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Supplementary Text

S1. Detailed description of variation contribution quantification

To illustrate the one-at-a-time sensitivity analysis method, driving factor analysis of cy; variations is taken
for example here. The cni depends mainly on RH, temperature 7"and the fraction of NO3” in anions (fyo3 )
(Zheng et al., 2022a). Based on the calculation method of previous study !> and ISORROPIA model,

these influencing factors contributions to cp; variations can be quantitative analyzed by Eqgs.S1 as:

0¢ni/Orn = Cni(RH' T, fN03') - Cni(m' T, fN03') (Sla)
aCni/af,\,o,; = Cnj (m, T, fNo;) - Cni(m; T, fNo;) (S1b)
0cpi/0r = 0cy; — Icpi/ afNog — 0¢yi/Ory (S1c)

where X and X are the average values and decomposed values of variable X, respectively, and more

detailed calculations are described in SI Text S2.

S2. Detailed descriptions of quantitative analysis of each factor based on ISM and time series

analysis

Here we adopted a bottom-up method to quantify the time series components of upper-level factors in
the ISM model and its driving factors. That is, based on the decomposition of time series analysis, each
input parameter p in ISORROPIA v2.3 is subdivided into 4 time series components. For example,
temperature can be decomposed into long-term trend (7y:), seasonal variations (7scas), diurnal cycles (7day)
and residuals (7is), respectively. Then, the corresponding components are used in ISORROPIA

calculations to achieve the quantitative assessment of factors affecting pH at corresponding time series.

Taking factors contribution to X, seasonal variations for example, there are two parts for calculation:

O0X gplseas and factor x; contribution to 0Xgp|scas (i.€., 0Xgp/O Xi |scas)

(1) Calculation of X, seasonal variations 0Xgp|seas

In the seasonal variation’s scenario, values of input parameter p is (Eq. S2a)

P = D+ Dseas (S2a)

where p is the average values of p and ps.,s 1S the decomposed seasonal values in time series analysis.
Based on Eq. S2a, ISORROPIA v2.3 and Eq.2d in main text, Xgp|calc is obtained. Then 0Xgp|seas is calculate
as (Eq. S2b)
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anplseas = Xgplcalc - X_gp (S2b)

where Xg,, is obtained based on average values of input parameters.

(2) Calculation of factor contributions 0Xgp/0 Xi |seas

With the ISM in main text, main influence factors of Xg, are temperature and relative abundance of

alkaline to acidic substances (Ci/A;). These factors variations contribute to 0Xgp|scas are obtained as

follows:
anp/ aTlseas = gp(Tseas + T ’ Ct/At-) - Xgp (T' Ct/At) (S2C)
anp/ 6(Ct/At)|seas = 6Xgp|seas - axgp/ 6T|seas (SZd)

where T,qs is the decomposed seasonal variations of temperature. C¢/A is obtained based on the base-
line values of input parameters. As for Ci/A,, its contribution to 0Xgp|seas 1S the differences between 0Xgp|scas
and 0Xgp/ 0T |5eqs(Eq. S2d), and this approach is also applicable to contribution of PMzs to AWC,
temperature to cn and chemical profiles to fyo; . Then quantitative contributions of middle-level
influencing factors for 0Xgp|seas are obtained. The contributions of middle-level factors to top-level
influencing factors are calculated using a similar process for each time series component. Ultimately, the
quantitative contributions of chemical profiles, RH, temperature and PM s concentrations to pH are

obtained for each time series component as well as for the entire observation period.
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Figure S1: Comparations of predicted and measured (a) NH3, (b) NH4", (¢) NOs", and (d) HNOs concentrations
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Figure S2: Top-level decomposition of pH into (a) pKa.®, (b) Xgp and (c) cni during the sampling period in
Changzhou.
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Figure S3: Long-term trends of chemical profiles and meteorology in Changzhou, China from 2018 to 2023.
(a) Mean mass concentrations of chemical profiles, (b) relative percentage of chemical profiles, (c) total sulfate (TS)
and non-volatile cations (NVCs), (d) total ammonia (TA) and NH4", (e) total nitrate (TN) and NOs", (f) total CI-
(THCI) and CI, (g) AWC and 7, (h) total cations (Ct) and total anions (4r).
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Figure S4: Seasonal variations of (a) 7, (b)AWC, (¢)PM:s, (d) RH, (¢) fno; and (f) C/Ar.
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Figure S5: Seasonal variations of (a) NO3;  and HNO3, (b)TS and THCI, (c) TA and NVCs.
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Figure S6: Influencing factors of the diurnal variations of aerosol pH. (a) The 1% level decomposition into pKa",
Xgp and cni. (b)-(f) Further investigation of the influencing factors of (b) pKa* due to T and AWC, (c) AWC due to
RH and PMa2ss, (d)Xgp due to C/4iand 7, (¢) cni due to RH, 7, fnoz, and (f) fyo; due to 7'and chemical profiles.
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Figure S7: Diurnal cycles of (a) 7, (b)AWC, (c)PM:s, (d) RH, (¢) fno; and (f) C/Ae.
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Figure S8: Top-level decomposition of random variations of pH into (a) pKa”, (b) Xgp and (c) cni.
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Figure S9: Random variations of Xgp due to 7 and Ci/A+.
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Figure S10: Overall quantitative contribution of 7, chemical profiles, PM2s and RH to aerosol pH.
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