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Abstract. Average properties of the cloud field, such as cloud size distribution and cloud fraction, have previously been
observed to show periodic, oscillatory changes. Identifying this behaviour, however, remains difficult due to the intrinsic
variability of the boundary-layer cloud distribution. We use the Gaussian Process (GP) regression to identify this oscillatory
behaviour in the statistical distributions of individual cloud properties. Individual cloud samples are retrieved from high-
resolution LES model results, and the distribution of cloud sizes is modelled as a power-law distribution. We construct the
time-series for the slope of the cloud size distribution b, a slope that is consistent with satellite observations of marine boundary-
layer clouds, by observing the changes in the slope of the modelled cloud size distribution. Then, we build a GP model
based on prior assumptions about the cloud field following observational studies: a boundary-layer cloud field goes through a
phase of relatively strong convection where large clouds dominate, followed by a phase of relatively weak convection where
precipitation causes formation of cold pools and suppression of convective growth. The GP model successfully identifies
oscillatory motions from the noisy time-series, with a period of 95 & 3.2 minutes. Furthermore, we examine the time-series
of cloud fraction f. and average vertical mass flux M, whose periods were 93 2.5 and 93 + 3.7 minutes, respectively. The

oscillations reveal the role of precipitation in governing convective activities through recharge-discharge cycles.

1 Introduction

Cumulus convection plays a central role in regulating the moisture and energy budget in the atmosphere. However, represent-
ing the effect of moist convection remains difficult for general circulation and weather prediction models (Bony and Dufresne,
2005; Bony et al., 2006). The cloud radiative feedback remains the largest source of uncertainty in the estimation of equilibrium
climate sensitivity (ECS) (Ceppi et al., 2017; Mauritsen and Roeckner, 2020; Zelinka et al., 2020), and convective parameter-
ization of cumulus effects remains poorly constrained. Large-scale climate model parameterization schemes employ different
assumptions about the dynamics and thermodynamics of boundary-layer clouds (Ceppi et al., 2017; Myers and Norris, 2016;
Lipat et al., 2018).

The resolution required to accurately model shallow cumulus convection, on the order of 10 m in the boundary layer (Sato
et al., 2017, 2018), still remains computationally prohibitive (cf. Figure 2 in Schneider et al., 2017), as short-term simulations
of the global climate on the scales of a few kilometres have only recently been performed Stevens et al. (2019). As such, the

role of high-resolution LES models in improving our understanding of convective effects continues to be essential.
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For an accurate representation of the effects of moist convection, a better understanding of the complex dynamics and
thermodynamics of the cloud field is required. A radiative scheme in a global climate model that approximates the radiative
effects of shallow convection would greatly benefit from having a better estimate about the geometrical structure and the
distribution of clouds, which can be used to improve our estimate of the short-wave radiative effects of low clouds Ceppi et al.
(2017). An important aspect of the cloud field in this context is the probability distribution of cloud sizes (Neggers et al.,
2003), which has long been the topic for observational studies, from aircraft measurements and satellite imagery (Plank, 1969;
Machado et al., 1992; Machado and Rossow, 1993; Wilcox and Ramanathan, 2001; Peters et al., 2009; Benner and Curry,
1998; Berg and Stull, 2002; Raga et al., 1990; Rodts et al., 2003; Zhao and Di Girolamo, 2007) to numerical simulations of
cloud field (Brown et al., 2002; Neggers et al., 2003; Garrett et al., 2018).

An important insight from recent numerical studies of the cloud field using LES models is that the evolution of the cloud
field appears to oscillatory (Feingold et al., 2017; Koren and Feingold, 2011, 2013; Koren et al., 2017; Dagan et al., 2018).
Convective self-organization drives this temporal oscillation in marine boundary-layer clouds. Evaporation of precipitation
from large, well-developed clouds form cold pools below the cloud base, which promotes the formation of negatively buoyant
downdrafts that inhibit further growth of thermals (Seifert and Heus, 2013; Seifert et al., 2015; Seigel, 2014). The cloud field
goes through a relatively weak convective phase, until multiple downdrafts from the cold pools collide into a convergence
zone, where convective growth begins anew. High-resolution studies have confirmed the formation of cold pools as the main
mechanism that drives organized formation of convection, which corresponds well to long-term satellite measurements of cold
pools (Zuidema et al., 2012; Seifert and Heus, 2013).

This study is motivated by the observation that the cloud size distribution evolves periodically, indicating that dynamic and
thermodynamic properties of the cloud field, such as mass flux and cloud cover, also oscillate as the cloud field alternates
between strong and weak convective phases. However, numerical algorithms used for period detection suffer from the presence
of noise. Because of that, earlier studies concerning the oscillatory growth of cumulus field relied on manual inspections (Dagan
et al., 2018; Koren and Feingold, 2011) or spectral analysis (Feingold et al., 2017) although it remains difficult to accurately
determine the period of this oscillation. we use the Gaussian process (GP) regression method to estimate the periodicity in noisy
time-series of cloud size distributions. A Gaussian process is a flexible non-parametric model that is well-suited to be used to
infer useful information from a noisy dataset. GP modelling has been used for this specific purpose in astronomy (Angus et al.,
2017) and medical studies (Durrande et al., 2016; Cheng et al., 2020) to infer the periodicity in a time-series with observational
noise and extract an underlying trend in the observed data.

We propose the use of a Gaussian process model to obtain the underlying trend of a time-series in the presence of obser-
vational noise. We use LES model results to sample cloud size densities, construct a cloud size distribution, and follow the
evolution of the cloud field properties. Based on the periodic behaviour estimated by the GP model, we re-construct the peri-
odic time-series f(z) without noise, which is compared to the original time-series of cloud size distribution. Lastly, we repeat
the GP regression for mass flux and cloud cover to test our hypothesis.

The large-eddy simulation is described in Section 2.1. Section 2.2 illustrates how the individual clouds are sampled from the

model output. Section 2.3 gives the methods used to construct the time-series of the slope b from the cloud size distribution.
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Section 2.4 examines the traditional Fourier spectral analysis to identify the oscillatory behaviour within the time-series. A
brief introduction of Gaussian process regression is given in Section 2.5, as well as the construction of kernels, which is further
explained in Section 2.6, where we present the method used to estimate the periodicity from the time-series. The fully Bayesian
model to estimate the uncertainty in the periodicity estimate is given in Section 2.7. The results are discussed in Section 3 and

summarized in Section 4.

2  Methods
2.1 Model Description

The System for Atmospheric Modeling (SAM; Khairoutdinov and Randall (2003)) was used to simulate CGILS (CFMIP/GASS
Inter-comparison of Large-Eddy and Single-Column Models) trade cumulus boundary-layer (case S6) (Blossey et al., 2013).
The model grid size was set to 25 m in all directions over a 43.2 km x 12.8 km X 4.8 km model domain. This elongated,
bowling alley domain was employed to minimize the effect of periodic boundaries. Because the mean air flows along the
elongated axis, most of the convective activity occurs without being spatially recycled as clouds rarely veer from the mean
airflow. The temporal resolution of the model was 1 second, and the output was written every minute. We performed a total of
36 hours of simulation, although the first 24 hours were used for the model spin-up and therefore excluded from the analysis,
and the last 720 time steps for the remaining 12 hours of simulation were used for the analysis. A long spin-up time was
necessary for the boundary layer to reach (quasi-)stability across the domain. The cloud field was then sampled every minute.
Details of conditional cloud sampling are presented in the following section.

Doubly periodic domains were employed with a soft top to exclude gravity waves as the possible cause of oscillatory
behaviour (Dagan et al., 2018). A two-moment microphysics scheme (Morrison et al., 2005a, b) has been employed, although
the cloud layer remained shallow and no ice formation was observed. The LES model was initialized with the parameters
based on CGILS S6 control run (Tan et al., 2016). A diurnally averaged solar insolation was applied, and both short-wave and
long-wave radiative effects were calculated using the Rapid Radiative Transfer Model (RRTM) (Clough et al., 2005; Tacono
et al., 2008).

To make accurate measurements of vertical mass flux, we implemented the tetrahedral interpolation scheme (Dawe and
Austin, 2011). Every time instantaneous cloud fields are being sampled, mass flux rates are integrated over a cloudy surface.
This is done by interpolating each grid cell by 48 tetrahedrons, and calculating the changes in the 3-dimensional cloud surface.
Recent studies suggest a grid size of roughly 10 m to achieve meaningful statistical accuracy even for shallow convective clouds
(Sato et al., 2017, 2018), but running the LES model with 12.5 m grids did not yield significant improvements to mass flux
rates compared to 25 m grids, likely thanks to the sub-grid interpolation scheme. Since computational resources are limited,
and keeping a large domain size (and hence a large number of statistically independent cloud samples) is more important for
the purpose of this study, we will only examine the results from the 25-m resolution LES run.

Figure 1 shows a three-dimensional snapshot from the LES model run. Clouds are generally scattered over the model domain,

and the distribution of smaller clouds appear to be granular. However, areas of vigorous convective activities accompanying
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40 km

Figure 1. A 3-dimensional overview of the LES modelled cloud field from SAM model output, taken 24 hours into the simulation. The
shaded regions indicate cloudy cells that contain condensed liquid water. Darker regions are low in altitude, and brighter regions are closer

to the cloud top at 1.8 km.

precipitation often form in clusters (right side of Figure 1) between areas that are either devoid of clouds or dominated by
scattered small clouds (middle of Figure 1). Earlier studies of cloud patterns (Seifert and Heus, 2013; Stevens et al., 2020)
suggest such gravel-like patterns could be due to the formation of cold pools. The evaporative cooling due to precipitation can
form cold pools, and such patterns can manifest as pronounced convective activities followed by weak, scattered cloudy regime
on the leeward side. There are signs of cloud clustering in the simulated cloud field where strongest convective activities (right

side of Figure 1, for example) mostly occur in clusters.
2.2 Cloud Sampling

In order to obtain the cloud size distributions, individual clouds were conditionally sampled. In this study, horizontally con-
tiguous regions (grid cells) containing condensed liquid water (g; > 0) are considered to be the cloud region. The size of a
cloud is then defined as the area of the horizontal cross-section, which is the number of grid cells with condensed liquid water
multiplied by the horizontal grid size (25 m x 25 m). It is also possible to take the square root of this size as a proxy for cloud
radius R (Neggers et al., 2003; Dawe and Austin, 2013) and find its correlation with dynamic properties of the cloud (especially
entrainment and mass flux, for example), but in this paper, we are interested in the evolution of the cloud size distribution over
time.

An alternative method to define the cloud region has been introduced by Neggers et al. (2003), where the vertical projection
of each cloud volume was taken to a two-dimensional surface. This resembles two-dimensional images taken from a high
altitude, which can be useful when comparing the LES output to satellite images, for example. However, the focus of the
study is to evaluate the dynamic and thermodynamic properties of the clouds, such as entrainment and mass flux, and simply
taking the horizontal cross-section allows us to directly compare the distribution of cloud sizes to that of mass flux. There is

another benefit to this approach: when the cloud field is projected onto a two-dimensional surface, the number of smaller clouds
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sampled from the cloud field increases. This is because smaller clouds are less likely to be projected onto each other. Hence,
vertically projected cloud size distribution tends to overestimate the number of smaller clouds, while taking a horizontal cross
section (e.g. Brown, 1999) gives a better representation of the realistic three-dimensional cloud size distribution.

Once individual cloud sizes are extracted from the LES output field, we can define the cloud size distribution. The cloud size
distribution C'(a) is a cumulative distribution defined as an integral over the cloud size density c(a). The cloud size density is
a type of probability density function (PDF) that defines the probability of a cloud having a certain size.

Typically, the probability density function is calculated using a histogram with a discrete bin size for a piecewise estimate.
Here, the density is defined as the frequency of clouds within a discrete range. However, the choice of this discrete bin size
has a large effect on the resulting distribution, and can yield different results with qualitatively independent features depending
arbitrarily on the choice of bin size.

To alleviate these issues, we use the Kernel Density Estimator (KDE; Parzen, 1962) to reliably estimate the distribution of

cloud size density. A kernel density estimator l%(x) at a point  given a set of n observations X1, ..., X, is defined as

- 1 & z—X;

k(z)=—>» K : 1
CEFDY (=) M)

which is governed by a kernel function K and its bandwidth h that control the amount of smoothing applied by the kernel.

We will use a Gaussian kernel K (z) for this purpose, defined as

K(r) = 5o 12 @)

which will be used to smooth the cloud size density function. Each cloud size sample is added to a distribution not as a single
point of observation, but a probability distribution based on a Gaussian distribution. It can be considered as an uncertainty in
the measurement; we associate each cloud size sample with an uncertainty from the observation, defined by the bandwidth h.

The KDE integrates these probability distributions of cloud sizes, which gives the cloud size distribution C'(a). Figure 2
shows the histogram as well as the cloud size distribution based on the KDE using cloud samples taken at 12 hours into the
simulation.

The cloud size distribution C'(a) in Figure 2 shows a decreasing slope with a scale break for the smallest clouds. The
probability density for the smallest clouds is nearly constant. The distribution resembles that of Brown (1999) (cf. Figure 12 in
Neggers et al., 2003), but with a greater number of smaller clouds. This could be because smaller clouds appear near the cloud
base, which is lower than the sampling height used in Brown (1999), reproduced in Neggers et al. (2003). Since the cloud
samples in Figure 2 have been taken at all heights, the transition between the smaller and the larger clouds appears to be a lot

less abrupt than previously observed.
2.3 Cloud Size Model

Given the cloud size distribution C'(a), a model of the probability density function needs to be constructed in order to study

its temporal evolution. In this paper, we use the power-law distribution (Cahalan and Joseph, 1989; Kuo et al., 1993; Benner
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Figure 2. A comparison of the histogram (blue) and the kernel density estimate (KDE; orange line) showing log;, of normalized density

based on the cloud size distribution over log;, of cloud size in m?.

and Curry, 1998; Neggers et al., 2003; Zhao and Di Girolamo, 2007; Feingold et al., 2017), which has been widely used to

represent the observed distribution of clouds. Here, the cloud size density c(a) is defined as a function of cloud size, or
c(a) = coa® 3)

where a is the cross-sectional cloud area in m?, and cy is the coefficient used for the power-law fit. Integrating the cloud size
density c(a) over all observed cloud sizes a yields the cloud size distribution C'(a).

From Figure 2, we observe that the cloud size distribution can roughly be divided into two parts, defined by a scale break; the
cloud density appears to be relatively constant for the smallest clouds before it decreases linearly. This is a useful feature for the
purpose of this paper. As smaller clouds are short-lived and their contribution to the upward mass flux M is very small, we are
interested in the oscillation between the two phases of the cloud field where there are a relative abundance of intermediate-sized
clouds, which contributes the most to the mass flux, and where there are a relative abundance of large clouds, which contributes
the most to precipitation and formation of cold pools (Dagan et al., 2018).

We isolate the (quasi-)linear portion by first taking the derivative of the cloud size distribution C'(a). A decision tree re-
gression algorithm (Breiman et al., 1984) is used to divide the distribution into two parts by limiting the maximum number
of possible branches into two, corresponding to the portion of the distribution with relatively constant slope and the rest of
the distribution. This is effectively done by fitting a simple piecewise-constant function C (a) to the derivative of C'(a), with a
single breakpoint @ which minimizes the error between the distribution C'(a) and C (a). Here, the error is defined as the mean

square error

N

MSE — % > (Cla) ~ Ca) ’ @)

i=1
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Figure 3. The decision tree regression algorithm is applied to the derivative of cloud size distribution (top), which is divided into a region
of relatively constant slope (top; green region) and the rest of the distribution (top; red region). The green region is chosen by the algorithm,
which is then used to separate the linear portion of C'(a) (bottom; green region) from the non-linear portion (bottom; red region). The green
region, defined by the part of the distribution with constant slope (bottom; green region), is used to fit a linear curve (bottom; orange line)

while the rest of the distribution is ignored (bottom; red region) in order to estimate the slope of cloud size distribution.

for N samples in the cloud size distribution C'(a).

Figure 3b shows how the decision tree splits the distribution based on the derivative of C'(a). Once we isolate the relatively
linear portion of the distribution, we use the Theil-Sen estimator (Theil, 1950; Sen, 1968) to perform a robust linear regression,
which does well in the presence of outliers and small deviations from the linear trend, as seen in Figure 3a, where the slope
represents the ratio between medium-sized and largest clouds. Here, the slope is measured to be roughly b =~ —0.50. This is
smaller than the values reported from previous observations of boundary-layer clouds (Cahalan and Joseph, 1989; Benner and
Curry, 1998). The cloud size distribution C'(a) given in Figure 3 is a (normalized) probability density function, which will

differ from the histograms obtained from observations.
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Figure 4. The time-series of slope b of the cloud size distribution C'(a) for the 12-hour simulation. The slope is calculated every minute (blue

line) for the duration of the entire simulation, but the first 9 hours are used for training the GP model.

We repeat this process for the entire model run, which consists of 720 time steps for the entire duration of the simulation
excluding the spin-up time. The resulting time-series of the slope b for the cloud size distribution C'(a) can be seen in Figure
4. The use of a robust linear regressor along with a decision tree regression algorithm helps isolate the linear segment of the
distribution, representing the slope of size distribution of the cloud field.

We are interested in determining whether the fluctuations in the time-series of the cloud size distribution in Figure 4 are
consistent with a periodic behaviour. The oscillatory evolution in b is not immediately obvious in Figure 4. We would like to
quantify the extent to which the time-series is consistent with earlier studies regarding oscillations in the cloud size distribution.
In the following section, we follow Feingold et al. (2017) and use Fourier spectral analysis to identify the underlying periodic

behaviour in the observed time-series.
2.4 Fourier Spectral Analysis

Given the time-series in Figure 4, we perform a spectral analysis using discrete Fourier transform (DFT) to capture possible
oscillatory motions in the observed time-series (Feingold et al., 2017). Here, given a discrete time-series f = f(k/N) for
(k=0,1,...,N — 1), the corresponding DFT, (F(fo),F(f1),.-.,F(fn-1)), can be obtained by

N-1
Fifi) = g 2 S-esp (~2niy ®)

where £k =0,1,...,N — 1.
Equation 5 translates the observed time-series f}, into a function of frequency k /N that is a linear combination of oscillatory,

or sinusoidal, components. The strength of each component can then be observed by examining the power spectral density of



190

195

200

205

https://doi.org/10.5194/egusphere-2024-352
Preprint. Discussion started: 11 April 2024 G
© Author(s) 2024. CC BY 4.0 License. E U Sp here

e
o
S

7" ---- 95% Confidence Bound
I Power Spectra

e
o
S

e
=

Power Spectrum Density
o
5

e
o
&

O.OO-“‘A‘F“'II | I I : | |
0 50

T
100 150 200 250
Period [min]

Figure 5. The power spectral density (blue) and 95% confidence interval for the time-series b(t) based on the slope of the cloud size

distribution C'(a), obtained from Fourier spectral analysis.

the time-series. The oscillatory components showing the strongest signals represent the dominant modes of oscillation in the
observed time-series.
The power spectral density for a DFT of on a discrete sequence can be estimated by a periodogram, defined as the squared

modulus of DFT, or,

P(fr) = F(fr)? (6)

1 (= kn ’
=¥ (T;) f(n)-exp <—2m'N>> @)

where k =0,1,..., (N —1)/2 for real-valued input sequence.

Figure 5 shows the estimate of the power spectral density using the periodogram (blue) and the 95% confidence interval (red)
obtained from the noisy time-series b(t), plotted as a function of period T'(k) = N/k. The 95% confidence interval defines the
threshold that separates oscillatory signals from noise, against the null hypothesis that all signals in the periodogram are
Gaussian noise.

There are two prominent periods on the periodogram, one at 7' = 100 minutes and the other at 7" = 233 minutes, but only
the latter signal is above the 95% confidence interval. Both signals have periods longer than the 80-minute period observed
by Feingold et al. (2017) and no oscillations can be found at shorter periods. We have also tested other methods to estimate
power spectral density, such as the circular autocorrelation function (ACF; Fisher and Lee, 1983), but the presence of noise
hinders their ability in detecting the underlying oscillatory behaviour and no modes were detected for periods shorter than 100

minutes.
2.5 Gaussian Process Regression

As shown in previous section, it is possible that the internal fluctuations in cumulus convection and the noise from numerical
instabilities and uncertainties in the estimation of the slope in the cloud size distribution C'(a) mask an underlying oscillation

in the time-series. We use the Gaussian Process (GP) regression, a Bayesian inference method which utilizes GP as a prior
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distribution (Rasmussen and Williams, 2006). GP models can be used to fit an oscillatory model that specifically includes the
noise from the internal fluctuations of cumulus convection and numerical uncertainties. The GP model can explicitly model and
learn the noise level directly from the observation by introducing an explicit noise term that represents numerical instability
and uncertainties involved in sampling and constructing the time-series b(¢) of the cloud size distribution, which are difficult
to quantify using traditional methods.

The time-series can be considered as a regression problem over observations x with noise ¢,

y=r(x)+ey. ®)

Assuming no prior knowledge about the noise ¢,, in the observation, we can formalize the independent identically-distributed
uncertainty as a Gaussian distribution with zero mean and variance a,j (i.e. (0, 05)). The subscript indicates that the uncer-
tainty comes from the measurement in y, which includes the estimation of the slope b given in previous sections. Likewise, we
can assume that the measurement of input points (time =) comes with (Gaussian) uncertainty e,.

In this framework, observational uncertainty needs to be formalized in terms of probability distributions, assuming that
the data y is only available through observations, and inherently includes noise due to estimates involved in the calculation
of b based on cloud size distribution C'(a). Incorporating this uncertainty to our regression model is necessary to perform
Gaussian process (GP) regression (Rasmussen and Williams, 2006). A Gaussian process is a set of random variables, any
finite number of which have a joint Gaussian distribution (Definition 2.1 in Rasmussen and Williams, 2006), which means that
every Gaussian process can be uniquely identified by its mean p(x) and covariance function k(x;,x;), which can be used to

formalize a Gaussian process as
p(x) ~ GP(u(x), K) ©)

where K is a n x n matrix of covariances (K;; = k(x;,x;)) of joint distribution p(x) evaluated at two arbitrary points, which
can then be used as a Bayesian prior to make predictions from noisy data. The prior distribution reflects our belief about how
the model should behave, prior to observing any data points.

Here, we present a brief description for Gaussian process regression; see, for example, Rasmussen and Williams (2006) for

a more detailed description for the GP regression method.

For a set of observations points x = z1,...,,, we can write the covariance matrix K(x,x) as
k(z1,z1) k(x1,z2) -+ k(z1,z,)
K = | ) o tazan) (10)
E(xn,x1) klxpzs) - k(za,z,)

and because the noise is assumed to be independent, we can modify the covariance function to include the noise term. Because

the noise term only applies to the diagonal elements of the covariance matrix,

cov(x,x) = K(x,x) + 0’1 (11)

10
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where o2 is the variance of our (independent, Gaussian) noise term.
Then we can consider the joint distribution of a set of observations y made at x, and the function values f, taken at test

points X, as

2
’ . p(x) ’ Kx,x)+0°T K(x,x.) a2
f. [716:) K(x4,%) K (X, Xx)

from which we can obtain the posterior distribution p,
p. =p(f) = N(E[L], V[£.]) (13)

that is fully specified by the posterior mean and variance

E[f.] = p(x.) + K (x,%) (K(x,%) +0°T) ' (y(x) — pa(x) (14)
VIE] = K(x., %) — K(x,,x) (K(x,%) + 021)_1 K(x,x.) (15)
respectively.

A crucial step in Gaussian process regression is determining the covariance K(x,x), also called the kernel function, which
embodies the prior knowledge or our assumptions about the observed processes. A kernel function k(z,2’) determines how an
arbitrary pair of sample points z and z’ are correlated to each other. Essentially, it reflects our belief about how the probability
distribution (the target function f(z) under the observed data, as seen in Equation 8) behaves.

The most widely used covariance function is the Square-Exponential (SE), defined as
ksg = exp ((5“2;/)2) (16)
where ) is typically defined as a length-scale, or a timescale for the time-series data. The timescale ) is one of the hyper-
parameters in our GP model that determines how smooth the resulting process varies in time. The SE kernel is most widely
used as it gives enough freedom to model a wide range of timescales, and it has an added benefit of being infinitely smooth,
which will be useful later.

For the purpose of this study, we will also be using a periodic kernel that assumes a sinusoidal process, which was originally
defined by MacKay (1997) as

24i 2 (M e
kper = XD (- sin” (o m>> (17)

)2
where ) is a timescale, and 7' is the period of oscillation.

The timescale [ and the period 7' are the hyper-parameters, which control the shape of the posterior distribution. These
hyper-parameters are initially unknown, although the prior distribution can be specified based on domain knowledge, initial
observations, or some prior assumptions about the data. In order to determine a better estimate of the hyper-parameters, we

need to perform inference based on the marginal likelihood, which is defined as the integral of the likelihood and the prior, or

plylx) = / p(y|F, %)p(E[x)df (18)

11
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where the term marginal refers to the process of taking an integral over f, or marginalizing over the function values f, in order
to obtain p(y|X).
Note that under the Gaussian Process model, both the prior and the likelihood must also be Gaussian (MacKay, 1997,

Rasmussen and Williams, 2006). The integral above reduces to
LT 21y-1 1 2 n
logp(y\x):—iy (K+0°I) y—510g|K+U I|—§log27r (19)

which defines the marginal log likelihood (MLL). A more detailed derivation can be found in Chapter 2 from Rasmussen and
Williams (2006). By maximizing the marginal log likelihood, we can find the hyper-parameters that maximize MLL, which
can best explain the observed data.

Based on the time-series of cloud size distribution in Figure 4, we can assume that a simple periodic kernel is not enough
to model the complexity of the observed time-series. Therefore, we have added an SE kernel to the periodic kernel to model
numerical instability and uncertainty (MacKay, 1997; Rasmussen and Williams, 2006) which we can use to customize our GP

model to better reflect the underlying assumptions about the observed dataset. In this case,

k= ks + kper (20)
where the SE kernel has been added to account for the non-uniformity in the oscillation. With no prior assumptions about the
underlying dynamics, we have also tested different combinations for k, such as adding two periodic kernels together in order to
model two oscillations at different timescales (Dagan et al., 2018), but using a single periodic kernel for periodicity detection
has been proven to be sufficient in our case.

The GP model uses a gradient descent algorithm to find the hyper-parameters that optimize the (log) marginal likelihood.
However, there is no guarantee that it will reach the point that maximizes the marginal likelihood, which will define the best
set of hyper-parameters. It is possible that even with multiple experiments, the GP model might be fitted to local maxima, as
the gradient descent cannot evaluate the full posterior distribution (see Section 2.7 for more information). Fortunately, at least
for the timescale in the periodic kernel ke, we can define a reasonable range of values that can represent the oscillation in the
cloud size distribution. We have repeatedly trained our GP model with different initial periods, ranging from 5 minutes to 150
minutes at 5S-minute intervals, and all of these tested periods converged to the 95-minute period after training. The initial period
only affected the number of steps that needed to be taken for the gradient descent algorithm to get to the 95-minute period; the
further away from the 95-minute period, the longer it took for the algorithm to optimize the periodic kernel. Given that, we
chose an initial period of 90 minutes, which corresponds to the previously observed period of oscillation (Dagan et al., 2018).
For the length-scale [, the only constraint in our GP model was to keep it from getting too small, in order to incorporate some
of the variability in the observed time-series into noise, and to avoid over-fitting the observational and numerical uncertainties.

The GP models are implemented in GPytorch (Gardner et al., 2018) and the corresponding hyper-parameters are fitted using
the Adam optimizer (Kingma and Ba, 2014). The resulting GP posterior distribution with the kernel k can be seen in Figure 7.
The initial application of the GP model serves two purposes. First, by assuming a smooth variation in the slope b, we relegate

the uncertainty involved in calculating the slope b from the cloud size distribution C(a) to the noise term. Second, as we
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Figure 6. Mean posterior of the trained GP model (orange line) compared to the observed slope b of the cloud size distribution C'(a) (blue

line) for the first 9 hours of simulation used for training.

assume no prior knowledge about the periodic evolution of b, the hyper-parameters can be used as a preliminary estimate for

the following procedure, which will be described in the next section.
2.6 Periodicity Detection

The smoothly modelled distribution b(t) from the mean GP posterior distribution b(t) in Figure 6 corresponds well to the
observed time-series, showing the oscillatory behaviour within the noisy observation with a period 7' = 95 minutes. In this
particular case, the initial inference does a good job in estimating the hyper-parameters for the observed time-series. However,
in situations where a general, long-term trend breaks the quasi-stability assumption, additional steps need to be taken in order
to better isolate the oscillatory behaviour of the convective process in such cases.

One possible detrending method is to perform the regression on the derivative of the time-series 9,b(t) = db(t)/dt. If the
oscillation is dominated by a single frequency, the frequency should also characterize the derivative of the oscillation. Given
this, we build a GP regression model to estimate the period of the oscillation in 8tl~)(t). The main difference for this round of
regression is that we no longer need the SE kernel to account for the variability in the y-axis, and only the periodic kernel needs
to be used (i.e. k= kper) as we are interested mainly in the estimate of the periodicity 7T'.

Figure 7 shows the target observation Btl;(t) and randomly drawn samples from the posterior distribution. These samples
are drawn from the posterior distribution and represent possible realizations of the resulting distribution. The variability in
the periodicity, which is the main hyper-parameter of interest, seems to be small relative to the uncertainties in the observed
time-series.

The results of the periodic GP regression can be seen in Figure 8, showing the mean posterior distribution for our Gaussian

process based on a periodic kernel k., with noise. Most of the variability comes from deviations in 8t5(t), and the use of
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Figure 7. Samples from the posterior of the trained GP model (orange line) compared to the observed time-series of E)tl;(t) (blue line) for

the first 9 hours of simulation used for training.

—e— Observed Data
=== Mean Posterior
[0 95% Confidence Interval

AR A
|

A B v

—0.002

0.002

ab/ot

0 2 4 6 8 10 12
Time [hr]

Figure 8. Mean posterior of the trained periodic GP model (orange line) compared to the derivative of time-series B(t) used as the observation

(blue line). Shaded regions show (point-wise) 95% confidence interval.

simple periodic kernel is sufficient to isolate the underlying oscillatory behaviour from the observation. The mean posterior
distribution in Figure 8 based on the GP model again yields a period of 1" =~ 95 minutes, which is close to the 90-minute period
observed by Dagan et al. (2018) in trade cumulus clouds under precipitating conditions.

Next, we compare the mean posterior distribution from the GP derivative model to b(t). We integrate the mean posterior

distribution 9,b(t) in Figure 8 to obtain an estimate for b(¢) within a constant. For a direct comparison with b(t) we applied the
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Figure 9. Normalized time-series of slope b of the cloud size distribution C'(a) (blue line; same as Figure 4), compared to the the mean
posterior from the periodic GP model (orange line), representing 95-minute oscillation. The full time-series includes the 9-hour training set

used for GP model fit (blue region) as well as the 3-hour testing set used for GP model evaluation (orange region).

min-max normalization algorithm

y —min(y)
max(y) — min(y)

where ¢ is the normalized time-series, and y is the original function value. This can be used to perform a quick comparison

i= @

between the integral of the mean posterior distribution I;(t) and the observed time-series b(t), which is shown in Figure 9.
The simulated time-series of the mean posterior distribution E(t) corresponds well to the observed changes in b(t), except at 4
and 10 hours from the beginning of the time-series. Small-scale fluctuations within the cloud domain could disrupt large-scale
convective and precipitative behaviour, especially when the model domain is large. As the apparent oscillatory tendencies are
dependent on domain size, it is possible that one side of the domain can be out of phase with the rest of the cloud field, which

would make it difficult to identify the oscillations in cloud size distribution.
2.7 Fully Bayesian Gaussian Process

We extend the GP model using Bayesian inference on the hyper-parameters. Fully Bayesian GP models have the ability to
estimate the uncertainties in the hyper-parameters of the GP model by stochastically modelling the full posterior distribution.
This is done by assuming a prior over model hyper-parameters 6 ~ p(8), also called the hyper-prior; that is, the prior over the

hyper-parameters. We can then define joint posterior with the hyper-prior p(0) as
p(f,0]y) o< p(y[f)p(f|0,x)p(0) (22)

where we have omitted input data x and x, for the sake of simplicity. For a full, illustrative description of Bayesian model

selection, refer to Chapter 5.2 in Rasmussen and Williams (2006).
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Figure 10. A histogram (blue) and the corresponding kernel density estimate (orange) of periods retrieved from Markov chain Monte Carlo
(MCMC) experiments. Fitting the Gaussian distribution to KDE (black dots) infers 95 £ 3.6 minutes for the observed periodicity in the

time-series.

Given the test input data x,., we retrieve the predictive posterior by integrating the joint posterior
ply) = [[ pie. 2.0 0ly)d o 3)

— / / p(E.|£,0)p(£]8.y)p(8ly) dE 46 (24)

whose inner integral reduces to the standard GP posterior, which has the same structure as Equation 14. Using the same

formalization in Section 2.5, the outer integral can be estimated as

p(Ely) = / p(E.ly.0)p(6]y) d6 25)
1 N

~ > p(E]y.01), (26)
k=1

where 0, ~ p(0]y). The integral p(8]y) ~ p(6|y)p(0) remains intractable. In order to estimate this integral and obtain the
predictive posterior as described in Equation 25, we use a modern variant of Hamiltonian Monte Carlo (HMC) algorithm
called No-U-Turn-Sampler (NUTS; Hoffman et al., 2014) in Pyro (Bingham et al., 2019).

The fully Bayesian GP model was applied to the time-series of 8t1~)(t). We initially employed normal priors for characteristic
length-scale ! and periodicity 7', but the GP model quickly converged to the previously observed 95-minute period. To avoid
over-fitting, we initialized the Bayesian GP model with an uninformative uniform prior that allows any quasi-realistic values
for the period of oscillation. Unfortunately, the characteristic length-scale [ fails to converge with the uniform prior in the
presence of periodicity, which suggests that the Bayesian GP model can explain the observed time-series solely with a periodic

kernel kper. The characteristic periodicity T was given a uniform prior ¢/(30,130), and Bayesian inference via MCMC has
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been performed with four chains generating 700 samples, including 300 warm-up samples. The resulting histogram of the
characteristic periods taken from 700 samples can be seen in Figure 10, which shows that the most probable period that can be
inferred from the time-series 8tl~)(t) is 95 &£ 3.6 minutes. It is not surprising that the fully Bayesian GP model converged to the
same period from the previous section, and it confirms that non-Bayesian GP model is a reliable framework that can identify

oscillatory motions in noisy time-series observations of moist convection.

3 Discussion
3.1 Cloud Size Distribution

The estimated period of the lNJ(t) time-series oscillation is 7' = 95 + 3.6 minutes, which corresponds well to previous studies
involving marine boundary-layer clouds (Dagan et al., 2018; Koren and Feingold, 2013). though it is slightly longer than the
80-minute period based on a Fourier spectral analysis of LES cloud field (Feingold et al., 2017). This could be due to the high-
frequency noise in the observed time-series, which makes it difficult to detect periodic behaviours at higher frequencies using
the Fourier spectral analysis. Each coefficient in the periodogram corresponds to period T'(k) = N/k for k =0,1,...,N — L.
The longer the period, the coarser the resolution, which greatly reduces the effectiveness of the periodogram in isolating
oscillatory components from the noisy time-series.

We were not able to reliably isolate a high-frequency oscillation reported in previous studies, either for 7'~ 10 minutes
(Dagan et al., 2018) or for T~ 15 minutes (Feingold et al., 2017) used as a prior for our modified periodic kernel kper.
This is likely due to the large noise in the time-series b(t) (cf. Figure 4), as well as small variations in the amplitude of the
oscillation. Over-fitting of noisy time-series becomes an issue in such cases as the GP model quickly adheres to random noise,
or observational uncertainties, but not necessarily to high-frequency oscillation.

Given that the primary mode of oscillation found in this study has a period of 95 minutes, we suspect that the size of the
domain used for the LES run (43.2 km X 12.8 km) might have made it more difficult to detect an oscillatory evolution of
individual clouds (Dagan et al., 2018), as we expect the 15-minute period to be correlated to the convective timescale for
individual clouds, rather than changes in the mean cloud field (Feingold et al., 2017; Heus et al., 2009). It is also possible that
such convective oscillation exists, but due to the nature of non-linear oscillation at small scales, our attempt in resolving the
time-series with a periodic kernel was not able to adequately capture the complex dynamics of non-linear oscillators (Koren
and Feingold, 2011; Seifert and Heus, 2013; Koren et al., 2017) at the scale of individual clouds.

The observed 95-minute periodicity in the cloud size distribution matches the observed oscillatory behaviour of a modelled
cloud field (Dagan et al., 2018; Seifert et al., 2015) as well as satellite observations (Koren and Feingold, 2013) under pre-
cipitating conditions. Once convective clouds develop, precipitation and evaporative cooling due to rain generates cold pools,
inhibiting immediate follow-up growth of cumulus clouds. Since the air from these cold pools are negatively buoyant, the
downdrafts from the surrounding cold pools converge to form updrafts, promoting convective cloud formation (Dagan et al.,

2018; Feingold et al., 2010).
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Figure 11. Same as Figure 9, but for average vertical mass flux M (t).

Lastly, using fully Bayesian GP model to estimate the uncertainty in the characteristic periodicity 7" (Figure 10) confirms
that without any prior knowledge, except with an assumption that a reasonable period value would lie somewhere between 30
and 130 minutes, we could reliably retrieve a time-series oscillation that is statistically significant, with a period of 7' = 95+3.6

minutes.
3.2 Average Cloud Vertical Mass Flux

As the oscillation is assumed to be driven mainly by spatial and temporal organization of precipitating clouds, we assume that
the same periodic evolution in the dynamic and thermodynamic properties of the mean cloud field, such as cloud cover f.
(Feingold et al., 2017) and vertical mass flux M, can also be observed. Given that, we repeat the experiment for these two

dynamic properties. Here, mass flux M is defined at each grid cell as
M = pwA 27)

where p is air density [kg m?], w is vertical velocity of the air [ms~!], and A is the activity field which is 1 for the cloudy cell,
and 0 otherwise.

The average mass flux M (t) can then be obtained by calculating average mass flux across the cloud field and taking the
average value over the vertical column as the vertical distribution of mass flux remains relatively consistent within the cloud
layer. This value will be used as a measure of strength of convection in the modelled cloud field. We calculate M at each time
step to construct mass-flux time-series M (t) for the simulated 12-hour period (Figure 11).

We applied the same numerical techniques presented in Section 2, including the uncertainty estimate using the fully Bayesian
GP model (Section 2.7). For the vertical mass-flux over the mean cloud field, the period is estimated to be Th; =93 £2.5

minutes, which is well within the estimated range for the cloud size distribution. Figure 11 shows both the normalized mass
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Figure 12. Same as Figure 9, but for cloud fraction f..

flux time-series M (t) as well as the integrated mean posterior of the periodic GP model. The time-series of M (t) tends to
be much smoother than that of the cloud size distribution because the fluxes are averaged over the model domain. The mean
posterior in Figure 11 follows the observed time-series quite closely for the training set, except between 7 and 9 hours of
simulation. The deviation occurs slightly earlier than the sudden decrease in E(t) (Figure 9), which explains the interaction
between vertical mass flux and cloud size distribution. For example, weakening of vertical mass flux due to the formation of
cold pools would lead to a relative abundance of smaller clouds once larger clouds dissipate without the convective forcing to
support them.

The resulting time-series M (t) corresponds well to that of b(t), except that the slope of the cloud size distribution decreases
with increasing mass flux. As the steeper slope in the cloud size distribution indicates that there is a relative abundance of

smaller clouds, this seems to suggest that mass flux is the main indicator of the formation of smaller clouds.
3.3 Cloud fraction

We repeated the experiment for the cloud fraction over the model domain f., which is simply the fraction of the domain that
is covered by clouds. Cloud fraction is calculated by projecting the 3-dimensional clouds onto the ground, and calculating the
fraction of the 2-dimensional grid cells that are covered by cloudy region (with condensed liquid water, or ¢; > 0). We repeat
the calculation every minute to construct the cloud fraction time-series f.(¢).

The results of applying the GP models can be seen in Figure 12, where the period of oscillation estimated by the fully
Bayesian GP model is shown to be Ty = 93 + 3.7 minutes. Much like the time-series of vertical mass flux M (¢), the period lies
well within the range of estimated periods for both b(¢) and M (t), and the oscillatory behaviour for cloud fraction f,(t) matches

that of b as well as M (t), although the oscillation in average vertical mass flux M appears to be leading the oscillation in cloud
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Figure 13. Normalized time-series of average vertical mass flux M () [kg m~2 s~ '] and precipitation flux [mm per day].

fraction f. by 45 to 50 minutes. This could explain the source of the oscillatory behaviour in mean cloud field properties, which

will be discussed in the following section.
3.4 Precipitation Flux

As shown in Figures 11 and 12, oscillations in b and DM are well-correlated, while the oscillation in fc seems to be lagging by
half a period, which can be seen from the fact that the peaks in f. correspond roughly to the troughs in both b and M. That is,
a peak in cloud fraction f., for example, occurs between 45 and 50 minutes following a peak in M. This makes aggregation-
separation assumption (Feingold et al., 2017) less likely as the underlying mechanism of the oscillatory behaviour shown above
as the peak in mass flux does not match the peak in total cloud fraction. Precipitation and changes to the atmospheric instability
during convection (Dagan et al., 2018), on the other hand, can better explain the source of the oscillatory behaviour.

Figure 13 shows the time-series of the average vertical mass flux M compared to the precipitation flux, averaged over the
cloud layer. It is clear that the peaks in M correspond well to those in precipitation flux, suggesting that strong convective
formations induce precipitation. During this time, latent heat gets released, warms the cloud layer, and leads to vigorous
formation of smaller clouds. The sub-cloud layer cools due to evaporation, and warming of the cloud layer and cooling of the
sub-cloud layer reduce the atmospheric instability within the boundary layer, rapidly weakening convection and precipitation.
Comparing Figures 12 and 13 reveals that the peaks in f. closely correspond to the troughs following the peaks in the two
fluxes. Once a peak in cloud fraction is reached, the convective cycle starts anew as surface fluxes de-stabilize the boundary-
layer (Dagan et al., 2018).

The periodic behaviour between mass flux M and precipitation is consistent with the recharge-discharge cycle of atmo-
spheric instability proposed by Dagan et al. (2018), which is primarily driven by precipitation and latent heat release due to
convection. That is, each recharge-discharge cycle consists of a 95-minute oscillation where atmospheric instability is charged

by surface fluxes and discharged by convection/precipitation over the 95-minute period.
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4 Conclusions

We have constructed a time-series for cloud size distribution C'(a) that reflects the changes in the relative abundance of large
clouds in the cloud field, and used the process (GP) regression method to model fluctuations within the time-series. The slope
b of the cloud size distribution C'(a) has been used as a proxy to examine the state of the boundary-layer cloud field. LES-
modelled boundary-layer clouds were conditionally sampled, and the probability distribution of cloud sizes was defined by the
Kernel Density Estimator (KDE; Parzen, 1962). The slope b of the cloud size distribution at each timestep was then obtained by
a decision tree algorithm and a robust linear regression method. The resulting time-series contains internal fluctuations within
the convective cloud field as well as numerical uncertainties introduced in constructing the cloud size distribution, but is an
accurate representation the distribution of cloud sizes in the modelled cloud field.

We have also created the time-series based on the size distribution of vertically projected clouds (Neggers et al., 2003)
using an outlier detection algorithm to reproduce the results in Neggers et al. (2003) and Feingold et al. (2017). This, however,
resulted in a very noisy time-series and an unsuccessful attempt at estimating the underlying oscillation (e.g.. Figure 9 in
Feingold et al., 2017). We have also examined other criteria from the literature (e.g. Neggers et al., 2003; Feingold et al., 2017;
Dagan et al., 2018) but obtaining a stable time-series for the slope b remains difficult, likely because of the large domain size
compared to these studies.

Under the assumption that the noisy time-series b(¢) consists of a single periodic oscillation with large observational vari-
ability (Equation 20), we retrieve the underlying trend from the observation using a GP regression model, which is then used
to estimate the period of oscillation by a GP model with a periodic kernel k... The kernel defines our (a priori) belief about
what the underlying behaviour should look like, and the GP model optimizes the hyper-parameters, especially the period T’
of the oscillation, that maximizes the likelihood of the posterior distribution against the observations. We further calculate the
uncertainty using a fully Bayesian GP model. The smooth gradient atl;(t) of the slope of the cloud size distribution C(a) is
used as a proxy to determine the underlying behaviour of cloud size distribution, whose period is estimated to be 7' = 95+ 3.6
minutes.

We have also applied this technique to total cloud cover f. and average vertical mass flux /. Using the fully Bayesian
GP model, we identified Ty, = 93 & 2.5 minutes as the period of oscillation for average vertical mass flux, and Ty = 93 £ 3.7
minutes for total cloud cover. Dynamic properties of the cloud field, therefore, are found to oscillate along with the cloud size
distribution. The estimated periods agree with the satellite observations of open cells (Koren and Feingold, 2013). We argue that
the time-series of cloud field properties from the literature also embody the same periodic behaviour, which can be identified
by the GP regression method presented here; for example, the time-series of cloud cover and liquid-water path (LWP) (Figure
2 from Seifert and Heus, 2013) as well as mass flux (Figure 4 from Plant and Craig, 2008) appear to be similar to the noisy
time-series observation shown here (Figure 4). We have also tested our GP model to BOMEX (Holland and Rasmusson, 1973)

and ARM (Brown et al., 2002) cases, and consistently detected temporal oscillation in the time-series of the total cloud cover

Je-
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The oscillations in the time-series of the precipitation flux (Figure 13) are consistent with the 95-minute period found for
the cloud size distribution and the mass flux, suggesting that the oscillation is primarily driven by the recharge-discharge
cycle in atmospheric instability (Dagan et al., 2018). The atmospheric instability is weakened (discharged) when clouds grow
large enough and precipitate, as the upper boundary layer warms due to latent heat release and the lower layer cools due to
evaporation. This stabilization of the boundary layer continues until cloud growth slows down and precipitation stops. After
that, surface fluxes de-stabilize the boundary-layer from below and convective phase starts again due to atmospheric instability.
This cycle takes roughly 95 minutes in the LES model run based on the CGILS S6 case. It should also be emphasized that the
same periodic behaviour can be observed using the two-moment microphysics scheme, whereas the bin microphysics scheme
has been used by Dagan et al. (2018). The thermodynamic processes that govern the recharge-discharge cycle seem to work
consistently in multiple simulations of the boundary-layer atmosphere.

Given the results from observational studies showing oscillatory evolutions of the cloud field, it is not surprising that the
dynamic and thermodynamic properties of the cloud field evolve periodically. Still, the merit of this technique is that the GP
model can be applied to noisy time-series data where traditional methods, especially the Fourier spectral analysis (cf. Feingold
et al., 2017), suffer from the presence of noise. Of course, given that we have focused on an idealized simulation where the
convective field is in steady-state over a 36-hour period with diurnally-averaged solar insolation, additional studies can be
performed to examine how certain conditions, such as aerosol concentration (Koren and Feingold, 2011, 2013; Dagan et al.,
2018), changes to solar insolation and wind shear can affect this oscillatory behaviour of the cloud field.

Moreover, one can focus on the capabilities of Gaussian process regression in handling noisy data, which is especially useful
for observational data. The GP modelling allows the model to assume that the noise is in both the time step = and the observed
data y, and that the sampled data do not lie on a discrete grid (Roberts et al., 2013).

Lastly, it would be interesting to see if the GP modelling can be used to retrieve the high-frequency oscillation found in
previous studies of modelled cumulus clouds (Feingold et al., 2017; Dagan et al., 2018; Moser and Lasher-Trapp, 2017). The
procedure introduced here seems to be inadequate for this purpose, as the signal to noise ratio remains too low. Base on the
literature, this is likely because this oscillation is based on the pulse-like development of individual clouds (Blyth and Latham,
1993; Zhao and Austin, 2005a, b; Heus et al., 2009; Moser and Lasher-Trapp, 2017), as opposed to an organizational change
to the mean cloud field, which lends itself to a slightly different approach. Subsequent studies will focus on using the statistical

tools to uncover the underlying dynamics of the cloud field based on the distribution of cloud properties.

Code and data availability. The data from the LES model run are available upon request. The LES model used in this paper, as well as the
exact set of case parameters, are available at https://github.com/lorenghoh/sam_loh. Jupyter notebooks including the numerical analysis are

also available at https://github.com/lorenghoh/size_oscillation.
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