
Response to Reviewer 2: 

We would like to thank the reviewer for the positive feedback and thoughtful suggestions. 

Below are our responses to the comments raised: 

General comments 

The article addresses the dissolution trapping of CO2 during geological carbon sequestration 

in deep saline aquifers, a critical process that serves as a key indicator for evaluating the 

safety of long-term CO2 storage. By trapping CO2 in the aqueous phase, dissolution trapping 

helps prevent CO2 leakage. However, the dissolution process can result in gravity-driven 

instabilities, such as Gravity-Driven Convection (GDC), and is influenced by formation 

properties like permeability and porosity, which are subject to uncertainties due to 

heterogeneities. The article aims to quantitatively analyze the explicit relationships between 

GDC-driven dissolution rates and permeability heterogeneities reported in the literature 

through numerical experiments. 

The article is well-written and easy to understand. It is evident that the authors have carefully 

guided readers step by step through their work, supported by an in-depth literature review. 

Additionally, they have conducted a substantial number of numerical simulations across 

various setups to provide robust evidence. Based on my assessment of the manuscript, I 

believe this work is highly deserving of publication, subject to revisions. 

R: We are gratified that the reviewer has acknowledged the manuscript as well -written and 

clear. We sincerely appreciate the recognition of the meticulous explanations and the 

robustness of the numerical simulations conducted in this study. Additionally, we are thankful 

for your suggestion that the work merits publication, pending revisions. We are eager to 

address the comments to further enhance the clarity and impact of the manuscript. The 

following revisions will be incorporated into the subsequent version. 

Major Comments: 

These are primarily comments from me and do not involve major revisions to the article. 

 

(1). The 2D numerical setup is well-chosen, in my opinion, and all choices are clearly 

explained. Simulation data on a 100x100 grid over an extended period are obtained from 554 

realizations of the permeability distributions. Additionally, the time-step size is governed by 

CFL conditions, which can result in a significant number of time steps. I assume this process 

is computationally intensive, and I was wondering how challenging it would be to extend this 

work to 3D, as doing so could provide valuable insights. Perhaps providing an approximate 



value of the CPU time per simulation could serve as a good starting point and indicator. 

R: Thank you for raising the important point about extending our study to a 3D framework 

and acknowledging the computational challenges we have encountered. We fully agree that a 

3D setup would offer a more realistic depiction of permeability heterogeneities in geological 

formations. However, the current computational resources pose significant limitations on the 

feasibility of conducting ensemble-based studies in 3D. As you correctly pointed out, the 2D 

simulations were already computationally intensive due to the large number of realizations 

(554) and the constraints imposed by the CFL time-step conditions. Extending these 

simulations to 3D would introduce considerable additional computational complexity. 

To elaborate, the current 2D simulation, of which the grid discretization is 100×100, involves 

a (2⋅104)×(2⋅104) sparse matrix (here, 2 means we have two independent variables), taking 

approximately 4–7 hours to complete. In contrast, a 3D simulation, of which the grid 

discretization is 100×100×100, would correspond to a (2⋅106)×(2⋅106) sparse matrix. Based on 

our estimates, the simulation time for a single 3D case would be at least 4×100 hours (around 

17 days). Moreover, increasing the matrix size would also significantly elevate the 

memory requirements. Actually, we tried to give a 3-D example for you on my own 

desktop (not a cluster), but the simulation was extremely slow and it broke down with 

“Out of memory.”warning, during estimating the condition number with LU using 

condest. The CPU and the RAM of the computer used are “12th Gen Intel(R) Core(TM) 

i9-12900K 3.20 GHz” and “64.0GB”, respectively. Given that we need to perform a total of 

554 simulations, the computational burden and memory demands associated with a 3D setup 

would be formidable and currently beyond our capacity. 

Second, it is worth noting that the stabilized mass flux in the 3D scenario is approximately 25% 

higher than that observed in a comparable 2D simulation (Pau, 2010). Although this 

difference is statistically significant, it is relatively minor when compared to the several 

orders of magnitude variability in permeability commonly seen in geological media (e.g., 

𝜅 = 10−16 − 10−12 m2 and 𝜎ln 𝜅
2  = 3-10, as reported by Wang et al., 2022). This indicates 

that the impact of additional spatial dimensions on the stabilized mass flux is secondary to the 

influence of permeability heterogeneity. In the revised manuscript, we have included a 

concise discussion on the differences between 2D and 3D simulations of GDC. 

The following sentences will be added to the conclusion Section 4.1 .  “We note that in a 

more realistic 3D scenario, the dissolution rate may be approximately 25% higher than that 

observed in 2D cases. However, this difference is relatively minor when compared to the 

significant variability in permeability commonly encountered in geologic media Wang et al. 

(2022).” The revisions will be incorporated into the subsequent version. 



(2). The authors clearly state the software used for the numerical experiments and provide 

open access to the code and data. The user guide is extremely valuable, as it includes all the 

numerical details of the solver. However, I believe that for full reproducibility of this specific 

work, it would benefit from an additional short note, which I may have overlooked. 

R: Thank you for the suggestion regarding the reproducibility of the work. We agree that for 

full reproducibility, it would be beneficial to provide an additional note to clarify specific 

implementation details. We are sorry for not giving a very clear description to reach our 

conclusions. In the following, we give a summary that provides any potential information for 

full clarity, ensuring that all steps in the numerical experiment are fully accessible to users. 

Given that the reader has access to this document, we will not make further modifications to 

the original manuscript. We will neither put this on the general user guide for the MRST 

simulator because flow simulations are only used in Steps 2 and 3 described below.  

Step 1. Generating heterogeneous fields based on the parameter given in Table 4 in the article. 

Random fields were generated using the sequential Gaussian simulation method implemented in 

the SGSIM code of GSLIB. Note: The fields are generated in a random manner and could differ 

from those used in the present work. However, this does not impact the statistical conclusions 

drawn in this study. 

 

Step 2. Measuring the equivalent vertical (𝜅𝑧
𝑒  ) and horizontal (𝜅𝑥

𝑒  ) permeability for each 

realization of the random fields. To estimate 𝜅𝑖
𝑒 (𝑖 =  𝑥, 𝑦), we neglect gravity and saturate the 

porous medium with only water. We then set the domain sides perpendicular to the ith direction as 

impermeable, and we impose a pressure decrement |Δ𝑖𝑝| along the ith direction. 𝜅𝑖
𝑒 is estimated 

by the total volumetric flow 𝑄𝑖  passing through the system in the ith direction as 𝜅𝑖
𝑒 =

𝜇𝑄𝑖𝐿𝑖/(𝐴𝑖|Δ𝑖𝑝|), where 𝐿𝑖  is the domain size along the ith direction and 𝐴𝑖 the corresponding 

cross-sectional area. Note: To maintain the simplicity and clarity of the code library, we have 

omitted this specific calculation in the uploaded code, https://zenodo.org/records/5833962. 

However, the calculation can be readily implemented by making minor modifications to the code 

provided in our uploaded file. Alternatively, it can also be achieved using existing functionalities 

in the MRST https://www.sintef.no/projectweb/mrst/. 

 

Step 3. Conducting GDC (Gravity-Driven Convection) simulations with the provided code 

(located in benchmarks and examples/example_unstable_finger). It is essential to capture two key 

pieces of information during the simulation process: the mass flux through the top boundary, 

denoted as 𝐹(𝑡), and the detailed flow field. Note: The example code is designed to be broadly 

applicable. Users are required to tailor the simulation parameters—discretization, domain size, 

permeability, and porosity—according to the specifications outlined in Table 3. The methodology 

for calculating 𝐹(𝑡) is as follows: 

https://zenodo.org/records/5833962
https://www.sintef.no/projectweb/mrst/
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The flow field is used to calculate the finger velocity 𝑣(𝑡), which is given as follows: 
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|𝑞𝑧|𝑑𝑥} (c.f. Equation (16) in the manuscript) 

 

Step 4. Estimating the Asymptotic Values of the Dissolution Rate (𝐹∞) and Vertical Finger 

Velocity (𝑣∞). In our simulations, the asymptotic values of the global dissolution rate (𝐹∞) and the 

vertical finger velocity (𝑣∞) are determined by computing the temporal averages of 𝐹(𝑡) and 

𝑣(𝑡) over the interval [
𝑡𝑏

3
, 𝑡𝑏]. Here, 𝑡𝑏 denotes the time at which the earliest aqueous CO2 

finger reaches the bottom, marked by the moment when the maximum CO2 mass fraction at the 

bottom exceeds 25% of the CO2 concentration at the top boundary.  

 

Step 5. Obtaining the predictors for the asymptotic dissolution rate by performing regression 

analysis for the simulation results (summarized in https://zenodo.org/records/14061632) based on  
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 (c.f. Equation (17) in the manuscript)  
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 (c.f. Equation (18) in the manuscript) 

Finally, we will get the results listed in Table 5 of the manuscript.  

 

(3) Multiple realizations of permeability distributions are provided, and Figure 4 effectively 

illustrates the differences in numerical simulation results between them. I was wondering 

whether the upscaling of highly heterogeneous permeability fields could yield similar results 

for the predictors or if a relationship could be established between the upscaled and original 

permeability fields. 

 

R: This is a very good point. The question of upscaling permeability fields and its impact on 

our findings is an important one. The upscaling of heterogeneous permeability fields should 

statistically yield similar results as the original permeability fields, although the shapes of 

concentration profiles are different in original and upscaled fields.  

 

Proof by by Elenius and Gasda (2013): The dissolution coefficient 𝛾  obtained in 

heterogeneous fields by Elenius and Gasda (2013) is very similar to that in homogeneous 

field using equivalent permeability. This means that gravity-driven convection is governed by 

a rule similar to Darcy's law, with the density difference acting as the driving force, this 

relationship can be illustrated by the following equation:  (cf. Equation (1) in the manuscript): 

https://zenodo.org/records/14061632
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This means that the dissolution rate is statistically the same for heterogeneous fields and 

corresponding upscaled homogeneous fields of equivalent permeability.  

Proof from current work: We first perform 10 GDC simulations with different random noise 

in a homogeneous field (or upscaled field) with permeability 𝜅 = 10−12 m2, and then 

perform GDC simulations in different isotropically heterogeneous fields with geometric mean 

permeability 𝜅𝑔 = 10−12 m2, we obtain that the relation of the dissolution rate follows 

𝐹ℎ𝑒𝑡𝑒𝑟𝑜
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𝑚𝑒𝑎𝑛 =

𝜅𝑧
𝑒

𝜅
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𝑒 is the equivalent permeability, 𝐹ℎ𝑜𝑚𝑜
𝑚𝑒𝑎𝑛 and 𝐹ℎ𝑒𝑡𝑒𝑟𝑜  are the statistic 

dissolution rate in homogeneous field (or upscaled field) and the dissolution rate in the 

heterogeneous field. This means the dissolution rate in the heterogeneous field can be 

obtained using an upscaled homogeneous field of equivalent permeability.  

 

For anisotropic fields, we did not perform simulations in upscaled anisotropically 

homogeneous fields, but we can expect that upscaling should also work for anisotropic fields, 

because our predictors 𝐹∞
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 (c.f. Equation (18) in the manuscript), which are based on equivalent 

permeabilities, perform well for all anisotropy, as shown in Figure R1 (c.f. Figure 7 in the 

manuscript): 

 

Figure R1. Performance of predictors in fields of different equivalent vertical and horizontal 



permeabilities 𝜅𝑧
𝑒 and 𝜅𝑥

𝑒.  

 

Inspired by your comments, we add the following sentences in the manuscript: 

“The results indicate that employing an upscaled permeability field with equivalent permeability 

does not compromise the depiction of dissolution efficiency in GDC simulations, although 

permeability upscaling does alter the shapes of the dissolution profiles.” The revisions will be 

incorporated into the subsequent version. 

Minor Comments: 

(1). Table 3: Could you comment on the potential effects of introducing a relationship 

between porosity and permeability realizations? Specifically, how might such a relationship 

influence the dissolution rates. 

R: This is indeed an insightful point. Introducing a relationship between porosity and 

permeability to account for heterogeneous porosity distribution may subtly influence the 

morphology of instability fingers, because the pore size may affect the interstitial velocity. 

However, it does not statistically impact the dissolution rates. This is because gravity -driven 

convection is governed by a rule similar to Darcy's law, as illustrated by the equation (R1), 

which clearly shows that the dissolution rate depends solely on the equivalent permeability 

and is independent of porosity. 

 

We further explan the use of constant porosity in our simulations for two additional reasons: 

（i）Limited Porosity Variation: The range of porosity variation (0.1–0.38) is relatively 

narrow compared to the wide range of intrinsic permeability (𝜅 = 10−16 − 10−12 m2 and 

𝜎ln 𝜅
2  = 3-10), as documented in Table 3 of Wang et al. (2022) and Table 4 of Elenius and 

Johannsen (2012).（ii）Ambiguity in Permeability-Porosity Relationships: On one hand, clay 

particles are significantly smaller than sand particles, resulting in a higher total pore space in 

clay soils. However, these pores are typically small and poorly connected, leading to low 

permeability. In contrast, sand particles are larger and more irregularly shaped, creating larger 

and better-connected pores that facilitate higher permeability. Thus, permeability is 

influenced not only by pore volume but also by pore shape, meaning that high porosity does 

not necessarily imply high permeability. On the other hand, for a given aquifer, increasing 

porosity through acid water erosion often leads to an increase in permeability, as described by 

the well-known Kozeny-Carman model (Saaltink et al., 2013). However, even if we employ 

the Kozeny-Carman model to represent the permeability-porosity relationship, the model 

parameters are typically site-specific, limiting their generalizability. 

(2). Line 231: 553 realizations and line 354: 554 realizations. 



R: We apologize for the typo. We corrected this in the manuscript. The total number of 

simulations should be 554. 

(3). In Figure 4, the range of permeability values appears to be relatively narrow (from -14 to 

-10 on a logarithmic scale). Could you comment on the potential impact of using a wider 

range of permeability values? 

R: This is a very good point. We will respond your comments in two aspects.  

(1) When the geometric mean permeability and correlation length are held constant while the 

variance (𝜎𝑌
2) increases to produce a broader spectrum of permeability values, the influence of 

permeability heterogeneity becomes more pronounced, and the connectivity within the 

medium improves. Consequently, preferential flow tends to occur within the interconnected 

high-permeability zones. In this context, the uncertainty associated with the development of 

instability fingers is primarily governed by the permeability heterogeneity, while the role of 

white noise, which initially triggers the instability, becomes relatively minor. Essentially, the 

flow becomes focused in the high-permeability regions regardless of the specific initial 

perturbation. 

 

Note: In a medium with minimal heterogeneity, instability fingers can emerge due to minor 

white noise present in the initial conditions. This can result in variations in finger shapes 

across different simulations using distinct white noise inputs. However, the statistical 

dissolution rate remains consistent, as demonstrated by Pau et al. (2010) and this work. 

 

Irrespective of the behavior of CO2-rich fingers, the overall vertical mass flux of CO2 can be 

reliably predicted based on the equivalent vertical and horizontal permeabilities. These 

equivalent permeabilities can be calculated using the method detailed in Section 4 .5 of the 

manuscript. 

 

Therefore, we expect that employing a large variance (𝜎𝑌
2) values amplifies preferential 

channeling within interconnected high-permeability zones and may consequently affect 

dissolution rates. Nonetheless, this observation does not undermine the conclusion that CO 2 

dissolution rates can be reliably estimated using equivalent vertical and horizontal 

permeabilities. To put it succinctly, the fundamental relationship between dissolution rate and 

equivalent permeabilities remains consistent, regardless of the permeability variability.  

 

(2) When the variance (𝜎𝑌
2) is negligible while the average permeability changes, the size of 

the instability fingers is inversely proportional to the permeability, as described by the relation 

𝑙𝑐 = 70 ⋅
𝜇𝜙𝐷𝑚

Δ𝜌𝑔𝜅𝑔
. This relationship indicates that the finger size is very large in media with 



very low permeability. This insight is particularly valuable when designing simulation 

domains or laboratory experiments, since an inadequately chosen domain size may fail to 

accurately represent gravity-driven convection phenomena.  

 

For instance, consider a scenario where the characteristic length of the fingers (𝑙𝑐) is 1 meter. 

In such cases, employing a simulation domain or experimental reservoir smaller than 1 meter 

may fail to accurately capture the development of instability fingers. Given a specific size of 

the experimental reservoir, meticulous selection of sand permeability becomes essential to 

ensure that the observed finger distributions are both representative and meaningful.  

 

Therefore, we claim that changing the mean permeability in a field with negligible 

heterogeneity will change the finger size, and the size of the simulation domain should be 

changed accordingly to efficiently match the density instability fingers. 

 

We add the following comments in the revised manuscript: 

“From Figure 7, it is also evident that the performance of our predictors is not influenced by 

permeability. This suggests that the findings of this study can be extended to fields with 

greater permeability heterogeneity.” The revisions will be incorporated into the subsequent 

version. 
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