Year	May	June	July	August	September
2023	278	87	353	20	151
2022	293	95	269	21	164
2021	316	93	354	24	163
2020	308	89	302	25	160
2019	315	115	288	42	164
2018	321	117	326	41	171
2017	318	112	327	35	173
2016	301	109	330	28	160
2015	254	98	260	43	146
2014	256	81	236	38	151
2013	215	66	244	33	151
2012	284	92	252	32	152
2011	290	82	275	30	157
2010	296	82	274	23	154
2009	304	70	309	12	80
2008	274	61	280	1	150
2007	240	43	219	0	91
2006	255	50	226	0	103
2005	361	68	306	3	149
2004	35	31	193	10	100

Table S1: Number of monthly ACE-FTS occultations measurements taken between 40 and 70° N over the measurement period 2004 – 2022.

Figure S1: Comparison between MLS and ACE-FTS CO profiles. The average July 2023 values between 40 and 70 °N for MLS data are shown here in blue, and the average of every ACE occultation measurement taken between the same latitude range is shown in black. The MLS data is connected up to the lowest point of recommended use (215 hPa), and the remaining data is plotted as isolated points. The ACE data has higher vertical resolution and better signal lower in the atmosphere.

Figure S2: Individual ACE-FTS HCN measurements for May through September 2023. Each occultation is plotted relative to its self-consistent tropopause height calculated from concurrent temperature profiles. The average of these tropopause-adjusted occultations for each month is shown in black. Occultation ss107570 is highlighted in red because it is a unique measurement that shows both elevated HCN and aerosol extinction in the stratosphere (main text). Other occultations that exhibit enhanced HCN in the stratosphere do not exhibit similarly high aerosol extinction measurements, complicating interpretation of stratospheric entry.

2023 individual HCN occultation measurements, 40 to 70° N

Figure S3: Atmospheric profile during the 03:00 UTC July 24th Yukon pyroCb at 63.0° N, 133.8° W. The cold-point tropopause is -57.6 °C, warmer than the reported pyroCb cloud-top brightness temperature of -62.2 °C.

Figure S4: 72 hour HYSPLIT forward-trajectories originating from the pyroCb located at 63.00° N, 133.80° W with an estimated injection height of at least 10.5 km. Trajectories are initialized from this location in 12 hour increments with the earliest start time occurring on July 24th 2023, 04:00 UTC (the time of pyroCb detection) and the latest start time on July 27th 2023, 16:00 to compensate for limited ACE-FTS coverage.

OMPS LP aerosol extinction to molecular ratio 745 nm, 10.5–11.5 km

Figure S5: Top panel: 2017 zonally averaged OMPS aerosol-to-molecular extinction ratio between 10.5 and 11.5 km, 40 to 80° N. Middle panel: 2023 zonally averaged OMPS aerosol-to-molecular extinction ratio between 10.5 and 11.5 km, 40 to 80° N. Bottom panel: average OMPS aerosol-to-molecular extinction ratio from 40 to 80° N, 11.5 to 16.5 km compared between 2017 (black) and 2023 (red).