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Abstract. Methane (CH4) fluxes emitted by wetlands at high latitudes remain one of the largest sources of uncertainties in

global methane budgets. At these latitudes, flux estimation approaches, such as atmospheric inversions, are impacted by im-

proper characterisation of atmospheric transport due to challenging meteorological conditions and a lack of measurements.

Here, we assess the performances of ERA5 reanalysis, mesoscale simulations from WRF-Chem, and various atmospheric

transport models from several global and regional inversion systems using meteorological and CH4 in-situ measurements col-5

lected during the MAGIC2021 campaign near Kiruna, Sweden. Over six measurements days in August 2021, ERA5 exhibited

better agreement with observations than WRF-Chem thanks to data assimilation. Nevertheless, WRF-Chem demonstrated pro-

ficiency in simulating local atmospheric dynamics. Among global simulations of atmospheric concentrations of CH4, inversion-

optimised simulations of CH4 concentrations yielded the best performances, particularly near the surface, with CAMS v21r1

marginally outperforming PYVAR-LMDz-SACS ensemble inversions. WRF-Chem regional simulations revealed performance10

disparities among CH4 products, with positive biases in the boundary layer indicative of an overestimation of wetland emissions

by selected wetland flux models. All transport models exhibited a vertically delayed gradient of CH4 mixing ratios near the

tropopause, resulting in a positive bias in the stratosphere. The high vertical resolution of CAMS hlkx facilitated a better repre-

sentation of the vertical structure of CH4 profiles in the stratosphere. Despite the limited spatiotemporal scope of MAGIC2021,

we were able to identify the best performing transport models and to evaluate fluxes from different biogeochemical model15

parametrisations using the MAGIC2021 high-resolution dataset.

1 Introduction

In recent years, the Earth’s climate has been rapidly changing, with significant impacts on polar and sub-polar regions. In

the Arctic, the rate of warming was thought to be around twice as fast as the global average until recently (AMAP, 2021;

Jansen et al., 2020; Walsh, 2014; Yu et al., 2021), but it is now estimated to be closer to 4 times faster (Rantanen et al.,20
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2022). The amount of greenhouse gas in the atmosphere and the meteorological conditions are essential components of the

circumpolar climate system, where positive climate feedback loops are ubiquitous and disruptive (boreal fires (Zheng et al.,

2023), permafrost, and wetland emissions(Zhang et al., 2023), albedo). However, scarcity of long-term direct observational data

in the region has proven to be a challenge for studies aiming to constrain uncertainties and changes in the regional methane

cycle (Wittig et al., 2023). In order to understand these changes, climate models are therefore highly relied upon, and direct25

measurements must be employed to provide an assessment of their performance in modelling mixing ratios of greenhouse

gases in the region.

In-situ data at high latitudes mainly come from several tall tower networks operated by Arctic countries, as depicted in

Wittig et al. (2023). In Europe, data collection is coordinated by the Integrated Carbon Observation System (ICOS) network,

which comprises several towers stationed in Fennoscandia (few above the polar circle), that measure either in-situ atmospheric30

concentrations or methane fluxes through eddy covariance. Concentrations are however only measured close to the surface.

They are mostly representative of local scales and lack vertical information. Measurements covering larger scales and higher

atmospheric layers are crucial for accurately modelling the regional methane budget. Several projects have carried out field

measurements of atmospheric methane at high latitudes recently, including campaigns from the NASA ABoVE initiative (Goetz

et al., 2011) or the NASA-ESA joint initiative Arctic Methane and Permafrost Challenge (AMPAC, Miller et al. (2021)). This35

latest project was notably involved in CoMet 2.0 Arctic (2022) set in Canada and Alaska, and MAGIC2021, set near Kiruna,

Sweden (67 °N). The study presented here focuses on MAGIC2021, which spanned from 14 to 27 August 2021 and included

measurements of atmospheric methane mixing ratios, combined with weather data sounding. The Monitoring Atmospheric

composition and Greenhouse gases through multi-Instruments Campaigns (MAGIC) initiative launched by Centre National de

la Recherche Scientifique (CNRS) and Centre Nationale des Études Spatiales (CNES) aims at improving knowledge of CO240

and CH4 distribution and emissions in the Earth’s atmosphere by organizing frequent measurement campaigns in different

regions of interest. The first three campaigns, set in France from 2018 to 2020, served as a mean to calibrate and validate

instruments and measurement techniques, whilst also validating current space missions. MAGIC2021 was therefore the first

MAGIC campaign to focus on the study of CH4 emissions at high latitudes, bringing together 70 participants from 17 teams

and 7 different countries. As field work is relatively recent, few results have been published yet and to our knowledge no study45

has tried to extensively assess atmospheric composition models using campaign data at high resolution in those regions.

Kiruna and its surrounding are characterised by wetland landscapes that include small ponds to large lakes as well as peatland

and various inundated soils found in both boreal forest and tundra, as shown on Figure 1. These wetlands are known to be the

main local source of methane though their emissions are generally poorly constrained (Saunois et al., 2020). Additionally,

some permafrost areas are also present at higher altitudes found in the Scandinavian mountains west of the city, though to a50

relatively small extent (Ahlenius, 2016). In lower parts of the atmosphere, model estimates of greenhouse gas mixing ratios can

be strongly affected by these high uncertainties in emission processes, particularly for methane. Boundary layer mixing ratios

are also strongly influenced by turbulent flow which is parametrised in global models and challenging to simulate accurately

at finer scale (Schuh et al., 2019). This has a strong influence on atmospheric composition at all levels, as CH4 released at

the surface is usually transported to deeper atmospheric levels via turbulent and/or convective fine scale processes. Above the55
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boundary layer, transport by geostrophic wind becomes the major driver for greenhouse gas concentrations. This means that

atmospheric methane content is no longer strongly dependent on local emissions, but rather influenced by medium to long

range transport. Stohl (2004) have shown that concentrations observed in Northern Europe can be traced back to emissions

from North America or Siberia, provided meteorological conditions allowed for transport of surface emissions to the free

troposphere. At higher altitudes, the main driver of CH4 mixing ratios becomes methane depletion by OH radicals. OH is60

found mainly at the top of the troposphere and at the bottom of the stratosphere, where other chemical species also react

with CH4, reducing drastically its presence above the tropopause. High-tropospheric and stratospheric CH4 concentrations are

therefore characterised by a strong vertical gradient. Tropopause height and troposphere/stratosphere exchanges become key

influences on CH4 mixing ratios there (Xiong et al., 2013), and are also challenging to model accurately (Mateus et al., 2022).

In this study, the accuracy and precision of several models in reproducing greenhouse gas mixing ratios and meteorological65

conditions observed at fine scale are assessed. Our study uses in-situ observations that employed research aircraft and weather

balloons deployed around Kiruna in August 2021 (details in Section 2). We first start by assessing models regarding mete-

orological variables, with data from the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation

reanalysis (ERA5) global product and regional WRF simulations. Then, we assess the atmospheric composition models ability

to reproduce observed CH4 mixing ratios. Models assessed include the Copernicus Atmosphere Monitoring Service (CAMS)70

analysis hlkx and inversion-optimised flux product version 21r1, six PYVAR-LMDz-SACS ensemble inversions and WRF-

Chem regional simulations. More detail about these models can be found in Section 2. Comparisons between model simu-

lations and observational data provide insights into the strengths and limitations of these models in the Lapland region and

highlight areas for improvement at several levels and scales.

2 Methods75

2.1 Observational data

Both ground-based and airborne measurements were taken during MAGIC2021. This study focuses on airborne data taken

by CNES weather balloons as well as SAFIRE ATR42 and DLR Cessna aeroplanes. These platforms had different payload

configurations and measurement capabilities and thus provide complementary information about the distribution of gases in

the atmosphere. Whilst this study does not make use of the full set of MAGIC2021 measurements due to differences in ease80

and speed of data treatment specific to each instrument, it provides a solid example of such campaigns capability in terms of

model validation.

2.1.1 Weather balloon observations

Two types of weather balloons from CNES were released during MAGIC2021: the Light Inflatable Balloon (BLD - Ballon

Léger Dilatable) and the Open Stratospheric Balloon (BSO - Ballon Stratosphérique Ouvert). Balloon types differ in their85

usage, BLD are single-use, their membrane bursting after the ascent phase. They typically reach altitudes up to 30km. BSO
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Figure 1. Location (left) and date and time (right) of MAGIC2021 measurements used in this study. The left panel does not show the last

ATR42 trajectory of measurements as it left the region of Kiruna to fly over oil platforms off the Norwegian coast.

are reusable and can reach altitudes above 30km. Weather balloons carried two main instruments whose data were used in

the study: the AirCore atmospheric sampler, and meteomodem M20 radiosondes. The M20 instrument is an ultra-lightweight

(36 grams) radiosonde used to gather meteorological data such as temperature, humidity, pressure, as well as zonal (U) and

meridional (V) wind components. More details about the instrument can be found at Meteomodem (2020). Measurements with90

the M20 were made during both ascending and descending phases of balloon flights.

AirCore is an atmospheric sampler (Tans, 2009; Karion et al., 2010; Membrive et al., 2017) which allows sampling atmo-

spheric composition on a large range of altitudes (∼0 - 30km) using the atmospheric pressure gradient. Both light AirCore

and high resolution AirCore were deployed. After sampling, AirCores were retrieved and analysed on the ground, using cavity

ring-down spectroscopy (CRDS). More specifically, analysis of sampled air was performed by two models of spectrometers.95

The G2401 and G5310 instruments from Picarro© (Picarro, 2008). The G2401 model measured CH4, CO2, and H2O, whilst

the G5310 measured CO. Time and trajectories of measurements for the AirCore instrument are shown in Figure 1

2.1.2 Aircraft observations

Two research aircraft flew between the surface and approximately 8 km, carrying instruments that gathered atmospheric com-

position and weather data. In this study we used data from two aircraft: the SAFIRE ATR 42-320 (CNES, CNRS, Météo100

France), abbreviated as ATR42, and the DLR Cessna C-208B Grand Caravan (DLR), abbreviated as Cessna. The position,

velocity, and altitude of the ATR42 aircraft were recorded by both an iXBlue™ inertial reference/navigation system called

SAFIRE AIRINS and a NovAtel™ Global Positioning System (GPS). This GPS system consists of L1/L2 GPS-Antennae

(5x) and a OEM3 receiver. Water vapour and relative humidity were measured using a non dew/frost point hygrometer called
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SAFIRE relative humidity sensor, made by Michell Instruments™. Airspeed, incidence angle and turbulence were measured105

by a Rosemount & Sextant™ incident flow vector probe called SAFIRE five hole radome. This instrument allows to measure

U and V wind components. Finally, the Rosemount™ in-situ temperature sensor called SAFIRE Rosemount PT102E2AL,

measures the temperature at the aircraft’s location. Also on board the ATR42 were two Picarro™ models previously mentioned

that were used for in-situ atmospheric composition analysis, as well as several other instruments distributed on the aircraft that

gathered meteorological data.110

The Cessna aircraft was equipped with a system called blackMAMBA (Measurement Acquisition of Meteorological Basics)

that delivered track (i.e. position and time) data, together with aircraft status and meteorological parameters. Some of the

meteorological sensors were installed in the MetPod, a container with a nose boom, mounted under the left wing. This allows

atmospheric parameters to be measured with less distortion than if they were measured from the fuselage. The temperature,

pressure, humidity sensors and the calibration of the wind measurement system are described in detail by (Mallaun et al.,115

2015). The aircraft also carried two in-situ trace gas instruments. Here we use only the data from a Picarro G1301m, which

measured CH4, CO2, and H2O mixing ratios. More details about gas measurements can be found in Fiehn et al. (2020).

Observations used in this study therefore contain 8 separate weather balloon samplings, 6 ATR42 and 10 Cessna flights

for the atmospheric composition. For meteorological data, only 6 of the 8 weather balloons were used due to radiosondes

malfunctioning during two of the flights, but meteorological data was measured during both ascent and descent flight phases120

which allowed for a significant

2.2 Atmospheric modelling systems

This section describes model data that was compared to MAGIC2021 observations. The first two sections describe global mod-

els whilst the third focuses on the regional modelling system based on WRF-Chem that was especially set up for MAGIC2021.

2.2.1 Global meteorological reanalysis125

Global meteorological fields used in this study came from the European Centre for Medium-Range Weather Forecasts (ECMWF)

fifth-generation reanalysis product (ERA5, Hersbach et al. (2020); C3S (2018)), that provides meteorological data on a global

scale from 1950 to present. In our study, we assessed ERA5 reanalysis wind, temperature, and humidity. The higher density

of vertical levels in ERA5 from the mid-troposphere down to ground level allows for accurate comparison with the flights

from MAGIC2021. Our analysis was carried out using ERA5 at time resolution of 1 hour, spatial resolution of 0.25°and 137130

vertical levels. Horizontal ERA5 wind was given in terms of zonal (U) and meridional (V) components of the wind vector.

Both observations and model data were converted to wind speed Wspd and direction Wdir for comparison when needed using:

Wspd =
√

U2 + V 2 ; Wdir = tan−1(−U,−V ) · 180
π (Tetzner et. al 2019). To compare humidity from observations, that mea-

sured relative humidity (RH), to ERA5 humidity, given as specific humidity q, ERA5 data was converted to RH using RH = e
es

where e is the partial pressure of water vapour in air (pressure exerted by water molecules) and es is the saturation vapour135

pressure, or the maximum vapour pressure that can occur at a given temperature before condensation occurs.
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2.2.2 Global CH4 assimilation systems

The Copernicus Atmosphere Monitoring Service (CAMS) is a service provided by ECMWF. Its atmospheric composition

product combines satellite data and ground-based measurements in a 4D-Var assimilation system to provide comprehensive

information on key atmospheric parameters such as mixing ratios of greenhouse gases in 4 dimensions (Peuch et al., 2022).140

Two CAMS products are used in this study. The first is the CAMS hlkx analysis (Agustí-Panareda et al., 2023) which is based

on ECMWF Integrated Forecast System for Composition (C-IFS, Verma et al. (2017)), with a vertical resolution of 137 vertical

levels, a horizontal resolution of 0.25°and 6 hours of temporal resolution. Methane loss to OH in the upper troposphere and

stratosphere is provided by Bergamaschi et al. (2009) where CH4 destruction was simulated using OH fields based on methyl

chloroform optimised Carbon Bond Mechanism 4 (CBM-4) chemistry (Bergamaschi et al., 2005; Houweling et al., 1998).145

Non-OH stratospheric loss is based on the 2-D photochemical MaxPlanck-Institute (MPI) model (Brühl and Crutzen, 1993).

The second CAMS product compared to MAGIC2021 is the global inversion-optimised greenhouse gas concentrations

product for CH4 version 21r1 (Segers, 2023). This product makes use of methane concentration measurements from the NOAA

ground observations network to optimise a priori fluxes of CH4 and produce 3D concentrations and correspond better to

ground observations. Simulations are run using the chemistry transport model TM5-MP (Williams et al., 2017) that includes150

upper tropospheric and stratospheric computation of CH4 loss using monthly concentrations of sink tracers, built-in reaction

rates and monthly temperature estimates. Tropospheric or stratospheric reaction rates are attributed using a latitude dependent

tropopause parametrisation from Lawrence et al. (2001). The spatial resolution is of 3°×2°×34 levels and a temporal resolution

of 6 hours. To distinguish between these two products from CAMS, the analysis product will be referred to as CAMS hlkx and

the inversion-optimised product as CAMS v21r1.155

Campaign data was also compared to concentrations from six PYVAR-LMDz-SACS (abbreviated PLS) ensemble inversions

that optimised weekly methane surface fluxes from 2019 to 2021 at a spatial resolution of 1.9°× 3.75°(latitude× longitude)

on 39 vertical levels and 3-hourly time resolution. Inversions employed three different atmospheric observation datasets for

flux constraints and two physical parametrisations. Two inversions used GOSAT column estimates to constrain fluxes, either

from the National Institute for Environmental Studies (NIES) or University of Leicester (UoL) and the others used surface160

observations from both the ICOS and NOAA tower networks. The two physical parametrisation are known as the classic and

standard versions of the atmospheric transport model LMDz (noted a and b respectively). The classic version uses the vertical

diffusion scheme of Louis (1979) and the scheme of Tiedtke (1989) to parametrise deep convection, whilst the standard version

combines the vertical diffusion scheme of Mellor and Yamada (1974) and thermal plume modelling by Rio and Hourdin (2008)

to simulate the atmospheric mixing in the boundary layer. Deep convection is represented using Emanuel (1991) scheme165

coupled with the parametrisation of cold pools developed by Grandpeix et al. (2010). Bottom-up inventories or process-based

land surface models were used to build prior CH4 fluxes for different categories, and the OH and O(1D) fields were prescribed

from the simulation of a chemistry-climate model LMDz-INCA with a full tropospheric photochemistry scheme. Inclusion of

observations and definition of observation errors to constrain fluxes followed the method outlined in (Peng et al., 2022; Lin

et al., 2023).170
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2.2.3 Regional atmospheric model (WRF-Chem)

WRF-Chem configuration

In addition to global model outputs, the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model

was used to simulate the meteorological conditions and greenhouse gas concentrations during the MAGIC2021 campaign on a

regional scale. WRF is a widely used mesoscale numerical weather prediction system in both research purposes and operational175

forecasting. It uses fully compressible and non-hydrostatic Eulerian equations on an Arakawa C-staggered grid to ensure

the preservation of mass, momentum, entropy, and scalars (Skamarock et al., 2008). The set-up for this study included two

domains, one parent and one nested. The parent domain (d01) encompassed the whole of Fennoscandia as well as Denmark,

the westernmost part of Russia and most of the area covered by Baltic countries, at a resolution of 9×9 km. The nested

domain (d02) had a higher resolution of 3×3 km and spanned most of the northern part of Finland, Sweden and Norway180

where MAGIC2021 measurements were taken. Domain boundaries were chosen such as to avoid strong emissions and high

topography close to a boundary, which are known to cause transport problems (NCAR, 2024). WRF-Chem generated output

fields including meteorological variables and concentrations every 20 minutes.

Our physical parametrisation included the WSM5 scheme for microphysics (Hong et al., 2004) as well as the RRTMG

longwave and shortwave schemes (Iacono et al., 2008) for radiation. The planetary boundary layer was represented using the185

MYNN Level 2.5 scheme (Nakanishi and Niino, 2009), whilst the revised MM5 surface layer scheme (Jiménez et al., 2012)

was used, with the thermal roughness length dependent on vegetation. No urban model was activated. For the land surface, the

Noah model was used, with 4 soil layers (Tewari, 2004). Regarding convection, the Kain-Fritsch scheme was used for the parent

domain (Kain, 2004), whilst convection was resolved explicitly in the nested domain. Additional convection-related options

were activated, including radiation feedback on convection, convection diagnostics, and Grell-Devenyi scheme parameters190

(Grell and Dévényi, 2002). Vertically, the simulations had 50 levels from ∼140m to ∼20km with about half of all levels below

2km. The model configuration was evaluated in previous studies to produce minimum transport errors at both continental (Feng

et al., 2019) and regional (Díaz-Isaac et al., 2018) scales.

Methane concentrations were modelled as passive tracers, which were transported online at each time step concurrently with

meteorological variables. Emissions are injected from the surface into the first atmospheric layer to generate the concentra-195

tion fields of tracers. These tracers undertook a series of transport processes, including advection, diffusion, turbulence, and

convective mixing, to simulate the motion of molecules in the atmosphere. Initial conditions were set by ERA5 reanalysis me-

teorology at 0.5°×0.5°×137 levels resolution and boundary meteorological conditions were updated every 3 hours using the

same product. Data within WRF-Chem domain was then produced by WRF physics and dynamics. Methane boundary condi-

tions were produced by the inversion optimised CAMS concentrations product version 21r1 described earlier, at a resolution of200

3°×2°×34 levels every 6 hours. Emissions within simulation domains were divided into multiple tracers depending on source

types. These tracers are described in Table 1. Concentrations within our simulation domain were initially set to a constant

value. A period of 15 days was shown to be sufficient for boundary conditions and local emissions to propagate through our
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domains and reach steady-state. The simulations were thus run from 01/08/2021 to 31/08/2021, to account for spin-up time

and the MAGIC2021 campaign period.205

Source Model Spatial resolution Time resolution

Anthropogenic CAMS 0.1°×0.1° monthly clim. (2016-18)

Fire CAMS 0.1°×0.1° daily aug. 2021

Oceanic Weber et al. (2019) 0.25°×0.25° monthly clim. (1980-2016)

Wetland WetCHARTs 0.5°×0.5° monthly clim. (2016-18)

Wetland JSBACH-HIMMELI 0.1°×0.1° daily aug. 2021

Lakes Johnson et al. (2022) 0.25°×0.25° daily clim. 2003-2015

Table 1. Emission sources used in the WRF-Chem simulations, given with spatial and temporal resolutions.

Emission tracers

Input emissions were chosen according to data availability for August 2021, then prioritising higher spatial resolution in

order to reduce regridding issues. If no product were found for that time period, the highest time resolution product was chosen

and climatological averages were used.

Oceanic methane emissions were taken from Weber et al. (2019), a monthly climatology with a spatial resolution of210

0.25°×0.25°. Methane lake emissions from Johnson et al. (2022) were also used. The dataset includes corrections for daily

and seasonal observational bias, observed ice-free/emission seasonality, and realistic lake area and distribution. Anthropogenic

and fire emissions of methane were provided by CAMS, which publishes emissions driving their global atmospheric green-

house gas concentrations products (Agustí-Panareda et al., 2023). They are respectively from EDGARv4.2FT2010 (Olivier

and Janssens-Maenhout, 2012) and GFAS Version 1.2 (Kaiser et al., 2012). Anthropogenic and fire emissions both share the215

same 0.1°×0.1°spatial resolution but anthropogenic emissions were monthly averaged emissions over 2016-2017-2018 (latest

years available) whereas fire emissions were daily emissions from August 2021. Wetland emissions came from two sources:

the latest product from the WetCHARTs model (Bloom et al., 2017), with simulations up to 2019, and several versions of

JSBACH-HIMMELI (JSB-HIM) simulations originally designed for the European project VERIFY, described in Aalto (2019),

that were recently extended to later years. WetCHARTs has a spatial resolution of 0.5°×0.5°and a monthly time resolution,220

spanning until 2019. A monthly climatological average was therefore used, taking the same years as for CAMS anthropogenic

emissions. 18 different flux versions are publicly available, depending on physical parameters detailed in the documentation

(Bloom et al., 2017). A subset of 8 WetCHARTs versions were selected, to maximise representativeness of the dataset whilst

staying cost-effective in our computations. JSB-HIM emissions were provided by the Finnish Meteorological Institute (FMI)

at daily resolution for August 2021 and a spatial resolution of 0.1°×0.1°. 3 versions of total wetland flux differing in their225

driving meteorology were included in this study.
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Inventory emissions all have different spatial resolution, so they have to be regridded to our WRF-Chem domains resolution.

This was done by interpolating emissions from our data products to the WRF-Chem grid (Virtanen, 2010). 11 emission tracers

were dedicated to regional CH4 emissions An additional tracer was dedicated to boundary conditions. These were provided

by the inversion-optimised CAMS v21r1 product described in Section 2.2.2 and interpolated onto WRF-Chem vertical levels230

using Lauvaux (2022). Additionally, artificial boundary conditions were also implemented for other tracers in order to prevent

near-zero computation error propagation throughout the whole simulation. This was done by hourly adding a constant offset

of 300ppb through the emission tracers domain boundaries. WRF-Chem supports several independent passive tracers. This

allows us to construct different versions of atmospheric methane concentrations from a single simulation. A common core of

methane concentrations was built using the boundary condition tracer added to the sum of anthropogenic, fire, oceanic and235

lake emissions tracers. To this common core, wetland contributions can be separately added to obtain different atmospheric

methane concentrations. These wetland emissions include 8 separate products from the WetCHARTs inventory, and 3 products

from JSB-HIM simulations as described above (Bloom et al., 2017; Aalto, 2019). Simulations were run in both d01 and d02

domains, resulting in a total of 22 atmospheric CH4 concentrations product.

2.3 Comparison method240

2.3.1 4 dimensional barycentric interpolation using Delaunay triangulation

In our comparisons, modelled data were interpolated on measurement locations using the python function scipy.interpol-

ate.griddata from the scientific python library scipy. The function griddata uses scipy.interpolate.Linear-

NDInterpolator when performing linear interpolation in multiple dimensions as in our case, a function that was written in

cython by Virtanen (2010). Interpolation is necessary because gridded modelled data do not have the same temporal or spatial245

resolution as measurements taken by balloons or aircraft. Additionally, using Delaunay triangulation as in griddata allows

interpolation from an irregular grid such as the pressure grid used in studied models. The interpolation was performed in 4

dimensions (time + 3 space dimensions). griddata first computes a Delaunay triangulation around the measurement coordi-

nates to pick out interpolating points from the model grid. In 4 dimensions, each simplex around an observation point contains

5 vertices corresponding to 5 model coordinates in 4D. Barycentric linear interpolation is then performed using each simplex’s250

5 vertices to compute a model value at a particular measurement location. This method enables a fast, easy to implement

and accurate comparison between modelled and measured data, by allowing comparison along each instrument’s individual

trajectory.

2.3.2 Statistics

Our analysis systematically divided comparisons in 3 layers: surface (P>800 hPa = BL), mid-tropospheric (300<P<800 hPa =255

FT) and top of troposphere/bottom of stratosphere (P<300 hPa = UTLS). BL was chosen as such to incorporate the boundary

layer for all the field measurements period. P<300 hPa was chosen as it corresponds to the height at which chemical reactions
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and exchange processes between stratosphere and troposphere start to strongly affect methane concentrations. These values

were picked as constants to ease our calculations. The contribution of each instrument to these layers is shown in Table 2.

Aircraft Share of all sample (%) Share of BL sample (%) Share of FT sample (%) Share of UTLS sample (%)

CH4 Meteo CH4 Meteo CH4 Meteo CH4 Meteo

AirCore 3.94 16.98 0.83 2.36 6.16 14.74 100.0 100.0

ATR42 46.22 39.94 21.16 20.83 93.56 85.0 0.0 0.0

Cessna 49.84 43.08 78.01 76.81 0.28 0.26 0.0 0.0

Table 2. Contribution of MAGIC2021 aircraft and balloons to sample data. CH4 measurements were only made on the descending phase of

the AirCore flights, and 2 of the 8 balloons flights were not used because of an instrument failure as mentionned in Section 2.

Four statistics were computed to assess model performance against observations in each of the three previously defined layers260

and to compare the performance of models. These were namely the mean difference (model - observation) between measured

physical quantities and interpolated model quantities over a given sample ∆, standard deviation σ, Pearson correlation ρ, and

root-mean-square error RMSE. Circular statistics from Mardia (1972); Jammalamadaka and Sengupta (2001) were applied to

compare wind directions by computing circular ∆, σ, ρ and RMSE associated with model and observed directions.

These statistics were used to draw Taylor diagrams (Taylor, 2001) which allow to assess a set of models against observations.265

These diagrams cleverly combine ρ, σ and centred RMSE (CRMSE) in a polar coordinate plot using the law of cosines. The

radial coordinate of a data point usually represents the standard deviation (r = σ) whilst angular position gives its correlation

with observations (θ = arccos(ρ)). A reference point is set at (σobs, ρobs) where σobs is the standard deviation of the observations

and ρobs = 1. Here we normalise σ to be able to compare quantities from different layers of the atmosphere onto the same plot:

σN = σ/σobs. The coordinates of the reference point become (1,1). The better the model, the closer to this reference point it270

will be. CRMSE can also be represented on the diagram, as the radial distance from the reference point. Taylor (2001) shows:

CRMSE =

√√√√ 1
N

N∑

i

[
(xobs

i −xobs)− (xmod
i −xmod)

]2

=
√

σ2
obs + σ2

mod− ρσobsσmod

This statistic is a measure of model spread around observational values after removing any bias. It is therefore useful to

quantify model noise but it lacks an assessment of distance between model estimates and observations. To remedy this, we

chose to pair each Taylor diagram with a plot of RMSE against ∆ as in Kärnä and Baptista (2016).

3 Weather data comparison results & Discussion275

3.1 Winds

Figure 2 considers both wind speed and directions as observed during MAGIC2021 and modelled by ERA5 and WRF. In the

lowest analysis level (BL), MAGIC2021 winds showed 3 main directions of origin: SSW (18%), N (17%) and S (15%) which
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Figure 2. Wind rose plots for MAGIC2021 observed and ERA5 modelled winds interpolated on the flight tracks of the measurement

platforms. Observations include ATR42, AirCore and Cessna measurements. The radial axis gives the proportion (in %) of winds coming

from a given direction given by the angular axis. Coloured bins represent speeds associated with each direction.
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accounted for half the of measured winds. Their speeds ranged from 2 to 12 m/s. Both ERA5 and WRF also showed a large

(20%) contribution of SSW wind and distribution of wind speeds similar to observations. WRF showed a stronger contribution280

of N winds compared to observed winds in both domains (30% vs 16%), whilst ERA5 seems too overestimate the NNE wind

contribution (16% vs 10%).

In our mid-tropospheric layer (300<P<800 hPa), measured winds showed two main directions of origin: N (27%) and NNE

(26%). A large share of these winds had speeds higher than 16 m/s (60km/h). Wind directions and speed distribution of both

models agreed very well with observations in this layer both in terms of direction and speed, with more than 20% of N and285

NNE winds for all simulations. ERA5 had NNE contributions more important than N wind, contrary to observations and WRF.

However it showed a distribution of wind speeds closer to observations than WRF, which had a more important share of low

speed winds than observations. WRF winds were again very similar between the two domains. They were overestimating the

contribution from NNW, especially of low speed winds.

Measured winds at P<300 hPa showed 5 main directions of origin: 4 westerly (W, WSW, SW and WNW) and 1 from NNE.290

The former showed a speed distribution characterised by low values ranging from 2 to 10 m/s, whilst the latter had a majority

of its speeds >16 m/s. Both models also simulated an important contribution from westerly winds at low speeds (>50% for

observations and all models). WRF showed a tendency to overestimate contributions from main components and underestimate

those from secondary origins in both domains, giving for example a higher contribution from NNE winds than in ERA5 and

observed winds, but no contribution to S or ESE directions. ERA5 showed an opposite behaviour, as all contributions were295

more evenly distributed than in observations.

We now look at the statistical performance of these models in terms of wind speed and direction separately.

Figure 3 shows ERA5 correlated better than WRF with MAGIC2021 wind speeds in the bottom two layers, and had a σN

value closer to 1 than WRF in those layers as well. This latter statement was also true in the upper atmospheric layer but only

marginally so. Both WRF-Chem domains showed marginally better correlation there, with d02 being slightly better than d01.300

In terms of RMSE and ∆, ERA5 also performed better than WRF in two of the 3 studied layers, but was outperformed by

WRF in terms of ∆ in the lowest (P>800 hPa) layer whilst performing similarly in terms of RMSE. ρ & σ performance was

better with increasing altitude for all model. In terms of RMSE and ∆, this was however not the case. WRF performed best in

the lowest layer, then in the highest layer and had its worst performance in the free troposphere. ERA5 had its lowest ∆ and

its highest RMSE in the middle layer. Going from FT to UTLS, ERA5 ∆ changed sign and increased in magnitude whilst the305

RMSE was slightly reduced. This is also the case going from UTLS to BL, with ERA5 ∆ being more negative and RMSE

being reduced again. Notably, WRF coarser domain results were closer to observations in 3 of the 4 statistics studied here (σN,

∆ & RMSE) than the finer domain, whilst performing similarly in terms of ρ.

ERA5 and WRF also showed good agreement with MAGIC2021 wind directions both in terms of ρ (0.7<ρmod<0.96) and

σN (0.6<σNmod<1.1), as shown in Figure 3. UTLS was the only layer with a significant gap in performance between WRF and310

ERA5, where WRF had σN similar to ERA5 but a higher correlation (ρERA5 ≈ 0.7 vs ρWRF ≈ 0.95). Again both WRF-Chem

domains had close performance, mostly in UTLS. In BL, the closest model to observations in terms of σN was WRF-Chem

d01, followed by WRF-Chem d02 and ERA5. ERA5 had the best correlation with observations in BL, followed by WRF-
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Figure 3. Taylor and RMSE/∆ diagrams for wind speed (top) and direction (bottom). Taylor diagrams (left) radial axis represents the

normalised standard deviation of modelled wind speeds/directions. The angular axis represents correlation between modelled and observed

wind speeds/directions. Centred RMSE is represented by the radial distance from the reference point. RMSE versus ∆ (right) for wind

speed/direction comparisons between MAGIC2021 observations and modelled winds (in m/s and ° respectively).
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Chem d01 and WRF-Chem d02. WRF-Chem d02 and ERA5 had best performance in terms of σN in FT, with ERA5 data

being better correlated with observations. Looking at ∆ and RMSE, all models performed well with ∆ being all positive and315

≲6°throughout all 3 layers. Performance of WRF-Chem d01 was noticeably homogeneous across the 3 layers, having a RMSE

just under 2°and 3<∆<4°. Best model performance was by WRF-Chem d02 and ERA5 in FT and UTLS respectively, with

both RMSE and ∆ below 1.

3.2 Temperature

Figure 4 shows ∆ profiles of temperature for ERA5, WRF-Chem d01 and WRF-Chem d02 computed against the three320

MAGIC2021 datasets: Cessna, ATR42 and AirCore. In BL, temperature ∆ variations were similar for all models. Compar-

ison with ATR42 and Cessna data showed a ∆≈ 0 whilst AirCore comparisons showed a clear negative ∆ ranging from 0 to

5K throught this layer. In FT, profile data showed TERA5 < TWRF with ERA5 being negatively biased when compared to weather

balloon data and WRF being positively biased when compared to ATR42 data. Finally, weather balloon data for UTLS showed

a good agreement between both ERA5, WRF and measured T, but with more variation around ∆T = 0 for WRF. WRF values325

cannot be compared to weather balloon data in UTLS above P≈50 hPa as this was set as the upper limit of the model domain.

Looking at Figure 6, it can be seen that all models performed very well in every layer, being all close to σN = 1 and

correlating very well with observations (ρ > 0.9). In terms of RMSE and ∆, there was a clear gap in performance for all

three models when looking at BL versus FT & UTLS, as a clear negative temperature ∆ was observed in BL, showing also

a relatively high RMSE when compared to FT & UTLS. Although the gap was small, it is worth noting again that ERA5330

performed better than WRF in terms of correlation, ∆ and RMSE in all layers, and it was only in BL that ERA5 showed a σN

value slightly further from 1 than WRF, as performance was otherwise close regarding that metric. Overall, WRF-Chem d01

and d02 showed closely similar performance in all layers.

3.3 Humidity

∆ profiles of relative humidity for ERA5, WRF-Chem d01 and WRF-Chem d02 were computed, as shown in Figure 5. BL pro-335

files suggest RHERA5 > RHWRFd01 >RHWRFd02 with WRF d02 being closer to ∆ = 0 throughout the layer. Below the tropopause

(∼13 km), ∆ profiles were relatively noisy, with ∆ ranging from about -20 to 20% in BL and UTLS, and from about -30 to

25% in FT. This was not surprising as RH was noisy in observational data. Appart from this, all models performed well in

terms of ∆ throughout BL, FT and UTLS, with ∆ being close to 0 and each model showing similar ∆ variations along their

profiles. ERA5 showed a slightly more positive ∆ at the bottom of FT than both WRF simulations. In UTLS, the profile was340

cut at P = 100 hPa as RH drops rapidly to values ∼0 in the stratosphere where ∆RH should be studied on a different scale, and

it was deemed to be beyond the scope of this study.

Figure 6 shows that models correlated best with MAGIC2021 measurements in UTLS, followed by FT and BL. Variability

was however better represented in BL, with σN being closer to 1 than in FT and UTLS for all 3 models. Model performance

was good overall, but showing worst numbers than for temperature. σN values ranged from 0.65 to 1.15 and ρ went from just345

under 0.6 in BL to ∼0.95 in UTLS. ERA5 performed once again better both in terms of correlation and σN than WRF in all

14

https://doi.org/10.5194/egusphere-2024-3559
Preprint. Discussion started: 27 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4. Temperature intercomparison between MAGIC2021 data and weather models. Profiles are computed using full weather balloon

dataset and profile sections of ATR42 and Cessna flights. ERA5 related profiles are shown in green, WRF d01 in blue and WRF d02 in

red. Top: Mean temperature profiles accross all flights from each aircraft (black) plotted with modelled temperatures interpolated on aircraft

trajectories: Cessna (left), ATR42 (centre) and weather balloon (right). Middle: Vertical profile of mean temperature difference between

measurements and models for each platform: Cessna (left), ATR42 (centre) and weather balloon (right). ∆T = Tmod −Tobs|L for atmospheric

level L. Bottom: Sections of mean temperature difference vertical profiles correponding to the 3 analysis levels: BL (left), FT (centre) and

UTLS (right), where Cessna data is shown in dashed lines, ATR42 data in dotted lines and AirCore data in solid lines. Shaded areas represent

the 1σ deviation from the mean temperature or temperature difference profiles.
15
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Figure 5. RH intercomparison between MAGIC2021 data and weather models. Profiles are computed using full weather balloon dataset and

profile sections of ATR42 and Cessna flights. ERA5 related profiles are shown in green, WRF d01 in blue and WRF d02 in red. Top: Mean

RH profiles accross all flights from each aircraft (black) plotted with modelled RH interpolated on aircraft trajectories: Cessna (left), ATR42

(centre) and weather balloon (right). Middle: Vertical profile of mean RH difference between measurements and models for each aircraft:

Cessna (left), ATR42 (centre) and weather balloon (right). ∆T = RHmod −RHobs|L for atmospheric level L. Bottom: Sections of mean RH

difference vertical profiles correponding to the 3 analysis levels: BL (left), FT (centre) and UTLS (right), where Cessna data is shown in

dashed lines, ATR42 data in dotted lines and AirCore data in solid lines. Shaded areas represent the 1σ deviation from the mean RH or RH

difference profiles.
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Figure 6. Taylor and RMSE/∆ diagrams for temperature (top) and relative humidity (bottom). Taylor diagrams (left) radial axis represents

the normalised standard deviation of modelled T/RH. The angular axis represents correlation between modelled and observed T/RH. Centred

RMSE is represented by the radial distance from the reference point. RMSE versus ∆ (right) for T/RH comparisons between MAGIC2021

observations and modelled winds (in °C and % respectively).
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layers. Looking at σN changes along the vertical, models show a that variability increases with pressure than the one observed,

with UTLS σN < FT σN < BL σN for all models. In terms of RMSE and ∆, RH was least well represented in FT, where a

negative ∆ of ∼3 % was observed for all models. This is also where RMSE was highest, ranging from 13 to just below 17 %.

An opposite ∆ was observed in BL, of a similar magnitude for ERA5 and WRF-Chem d01, but lower for WRF-Chem d02,350

where ∆<1%. In UTLS, all models showed a small negative ∆ of ∼2% and relatively lower RMSE values too. ERA5 showed

consistently better performance in terms of RMSE whilst WRF-Chem d01 and d02 showed better ∆ performance in BL and

UTLS respectively.

Underestimated RH variability in UTLS as well as the small and consistent negative ∆ shown in Figure 6 are mostly driven

by ∆ in the upper layer of the troposphere as Figure 5 shows variations above the tropopause are very small. All 3 instruments355

show a small positive ∆ in BL. In FT, ATR42 and weather balloons agree overall on a small negative ∆, despite disagrement

from 800 to 600 hPa for ERA5. WRF performed better than ERA5 for RH especially when looking at d02 performance in the

boundary layer.

3.4 Conclusions on weather data comparison

The good performance of both ERA5 and WRF in terms of wind speed and direction is not surprising as they are widely360

used and well validated models. ERA5 speed scores were better than both WRF d01 and d02, and direction scores were about

equivalent. The fact that ERA5 is a reanalysis product could explain this, as it benefits from data assimilation unlike WRF.

WRF could be expected to perform better than ERA5 in the boundary layer, given its fine resolution and use of an advanced

PBL scheme to model turbulence. More precisely, ∆ should get better with higher resolution, however noise related statistics

could be expected to get worse as higher resolution implies more potential noise. We indeed find lower ∆ in both wind speed365

and direction for WRF over ERA5 in BL. However, performance did not improve significantly between d01 and d02, d01

even slightly outperforming d02 in multiple metrics for both speed and direction. Statistics other than ∆ are all influenced by

noise even though RMSE and σN do not depend solely on it. Thus we use CRMSE, represented by radial distance from the

reference point in Taylor diagrams, to assess model noise performance. We indeed find that WRF d01 and d02 have slightly

higher CRMSE than ERA5 in BL & FT for both speed and direction which confirmed the expected relative behaviour of370

these models. WRF outputs can be improved by nudging, which consists in adjusting model estimates using observations or

reanalysis products, to help regional simulations fit observations better (Bullock et al., 2014).

Assessment of temperature was also characterised by an overall very good performance from all simulations (∆ < 1K in

all layers). Temperatures from weather balloons appear to be slightly biased (by about 2 K) in BL. This could be due to a

lack of corrections of temperatures measured in the boundary layer by the M20. Further checks did not find any correlation375

between wind speeds and ∆T as measured by the instrument, so no physical disturbance appeared to have been interferring

with measurements. This was unexpected as calibration was performed prior to balloon release on the ground, in that surface

layer. It is worth noting that consistent ∆>0 was only found in some flights (002, 003, 004 on 21/08 and 22/08) that had ∆

> 1K in BL, the other half of the flights not showing this characteristic. Investigating those particular flights in more detail

appears necessary to understand the origin of our findings.380
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Overall, WRF simulations were close to both ERA5 and MAGIC2021 data in terms of performance gives confidence in the

model’s ability to simulate the atmosphere in the region of interest.

4 Assessment of CH4 simulations

4.1 Comparison between modelled and observed CH4 profiles

Figure 7 shows the average difference between modelled CH4 mixing ratios and MAGIC2021 measurements, noted ∆CH4.385

In this figure we chose to only show comparison results of the PLS Surf b inversion from the provided 6-ensemble inversion

optimised products as it performed better than other simulations in all layers (as shown in Figure 8). BL was characterised by

a ∆ ≤0 for all global models and a positive ∆ of 20-50 ppb for WRF-Chem d02 and 20-100 ppb for d01. PLS Surf b notably

showed a ∆∼0 when compared with AirCore data but a significant underestimation of both Cessna and ATR42 measurements.

In FT, CAMS hlkx consistently showed a negative ∆ of 25-50 ppb against ATR42 and AirCore data, whilst PLS Surf b showed390

∆ ∼0 when compared with AirCore data, but a more significant negative bias than all other models when compared with

ATR42 data. CAMS v21r1 still showed a consistent ∆ ∼0. For regional products, ∆ decreased significantly from the start of

FT (P=800 hPa) up to 300 hPa, also reducing the gap between d01 and d02, so performance in that layer was close to that of

CAMS v21r1 and PLS Surf b. In UTLS, CAMS hlkx ∆ went from the negative values of FT to a strong positive ∆ of >200

ppb at its highest, with a consistent gradient from P=300 to P=45 hPa. An overall positive ∆ was also observed with PLS Surf395

b, CAMS v21r1 and WRF-Chem in UTLS although the ∆ profile structure was more complex. Indeed, these 4 profiles showed

a first increase in ∆ at the very start of UTLS (P=300 hPa) up to ∼250 hPa where ∆ hit a maximum value of 50-100 ppb

depending on the model. ∆ then decreases to -50-0 ppb from P∼175 hPa to P∼100 hPa, before increasing again to ∼100-200

ppb at P<100 hPa.

After being mainly influenced by surface emissions in BL, WRF-Chem mixing ratios are mainly influenced by long range400

transport of bounday conditions in FT and UTLS. As these were provided by CAMS v21r1 in our simulations, both d01 and

d02 profiles become similar to CAMS v21r1 at these levels. A deviation from this behaviour is however seen in UTLS, above

the first peak in ∆ at P∼300 hPa. This is likely due to transport differences between WRF-Chem and TM5 (transport model

used for the CAMS v21r1 product) in the region. Among inversion optimised simulations, CAMS v21r1 appears as the better

product in terms of ∆, showing similar performance to PLS Surf b at the bottom of the atmosphere, but better performance in405

top layers.

Figure 8 shows that highest correlations between modelled and measured CH4 concentrations were found in UTLS, with

consistent ρ values of 0.96-0.98 for all global models and ∼0.85 for both WRF-Chem domains. Among global models in

UTLS, CAMS v21r1 performed best in terms of σN. Regional WRF-Chem products ranked higher than global products in

that metric when considering UTLS alone. In that layer, both regional products slightly overestimated σN whilst global models410

showed a tendency to underestimate it. In BL and FT ρ performance was much worse for all models, as only CAMS hlkx

had ρ > 0.7 in FT. Most models showed similar ρ performance in BL and FT. Some models performed well in terms of σN in

BL and FT, notably WRF-Chem d02 and CAMS hlkx in FT and PLS in BL. BL WRF-Chem and CAMS hlkx CH4 showed a
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Figure 7. Methane intercomparison between MAGIC2021 data and chemistry-transport models. Profiles are computed using the full AirCore

dataset and profile sections of ATR42 and Cessna flights. Top: Mean CH4 profiles accross all flights from each aircraft (dotted grey line)

plotted with modelled CH4 interpolated on aircraft trajectories: Cessna (left), ATR42 (centre) and weather balloon (right). Middle: Vertical

profile of mean CH4 difference between measurements and models for each aircraft: Cessna (left), ATR42 (centre) and weather balloon

(right). ∆CH4 = CH
mod
4 −CH

obs
4 |L for atmospheric level L. Bottom: Sections of mean CH4 difference vertical profiles correponding to the 3

analysis levels: BL (left), FT (centre) and UTLS (right), where Cessna data is shown in dashed lines, ATR42 data in dotted lines and AirCore

data in solid lines. Shaded areas represent the 1σ deviation from the mean CH4 or CH4 difference profiles.
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Figure 8. Left: Taylor diagram for CH4 comparisons between MAGIC2021 observations and ERA5 model. The radial axis represents the

normalised standard deviation of the modelled CH4. The angular axis represents the correlation between modelled and observed CH4. The

centred RMSE is represented by the radial distance from the reference point. Right: RMSE against ∆CH4 computed from MAGIC2021

observations and modelled CH4.

strong overestimation of σ whilst PLS showed a performance of similar quality in both BL and UTLS with 0.6<σN<1. This

model ensemble was characterised by a relatively strong underestimate of σ in FT where 0.25<σN<0.5 for all 6 products. In415

terms of RMSE and ∆, it was not surprising to find models worst performance in UTLS considering the comparison shown in

Figure 7. Among global models, CAMS v21r1 had the best performance in terms of both RMSE and ∆. PLS ensemble showed

a disparity between classical (a) and standard (b) physics schemes in that layer, with the latter performing consistently better

than the former with respect to both metrics. WRF-Chem d01 and d02 outperformed all other model products in UTLS, having

RMSE values similar to CAMS v21r1 but a lower ∆. CAMS hlkx showed a similar level of performance as PLS products with420

classical physics in that layer. Models were nearly split in half in terms of BL vs FT performance, with worse RMSE and ∆ in

BL compared to FT for PLS NIES a,b UoL a as well as WRF-Chem d01 and d02, whilst CAMS hlkx, CAMS v21r1, PLS Surf

a & b performed better in BL. The exception was PLS UoL b which showed a better RMSE performance in BL than in FT but

a worse ∆ in BL. BL performance was particularly good for both PLS Surf products and CAMS v21r1, recording the lowest

RMSE and ∆ values. WRF-Chem d01 and d02 showed worse performance in BL compared to all global simulation products425

but were comparable in FT. WRF-Chem d02 showed better performance than d01 in all layers.
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Figure 9. Statistical assessment of WRF-Chem simulations against MAGIC2021 measurements Left: Taylor diagram for CH4 comparison

between MAGIC2021 observations and WRF-Chem. The radial axis represents the normalised standard deviation of the modelled CH4 ,

whilst angular position represents correlation between modelled and observed CH4 . Centred RMSE is represented by the radial distance

from the reference point. Right: RMSE against ∆CH4 computed from MAGIC2021 observations and modelled CH4.

4.2 Discussion of CH4 comparisons

Five of the eight global model products showed a negative ∆ in the boundary layer with relatively poor correlation and an

underestimate of variability, contrary to WRF-Chem mixing ratios which showed both a positive ∆ and an overestimate of σN.

This is consistent with an understimate/overstimate of surface emissions as weak sources would both lead to a negative ∆ and a430

decrease in variability, whilst overestimated surface emissions would lead to both a positive ∆ and an overstimated variability

of boundary layer mixing ratios. This could also be explained by an underestimation of BL height by WRF, which would give

higher CH4 concentrations. WRF d01 and d02 results presented in Figures 7 and 8 are an average over eleven different products

for each of d01 and d02. As such, some of the products did perform better than others within the ensemble. More particularly,

CH4 mixing ratios from the WRF-Chem simulation driven by JSB-HIM(ERA5) emissions (shown on Figure 7 in green) were435

closest to boundary layer measured mixing ratios over the duration of MAGIC2021, with performance similar to CAMS v21r1.

This product had the lowest wetland emissions out of all our inventories over MAGIC2021 duration and area. To investigate

results from regional simulations in more depth, we show results from individual WRF-Chem products in Figure 9.

Mixing ratios in the BL are positevely biased for all products, thus we deduce that inventories overestimated the magnitude

of wetland emissions (which also leads to overestimating flux variability). WRF-Chem d02 products performed systematically440

better than d01 in all 3 layers over 3 of our 4 statistical metrics (ρ performance was inventory dependent and very close between

d01 and d02). These results first showed that low emissions are needed to match observations when looking at averages over
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the whole MAGIC2021 dataset. Wetland methane releases are typically not homogeneously distributed and continuous (Rinne

et al., 2018; Waletzko and Mitsch, 2014), and causes for differing fluxes are multiple, so hard to fully encompass in inventories.

This is reinforced by the fact the not only WetCHARTs monthly averaged emissions lead to such overstimates, but also JSB-445

HIM products which have a daily time resolution as well as a higher spatial resolution and more complex underlying emission

processes. Without representing this complexity, emissions overestimate can be happen by not accounting for natural emissions

variability. Higher temporal and spatial resolutions combined with better knowledge of driving processes and local ecosystems

therefore seem needed to accurately represent wetland emissions in inventories. The resolution of global models does not

allow to represent CH4 mixing ratio variations at the scale of in-situ measurements. This motivates the use of higher resolution450

models such as WRF-Chem for tracking natural wetland emissions, as their advantage over global models is their ablility to

simulate high resolution transport in the boundary layer which could help reproduce high resolution signals. Moreover, better

resolution was shown to also improve simulation performance especially and crucially in the BL so high resolution models

seem needed to have the most accurate results. Other modelling techniques, such as Lagrangian particle dispersion models ,

could also be used to study these emissions.455

A tropospheric negative ∆ between simulations similar to CAMS hlkx (C-IFS forecast) and AirCore data was also found by

Membrive et al. (2017) on a high resolution profile measured in Canada during the StratoScience campaign (CNES - August

2014) during which a high resolution AirCore (AirCore-HR) was deployed on a stratospheric balloon flight near Timmins,

ON. (48.6°N). This study compares well with ours because similar CH4 sources can be found near both locations, and data

was also collected in August. Membrive et al. (2017) found ∆ = -24 ppb when comparing AirCore measurements to the C-IFS460

forecast. We find an overall tropospheric ∆ of -14.7 ± 16.6 ppb when comparing MAGIC2021 versus CAMS hlkx, which

is a comparable result. Further conclusions cannot be drawn from comparing these two studies alone, but this feature is also

consistently found when comparing AirCore profiles from the AirCore-Fr network with CAMS forecast and analysis products

(Crevoiser et al., in prep., Koffi and Bergamaschi (2018)). This suggests the presence of a systematic bias in CAMS forecast

and analysis products.465

Whilst a significant tropospheric ∆ was only found between CAMS hlkx and MAGIC2021 measurements, UTLS analysis

highlighted the presence of a strong positive ∆ for all models (cf. Figure 7). Figure 10 shows all MAGIC2021 AirCore profiles

plotted along with mean and spread of corresponding interpolated model profiles. Measured CH4 profiles show three distinct

phases in UTLS. The bottom of the layer is characterised by a first strong gradient, typically from 400-300 to 200 hPa, which

takes mixing ratios from their tropospheric average of ∼1950 ppb to about 1810 ppb. Concentrations then remain stable for470

100 hPa or less before starting a sharp decrease again in the last layer, between 200 and 100 hPa. This overall structure is in

reality more complex when looking at individual profiles and highlights the stratification of the atmosphere at these altitudes.

Modelling this stratification and chemical content of separate layers accurately is crucial to match observed CH4 concentrations

at this altitude because they can vary strongly over a short vertical distance depending on chemical content of air masses through

which measurements are made. CAMS hlkx has three to four times as many vertical levels as other products that are compared475

to MAGIC2021 observations. Within UTLS (P<300 hPa), and especially at its bottom, it makes an important difference in

terms of structure complexity of profiles. As such, CAMS hlkx ∆ profile does not show the positive ∆ peak of 50-100 ppb
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Figure 10. Modelled and MAGIC2021 AirCore CH4 profiles plotted against pressure. Displayed modelled profiles are mean of all inter-

polated profiles for each model and the coloured area represents the spread between all profiles. From the PLS ensemble, only the best

performing product (Surf b) is shown.

24

https://doi.org/10.5194/egusphere-2024-3559
Preprint. Discussion started: 27 November 2024
c© Author(s) 2024. CC BY 4.0 License.



between 300 and 200 hPa as inversion-optimised models (PLS, CAMS v21r1) do. This is because it can capture a more realistic

vertical structure of CH4 depletion near the tropopause, as shown in Figure 10 (it is also helped by its initial negative ∆ in the

troposphere). A possible way to improve the performance of chemistry-transport models at UTLS levels would be to couple480

them with models that focus on stratospheric chemistry, such as REPROBUS (Lefèvre et al., 1994, 1998; Jourdain et al., 2008),

which implement stratospheric chemistry in more detail, notably taking into account more CH4 sink molecules, thus potentially

preventing CH4 overestimates. Verma et al. (2017) and Membrive et al. (2017) attribute UTLS ∆>0 to an understimation of the

CH4 stratospheric gradient. If that were the case, a continuously growing positive bias in the stratosphere would be observed

between modelled and observed concentrations. This works for CAMS hlkx from P=300 to P=45 hPa as seen on the bottom485

right panel of Figure 7, which is a similar product to the one assessed in Verma et al. (2017) and Membrive et al. (2017).

However, our results show that below 45 hPa, CH4 ∆ actually decreases between CAMS hlkx and observations. In fact, ∆

decreases below ∼50 hPa for all global models. For inversion-optimised models, these variations form a second ∆ peak of

100-200 ppb between 80 and 30 hPa, and ∆ stops increasing at lower altitudes for CAMS v21r1. These results contrast with

a simple continuously growing ∆, suggesting that other factors may also induce a stratospheric ∆ in CH4. Figure 10, showed490

that CH4 values from AirCores started to decrease strongly at lower altitudes than in models, suggesting that the influence of

chemistry near the tropopause is vertically delayed for all models. As such, we hypothesise that both problems (weak gradient

and delayed CH4 decline) influence CAMS hlkx and PLS products. This delayed decline could be explained by both weak

chemistry and a lack of stratosphere-troposphere interaction. CAMSv21r1 and PLS show a more realistic CH4 gradient, but

their lower vertical resolution does not allow to resolve the stratification of the atmosphere at these altitudes, which causes495

observed biases as these product. It is worth noting that a difference in tropopause height between models and observations

does not influence the results, as confirmed by temperature profiles (Figure 4).

4.3 Conclusions on CH4 comparisons

Our model performance intercomparison highlights important differences between MAGIC2021 observations and modelled

CH4 mixing ratios, especially in UTLS levels where all models overestimate atmospheric methane content. CAMS hlkx analysis500

showed highest ∆ of all models in the UTLS and also suffered from consistent underestimation of atmospheric methane

content in the FT. Inversion-optimised products showed better perfomance at every levels than CAMS hlkx. However, CAMS

hlkx denser vertical grid at high altitude proved to be a certain advantage to better resolve tropopause chemistry. Among

inversion optimised global chemistry-transport models, CAMS v21r1 showed the best performance in terms of ∆. Standard

physics and surface observational constraints were found to be the best combination within the 6 PLS ensemble inversions,505

this version (Surf b) showing a similar level of performance as CAMS v21r1. Regional simulations were characterised by a

strong overestimation of BL CH4 atmospheric content, which was not found in global simulations. This overestimation shows

that inventory wetland emissions used in our simulations were too high on average.
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5 Conclusions

ERA5 reanalysis and WRF simulations were assessed using meteorological data from MAGIC2021. Methane in-situ measure-510

ments from MAGIC2021 were also exploited to assess atmospheric composition models: the analysis product CAMS hlkx,

the inversion-optimised product CAMS v21r1, six PLS ensemble inversions and WRF-Chem simulations. Over the six days

of MAGIC2021, meteorological data from ERA5 showed better agreement with observations than WRF on average, due to

both data assimilation and lower resolution that enhance performance in such an exercise. WRF performance was however

very close for all physical quantities assessed, which gives us confidence in its ability to simulate regional atmospheric physics515

for MAGIC2021. Among global simulations, inversion-optimised simulations of CH4 concentrations performed best, espe-

cially close to the surface. CAMS v21r1 showed slightly better performance than PLS ensemble inversions. A detailed analysis

of regional simulations with WRF-Chem was performed, revealing perfomance disparities among CH4 products. Overall we

observed only positive biases in the boundary layer, indicating a tendency to overestimate emissions by wetland emissions

models. CH4 profiles were also characterised by performance discrepancies near the tropopause, where CH4 content is de-520

pleted by reactions with OH radicals and can also be affected by stratospheric intrusions. All models showed a delayed vertical

gradient of CH4 mixing ratios near the tropopause, leading to a positive bias in the stratosphere. Comparisons with CAMS

hlkx showed that high vertical resolution allows to better capture vertical structure of CH4 profiles in the stratosphere, with a

large overestimate still. These results call for more work dedicated to improve the chemistry of models in the UTLS, which

could be done by separate stratosphere models, specialised in the task. Finally, we aknowledge that the MAGIC2021 dataset525

is limited in both spatial and temporal extents, limiting its ability to fully assess models. However, the results presented here

represent a rare opportunity to assess the performance of models against a large, high resolution dataset, over an area where

few measurements are usually taken. This highlights the need for more frequent extended campaigns at high latitudes to fully

characterise local processes and extend our performance assessment of global and regional models.
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Carbon footprint. The full carbon footprint of the MAGIC2021 campaign is still being estimated. For this study, we compute

an approximate value based on the highest emitters: aircraft flights. The Cessna from DLR has a 675HP turbine engine and flew550

for 27h22min, which according to Labos1point5 data equates to an emissions of 13± 1 tCO2. The ATR42 from SAFIRE has a

3800HP turbine engine and flew for 25h22min, which equates to emissions of 32± 2 tCO2. Therefore the total carbon footprint

of aircraft flights associated to this paper is 45± 2 tCO2. The balloon’s carbon footprint is more complicated to estimate. Most

recoveries were performed using a helicopter for which engine and flight time data were not part of the MAGIC2021 dataset,

resulting in a lack of information. Additionally, the helium used to inflate campaign balloons is a potent greenhouse gas that555

is released in the high troposphere/lower stratosphere everytime a balloon is used. Working out the full carbon footprint of

radiosoundings therefore requires converting released helium to CO2 equivalent which has not yet been done for MAGIC2021.

The carbon footprint of campaign measurements involved in the study presented here is therefore not complete, and probably

totals to more than 50 tCO2. The campaign as a whole will have a higher carbon footprint still, as it includes the footprint of

meals provided during the campaign, travels to Kiruna for every team, additional airborne measurements that were not used in560

this paper, as well as tools, clothes and instruments that were bought especially for MAGIC2021 . Also neglected here is the

footprint of the data analysis and model simulations post-campaign, which are run using high performance computing facilities.

Carbon footprint numbers given here are therefore neither representative of the whole campaign nor of the data analysis and

modelling footprint, so it should be considered as a lower bound for the footprint of this paper only.
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