the high measurement uncertainty of gas-phase HNO3 due to its low concentration (Rumsey et al., 85 

2014). 
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2.2 Time series analysis 

Time series analysis is a statistical method of analyzing a sequence of data points over an interval of time, which 

is particularly useful for understanding the structure and pattern of temporal data and is widely applied in 

atmospheric studies(Shumway and Stoffer, 2017) (Hammer et al., 2020; Kang et al., 2020). Here, we performed 90 

time series analysis of pH and its potential influencing factors by decomposing them into 4 components: long-

term trends, seasonal variations, diurnal cycles and random residues. Linear-fitting is adopted to predict the long-

term trends (Kang et al., 2020; Mudelsee, 2019), and one-term Fourier curve fitting is adopted to fit the seasonal 

and diurnal cycles (Bloomfield, 2004; Singh et al., 2017). Here, we fixed the cycle period of Fourier curve as 1 

year and 1 day in fitting the seasonal and diurnal variations, respectively. The random residues were obtained from 95 

the difference between the actual observed values and the sum of the predicted values of fitting functions in long-

term trend, seasonal variations and diurnal cycles. 

2.3 Variation contribution quantification 

To quantify the contribution of a direct influencing factor to the variations of a certain term, the one-at-a-time 

sensitivity analysis method is adopted (Yu et al., 2019). Briefly, assume variable Y is a function of n influencing 100 

factors of x1 to xn, i.e. Y = f (x1, …, xn). The variations in Y due to factor xi, ∂Y/∂xi, is estimated as: 

∂Y/∂xi = f (x1, …, xi, …, xn) - f (x1, …, xn)        (1) 

where xi is the actual value of factor xi, andxi is the average of factor xi. See more details in SI Text S1. 

3. Establishing the new hierarchical quantitative analysis framework 

3.1 Interpretive structural model (ISM) based on multiphase buffer theory 105 

The recently proposed multiphase buffer theory reveals that most continental regions are within the ammonia-

buffered regime, where the pH variations can be decomposed into(Zheng et al., 2020, 2022a): 

pH = pKa
* + cni + Xgp (2a) 

where 

𝐾𝑎
∗ = 𝐾𝑎,𝑁𝐻3

𝜌𝑤

𝐻𝑁𝐻3𝑅 𝑇 𝐴𝑊𝐶
 (2b) 110 

𝑐𝑛𝑖 =  𝑙𝑜𝑔
𝛾

𝐻+

𝛾
𝑁𝐻4

+
 (2c) 
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𝑋𝑔𝑝 =  𝑙𝑜𝑔
[𝑁𝐻3(𝑔)]

[𝑁𝐻4
+(𝑎𝑞)]

 (2d) 

Here, Ka
* is the effective acid dissociation constant of NH3 under ideal conditions in multiphase systems, cni is the 

non-ideality correction factor, and Xgp represents the gas-particle partitioning of NH3. The Ka, NH3 is acid 

dissociation constant of NH3 in bulk aqueous phase, ρw is the water density, 𝐻𝑁𝐻3
 is Henry’s law constant of 115 

NH3, R is the gas constant, T is temperature in K, and γX is the activity coefficient of X.  

Each term of the top-level pH decompositions (Eq. 2a) further depends on many other influencing factors, making 

the overall picture complicated. To illustrate the interconnections among these multiple driving factors, we applied 

the interpretive structural modeling (ISM) approach, which is widely used to identify and analyze the relationships 

between factors in complex systems (Sushil, 2012; Thakkar, 2021). With this method, a hierarchical relationship 120 

among influencing factors of aerosol pH can be established based on the multiphase buffer theory, as illustrated 

in Figure 1. Take the pKa
* for illustration. The pKa

* makes a direct impact on pH (top-level influencing factor), 

and its variation is determined by temperature and AWC. The AWC further depends mainly on PM2.5 

concentrations and RH, and minorly on the chemical profiles (middle level). Fundamentally, these influencing 

factors are caused by variations in synoptic conditions and emissions (bottom level). 125 

  

 

Figure 1: Hierarchical relationship among influencing factors of aerosol pH based on the multiphase buffer theory as 

established with the interpretive structural modeling approach. 

 130 
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3.2 ISM coupled with the time series analysis 

With the above ISM model, a quantitative analysis of each factor following the influencing lines can be achieved. 

In addition, when coupled with the time series analysis, it can be applied to illustrate the driving factor of each 

time series component. Briefly, we can decompose each input parameter in ISORROPIA v2.3 into the 4 time 

series components (sect. 2.1 and 2.2), and then apply each component to explain upper-level factors of 135 

corresponding component. For example, the seasonal variations in Y due to seasonal variations of factor xi, ∂Y/∂xi 

|seas, is estimated as:  

∂Y/∂xi |seas= f (x1, …, xi, seas +xi , …, xn) - f (x1, …, xn) (3) 

Where xi, seas is the decomposed seasonal variation of xi. See more details in SI of Text S2.  

4. Driving factor analysis of long-term data in Changzhou 140 

Here we applied the new framework (sect. 3) to analyze the long-term data in Changzhou. From 2018 to 2023, 

around 90% periods are within the ammonia-buffered regime, while the rest are due to low RH (< 0.3) and aerosols 

not in a fully deliquescent state. Thus, the drivers of pH can be explained with the above framework. 

The top-level ISM decomposition shows that the pH variations are mainly driven by the pKa
* (~52%) and cni 

(~36%), while the Xgp varies to a less extent (~12%, Figs. 2a and S2). In comparison, the time-series 145 

decomposition indicates that the pH variation is predominantly driven by seasonal variations and random residues, 

while the long-term trend and diurnal cycle play minor roles on the variations (Fig. 2b). Below we analyzed the 

driving factors of each time series component. 
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Figure 2: Major components of pH variations. (a) Decomposition into the pKa
*, Xgp and cni base on the multiphase buffer 150 

theory. (b) Decomposition into long-term trends (left axis), seasonal variations, diurnal cycles and residuals (right axis) through 

time series analysis. 

4.1 Long-term trends 

The long-term pH trends in Changzhou show a slight decreasing trend of -0.05 year-1 (Fig. 2b). The top-level ISM 

decompositions reveal that this is due to the competing trends of pKa
* and cni with Xgp: while pKa

* and cni decreased 155 

by -0.12 year-1 and -0.14 year-1, respectively, the Xgp increased by 0.21 year-1 (Fig. 3a).  
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Figure 3: Influencing factors of long-term pH variation at different levels. (a) The 1st level decomposition into pKa
*, Xgp 

and cni. (b)-(e) Further investigation of the influencing factors of (b) pKa
* due to T and AWC, (c) AWC due to RH and PM2.5, 160 

(d) cni due to RH, T, 𝑓NO3
−, and (e) Xgp due to Ct/At and T. 

 

A further delve into the middle-level factors in the ISM reveals that the pKa
* decrease is due to the combined effect 

of decreasing AWC and increasing temperature (Fig. 3b). The temperature increased by 0.74 K year-1 (Fig. S3), 

corresponding to a pKa
* of -0.05 year-1. In comparison, the AWC exhibited a decrease of -1.57 μgm-3

year-1 (Fig. 165 

S3), corresponding to a pKa
* of -0.07 year-1. The AWC decrease is primarily attributed to the PM2.5 decrease 

(around -1.6 μgm-3
year-1), while the long-term RH shows minimal variation (Fig. 3c). As to cni, its decreasing 

trend is mainly attributed to increased temperature, corresponding to cni of -0.13 year-1 (Fig. 3d). RH and 

𝑓NO3
−  cause negligible effects on cni because they were nearly constant (Fig. S3). In terms of Xgp, its increase is 

due to the increase in both relative abundance of alkaline to acidic substances (Ct/At) and temperature (Fig. 3e), 170 

contributing to the Xgp increases of 0.16 year-1 and 0.05 year-1, respectively. Here the temperature influences Xgp 

through the gas-particle partitioning volatility of semi-volatile species like ammonium nitrate. The increase in 

Ct/At is further due to a much larger decrease in At (sulfate, total nitrate, total chloride, etc.) than Ct (total ammonia 

and NVCs, etc.) (Fig. S3).  
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Overall, we see that the long-term pH trend shows only a slight decrease despite considerable emission changes 175 

during this period, which is a combined effect of decreased PM2.5 while increased temperature and Ct/At. 

4.2 Seasonal variations 

Influencing factors of seasonal variation pH are analyzed in similar ways with the long-term trends (Error! 

Reference source not found.). Overall, the pH is higher in winter and spring than summer and autumn, with the 

amplitude of seasonal variations being 0.81, or the variation range being 1.62. The extent of variation is quantified 180 

by variation range hereinafter, which is the difference between the highest and lowest values for a given variable 

and for a given time series component. This cycle is consistent with pKa
* and cni while in reverse phase with the 

Xgp.  

The middle-level ISM decompositions demonstrate that the seasonal variation of pKa
* is mainly driven by the 

temperature (Fig. 4b). The variation of temperature is 23.26 K (Fig. S4), which corresponds to a pKa
* variation of 185 

1.20. In comparison, AWC varies to a less extent seasonally (Fig. S4), causing a relatively minor variation of 0.42 

in pKa
*. Seasonal variation of AWC is further primarily attributed to the variation in PM2.5 levels (approximately 

25.4 μgm-3), as the seasonal RH varied little (Fig. 4c and Fig. S4). As to Xgp, its seasonal variation is influenced 

by both temperature and Ct/At, which correspond to the variations in Xgp of -0.98 and -0.91, respectively (Fig. 4d). 

Higher temperature and Ct/At during summer facilitate more NHx to remain in the gas phase than winter (Fig. S4). 190 

Regarding cni, its seasonal variation is attributable to the combined effects of temperature and 𝑓NO3
−  (Fig.4e), 

leading to variations in cni of 1.25 and 0.54, respectively. Again, influence of RH is negligible due to its little 

variations (Fig.4e). The seasonal variations of 𝑓NO3
− is governed by significant variations of temperature (Fig. 

4f). Temperature in winter is low enough and causes the vast majority of total nitrate to partition into the particle 

phase, leading to minor variation of 𝑓NO3
−  with temperature variations (Fig.S5). Conversely, higher temperatures 195 

in summer result in more total nitrate existing as HNO3 and 𝑓NO3
−  is sensitive to temperature variations. 
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Figure 4: Influencing factors of the seasonal variations of aerosol pH. (a) The 1st level decomposition into pKa
*, Xgp and 

cni. (b)-(f) Further investigation of the influencing factors of (b) pKa
* due to T and AWC, (c) AWC due to RH and PM2.5, (d)Xgp 

due to Ct/At and T, (e) cni due to RH, T, 𝑓NO3
−, and (f) 𝑓NO3

− due to T and chemical profiles. 200 

 

Overall, we see that the large seasonal variation of pH is mainly driven by the temperature as it plays a dominant 

role in both pKa
*, cni and Xgp (74%, 89% and 52%, respectively). In comparison, net influence of chemical profiles 

is relatively smaller, contributing 48% and 10% to Xgp and cni, respectively. That is, the seasonal variation of pH 

is largely driven by the meteorology (esp. temperature) rather than emissions. 205 

4.3 Diurnal cycles 

Diurnal cycles of pH are higher at nighttime than daytime, with a variation range of 0.65. Similar to the seasonal 

variations, the diurnal cycle is also consistent with pKa
* and cni trend while in reverse trend with the Xgp (Fig. S6a), 

with their contribution to pH being 0.70, 0.58 and -0.63, respectively.  

The major driving factors of diurnal cycles in pKa
* is different with that of seasonal variations. First, the diurnal 210 

cycles of pKa
* is driven by both AWC (0.45) and temperature (0.25) (Fig. S6b), in contrast to the dominance of 

temperature in seasonal variations (sect. 4.2). This is mainly due to the much smaller temperature variation range 

diurnally (4.87 K; Fig. S7) than that seasonally (23.26 K). In addition, diurnal variation of AWC is primarily 
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influenced by RH (Fig. S6c) due to the larger RH diurnal variations (0.16 versus 0.03 in seasonal variations; Fig. 

S7 and S4), in contrast with the PM2.5 dominance in seasonal variations. In terms of Xgp, its dominant driving 215 

factor of diurnal cycles is Ct/At, in contrast with the dominance of temperature in seasonal variations (Fig. S6d). 

Diurnal cycles of cni are due to the combined effects of temperature and 𝑓NO3
−  (Fig. S6e), where the 𝑓NO3

− are 

further mainly driven by chemical profiles (Fig. S6f). 

4.4 Residual 

The random residual of aerosol pH is another major contributor to pH temporal variations, which is comparable 220 

with the seasonal variations. Distinct from all the three components above, the largest top-level contributor to 

random residuals turns out to be cni (82%), even exceeding that of pKa
* (42%), while Xgp causes a net negative 

effect (-24%; Fig. S8). Moreover, random fluctuations of cni are almost entirely due to variations in 𝑓NO3
−  (~95%; 

Fig. 5a), which are primarily driven by chemical profiles (~93%; Fig. 5b). The pKa
* random fluctuations are 

mainly caused by AWC (~79%), which is further attributed mainly (~60%) to PM2.5 variations (Fig. 5d). Random 225 

variations of Xgp are dominated by the chemical profiles, similar to diurnal cycles and long-term trend (Fig.S9). 

Overall, PM2.5 and chemical profiles are the major influencing factors for random residual of pH, underscoring 

the prominence of emissions over meteorology. 
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Figure 5: Influencing factors of the random residual of aerosol pH. (a) cni due to T, RH, and 𝑓NO3
−, (b) 𝑓NO3

− 230 

due to T and Chemical profiles, (c) pKa
* due to T and AWC, (d) AWC due to RH and PM2.5. 

5. Overall contributions and implications 

Figure 6 shows the distinct major influencing factors of aerosol pH in the 4 time series components, where the 

factors contributing less than |10%| are not shown. Overall, pKa
* is the dominant influencing factor of pH 

variations, being the major contributor in all components, and playing a pivotal role in seasonal and diurnal cycles 235 

(Fig. 6). The cni is another dominant factor for pH variations, especially in random fluctuations. The Xgp shows a 

reverse trend with pH in all components. As seasonal and random variations largely regulate the pH temporal 

variations, the pKa
* and cni contribute more to pH than Xgp. 
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Figure 6: Hierarchical relationship among major influencing factors of aerosol pH during 4 time series 240 

(Factors contributing less than |10%| are not shown). 

 

Deeper-level driver analysis show that meteorology plays a more important role than chemical profiles in 

explaining the pH temporal variations (57% versus 22%; Fig. S10). Temperature is the major contributor, which 

explains seasonal variations in pKa
*, cni, and Xgp of 74%, 89% and 52%, respectively, and it is also important in 245 

diurnal cycles and long-term trends. RH plays an important role in diurnal cycles, accounting for 70% of the AWC 

diurnal variations and thus indirectly exerting an important effect on pKa
* (~46%). In comparison, chemical 

profiles are essential for explaining long-term trends in Xgp, and they also provide a pivotal role in random 

fluctuations and diurnal cycles for cni. The PM2.5 concentration is an overall effect of meteorology and emissions. 

PM2.5 is the dominant contributor to AWC in all components except diurnal cycles, exerting an indirect influence 250 

on pKa
*. Overall, temperature is critical in explaining pH variations (48%; Fig. S10), followed by chemical profiles, 

PM2.5 concentrations and RH (22%, 21% and 9%, respectively). 

The quantitative framework we proposed here can provide a clear understanding of the drivers of aerosol acidity 

temporal variations, with information on both quantitative contributions and the underlying mechanisms. Our 
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findings suggest that relative importance of synoptic conditions versus emissions in aerosol acidity variations 255 

differed much with the time scale of concern and are through different major mechanisms. In Changzhou, synoptic 

conditions are more important for seasonal variations and diurnal cycles of pH, while emissions cause greater 

effect on pH random fluctuations. For the long-term trends, both emissions and synoptic conditions are important. 

In other places, this framework still applies, while the conclusions may vary. These quantitative understandings 

on the driving factors of aerosol acidity are important in acidity-relevant process studies and policy-making, such 260 

as nitrate control(Guo et al., 2017), sulfate formation(Cheng et al., 2016; Zheng et al., 2024a), nitrogen depositions 

(Nenes et al., 2021), etc. 
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