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Abstract. Methane (CH4) fluxes emitted by wetlands at high latitudes remain one of the largest sources of uncertainties

in global methane budgets. At these latitudes, flux estimation approaches, such as atmospheric inversions, are impacted by

improper characterisation of atmospheric transport due to challenging meteorological conditions and a lack of measurements.

High latitude wetland emissions of methane (CH4) remain a significant source of uncertainty in global methane budgets.

At these latitudes, flux estimation approaches, such as atmospheric inversions, are challenged by complex meteorological5

conditions, limited observational coverage, and uncertainties in atmospheric transport modelling.

Here, we assess the performances of ERA5 reanalysis, mesoscale simulations from WRF-Chem, and various atmospheric

transport models from several global and regional inversion systems using meteorological and CH4 in-situ measurements

collected during the MAGIC2021 campaign near Kiruna, Sweden. This study evaluates the performance of various atmospheric

transport models and reanalysis datasets using meteorological and CH4 in-situ measurements collected during the MAGIC202110

campaign near Kiruna, Sweden.

Over six measurements days in August 2021, ERA5 exhibited better agreement with observations than WRF-Chem thanks

to data assimilation. Nevertheless, WRF-Chem demonstrated proficiency in simulating local atmospheric dynamics. Over six

measurement days in August 2021, the ERA5 reanalysis, which benefits from extensive data assimilation, showed better agree-

ment with observations compared to the mesoscale Weather Research and Forecasting model (WRF), though WRF provided15

valuable insights into local atmospheric dynamics.

Among global simulations of atmospheric concentrations of CH4, inversion-optimised simulations of CH4 concentrations

yielded the best performances, particularly near the surface, with CAMS v21r1 marginally outperforming PYVAR-LMDz-SACS

ensemble inversions. Among global simulations of CH4 mixing ratios, inversion-optimised models which adjust emissions to

match observations, achieved the best performance overall particularly when constrained by surface measurements.20

WRF-Chem regional simulations revealed performance disparities among CH4 products, with positive biases in the boundary

layer indicative of an overestimation of wetland emissions by selected wetland flux models. Regional simulations from WRF
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coupled with chemistry (WRF-Chem) revealed biases in CH4 mixing ratios in the boundary layer, suggesting an overestimation

of emissions by wetland models.

All transport models exhibited a vertically delayed gradient of CH4 mixing ratios near the tropopause, resulting in a positive25

bias in the stratosphere. The high vertical resolution of CAMS hlkx facilitated a better representation of the vertical structure of

CH4 profiles in the stratosphere. All chemistry-transport models exhibited a vertical shift of the CH4 mixing ratios gradient near

the tropopause, causing a positive bias in the stratosphere. Higher vertical resolution demonstrated improved representation of

vertical CH4 profiles in the upper layers of the atmosphere.

Despite the limited spatiotemporal scope of MAGIC2021, we were able to identify the best performing transport models30

and to evaluate fluxes from different biogeochemical model parametrisations using the MAGIC2021 high-resolution dataset.

Despite its limited spatiotemporal coverage, we were able to identify the best performing transport models and to evaluate

fluxes from different biogeochemical model parametrisations using the MAGIC2021 high-resolution dataset, demonstrating

the utility of in-situ vertical profile datasets for transport and flux model evaluation.

1 Introduction35

In recent years, the Earth’s climate has been rapidly changing, with significant impacts on polar and sub-polar regions. In

the Arctic, the rate of warming was thought to be around twice as fast as the global average until recently (AMAP, 2021;

Jansen et al., 2020; Walsh, 2014; Yu et al., 2021), but it is now estimated to be closer to 4 times faster (Rantanen et al.,

2022). The amount of greenhouse gas in the atmosphere and the meteorological conditions are essential components of the

circumpolar climate system, where positive climate feedback loops are ubiquitous and disruptive (boreal fires (Zheng et al.,40

2023), permafrost (Miner et al., 2022; MacDougall, 2021), wetland emissions(Zhang et al., 2023), and albedo (Hall, 2004;

Booth et al., 2024)). However, a scarcity of long-term direct observational data in the region has proven to be a challenge for

studies aiming to constrain uncertainties and changes in the regional methane cycle (Wittig et al., 2023). In order to understand

these changes, climate models are therefore highly relied upon, and direct measurements must be employed to provide an

assessment of their performance in modelling mixing ratios of greenhouse gases in the region.45

In-situ data at high latitudes mainly come from several surface measurement networks operated by Arctic countries, as de-

picted in Wittig et al. (2023). In Europe, data collection is coordinated by the Integrated Carbon Observation System (ICOS)

network, which comprises several towers stationed in Fennoscandia (few above the polar circle), that measure either in-situ

atmospheric mixing ratios or methane fluxes through eddy covariance. mixing ratios are however only measured close to the

surface. They are mostly representative of local scales and lack vertical information. Measurements covering larger scales and50

higher atmospheric layers are crucial for accurately modelling the regional methane budget. Several projects have carried out

field measurements of atmospheric methane at high latitudes recently, including campaigns from the NASA ABoVE initiative

(Sweeney et al., 2022) or the NASA-ESA joint initiative Arctic Methane and Permafrost Challenge (AMPAC, Miller et al.

(2021)). This latest project was notably involved in the CoMet 2.0 Arctic campaign set in Canada and Alaska in 2022, and

MAGIC2021, set near Kiruna, Sweden (67 °N). The study presented here focuses on MAGIC2021, which spanned from 14 to55
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27 August 2021 and included airborne measurements of meteorological variables and atmospheric methane mixing ratios, com-

bined with weather data sounding. The Monitoring Atmospheric composition and Greenhouse gases through multi-Instruments

Campaigns (MAGIC) initiative launched by Centre National de la Recherche Scientifique (CNRS) and Centre Nationale des

Études Spatiales (CNES) aims at improving knowledge of CO2 and CH4 distribution and emissions in the Earth’s atmosphere

by organizing frequent measurement campaigns in different regions of interest. The first three campaigns, set in France from60

2018 to 2020, served as a mean to calibrate and validate instruments and measurement techniques, whilst also validating cur-

rent space missions. MAGIC2021 was therefore the first MAGIC campaign to focus on the study of CH4 emissions at high

latitudes, bringing together 70 participants from 17 teams and 7 different countries. As field work is relatively recent, few

results have been published yet and to our knowledge no study has tried to extensively assess atmospheric composition models

using campaign data at high resolution in those regions.65

Kiruna and its surroundings are characterised by wetland landscapes that include small ponds to large lakes as well as

peatland and various inundated soils found in both boreal forest and tundra ecosystems, as shown on Figure 1. These wetlands

are known to be the main local source of methane though their emissions are generally poorly constrained (Saunois et al.,

2020). Additionally, some permafrost areas are also present at higher altitudes found in the Scandinavian mountains west of

the city, though to a relatively small extent (Ahlenius, 2016). In lower parts of the atmosphere, model estimates of greenhouse70

gas mixing ratios can be strongly affected by these high uncertainties in emission processes, particularly for methane. Boundary

layer mixing ratios are also strongly influenced by turbulent flow which is parametrised in global models and challenging to

simulate accurately at finer scale (Schuh et al., 2019). This has a strong influence on atmospheric composition at all levels,

as CH4 released at the surface is usually transported to deeper atmospheric levels via turbulent and/or convective fine scale

processes. Above the boundary layer, transport by geostrophic wind becomes the major driver for greenhouse gas mixing75

ratios. This means that atmospheric methane content is no longer strongly dependent on local emissions, but rather influenced

by medium to long range transport. Stohl (2004) have shown that mixing ratios observed in Northern Europe can be traced back

to emissions from North America or Siberia, provided meteorological conditions allowed for transport of surface emissions to

the free troposphere. At higher altitudes, an important driver of CH4 mixing ratios becomes methane depletion by OH radicals

and other molecules (e.g. Cl, Li et al. (2018)). Their presence mostly affect methane mixing ratios in the upper troposphere80

and lower stratosphere, where stratification and reaction with these chemical species reduce drastically CH4 mixing ratios in

the upper troposphere and above the tropopause. Upper-tropospheric and lower-stratospheric CH4 mixing ratios are therefore

characterised by a strong vertical gradient. Tropopause height and troposphere/stratosphere exchanges are thus key influences

on CH4 mixing ratios (Xiong et al., 2013), and are also challenging to model accurately (Mateus et al., 2022).

In this study, the accuracy and precision of several models in reproducing greenhouse gas mixing ratios and meteorological85

conditions observed at fine scale are assessed. Our study uses in-situ observations that employed research aircraft and weather

balloons deployed around Kiruna in August 2021 (details in Section 2). We first start by assessing models regarding mete-

orological variables, with data from the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation

reanalysis (ERA5) global product and regional WRF simulations. Then, we assess the atmospheric composition models ability

to reproduce observed CH4 mixing ratios. Models assessed include the Copernicus Atmosphere Monitoring Service (CAMS)90
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analysis hlkx and inversion-optimised flux product version 21r1, six PYVAR-LMDz-SACS ensemble inversions and WRF-

Chem regional simulations. More detail about these models can be found in Section 2. Comparisons between model simu-

lations and observational data provide insights into the strengths and limitations of these models in the Lapland region and

highlight areas for improvement at several levels and scales.

2 Methods95

2.1 Observational data

Figure 1. Location (left) and date and time (right) of MAGIC2021 measurements used in this study. Map background shows land use adapted

from the Corine2018 dataset (European Environment Agency, 2019). Individual land cover types from the Corine2018 dataset are grouped

in broader categories to ease map interpretation. Notably, wetlands include inland marshes, peat bogs, salt marshes, salines, intertidal flats,

coastal lagoons and estuaries, i.e. both freshwater and saltwater wetlands.¬

Both ground-based and airborne measurements were taken during MAGIC2021. This study focuses on airborne data taken

by CNES weather balloons as well as two aeroplanes, an ATR42 from SAFIRE and a Cessna from Deutsches Zentrum für Luft-

und Raumfahrt (DLR). These platforms had different payload configurations and measurement capabilities and thus provide

complementary information about the distribution of gases in the atmosphere. Whilst this study does not make use of the full100

set of MAGIC2021 measurements due to data availability at the time of our analysis, it provides a solid example of such

campaigns capability in terms of model validation.

All data were put on the WMO scale (Hall et al., 2021) through several inter-comparisons and inter-calibrations using similar

gas tanks on each Picarro analysers. These were carried out during the campaign, and included a wing-by-wing flight by the

ATR42 and Cessna aircraft.105
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2.1.1 Weather balloon observations

Two types of weather balloons from CNES were released during MAGIC2021: the Light Inflatable Balloon (BLD - Ballon

Léger Dilatable) and the Open Stratospheric Balloon (ZPD - Zero Pressure Difference). Balloon types differ in their usage,

BLD are single-use, their membrane bursting after the ascent phase. They typically reach altitudes up to 30km. ZPD are

reusable and can reach altitudes above 30km. Weather balloons carried two main instruments whose data were used in the110

study: the AirCore atmospheric sampler, and meteomodem M20 radiosondes. The M20 instrument is an ultra-lightweight

(36 grams) radiosonde used to gather meteorological data such as temperature, humidity, pressure, as well as zonal (U) and

meridional (V) wind components. More details about the instrument can be found at Meteomodem (2020). Measurements with

the M20 were made during both ascending and descending phases of balloon flights.

AirCore is an atmospheric sampler (Tans, 2009; Karion et al., 2010; Membrive et al., 2017) which allows sampling atmo-115

spheric composition on a large range of altitudes (∼0 - 30km) using making use of the atmospheric pressure gradient. To be

more specific, the AirCore is made of a coated stainless steel tube that is filled with a calibration gas before release. The length

of that tube varies according to the AirCore type: light AirCores have a shorter tube than high resolution AirCores. The sampler

is then attached to a weather balloon that is released from the surface. During the ascending phase, the relatively high pressure

inside the tube pushes out the calibration gas. At the top of the trajectory, the balloon pops and the payload starts a descending120

phase during which increasing pressure outside of the tube pushes atmospheric air inside the AirCore. Similarly to ice cores, the

resulting sample consists of a continuous profile of atmospheric air, with the most recently sampled air (from lower altitudes)

located near the inlet and the earlier sampled air (from higher altitudes) located deeper within the tube. Both light AirCore

and high resolution AirCore were deployed during MAGIC2021. After sampling, AirCores were retrieved and analysed on

the ground, using cavity ring-down spectroscopy (CRDS). More specifically, analysis of sampled air was performed by two125

models of spectrometers. The G2401 and G5310 instruments from Picarro© (Picarro, 2008). The G2401 model measured CH4,

CO2, and H2O, whilst the G5310 measured CO. Time and trajectories of measurements for the AirCore instrument are shown

in Figure 1. Atmospheric composition observations used in this study include 8 separate weather balloon soundings. For me-

teorological data, only 6 of the 8 weather balloons were used due to radiosondes malfunctioning during two of the flights, but

meteorological data were acquired during both ascent and descent flight phases which allowed to compensate for missing data.130

2.1.2 Aircraft observations

Two research aircraft flew between the surface and approximately 8 km, carrying instruments that gathered atmospheric com-

position and weather data. In this study we used data from two aircraft: the SAFIRE ATR 42-320 (CNES, CNRS, Météo

France), abbreviated as ATR42, and the DLR Cessna C-208B Grand Caravan, abbreviated as Cessna. The position, velocity,

and altitude of the ATR42 aircraft were recorded by both an iXBlue™ inertial reference/navigation system called SAFIRE135

AIRINS and a NovAtel™ Global Positioning System (GPS). This GPS system consists of L1/L2 GPS-Antennae (5x) and a

OEM3 receiver. Water vapour and relative humidity were measured using a non dew/frost point hygrometer called SAFIRE

relative humidity sensor, made by Michell Instruments™. Airspeed, incidence angle and turbulence were measured by a Rose-
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mount & Sextant™ incident flow vector probe called SAFIRE five hole radome. This instrument allows the measurement of

U and V wind components. Finally, the Rosemount™ in-situ temperature sensor called SAFIRE Rosemount PT102E2AL,140

measures the temperature at the aircraft’s location. Also on board the ATR42 were two Picarro™ models previously mentioned

that were used for in-situ atmospheric composition analysis, as well as several other instruments distributed on the aircraft that

gathered meteorological data.

The Cessna aircraft was equipped with a system called blackMAMBA (Measurement Acquisition of Meteorological Basics)

that delivered track (i.e. position and time) data, together with aircraft status and meteorological parameters. Some of the145

meteorological sensors were installed in the MetPod, a container with a nose boom, mounted under the left wing. This allows

atmospheric parameters to be measured with less distortion than if they were measured from the fuselage. The temperature,

pressure, humidity sensors and the calibration of the wind measurement system are described in detail by (Mallaun et al.,

2015). The aircraft also carried two in-situ trace gas instruments. Here we use only the data from a Picarro G1301m, which

measured CH4, CO2, and H2O mixing ratios. More details about gas measurements can be found in Fiehn et al. (2020).150

Observations used in this study include 8 separate weather balloon soundings, 6 ATR42 and 10 Cessna flights for the

atmospheric composition. For meteorological data, only 6 of the 8 weather balloons were used due to radiosondes malfunctioning

during two of the flights, but meteorological data were acquired during both ascent and descent flight phases which allowed to

compensate for the missing data.

Observations used in this study include 6 ATR42 and 10 Cessna flights for both atmospheric composition and meteorological155

data.

2.2 Atmospheric modelling systems

This section describes model data that was compared to MAGIC2021 observations. The first two sections describe global mod-

els whilst the third focuses on the regional modelling system based on WRF-Chem that was specifically set up for MAGIC2021.

2.2.1 Global meteorological reanalysis160

Global meteorological fields used in this study came from the European Centre for Medium-Range Weather Forecasts (ECMWF)

fifth-generation reanalysis product (ERA5, Hersbach et al. (2020); C3S (2018)), that provides meteorological data on a global

scale from 1950 to present. In our study, we assessed ERA5 reanalysis wind, temperature, and humidity. The high density of

vertical levels in ERA5 from the mid-troposphere down to ground level allows for accurate comparison with the flights from

MAGIC2021. Our analysis was carried out using ERA5 at time resolution of 1 hour, spatial resolution of 0.25°and 137 verti-165

cal levels. Horizontal ERA5 wind was given in terms of zonal (U) and meridional (V) components of the wind vector. Both

observations and model data were converted to horizontal wind speed V and direction θ for comparison when needed using:

V =
√
U2 +V 2 ; θ = tan−1(−U,−V ) · 180π (Tetzner et. al 2019). To compare modelled humidity (given as specific humidity

q in ERA5) to observations (that measured relative humidity, RH), ERA5 data was converted to RH using RH = e
es

where e is

the partial pressure of water vapour in air (pressure exerted by water molecules) and es is the saturation vapour pressure, or the170

maximum vapour pressure that can occur at a given temperature before condensation occurs.
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2.2.2 Global CH4 assimilation systems

The Copernicus Atmosphere Monitoring Service (CAMS) is a service provided by ECMWF. Its atmospheric composition

product combines satellite data and ground-based measurements in a 4D-Var assimilation system to provide comprehensive

information on key atmospheric parameters such as mixing ratios of greenhouse gases in 4 dimensions (Peuch et al., 2022).175

Two CAMS products are used in this study. The first is the CAMS hlkx analysis (Agustí-Panareda et al., 2023) which is based

on ECMWF Integrated Forecast System for Composition (C-IFS, Verma et al. (2017)), with a vertical resolution of 137 vertical

levels, a horizontal resolution of 0.25°and 6 hours of temporal resolution. Methane loss to OH in the upper troposphere and

stratosphere is provided by Bergamaschi et al. (2009) where CH4 destruction was simulated using OH fields based on methyl

chloroform optimised Carbon Bond Mechanism 4 (CBM-4) chemistry (Bergamaschi et al., 2005; Houweling et al., 1998).180

Non-OH stratospheric loss is based on the 2-D photochemical MaxPlanck-Institute (MPI) model (Brühl and Crutzen, 1993).

The second CAMS product compared to MAGIC2021 is the global inversion-optimised greenhouse gas mixing ratios prod-

uct for CH4 version 21r1 (Segers, 2023). This product makes use of methane mixing ratio measurements from the NOAA

ground observations network to optimise a priori fluxes of CH4 and produce 3D mixing ratios and correspond better to ground

observations. Simulations are run using the chemistry transport model TM5-MP (Williams et al., 2017) that includes upper185

tropospheric and stratospheric computation of CH4 loss using monthly mixing ratios of sink tracers, built-in reaction rates and

monthly temperature estimates. Tropospheric or stratospheric reaction rates are attributed using a latitude dependent tropopause

parametrisation from Lawrence et al. (2001). The spatial resolution is of 2°×3°(latitude× longitude) ×34 levels and the tem-

poral resolution is 6 hours. To distinguish between these two products from CAMS, the analysis product will be referred to as

CAMS hlkx and the inversion-optimised product as CAMS v21r1.190

Campaign data was also compared to mixing ratios from six PYVAR-LMDz-SACS (Peng et al. (2022); Lin et al. (2024),

abbreviated PLS) ensemble inversions that optimised weekly methane surface fluxes for 2021 at a spatial resolution of 1.9°×
3.75°on 39 vertical levels and 3-hourly time resolution. Inversions employed three different atmospheric observation datasets

for flux constraints and two physical parametrisations. Two inversions used GOSAT column estimates to constrain fluxes,

either from the National Institute for Environmental Studies (NIES) or University of Leicester (UoL) and the others used195

surface in-situ measurements from both the Integrated Carbon Observation System (ICOS) and NOAA tower networks. The

two physical parametrisation are known as the "classic" and "advanced" versions of the atmospheric transport model LMDz

(noted a and b respectively). The "classic" version uses the vertical diffusion scheme of Louis (1979) and the scheme of Tiedtke

(1989) to parametrise deep convection, whilst the "advanced" version combines the vertical diffusion scheme of Mellor and

Yamada (1974) and thermal plume modelling by Rio and Hourdin (2008) to simulate the atmospheric mixing in the boundary200

layer. Deep convection is represented using the scheme from Emanuel (1991) coupled with the parametrisation of cold pools

developed by Grandpeix et al. (2010). Bottom-up inventories or process-based land surface models were used to build prior

CH4 fluxes for different categories, and the OH and O(1D) fields were prescribed from the simulation of a chemistry-climate

model LMDz-INCA with a full tropospheric photochemistry scheme. Inclusion of observations and definition of observation

errors to constrain fluxes followed the method outlined in (Peng et al., 2022; Lin et al., 2024).205
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2.2.3 Regional atmospheric model (WRF-Chem)

WRF-Chem configuration

In addition to global model outputs, the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model

was used to simulate the meteorological conditions and greenhouse gas mixing ratios during the MAGIC2021 campaign on a

regional scale. WRF is a widely used mesoscale numerical weather prediction system in both research purposes and operational210

forecasting. It uses fully compressible and non-hydrostatic Eulerian equations on an Arakawa C-staggered grid to ensure

the preservation of mass, momentum, entropy, and scalars (Skamarock et al., 2008). The set-up for this study included two

domains, one parent and one nested. The parent domain (d01) encompassed the whole of Fennoscandia as well as Denmark,

the westernmost part of Russia and most of the area covered by Baltic countries, at a resolution of 9×9 km. The nested

domain (d02) had a higher resolution of 3×3 km and spanned most of the northern part of Finland, Sweden and Norway215

where MAGIC2021 measurements were taken. Domain boundaries were chosen such as to avoid strong emissions and high

topography close to a boundary, which are known to cause transport problems (NCAR, 2024). WRF-Chem generated output

fields including meteorological variables and mixing ratios every 20 minutes.

The physical parametrisation included the WSM5 scheme for microphysics (Hong et al., 2004) as well as the RRTMG

longwave and shortwave schemes (Iacono et al., 2008) for radiation. The planetary boundary layer was represented using the220

MYNN Level 2.5 scheme (Nakanishi and Niino, 2009), whilst the revised MM5 surface layer scheme (Jiménez et al., 2012)

was used, with the thermal roughness length dependent on vegetation. No urban model was activated. For the land surface, the

Noah model was used, with 4 soil layers (Tewari, 2004). Regarding convection, the Kain-Fritsch scheme was used for the parent

domain (Kain, 2004), whilst convection was resolved explicitly in the nested domain. Additional convection-related options

were activated, including radiation feedback on convection, convection diagnostics, and Grell-Devenyi scheme parameters225

(Grell and Dévényi, 2002). Vertically, the simulations had 50 levels from ∼140m to ∼20km with about half of all levels below

2km. The model configuration was evaluated in previous studies to produce minimum transport errors at both continental (Feng

et al., 2019) and regional (Díaz-Isaac et al., 2018) scales.

Methane mixing ratios were modelled as passive tracers, which were transported online at each time step concurrently with

meteorological variables. Emissions are injected from the surface into the first atmospheric layer to generate the mixing ra-230

tio fields of tracers. These tracers undertook a series of transport processes, including advection, diffusion, turbulence, and

convective mixing, to simulate the motion of molecules in the atmosphere. Initial conditions were set by ERA5 reanalysis

meteorology at 0.5°×0.5°×137 levels resolution and boundary meteorological conditions were updated every 3 hours using

the same product. Data within WRF-Chem domain was then produced by WRF physics and dynamics. Methane boundary

conditions were produced by the inversion optimised CAMS mixing ratios product version 21r1 described earlier, at a resolu-235

tion of 3°×2°×34 levels every 6 hours. Emissions within simulation domains were divided into multiple tracers depending on

source types. These tracers are described in Table 1. mixing ratios within our simulation domain were initially set to a constant

value. A period of 15 days was shown to be sufficient for boundary conditions and local emissions to propagate through our
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domains and reach steady-state. The simulations were thus run from 01/08/2021 to 31/08/2021, to account for spin-up time

and the MAGIC2021 campaign period.240

Table 1. Emission sources used in the WRF-Chem simulations, given with spatial and temporal resolutions as well as emission statistics.

Statistics are computed for the larger (d01) WRF-Chem domain over the month of August 2021 or climatological August depending on data

availability.

Emission tracers

Input emissions (Table 1) were chosen according to data availability for August 2021, then prioritising higher spatial reso-

lution in order to reduce regridding issues. If no product were found for that time period, the highest time resolution product

was chosen and climatological averages were used.

Oceanic methane emissions were taken from Weber et al. (2019), a monthly climatology with a spatial resolution of245

0.25°×0.25°. Methane lake emissions from Johnson et al. (2022) were also used. The dataset includes corrections for daily

and seasonal observational bias, observed ice-free/emission seasonality, and realistic lake area and distribution. Anthropogenic

and fire emissions of methane were provided by CAMS, which publishes emissions driving their global atmospheric green-

house gas mixing ratios products (Agustí-Panareda et al., 2023). They are respectively from EDGARv4.2FT2010 (Olivier

and Janssens-Maenhout, 2012) and GFAS Version 1.2 (Kaiser et al., 2012). Anthropogenic and fire emissions both share the250
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same 0.1°×0.1°spatial resolution but anthropogenic emissions were monthly averaged emissions over 2016-2017-2018 (latest

years available) whereas fire emissions were daily emissions from August 2021. Wetland emissions came from two sources:

the latest product from the WetCHARTs model (Bloom et al., 2017), with simulations up to 2019, and several versions of

JSBACH-HIMMELI (JSB-HIM) simulations originally designed for the European project VERIFY, described in Aalto (2019),

that were recently extended to later years. WetCHARTs has a spatial resolution of 0.5°×0.5°and a monthly time resolution,255

spanning until 2019. A monthly climatological average was therefore used, taking the same years as for CAMS anthropogenic

emissions. 18 different flux versions are publicly available from WetCHARTs, depending on physical parameters detailed in

the documentation (Bloom et al., 2017). A subset of 8 WetCHARTs versions were selected, to maximise representativeness of

the dataset whilst staying cost-effective in our computations. JSB-HIM emissions were provided by the Finnish Meteorological

Institute (FMI) at daily resolution for August 2021 and a spatial resolution of 0.1°×0.1°. 3 versions of total wetland flux from260

JSB-HIM, each differing in their driving meteorology were included in this study.

Inventory emissions all have different spatial resolution, so they have to be regridded to our WRF-Chem domains resolution.

This was done by interpolating emissions from our data products to the WRF-Chem grid (Virtanen, 2010). 11 emission tracers

and one boundary condition tracer were tracked in the simulation of total regional CH4 mixing ratios. Boundary conditions

were provided by the inversion-optimised CAMS v21r1 product described in Section 2.2.2 and interpolated onto WRF-Chem265

vertical levels using Lauvaux (2022). Additionally, artificial boundary conditions were also implemented for other tracers in

order to prevent near-zero computation error propagation throughout the whole simulation. This was done by adding a constant

offset of 300ppb through the emission tracers domain boundaries on an hourly basis. WRF-Chem supports several independent

passive tracers. This allows us to construct different versions of atmospheric methane mixing ratios from a single simulation.

A common core of methane mixing ratios was built using the boundary condition tracer added to the sum of anthropogenic,270

fire, oceanic and lake emissions tracers. To this common core, wetland contributions can be separately added to obtain different

atmospheric methane mixing ratios. These wetland emissions include 8 separate products from the WetCHARTs inventory, and

3 products from JSB-HIM simulations as described above (Bloom et al., 2017; Aalto, 2019). Simulations were run in both d01

and d02 domains, resulting in a total of 22 atmospheric CH4 mixing ratios product.

Table 2. Model specifications for simulations used in this study. η vertical coordinates are a hybrid sigma-pressure coordinate. Meteorolog-

icalonstraints can be from in-situ measurements such as weather balloons or measurement towers. For CH4 we use surface to specify that

constraints come from surface mixing ratio measurements.
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2.3 Comparison method275

2.3.1 4 dimensional barycentric interpolation using Delaunay triangulation

In our comparisons, modelled data were interpolated on measurement locations using the python function scipy.interpol-

ate.griddata from the scientific python library scipy. The function griddata uses scipy.interpolate.Linear-

NDInterpolator when performing linear interpolation in multiple dimensions as in our case, a function that was written in

cython by Virtanen (2010). Interpolation is necessary because gridded modelled data do not have the same temporal or spatial280

resolution as measurements taken by balloons or aircraft. Additionally, using Delaunay triangulation as in griddata allows

interpolation from an irregular grid such as the pressure grid used in studied models. The interpolation was performed in 4

dimensions (time + 3 space dimensions). griddata first computes a Delaunay triangulation around the measurement coordi-

nates to pick out interpolating points from the model grid. In 4 dimensions, each simplex around an observation point contains

5 vertices corresponding to 5 model coordinates in 4D. Barycentric linear interpolation is then performed using each simplex’s285

5 vertices to compute a model value at a particular measurement location. This method enables a fast, easy to implement

and accurate comparison between modelled and measured data, by allowing comparison along each instrument’s individual

trajectory.

2.3.2 Layer analysis and statistical metrics

Our analysis systematically divided comparisons in 3 layers: surface (P>800 hPa = BL), mid-tropospheric (300<P<800 hPa =290

FT) and top of troposphere/bottom of stratosphere (P<300 hPa = UTLS). BL was chosen as such to incorporate the boundary

layer for all the field measurements period. P<300 hPa was chosen as it corresponds to the height at which chemical reactions

and exchange processes between stratosphere and troposphere start to strongly affect methane concentrations. These values

were picked as constants to ease our calculations. the boundary layer (BL), free troposphere (FT) and lower stratosphere (LS).

MAGIC2021 data and interpolated model data was categorised as within the BL if the measurement height was below the BL295

height as computed by ERA5, interpolated at the measurement location. The FT layer extended from the BL height up to the

tropopause, which was only reached by weather balloons. Tropopause height was derived from observational data using the

cold-point tropopause (CPT) method (Eugenio and Macalalad, 2021). The contribution of each instrument to these layers is

shown in Table 2. Four statistical metrics statistics were computed to assess model performance against observations in each of

the three previously defined layers and to compare the performance of models. These were namely the mean difference (model300

- observation) between measured physical quantities and interpolated model quantities over a given sample ∆ model bias ∆,

from Willmott (1982) (which is the mean difference between interpolated model quantities and measured physical quantities

over a sample of measurements), standard deviation σ, Pearson correlation ρ, and root-mean-square error RMSE. Circular

statistics from Mardia (1972); Jammalamadaka and Sengupta (2001) were applied to compare wind directions by computing

circular ∆, σ, ρ and RMSE associated with model and observed directions.305

These statistics These metrics were used to draw Taylor diagrams (Taylor, 2001) (Taylor, 2001) which allow to assess a set

of models against observations. These diagrams cleverly combine ρ, σ and centred RMSE (CRMSE) in a polar coordinate plot
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using the law of cosines. The radial coordinate of a data point usually represents the standard deviation (r = σ) whilst angular

position gives its correlation with observations (θ = arccos(ρ)) (α= arccos(ρ)). A reference point is set at (σobs, ρobs) where

σobs is the standard deviation of the observations and ρobs = 1. Here we normalise σ to be able to compare quantities from310

different layers of the atmosphere onto the same plot: σN = σ/σobs. The coordinates of the reference point become (1,1). The

better the model, the closer to this reference point it will be. CRMSE can also be represented on the diagram, as the radial

distance from the reference point. Taylor (2001) shows:

CRMSE =

√√√√ 1

N

N∑
i

[
(xobs

i −xobs)− (xmod
i −xmod)

]2
=

√
σ2

obs +σ2
mod − ρσobsσmod

This statistic metric is a measure of model spread around observational values after removing any bias. It is therefore useful

to quantify model noise but it lacks an assessment of distance between model estimates and observations. To remedy this, we315

chose to pair each Taylor diagram with a plot of RMSE against ∆ as in Kärnä and Baptista (2016).

3 Weather data comparison: Results & Discussion

3.1 Wind

Figure 2 shows that both ERA5 and WRF manage to generally capture the observed dominant wind directions. For example,

models and observations agree on a contribution superior to 20% from notherly winds in the free troposphere. In the BL,320

observed winds are divided in 5 northerly and southerly main components, which all contribute less than 20% of the sampled

winds. ERA5 reproduces this distribution well, with multiple wind directions involved in low proportions while WRF over-

represents contributions from the main wind components (more than 30% of northerly winds in the BL). This pattern is also

observed in the LS and to a lesser extent in the FT.

Overall, ERA5 performs better in reproducing observed wind speed distributions, particularly in the mid-troposphere, and325

provides a more balanced representation of secondary wind directions at higher altitudes. WRF, on the other hand, tends to

overrepresent dominant wind components while underrepresenting secondary contributions, with consistent patterns across its

two domains. We now look at the statistical performance of these models in terms of wind speed and direction separately.

ERA5 generally outperformed WRF in wind speed metrics across the three atmospheric layers, as shown in Figure 3. It

ranked first in normalized standard deviation (σN ) and RMSE for all layers, as well as in correlation (ρ) for the BL and FT.330

Specifically, ERA5 achieved a top rank in 75% of wind speed metrics (9 out of 12, Table 3), compared to WRF d01 (16.7%)

and WRF d02 (8.3%). For example, in the BL, ERA5 ranked first in σN , ρ, and RMSE, though it ranked third in bias (∆),

where WRF d01 performed best. Similarly, in the FT, ERA5 maintained its top position across all wind speed metrics except

for ∆, where WRF d01 ranked first. In the LS, ERA5 continued to rank first in σN , RMSE, and ∆ but fell short in ρ, where

WRF d01 and d02 performed better. These results highlight ERA5’s consistent strength in reproducing observed wind speeds335

in all metrics.
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Figure 2. Wind rose plots for MAGIC2021 observations as well as ERA5 and WRF simulations. The radial axis gives the proportion (in

%) of wind coming from a given direction given by the angular axis. Coloured bins represent the share of speed ranges shown in the legend

associated with each direction. Rows correspond to data products MAGIC2021 observations, ERA5, WRF d01 and WRF d02. Columns

corresponds to analysis layers BL, FT and LS.
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Figure 3. Comparison between simulated and observed wind speed V (top) and direction θ (bottom) with Taylor (left) and bias (∆) versus

RMSE (right) diagrams. The radial axis of Taylor diagrams represents the normalised standard deviation of modelled wind speed/direction.

The angular axis represents correlation between modelled and observed wind speed/direction. Centred RMSE is represented by the radial

distance from the reference point. RMSE and bias are computed subtracting observed quantities to simulated quantities.

14



For wind direction, as illustrated in Figure 3, ERA5 and WRF showed more mixed performance. While ERA5 ranked first

for some metrics in the FT and LS, WRF d01 performed better especially in the BL and LS, achieving the highest correlation

(ρ) and lowest RMSE in both layers. In the BL, WRF d01 also demonstrated strong performance in other metrics, ranking first

in ρ and ∆. Notably, WRF d01 outperformed the finer domain (d02) in 75% of wind direction rankings (9 out of 12, Table 3),340

indicating that the coarser domain was often better suited for capturing wind direction variability and error. ERA5, on the other

hand, exhibited varying performance across layers, with error metrics ∆ and RMSE rank changing with altitude (e.g. third in

∆ & RMSE in the BL and FT but first in the LS).

Overall, ERA5 exhibited superior performance in wind speed metrics across most layers, while WRF d01 showed stronger

results for wind direction, particularly in the BL and LS. The relative performance of each model is summarised in Table 3. The345

table ranks each model against the other 2 for each physical quantity, statistical metric and atmospheric layer studied. A colour

code is also given as a visual aid (green for position 1, yellow for position 2 and red for position 3). Our model assessment

can then be quantified by computing the average rank of each model over all atmospheric layers and statistical metrics. ERA5

had an average rank of 1.17 in terms of wind speed, in contrast to WRF d01 (2.08) and WRF d02 (2.75). For wind direction

however, both WRF d01 and d02 outperformed ERA5, with the same average rank of 1.92, compared to 2.17 for ERA5.350

3.2 Temperature

Figure 4 shows temperature profiles on the upper part of the figure and temperature bias (∆) profiles on the lower part. Here

the MAGIC2021 dataset is compared to ERA5, WRF d01 and WRF d02. Bias is computed such that a positive ∆T means

that modelled temperature was superior to observations on average over all MAGIC2021 measurements in the particular bin

considered. The lower-most part of the left profiles, which compare temperatures above P = 800hPa, shows a negative bias of355

∼3 °C for all three models. Further investigation of model performance against each instrument separately shows that this bias

was only present against AirCore data, while no significant bias was observed with other instruments, which suggests that there

could have been an issue with AirCore data near the surface. In the middle section (800>P>300hPa), models and observations

follow consistently the negative vertical gradient, with ERA5 better capturing profile features, which is allowed by its better

vertical resolution. Finally, in the lowest pressure levels, a good agreement between ERA5, WRF and MAGIC2021 T was360

found, but with more variation around ∆T = 0 for WRF. WRF values cannot be compared to weather balloon data in the LS

above P≈50 hPa as this was set as the upper limit of the model domain. Overall, modelled temperatures reproduce well the

temperatures measured during the campaign, with a mean bias consistently inferior to 2 °C across all layers.

Figure 6 shows the statistical intercomparison with all models, metrics and atmospheric layers for both temperature and

humidity (RH), the top panel focusing on temperature. It can be seen that all models performed very well in every layer, being365

all close to σN = 1 and correlating very well with observations (ρ≥ 0.8). In terms of RMSE and ∆, models also perform well,

with RMSE < 2°C and ∆ < 1 °C in all layers. Models generally reproduce temperature best in the FT, followed by the LS, and

then the BL across most statistical categories.

Table 3 shows that ERA5 performed better than both WRF domains in most statistical categories and layers in terms of

temperature as well, with an average rank of 1.17 for ERA5 versus an average rank > 2 for WRF. Overall, WRF d01 and d02370
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Figure 4. Vertical temperature intercomparison between MAGIC2021 data and weather models. Observational data includes MAGIC2021

data from weather balloons, ATR42 and Cessna aircraft and was binned to fit model grids. Profiles are divided in three blocks (P>800hPa,

300<P<800hPa and P<300hPa) which allow to illustrate results from our analysis layers (BL, FT and LS). Shaded areas represent the 1-σ

deviation from the mean temperature or temperature bias profiles, computed from binned data. Top: Mean temperature profiles computed

accross all flights from MAGIC2021 platforms (black) plotted with mean interpolated temperature profiles from models corresponding to

platform trajectories. Bottom: Bias profiles in the same pressure ranges. Bias is computed as the mean difference between interpolated model

quantities and measured physical quantities over each bin.
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showed closely similar performance in all layers, with WRF d01 slightly but consistently outperforming d02 in most statistical

metrics and layers (average rank of 2.08 for WRF d01 and 2.75 for d02).

3.3 Humidity

As for temperature, relative humidity profiles for ERA5, WRF d01 and WRF d02 are shown on Figure 5. The top panel shows

the mean RH profile observed during MAGIC2021 and the corresponding mean interpolated profiles for each model. The375

bottom panel shows the corresponding bias profiles. The left handside profiles show that humidity increased with height on

average from the surface up to about z = 1.5 km, which was well captured by all models. The bias profiles also suggest RHERA5

> RHWRFd01 >RHWRFd02 throughout the highest pressure levels. In the middle block, the models also captured the decrease in

RH with height well; however, the previously observed tendency of higher RH values in ERA5 compared to WRF d01 and

WRF d02, is no longer there. At lower pressure levels, RH strongly decreased with height and reaches ∼0% just below z = 15380

km which was captured by all models but with an underestimation of the observed RH values between 10 and 12 km.

The bottom panel of Figure 6 shows the full statistical intercomparison with 4 metrics and 3 layers (BL, FT and LS) for

relative humidity. Models correlated best with MAGIC2021 measurements in the LS and FT, and less in the BL. Variability

was also generally better represented in the FT and LS than in the BL, with σN being closer to 1. Model performance was good

overall, but showing worst numbers than for temperature. σN values ranged from 0.75 to 1.4 and ρ went from just under 0.65385

in the BL to ∼0.9 in the FT. ERA5 performed once again better both in terms of correlation and σN than WRF in all layers.

In terms of RMSE, RH was least well represented in the FT, where a RMSE > 12% was observed for all models. The BL was

where bias was highest, at around 2% on average, depending on the model. For WRF, the bias observed in the BL was opposite

to the bias in the FT. All models showed their best performance in terms of RMSE and bias in the LS, due to the low values

of RH at this altitude. ERA5 showed consistently better performance in terms of RMSE and bias whilst WRF d01 and d02390

showed better σN performance in the LS, where the models do not reach the same altitudes.

These results are summarised in Table 3 where ERA5 gets the first position in all layers and metrics, except for σN in the

LS, where WRF d01 and d02 did not simulate RH up to the same height as ERA5, which could explain the better performance

of WRF in that layer. The overall performance of WRF d01 and d02 was similar, but WRF d01 did outperform d02 in terms of

average rank (2.17 for d01 versus 2.67 for d02).395

3.4 Conclusions on weather data comparison

The good performance of both ERA5 and WRF in terms of wind speed and direction is not surprising as they are widely

used and well validated models. ERA5 speed scores were better than both WRF d01 and d02, and direction scores were about

equivalent even though both WRF domain slightly outperformed ERA5. Over all physical quantities, atmospheric layers and

statistical metrics, ERA5 obtained an average rank of 1.42, WRF d01 a rank of 2.06 and WRF d02 a rank of 2.52. The fact400

that ERA5 is a reanalysis product could explain its better performance, as it benefits from data assimilation unlike WRF. WRF

could be expected to perform better than ERA5 in the boundary layer, given its fine resolution and use of an advanced PBL

scheme to model turbulence. In particular, ∆ should get better with higher resolution, however noise related metrics could be

17



Figure 5. Vertical relative humidity intercomparison between MAGIC2021 data and weather models. Observational data includes

MAGIC2021 data from weather balloons, ATR42 and Cessna aircraft and was binned to fit model grids. Profiles are divided in three blocks

(P>800hPa, 300<P<800hPa and P<300hPa) which allow to illustrate results from our analysis layers (BL, FT, LS). Shaded areas represent

the 1-σ deviation from the mean RH or RH bias profiles, computed from binned data. Top: Mean RH profiles computed accross all flights

from MAGIC2021 platforms (black) plotted with mean interpolated RH profiles from models corresponding to platform trajectories. Bot-

tom: Bias profiles in the same pressure ranges. Bias is computed as the mean difference between interpolated model quantities and measured

physical quantities over each bin.
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Figure 6. Comparison between simulated and observed temperature (top) and relative humidity (bottom) with Taylor (left) and bias (∆)

versus RMSE (right) diagrams. The radial axis of Taylor diagrams represents the normalised standard deviation of modelled T/RH. The

angular axis represents correlation between modelled and observed T/RH. Centred RMSE is represented by the radial distance from the

reference point. RMSE and bias are computed subtracting observed quantities to simulated quantities.19



Table 3. Simulation rank depending on the meteorological quantity assessed for the three atmospheric layers and the four statistical metrics

considered in the study. Spd refers to wind speed, Dir to wind direction, T to temperature and RH to relative humidity comparisons.

expected to get worse as higher resolution implies more potential noise. We indeed found lower ∆ in both wind speed and

direction for WRF over ERA5 in the BL. However, performance did not improve significantly between d01 and d02, with d01405

even outperforming d02 in bias for wind direction in the BL. Metrics other than ∆ are all influenced by noise even though

RMSE and σN do not depend solely on it. Thus we use CRMSE, represented by radial distance from the reference point in

Taylor diagrams, to assess model noise performance. We find that WRF d01 and d02 have slightly higher CRMSE than ERA5

in the BL & FT for wind speed but not for direction which only partially confirms our hypothesis. Mass et al. (2002); Gómez-

Navarro et al. (2015) explained in more detail how higer resolution in simulations can lead to worse performance in objective410

statistical assessments. They demonstrated that, whilst simulations with finer resolution could enhance the representation of

physical processes compared to coarser simulations, they are more significantly influenced by timing and spatial inaccuracies.

This explains the results obtained when comparing our results obtained with d01 and d02, also highlighting the challenges

involved in validating high-resolution models. It also underscores that employing a range of statistical measures enables more

robust evaluations of model performance. WRF outputs can be improved by nudging, which involves adjusting model estimates415

using observations or reanalysis products, to help regional simulations fit observations better (Bullock et al., 2014), but nudging

was not utilised in the WRF runs analysed here.

Assessment of temperature was also characterised by an overall very good performance from all simulations (∆ < 1K in

all layers). Temperatures from weather balloons appear to be slightly biased (by about 2 K) in the BL. This could be due to

a lack of corrections of temperatures measured in the boundary layer by the M20. Further checks did not find any correlation420

between wind speeds and ∆T as measured by the instrument, so no physical disturbance appeared to have been interferring

with measurements. This was unexpected as calibration was performed prior to balloon release on the ground, in that surface

layer. It is worth noting that consistent ∆>0 was only found in some flights (002, 003, 004 on 21/08 and 22/08) that had ∆ >
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1K in the BL, the other half of the flights not showing this characteristic. Investigating those particular flights in more detail

appears necessary to understand the origin of our findings.425

Overall, WRF simulations were close to both ERA5 and MAGIC2021 data in terms of performance, which gives confidence

in the ability of the model to simulate the atmosphere in our region of interest.

4 Assessment of CH4 simulations

4.1 Comparison between modelled and observed CH4 profiles

CH4 mixing ratio profiles and CH4 bias profiles (∆CH4) computed for several models versus MAGIC2021 data are shown430

on Figure 7. Once again the left profiles show comparisons for P>800 hPa, the middle profiles 800>P>300 hPa and the right

profiles for P<300 hPa. For the PLS model in this figure, only PLS Surf b results are shown from the 6 different model products,

as it performed best overall (details shown in Figure 8, Table 4 and Figure A4). In the P>800 hPa profiles, CH4 mixing ratios

from global models were close to or smaller than CH4 from MAGIC2021 measurements, while regional models simulated

higher CH4 content than in-situ measurements. This was observed with all three platforms (see Figure A3 for details), with435

specifically PLS Surf b and CAMS v21r1 showing the best fit to the observed CH4 mixing ratios while CAMS hlkx CH4

mixing ratios were negatively biased. Regional simulations from WRF-Chem, mainly influenced by surface emissions in the

BL, produced mixing ratios higher than MAGIC2021 measurements (of ∼20-100 ppb in d01 and ∼20-50 ppb in d02).

In the 800>P>300 hPa profiles, CAMS hlkx mixing ratios were consistently below MAGIC2021 measurements, by about 25-

50 ppb. PLS Surf b and CAMS v21r1 simulations performed well again with ∆CH4 close to 0 throughout all levels. Regional440

model biases decreased significantly with altitude (800-300 hPa), reducing the gap between d01 and d02 showing similar bias

as CAMS v21r1 and PLS Surf b.

In the LS, CAMS hlkx transitioned from a negative bias in the FT to a strong positive bias exceeding 200 ppb at P∼50 hPa.

PLS Surf b, CAMS v21r1, and WRF-Chem displayed more complex bias profiles in this region. They were characterised by a

first peak in bias (50-100 ppb) near 250 hPa, followed by a decrease to -50-0 ppb between 175 and 100 hPa, and then a second445

increase to 100-200 ppb at pressures below 100 hPa. In the FT and LS, WRF-Chem mixing ratios closely followed CAMS

v21r1 (product that was used as boundary conditions). A deviation from this behaviour was observed in the LS above the first

peak in bias at approximately 300 hPa, likely due to transport differences between WRF-Chem and TM5 (the transport model

used in CAMS v21r1).

Figure 8 shows results from the comparison between MAGIC2021 CH4 measurements and models according to the four450

statistical metrics and the 3 atmospheric layers used previously. In the BL, most (5/8) global simulations underestimated

the variability of atmospheric CH4 content (σN < 1). On the contrary, regional simulations significantly overestimated this

variability with σN > 3 for both d01 and d02 domains. Correlation between model products and MAGIC2021 measurements

was also found to be low in the BL, no simulations exceeding ρ = 0.8, with some reaching values below ρ = 0.4 (PLS NIES

a and PLS UoL a). In terms of bias and RMSE, global models had better performance in the BL when compared to regional455

simulation products, particularly PLS Surf a and b and CAMS v21r1 which all had RMSE<10 ppb and absolute values of bias
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Figure 7. Vertical methane intercomparison between MAGIC2021 data and chemistry-transport models. Observational data include

MAGIC2021 samples from AirCores, ATR42 and Cessna aircraft and were binned to fit model grids. Profiles are divided in three blocks

(P>800hPa, 300<P<800hPa and P<300hPa) which allow to illustrate results from our analysis layers (BL, FT, LS). Shaded areas represent

the 1-σ deviation from the mean CH4 or CH4 bias profiles, computed from binned data. Top: Mean CH4 profiles computed accross all flights

from MAGIC2021 platforms (black) plotted with mean interpolated CH4 profiles from models corresponding to platform trajectories. Bot-

tom: Bias profiles in the same pressure ranges. Bias is computed as the mean difference between interpolated model quantities and measured

physical quantities over each bin.
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Figure 8. Left: Taylor diagram for CH4 comparisons between MAGIC2021 observations and ERA5 model. The radial axis represents the

normalised standard deviation of the modelled CH4. The angular axis represents the correlation between modelled and observed CH4. The

centred RMSE is represented by the radial distance from the reference point. Right: RMSE against bias (∆CH4) computed from MAGIC2021

observations and modelled CH4. RMSE and bias are computed subtracting observed quantities to simulated quantities.

≤ 1 ppb. Whereas global simulations all displayed a negative bias, both WRF-Chem domains overestimated methane content

in the BL, which corresponds to what was observed in the profiles of Figure 7.

The FT was also characterised by an underestimation of variability by global models with most (7/8) having σN < 1. Re-

gional simulations along with CAMS hlkx once again overestimated variability in that layer, with 1.7 ≤ σN ≤ 3.5. Correlation460

performance was slightly better than in the BL, with most (6/10) models showing ρ > 0.6. RMSE and bias performance was

also better in the FT than in the BL, with the notable exception of CAMS hlkx that displayed a negative bias of ∼30 ppb as

was seen in the profiles of Figure 7.

In the LS, all global models had a similar performance in terms of correlation, achieving the highest values out of the three

analysis layers (0.95 ≤ ρ≤ 0.99). Regional simulations showed a lower correlation with MAGIC2021 measurements, with465

ρ∼ 0.85 for both domains. Variability was underestimated by all global models in the LS, with 0.68≤ σN ≤0.95 while both

domains of the regional simulations slightly overestimated variabillity. Positive biases were observed for all simulations in

the LS, more particularly for global models which showed 43 < ∆ < 103 ppb. Regional simulations managed to produce a

lower bias, with ∆ < 10 ppb for both WRF-Chem d01 and d02. In terms of RMSE, CAMS v21r1 performed best among all
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global models with RMSE ∼ 60 ppb, which aligned with both WRF-Chem domains. For PLS products, the "advanced" physics470

configuration (b) also showed better results than the "classic" physics scheme (a), both in terms of RMSE and bias.

In conclusion, the evaluation of model simulations against MAGIC2021 CH4 measurements revealed distinct performance

patterns across atmospheric layers. In the BL, global simulations underestimated CH4 variability and showed lower bias and

RMSE compared to regional simulations, which overestimated both variability and CH4 content. In the FT, regional simulations

better represented variability, but correlation remained low for most models, with improved RMSE and bias relative to the BL.475

In the LS, global models achieved high correlation with MAGIC2021 measurements but displayed large positive biases, while

regional simulations provided lower biases and comparable RMSE performance.

4.2 Discussion of CH4 comparisons

We first start by discussing BL positive biases observed in regional WRF-Chem CH4 products. WRF-Chem d01 and d02 results

presented in Figures 7 and 8 are an average over eleven different products for each of d01 and d02 domains. As such, individual480

products had differing performance scores in the four metrics of the study. To investigate results from regional simulations in

more depth, we show results from individual WRF-Chem products in Figure 9. This figure shows the same 4-metric assessment

as in Figure 8, but it focuses on individual WRF-Chem simulations, which differ by their input CH4 emissions from wetlands.

WRF-Chem d02 products performed better than d01 in most layers and statistical metrics (ρ performance was inventory

dependent and very close between d01 and d02). For all products, the assessment showed that mixing ratios were positively485

biased in the BL and the FT, with a stronger bias in the BL. Most global model products showed a negative bias in the BL

(7/8) and an underestimate of variability (5/8), contrary to WRF-Chem mixing ratios which showed both a positive bias and

an overestimate of variability. This is consistent with an understimate/overstimate of surface emissions as weak sources would

both lead to a negative ∆ and a decrease in variability, whilst overestimated surface emissions would lead to both a positive ∆

and an overstimated variability of boundary layer mixing ratios. This could also be explained by vertical transport issues (e.g.490

an underestimation of the BL height) in WRF, which could have participated in producing higher CH4 mixing ratios in the BL.

However, the consistency between WRF-Chem simulations and MAGIC2021 data in the FT implies that the vertical transport

representation in WRF-Chem was accurate, thus indicating that CH4 overestimates in the BL from WRF-Chem products was

more likely stemming from wetland emission models. This was further confirmed by the relative scale of input emissions

shown in Table 1, which correlates with the relative scale of CH4 overestimates in the BL shown in Figure 9. Moreover, the495

particular WRF-Chem set-up used in this study has been used in previous studies without showing any issues with BL or FT

transport (Lauvaux et al., 2012, 2016). Thus we deduced that inventories overestimated the magnitude of wetland emissions

(which could also lead to overestimating flux variability).

These results first showed that low emissions are needed to match observations when looking at averages over the whole

MAGIC2021 dataset. Wetland methane releases are typically not homogeneously distributed and continuous in space and time500

(Rinne et al., 2018; Waletzko and Mitsch, 2014) which makes them hard to fully encompass in inventories. This is reinforced

by the fact that not only WetCHARTs monthly averaged emissions led to such overstimates, but also JSB-HIM products which

have a daily time resolution as well as a higher spatial resolution and more complex underlying emission processes. Thus,
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Figure 9. Statistical assessment of individual WRF-Chem simulations against MAGIC2021 measurements Left: Taylor diagram for CH4

comparison between MAGIC2021 observations and WRF-Chem. The radial axis represents the normalised standard deviation of the mod-

elled CH4 , whilst angular position represents correlation between modelled and observed CH4 . Centred RMSE is represented by the radial

distance from the reference point. Right: RMSE against bias (∆CH4) computed from MAGIC2021 observations and modelled CH4. RMSE

and bias are computed subtracting observed quantities to simulated quantities.

our results show that a true improvement in the representation of wetland emissions could require sub-daily and sub-kilometer

resolution as there is no clear difference in performance between monthly/0.5°and daily/0.1°resolution products.505

This issue with wetland emission models could be investigated further by combining MAGIC2021 BL observations with

high resolution WRF-Chem simulations and other modelling techniques such as Lagrangian particle dispersion modelling.

The FT negative bias found between CAMS hlkx and MAGIC2021 observations is similar to previous findings by Membrive

et al. (2017) where simulations similar to CAMS hlkx (C-IFS forecast) were compared to a high resolution profile from an

AirCore launch in Canada during the StratoScience campaign (CNES - August 2014). More precisely, the instrument (AirCore-510

HR) was deployed on a stratospheric balloon flight near Timmins, ON. (48.6°N). This study compares well with ours because

similar CH4 sources can be found near both locations, and data was also collected in August. Membrive et al. (2017) found ∆ =

-24 ppb when comparing AirCore measurements to the C-IFS forecast. We find an overall tropospheric ∆ of -14.7 ± 16.6 ppb

when comparing MAGIC2021 versus CAMS hlkx, which is a comparable result. Further conclusions cannot be drawn from

comparing these two studies alone, but this feature is also consistently found when comparing AirCore profiles from AirCore515

networks (AirCore-Fr, Crevoisier et al. (2023), NOAA; Koffi and Bergamaschi (2018)) with CAMS forecast and analysis

products. This suggests the presence of a systematic CH4 bias in the FT in CAMS forecast and analysis products.

Whilst a significant tropospheric bias was only found between CAMS hlkx and MAGIC2021 measurements, LS analysis

highlighted the presence of a strong positive bias for all models (cf. Figure 7). This is particularly important as a stratospheric
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Figure 10. CH4 profiles from MAGIC2021 AirCores (symbol-free lines) plotted with modelled CH4 profiles (lines with symbols) against

pressure. Displayed modelled profiles are averaged over all interpolated profiles for each model and the coloured area represents the 1-σ

deviation from the mean. From the PLS ensemble, only the best performing product (Surf b) is shown.
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bias in CH4 levels affects the performance of models at reproducing the dry-air column-averaged mixing ratio of methane520

(XCH4), which has to be accurately reproduced in order to leverage satellite observations to measure surface emissions of CH4

(Ostler et al., 2016). To investigate this further, we drew Figure 10 which shows all MAGIC2021 AirCore profiles plotted along

with mean and spread of corresponding interpolated model profiles. Measured CH4 profiles show three distinct phases in the

LS. The bottom of the layer is characterised by a first strong gradient, typically from P = 400-300 to P = 200 hPa, which takes

CH4 mixing ratios from their tropospheric average of ∼1950 ppb to about 1810 ppb. mixing ratios then remain stable for 100525

hPa or less before starting a sharp decrease again in the last layer, between P = 200 and P = 100 hPa. This overall structure is in

reality more complex when looking at individual profiles and highlights the stratification of the atmosphere at these altitudes.

Membrive et al. (2017) attribute LS ∆>0 in C-IFS simulations similar to CAMS hlkx to an understimation of the CH4

stratospheric gradient, which then becomes too steep higher in the stratosphere Verma et al. (2017). We indeed observe a

growing positive model bias in the LS between 12 and 20km (or P=200 to P=45 hPa) on the bottom right panel of Figure 7).530

This bias then decreases and becomes positive for some simulations higher in the stratosphere. These results were found for all

global models including CAMS hlkx, which is a similar product to the one assessed in Verma et al. (2017) and Membrive et al.

(2017). However, the 4-metric assessment performed on models showed that correlation between MAGIC2021 measurements

and all simulations had high correlation in the LS, which indicates a good reproduction of CH4 gradients by the models

within that layer. These results suggest that the CH4 stratospheric biases found here and in the literature have a complex535

origin. Figure 10, showed that CH4 values from AirCores started to decrease more strongly at lower altitudes than in models,

suggesting that the influence of chemistry near the tropopause is vertically ‘delayed’ for all models, meaning that the reduction

in CH4 mixing ratios in the upper troposphere due to interaction with OH radicals could be starting higher in models than

in reality. Patra et al. (2011) compared several simulations of CH4 and CH3CCl3, including some made with a set-up similar

to the PLS model, and showed that models differed in their bias with the same OH field, indicating that other factors than540

the reaction between CH4 and tropospheric OH, such as other chemical reactions or transport, are involved. Among the other

important chemical reactions, CH4 is also depleted by chlorine (Cl) in both the troposphere and stratosphere. Thanwerdas et al.

(2022) simulated the Cl sink in a CTM also using LMDz for transport and found similar highly positive model biases near the

tropopause, on which changes in the Cl field had little to no effect. Together, these results indicate that transport problems are

more likely to explain the observed biases.545

The strength of CH4 stratospheric decay has been linked to the rate of stratosphere-troposphere exchanges (STE), which

is directly influenced by the Brewer-Dobson circulation (that controls tropopause height tropopause folds) or fronts/cyclones

(Holton et al., 1995; Thompson et al., 2014; Locatelli et al., 2015). Modelling STE accurately is therefore crucial to match ob-

served CH4 mixing ratios at these altitudes because they vary strongly over a short vertical distance depending on the chemical

content of the air masses within which measurements are made. Our results regarding tropopause height in temperature profiles550

(Figure 4) show that outputs from the IFS transport model (which is used in ERA5 and CAMS simulations) have good consis-

tency with observations in the lower stratosphere, indicating that transport issues might be due to other reasons. CAMS hlkx has

three to four times as many vertical levels as the other products that are compared to MAGIC2021 observations. In the LS, and

especially at the tropopause, this feature makes an important difference in terms of structure complexity of profiles. As such,
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the CAMS hlkx bias profile does not show the positive peak of ∆∼50-100 ppb for 300>P>200 hPa that inversion-optimised555

models (PLS, CAMS v21r1) do. This could be because it can capture a more realistic vertical structure of CH4 depletion near

the tropopause, as shown in Figure 10.

Patra et al. (2011); Thompson et al. (2014) showed that STE were poorly modelled in a CTM set-up similar to our PLS

simulations. This poor performance was attributed to a bad simulation of the Brewer-Dobson circulation, which was too

vigorous, inducing too much stratosphere-troposphere mixing. A crucial difference between the set-up from Patra et al. (2011);560

Thompson et al. (2014) and ours was the number of vertical levels (19 in their set-up versus 39 in ours). Locatelli et al. (2015)

have also suggested that more vertical levels would allow for a better modelling of the Brewer-Dobson circulation, notably

allowing for a better computation of the tropopause height and better mixing. Their hypothesis, suggesting that a Brewer-

Dobson circulation stronger in models than in reality would enhance mixing and reduce the CH4 gradient at the tropopause fits

well with our results, given that the model with the most vertical levels is able to better reproduce observed profile features.565

Nevertheless, this finding warrants cautious interpretation, as CAMS hlkx simulations only display mediocre performance in

the lower stratosphere (LS) across our four statistical metrics. The comprehensive summary of our model assessment presented

in Table 4 positions CAMS hlkx at the 10th rank for σN , 4th for ρ, and 7th for both ∆CH4 and RMSE within the LS. It should be

noted that CAMS hlkx represents a less refined product in relative to other models, lacking surface CH4 emissions optimisation

or data assimilation included in other CAMS products such as CAMS v21r1. Potential next steps would involve comparing LS570

observations with higher vertical resolution emission-optimised CH4 simulations, thereby enabling more definitive conclusions

on this matter.

While we saw that issues with individual chemical species such as OH (Patra et al., 2011) or Cl (Thanwerdas et al., 2022)

could not explain the observed CH4 LS bias by themselves, it is possible that a combination of errors in chemistry modelling

could partly explain it. Thus, another possible way to improve the performance of chemistry-transport models in the LS would575

be to couple them with models that focus on stratospheric chemistry, such as REPROBUS (Lefèvre et al., 1994, 1998; Jourdain

et al., 2008), which implement stratospheric chemistry in more detail, notably taking into account more CH4 sink molecules,

thus potentially preventing CH4 overestimates. Comparing AirCore profiles to LMDz-Reprobus (Marchand et al., 2012) CH4

products would shed some light on the impact of chemistry on modelled CH4 mixing ratios in the LS.

Table 4 shows a comparative assessment of the simulated atmospheric CH4 content by the 10 modelling frameworks against580

MAGIC2021 observational data. Consistently with our previous discussion, CAMS v21r1 shows the best overall performance,

in most metrics and layers, having an average rank of 1.75. The table also allows to rank the PLS inversions ensemble according

to their average rank in all layers and metrics used (shown in parenthesis): 1. Surf b (3.83), 2. Surf a (4.92), 3. UoL b (5.08),

4. NIES b (5.25), 5. UoL a (7), 6. NIES a (7.58). Thus the worst performing simulations were PLS NIES a and PLS UoL a,

with PLS Surf a also performing worst than PLS Surf b. This indicates that updating from the "classic" to "advanced" physics585

scheme makes a more important difference than a change in observational constraint for these simulations.
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Table 4. CH4 simulations rankings for the three atmospheric layers and the four statistical metrics considered in the study.
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4.3 Conclusions on CH4 comparisons

Our model performance intercomparison highlights important differences between MAGIC2021 observations and modelled

CH4 mixing ratios, especially in the LS where all models overestimate atmospheric methane levels. CAMS hlkx analysis

showed highest bias of all models in the LS and also suffered from consistent underestimation of atmospheric methane content590

in the FT. Inversion-optimised products showed better perfomance at every levels than CAMS hlkx. However, CAMS hlkx

denser vertical grid at high altitude proved to be a certain advantage to better resolve the structure of CH4 profiles at the

tropopause. Among inversion optimised global chemistry-transport models, CAMS v21r1 showed the best performance in

terms of ∆. Standard physics and surface observational constraints were found to be the best combination within the 6 PLS

ensemble inversions, this version (Surf b) showing a similar level of performance as CAMS v21r1. We also find that updating595

the physics scheme from "classic" to "advanced" improves PLS simulations more than a change in observational constraints.

Regional simulations were characterised by a strong overestimation of the BL CH4 atmospheric content, which was not found

in global simulations. This overestimation hints toward either an excess in wetland emissions from input bottom-up models or

a vertical transport problem in WRF-Chem. The good correspondance between WRF-Chem simulations and MAGIC2021 data

in the FT indicate that the issue probably lies with wetland emission models rather than with the vertical transport representation600

in WRF-Chem.

5 Conclusions

ERA5 reanalysis and WRF simulations were assessed using meteorological data from MAGIC2021. Methane in-situ mea-

surements from MAGIC2021 were also exploited to assess atmospheric composition models: the analysis product CAMS

hlkx, the inversion-optimised product CAMS v21r1, six PYVAR-LMDz-SACS (PLS) ensemble inversions and WRF-Chem605

regional simulations. Over the six days of MAGIC2021, meteorological data from ERA5 showed better agreement with obser-

vations than WRF on average, due to both data assimilation and lower resolution that enhance performance in such an exercise.

WRF performance was however very close for all physical quantities assessed, which gives us confidence in its ability to

simulate regional atmospheric physics for MAGIC2021. Among global simulations, inversion-optimised simulations of CH4

concentrations mixing ratios performed best, especially close to the surface. CAMS v21r1 showed slightly better performance610

than PLS ensemble inversions the best product from the PLS ensemble inversions. A detailed analysis of regional simulations

with WRF-Chem was performed, revealing perfomance disparities among CH4 products. Overall we observed only positive

biases in the boundary layer Notably, near-neutral to strongly positive biases were observed in the boundary layer, indicating

a tendency to overestimate emissions by of wetland emissions models emission models to overestimate CH4 emissions, at

least for the limited region and timeframe captured by the observations. CH4 profiles were also characterised by performance615

discrepancies near the tropopause, where CH4 content is depleted by reactions mainly by its reaction with OH radicals, and

can also be affected by stratospheric intrusions. All models showed a delayed vertical gradient of CH4 mixing ratios near the

tropopause, leading to a positive bias in the stratosphere. Comparisons with CAMS hlkx showed that high vertical resolution al-

lows to better capture the vertical structure of CH4 profiles in the stratosphere, with a large overestimate still. These results call
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for more work dedicated to improve the transport and chemistry of models in the UTLS LS, which could be done by separate620

stratosphere models, specialised in the task. Finally, we aknowledge that the MAGIC2021 dataset is limited in both spatial and

temporal extents, limiting its ability to fully assess models. While the MAGIC2021 campaign provides valuable observations,

supplementing this with additional datasets could offer a more comprehensive evaluation of model performance. This could be

partly addressed by using data from other campaigns (e.g. CoMet 2.0 campaign over Canada in the summer of 2022, (DLR,

2022)) together with data from MAGIC2021. However, the Still the results presented here represent a rare opportunity to assess625

the performance of models against a large, high resolution dataset, over and over an area where few measurements are usually

taken. This highlights the need for more frequent extended campaigns at high latitudes to fully characterise local processes and

extend our performance assessment of global and regional models. , highlighting the ability of extended campaigns at high lat-

itudes to characterise local processes. More frequent campagins could allow to extend this kind of performance assessment of

global and regional models to other circumpolar regions and seasons, while also allowing a long term tracking of atmospheric630

composition changes in the Arctic.
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Figure A1. Temperature intercomparison between MAGIC2021 data and weather models. Profiles are computed using full weather balloon

dataset and profile sections of ATR42 and Cessna flights. ERA5 related profiles are shown in green, WRF d01 in blue and WRF d02 in red.

Top: Mean temperature profiles accross all flights from each platform (black) plotted with modelled temperatures interpolated on platform

trajectories: Cessna (left), ATR42 (centre) and weather balloon (right). Middle: Temperature bias profile between for each platform: Cessna

(left), ATR42 (centre) and weather balloon (right). Bottom: Sections of temperature bias profiles correponding to the 3 analysis levels: BL

(left), FT (centre) and LS (right), where Cessna data is shown in dashed lines, ATR42 data in dotted lines and AirCore data in solid lines.

Shaded areas represent the 1-σ deviation from the mean temperature or temperature bias profiles.
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Figure A2. RH intercomparison between MAGIC2021 data and weather models. Profiles are computed using full weather balloon dataset

and profile sections of ATR42 and Cessna flights. ERA5 related profiles are shown in green, WRF d01 in blue and WRF d02 in red. Top:

Mean RH profiles accross all flights from each platform (black) plotted with modelled RH interpolated on platform trajectories: Cessna (left),

ATR42 (centre) and weather balloon (right). Middle: RH bias profile for each platform: Cessna (left), ATR42 (centre) and weather balloon

(right). Bottom: Sections of RH bias profiles correponding to the 3 analysis levels: BL (left), FT (centre) and LS (right), where Cessna data

is shown in dashed lines, ATR42 data in dotted lines and AirCore data in solid lines. Shaded areas represent the 1-σ deviation from the mean

RH or RH bias profiles.
33



Figure A3. Methane intercomparison between MAGIC2021 data and chemistry-transport models. Profiles are computed using the full

AirCore dataset and profile sections of ATR42 and Cessna flights. Top: Mean CH4 profiles accross all flights from each platform (dotted grey

line) plotted with modelled CH4 interpolated on platform trajectories: Cessna (left), ATR42 (centre) and weather balloon (right). Middle:CH4

bas profile for each platform: Cessna (left), ATR42 (centre) and weather balloon (right). Bottom: Sections of CH4 bias profiles correponding

to the 3 analysis levels: BL (left), FT (centre) and LS (right), where Cessna data is shown in dashed lines, ATR42 data in dotted lines and

AirCore data in solid lines. Shaded areas represent the 1-σ deviation from the mean CH4 or CH4 bias profiles.
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Figure A4. Mean PYVAR-LMDz-SACS bias from all 6 configurations computed with MAGIC2021 data: Cessna (left), ATR42 (middle) and

AirCore (right) measurements.

35



Data availability. Data from MAGIC2021 will be available on the French national center for Atmospheric data and services AERIS cata-
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Carbon footprint. The full carbon footprint of the MAGIC2021 campaign is still being estimated. For this study, we compute

an approximate value based on the highest emitters: aircraft flights. The Cessna from DLR has a 675HP turbine engine and flew

for 27h22min, which according to Labos1point5 data equates to an emissions of 13 ± 1 tCO2. The ATR42 from SAFIRE has a

3800HP turbine engine and flew for 25h22min, which equates to emissions of 32 ± 2 tCO2. Therefore the total carbon footprint

of aircraft flights associated to this paper is 45 ± 2 tCO2. The balloon’s carbon footprint is more complicated to estimate. Most655

recoveries were performed using a helicopter for which engine and flight time data were not part of the MAGIC2021 dataset,

resulting in a lack of information. Additionally, the helium used to inflate campaign balloons is a potent greenhouse gas that

is released in the high troposphere/lower stratosphere everytime a balloon is used. Working out the full carbon footprint of

radiosoundings therefore requires converting released helium to CO2 equivalent which has not yet been done for MAGIC2021.

The carbon footprint of campaign measurements involved in the study presented here is therefore not complete, and probably660

totals to more than 50 tCO2. The campaign as a whole will have a higher carbon footprint still, as it includes the footprint of
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meals provided during the campaign, travels to Kiruna for every team, additional airborne measurements that were not used in

this paper, as well as tools, clothes and instruments that were bought especially for MAGIC2021 . Also neglected here is the

footprint of the data analysis and model simulations post-campaign, which are run using high performance computing facilities.

Carbon footprint numbers given here are therefore neither representative of the whole campaign nor of the data analysis and665

modelling footprint, so it should be considered as a lower bound for the footprint of this paper only.
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