
Trends in the annual snow melt-out day over the French Alps and
Pyrenees from 38 years of high-resolution satellite data (1986–2023)
Zacharie Barrou Dumont1,6, Simon Gascoin1, Jordi Inglada1, Andreas Dietz2, Jonas Köhler2, Matthieu Lafaysse3,
Diego Monteiro3, Carlo Carmagnola3, Arthur Bayle4, Jean-Pierre Dedieu5, Olivier Hagolle1, and Philippe Choler4

1Centre d’Etudes Spatiales de la Biosphère, CESBIO, CNES/CNRS/IRD/UT3 Paul Sabatier, Toulouse, France
2German Remote Sensing Data Center (DFD), German Aerospace Center (DLR),
Muenchener Strasse 20, 82234 Wessling, Germany
3Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etude de la Neige, Grenoble, France
4Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Ecologie Alpine (LECA), 38000 Grenoble, France
5Institute of Environmental Geosciences (IGE), Université Grenoble Alpes/CNRS/Grenoble INP/INRAE/IRD,
Grenoble, France
6Magellium, Ramonville, France

Correspondence: Zacharie Barrou Dumont (zachariebd@hotmail.com) and Simon Gascoin (simon.gascoin@univ-tlse3.fr)

Received: 8 November 2024 – Discussion started: 15 November 2024
Revised: 28 February 2025 – Accepted: 10 March 2025 – Published:

Abstract. Information on the spatial–temporal variability of
seasonal snow cover duration over long time periods is criti-
cal for studying the responses of mountain ecosystems to cli-
mate change. However, this information is often lacking due
to the sparse distribution of in situ observations or the lack of5

adequate remote sensing products. Here, we combined snow
cover data from 10 different optical platforms, i.e. SPOT
(Satellites Pour l’Observation de la Terre) 1–5, Landsat 5–
8, and Sentinel-2A and Sentinel-2B, to build a time series
of the annual snow melt-out day (SMOD, i.e. the first day10

of no snow cover) at 20 m resolution across the French Alps
and Pyrenees (43× 103 km2). We evaluated the pixel-wise
accuracy of the computed SMOD using in situ snow mea-
surements at 276 stations. We found that the residuals are
unbiased (median error of 1 d) despite a dispersion (RMSE15

of 28 d), which suggests that this dataset can be used to study
SMOD trends after spatial aggregation. We found average
reductions of TS120.4 d (5.51 d per decade) over the French
Alps and 14.9 d (4.04 d per decade) over the Pyrenees over
the period 1986–2023. The SMOD reduction is robust and20

significant in most parts of the French Alps and can reach 1
month above 3000 m. The trends are less consistent and more
spatially variable in the Pyrenees. This dataset is available for
future studies of mountain ecosystem changes and is updated
every year using Sentinel-2 data.25

1 Introduction

In mountainous regions, hydrological and ecological pro-
cesses are strongly influenced by seasonal snow cover. As
a result, ongoing snow cover changes due to global warm-
ing threaten the sustainability of numerous ecosystem ser- 30

vices (Hock et al., 2019; Adler et al., 2022). Specifically,
the annual snow melt-out day (SMOD, also named the snow
cover melting day, i.e. the first day of no snow cover or
the first no-snow day) modulates the onset of the vegetation
growing season and therefore has a profound impact on soil 35

processes, vegetation phenology, and productivity (Alonso-
González et al., 2024; Choler, 2015; Francon et al., 2023;
Jonas et al., 2008; Revuelto et al., 2022; Edwards et al., 2007;
Choler et al., 2024).

The Copernicus Climate Change Service report on the Eu- 40

ropean state of the climate highlights the fact that Europe
is the fastest-warming continent in the world, with warming
occurring at a rate twice that of the rest of the world (Coper-
nicus Climate Change Service (C3S), 2024). In the French
Alps from 1959 to 2010, the near-surface air temperature 45

increased at a rate of 0.25–0.4± 0.2 ° per decade (Beaumet
et al., 2021), consistent with rates reported in the rest of the
European Alps (Hock et al., 2019; Rottler et al., 2019; Scher-
rer, 2020; Monteiro and Morin, 2023). In the Pyrenees, the
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near-surface air temperature increased by 0.2 °C per decade
between 1959 and 2010 (OPCC-CTP, 2018). Previous stud-
ies have also identified long-term changes in the seasonal
snow in European mountain areas (Notarnicola, 2022), in-
cluding the Pyrenees (López-Moreno et al., 2020; Pons et al.,5

2010; Vidaller et al., 2021) and the Alps (Durand et al., 2009;
Marty et al., 2017; Matiu et al., 2021; Scherrer et al., 2004;
Schöner et al., 2019; Valt and Cianfarra, 2010; Dedieu et al.,
2014). In the Mont Blanc massif, the highest peak of the Eu-
ropean Alps, SMODs decreased at all elevations between the10

2 decades 1965–1975 and 2005–2015 (CREA, 2024). How-
ever, little is known about the SMOD trends at larger scales
in the European mountains, limiting our ability to understand
and anticipate the responses of mountain ecosystems to cli-
mate change. As detailed below, this knowledge gap is due15

to the lack of observations of the extent of the snow cover
on the land surface, or snow cover area (SCA), with the right
combination of spatial and temporal density and extent, espe-
cially at high elevations (Hock et al., 2019). This work aims
to fill this gap in the French Alps and Pyrenees.20

We first defined the scientific requirements for computing
SMOD trends in mountainous regions: (i) a spatial resolution
lower than 100 m, (ii) a temporal depth exceeding 30 years,
and (iii) an effective revisit frequency of better than 1 month.
The first requirement comes from the complex topography of25

mountainous regions. In particular, the snow cover sensitivity
to climate warming varies with the terrain slope and aspect
(López-Moreno et al., 2014), and the spatial variability of
mountain snow depth is typically within a range of less than
100 m (Blöschl, 1999; Mendoza et al., 2020; Trujillo et al.,30

2007). Hence, resolutions lower than 100 m are needed to
decipher the influence of snow on alpine vegetation (Dedieu
et al., 2016). The second requirement aims to limit the impact
of natural climate variability such as the North Atlantic Os-
cillation, which extends to decadal scales in western Europe35

(Hurrell, 1995). In the European Alps and Pyrenees, the signs
and magnitudes of snow cover trends become unstable if pe-
riods of less than 30 years are considered (López-Moreno
et al., 2020; Monteiro and Morin, 2023). In general, a period
of at least 30 years is recommended to enable the analysis of40

climate-driven snow trends (Bormann et al., 2018). The third
requirement is motivated by the need to identify a SMOD
with sufficient accuracy to analyse its trend, whose magni-
tude could be of the order of 1 week to 1 month over the
past 3 decades (e.g. Hüsler et al., 2014; López-Moreno et al.,45

2020; Durand et al., 2008; Matiu et al., 2021). The accuracy
of the SMOD is directly linked to the density of snow obser-
vations throughout the year (Hüsler et al., 2014).

We reviewed the different data sources that could be used
to fulfil these requirements: in situ data, numerical snow-50

pack modelling, and remote sensing. The in situ measure-
ments have significant limitations due to the generally low
number of long-term high-elevation sites and their uneven
distribution (López-Moreno et al., 2020; Matiu et al., 2021).
Stations above 2500 m are rare, representing 5 % of the sta-55

tions used by Monteiro and Morin (2023) in the European
Alps and 3 % of the stations used by López-Moreno et al.
(2020) in the French Pyrenees. This hampers the interpola-
tion of in situ trends at regional scales (Rohrer et al., 2013).
Snowpack modelling can provide spatially continuous snow 60

cover information. However, the temporal heterogeneity of
the available meteorological data used for the atmospheric
forcings can add biases to the long-term trends, especially in
high-elevation regions, due to the scarcity of meteorological
stations (Vernay et al., 2022). 65

Remote sensing is an effective tool for studying snow
cover evolution over large regions. Advanced Very High Res-
olution Radiometer (AVHRR) data (1 km resolution) were
used to determine snow cover trends since 1985 in the Alps
(Hüsler et al., 2014). The MODIS instrument, active since 70

2000, allowed the production of a 500 m resolution dataset of
daily global snow cover parameters (Dietz et al., 2015) and
was used to show a negative snow cover duration trend of
17 d per decade across the Alps (Fugazza et al., 2021). The
American Landsat program has provided an opportunity to 75

map the snow-covered area at a higher resolution (60–30 m)
since 1972, with each of the satellites from Landsat 1 to
Landsat 9 capturing freely available images of continental
surfaces with a revisit time of 16 d. The program kept two
Landsat satellites active at the same time, improving the re- 80

visit time to 8 d (Loveland and Irons, 2016). This combina-
tion of available temporal depth and decametric spatial res-
olution unlocked new analyses of snow cover dynamics in
mountainous regions (Choler et al., 2024; Bayle et al., 2023;
Carlson et al., 2017; Margulis et al., 2016; Hu et al., 2020; 85

Rumpf et al., 2022; Koehler et al., 2022a, b). Since 2017, our
ability to characterize the snow cover evolution in mountains
has progressed further with the Sentinel-2 mission, which
offers a unique combination of systematic global coverage
of land surfaces, a 5 d revisit time under consistent viewing 90

conditions, high spatial resolutions (10, 20, and 60 m), and
multi-spectral observations (Gascoin et al., 2019). Therefore,
satellite remote sensing appears to be a promising and rele-
vant method for addressing the objectives of this work. How-
ever, most satellite missions with freely available data fulfil 95

only one or two of the requirements defined above. Despite
their daily revisit times, MODIS and AVHRR spatial reso-
lutions are not sufficient. The MODIS and Sentinel-2 peri-
ods of record are still too short. Landsat mission revisit times
may be theoretically sufficient but are not guaranteed due to 100

technical constraints (Ju and Roy, 2008; Zhang et al., 2022).
Accounting for cloud cover, the effective revisit of Landsat
is approximately one observation per month or less, which
hinders applications in mountain ecosystems (Bayle et al.,
2024b). 105

In 2015, the French Space Agency (Centre National
d’Études Spatiales, CNES) started to open the archive of
SPOT (Satellites Pour l’Observation de la Terre) images
through the SPOT World Heritage (SWH) project. The SPOT
program consists of five satellites, which observed Earth 110
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with three to four spectral bands with spatial resolutions
of 10 and 20 m. SWH led to the release of nearly 20 mil-
lion SPOT 1–5 products from 1986 to 2015. Since SPOT ac-
quired images on demand, determining the average revisit
frequency is challenging. Nevertheless, as acquisitions over5

western Europe were requested more often, we found that
SWH significantly increases the number of available obser-
vations from Landsat only over the French Alps and Pyre-
nees (Barrou Dumont et al., 2023). In these regions, SWH
offers the opportunity to enhance the temporal revisit of high-10

resolution multi-spectral imagery since the 1980s, thereby
helping us to fulfil the above requirements. The low radio-
metric depth and the absence of a shortwave infrared band
(SWIR) in SPOT images pose challenges for snow cover and
cloud classification. However, we showed that this issue can15

be addressed efficiently using an image emulation approach
to train a deep-learning algorithm (Barrou Dumont et al.,
2024).

In this article, we merged the time series of SPOT, Land-
sat, and Sentinel-2 snow cover products to compute SMOD20

trends over the period 1986–2023, covering a domain of
43× 103 km2 that includes the French Alps and Pyrenees
at 20 m resolution (1.1× 108 pixels). We evaluated this new
dataset using in situ SMOD observations in both mountain
ranges. The combination of the high spatial resolution and25

the temporal depth of this dataset allowed us to analyse the
spatial variability of the SMOD trend at fine spatial scales.

2 Data

2.1 Satellite products

We describe the satellite datasets following the remote sens-30

ing nomenclature which separates products by processing
level. Level 1C refers to orthorectified top-of-atmosphere re-
flectances. Level 2B refers to a labelled image of the sur-
face properties at the time of the acquisition, in this case
three classes: snow, no snow, and cloud. The three collec-35

tions of satellite data used in this work are SWH (SPOT 1–5),
DLR-Landsat (Landsat 5–8), and the Theia L2 snow product
(Sentinel-2A, Sentinel-2B, and Landsat 8) hereafter called
Theia. We merged the SWH and DLR-Landsat datasets into
a single dataset which we refer to as SWHLX.40

2.1.1 SWHLX

SWH

Each SPOT satellite had two identical instruments. The
first generation (SPOT 1–3) was equipped with twin High-
Resolution Visible (HRV) instruments with green, red, and45

near-infrared (NIR) bands at 20 m spatial resolution. SPOT 4
was equipped with twin High-Resolution Visible and In-
fraRed (HRVIR) instruments which had the same geometric
multi-spectral imaging characteristics as the HRV instrument

but with the addition of a SWIR band of 20 m resolution. The 50

SPOT 5 High Geometrical Resolution (HRG) twin instru-
ments had the same multi-spectral characteristics as HRVIR
except for an improved spatial resolution of 10 m for the
three visible bands. The Theia data and services hub (https://
www.theia-land.fr/product/SPOT-world-heritage-fr/, last ac- 55

cess: 3 April 2024) provides a subset of 130 514 SPOT 1–
5 60 km× 60 km images that were processed to Level 1C,
mostly over French territory and Africa; 22 868 of these
Level-1C images cover the French Alps and Pyrenees from
1986 to 2015 and were used in this study. We processed them 60

to Level 2B using an algorithm which was designed to cope
with the low radiometric quality of SPOT images and the lack
of a shortwave infrared band in SPOT 1–3 (Barrou Dumont
et al., 2024). This algorithm was marginally adjusted for this
study to reduce an overestimation of the cloud mask. These 65

adjustments are described in Appendix A.

DLR-Landsat

We used Level-2B products from Landsat 5–8 images of
the Alps generated by Koehler et al. (2022a, b). They em-
ployed a modified threshold-based classification method (Hu 70

et al., 2020, 2019b, a) to identify snow pixels using a deci-
sion tree that applies thresholds from the Normalized Differ-
ence Snow Index (NDSI) and Normalized Difference Vege-
tation Index (NDVI), along with a new index based on blue
and NIR bands to better distinguish snow from clouds and 75

other land features. Additional masking techniques for wa-
ter bodies, topological shadows, and thermal thresholds were
also implemented. We used these products for the period
1986–2015 (up to 2017 for Landsat 7). On average, these
Landsat-derived Level-2B products achieved overall accura- 80

cies of 87.5 % for the Landsat 5 TM sensor, 95.5 % for the
Landsat 7 ETM+ sensor, and 95.5 % for the Landsat 8 OLI
sensor (Koehler et al., 2022a).

The DLR-Landsat dataset initially only covered the French
Alps with 2916 products from five Landsat tiles (acquisition 85

path/row combinations 195–196/28 and 194–196/29), each
covering an area of approximately 173 km× 183 km. It was
extended for this work with 3079 Landsat 5–9 images from
five Landsat tiles (acquisition path/row combinations 198–
200/30 and 197–198/31) covering the Pyrenees, reaching a 90

total of 5995 Landsat 2B products. The Pyrenees images
were selected and the 2B products generated following the
same methodology as Koehler et al. (2022a, b). Landsat 4
images were not included in the study as their number was
negligible in the area and period of study. 95

2.1.2 Theia

For the period 2014–2023, we used the Level-2B products
derived from Sentinel-2A, Sentinel-2B, and Landsat 8 that
are routinely distributed by Theia (Gascoin et al., 2019).
These products have been available over the study area since 100

https://www.theia-land.fr/product/SPOT-world-heritage-fr/
https://www.theia-land.fr/product/SPOT-world-heritage-fr/
https://www.theia-land.fr/product/SPOT-world-heritage-fr/
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Figure 1. The 84 in situ snow depth stations’ spatial distribution across the Pyrenees (left map) and the 192 stations across the French Alps
(right map), together with their distribution across the years (top histogram) and elevations (bottom histogram). The bars of the histograms
are stacked. The stations are from the Météo-France network, which is why only four stations are on the Spanish side.

2015 when the cloud fraction in the image is below 90 %.
Landsat 8 processing was discontinued in August 2021. Af-
ter that date, the only source of data is Sentinel-2. However,
this only degrades the revisit time from 4 to 5 d. The SCA
detection was evaluated in the French Alps and Pyrenees and5

had an accuracy of 94 % (Gascoin et al., 2019). A more com-
prehensive evaluation was conducted at a pan-European scale
and yielded comparable results (Barrou Dumont et al., 2021).

2.2 Auxiliary data

The elevation of the analysed pixels was sourced from the10

Copernicus 30 m resolution digital elevation model GLO-30
(ESA and Airbus, 2022). The forest cover was derived from
the Copernicus 20 m resolution tree cover density (TCD) for
2015 (EEA, 2018). The glacier areas were obtained from the
Randolph Glacier Inventory (RGI) version 6.0, which pro-15

vides the glacier outlines for 2010 (RGI Consortium, 2017).
The water mask was derived from the Copernicus EU-Hydro
river network database for 2006–2012 (EEA, 2020).

2.3 The in situ data

We used time series of snow depth at ground stations from20

the Météo-France network (Fig. 1). Each time series was
obtained by assimilating in situ snow depth observations
in a model run forced by the SAFRAN–SURFEX/ISBA–
Crocus–MEPRA (S2M) reanalysis (Vernay et al., 2022). The
assimilation method is direct insertion, which means that the25

reconstructed snow depth is equal to the observation when
available. This method was developed to fill gaps in snow
depth time series measurements due to sensor failures or the
absence of a human observer (in the case of manual mea-
surements). This dataset was previously used in the Pyre- 30

nees (López-Moreno et al., 2020). Station coordinates were
not recorded with a consistent precision (between 10−1 and
10−6°). Since the size of a 20 m pixel corresponds to the
10−4° order, only stations with a position precision of 10−4

and below were used. We excluded stations located in pixels 35

with a tree cover density greater than 50 %, as done for the
satellite data processing (Sect. 3.1). Some stations became
active later in the study period, and other stations ceased ac-
tivity earlier in the period, but, overall, the number of active
stations increased over the years. 40

3 Method

This section presents the method for generating 20 m resolu-
tion SMOD time series and their associated trends. SMODs
were determined by hydrological year (HY), starting on
1 September. For example, the period between 1 Septem- 45

ber 2000 and 31 August 2001 referred to HY 2000, or
2000/2001. The trends were computed from combinations
of SWHLX (HYs 1986–2014) and Theia (HYs 2015–2023)
(Fig. 2). Since the SWH and DLR-Landsat datasets were
generated from different approaches, we also evaluated their 50

agreement using products that were generated from images
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Figure 2. Satellite product distribution in the time series across the hydrological years. The dotted rectangles represent the dataset SWHLX
(pink), Theia (green), and Landsat 7 products from DLR-Landsat (black) added to Theia.

acquired on the same day (see Appendix C1). The same
thing was done between Sentinel-2 and Landsat 8 products
for the Theia dataset (see Appendix C2). Then, we concate-
nated the SWHLX and Theia datasets. For HYs 2015 and
2016, the DLR-Landsat products (Landsat 7) were added to5

the Theia dataset to compensate for the absence of Sentinel-
2B (launched in 2017).

3.1 Calculation of the snow melt-out day

We defined a SMOD as the last day of the longest un-
interrupted snow-covered period in the hydrological year10

(Monteiro and Morin, 2023). All SPOT and Landsat prod-
ucts were re-projected using a nearest-neighbour interpola-
tion and cropped to the same reference system as Sentinel-2
products, i.e. a 20 m resolution grid of 110 km by 110 km
in the Universal Transverse Mercator organized by tile and15

called the Military Grid Reference System. To obtain a daily
time series of snow and no-snow labels from the Level-2B
product time series, we used a nearest-neighbour interpola-
tion between snow (1) and no-snow (0) observations in the
time dimension (Fig. 3). For cases of odd numbers of days20

between a snow day and a no-snow day, the central day was
considered a no-snow day. This process also filled missing
data due to cloud cover or the failure of the scan line cor-
rector in Landsat 7 imagery. For the Theia dataset, we inter-
polated daily values near the beginning and end of each HY25

by using Level-2B Theia products found within a margin of
15 d outside the HY. We observed that this method was in-
sufficient with SWHLX in some areas with a short no-snow
season due to its shorter revisit time. Hence, we assumed that
persistent snow cover is negligible outside the glacier areas30

as defined by the RGI and assigned all non-glacier pixels the
no-snow label on the day before and the day after each HY
to improve the interpolation near the beginning and end of
the HY in the case of a long period without observations. For
cases where two Level-2B products from different sensors35

were available on the same day, the products were merged
into a single raster by giving priority to (i) clear-sky observa-
tions and (ii) the pixel value from the highest-resolution sen-

sor. For example, a SPOT snow pixel (20 m) had priority over
a Landsat no-snow pixel (30 m), but a Landsat no-snow pixel 40

had priority over a SPOT cloud pixel. Finally, we marked as
no-data days the SMOD pixels whose tree cover density was
greater than 50 % or which were located in the glacier mask
or water mask.

3.2 Evaluation of snow melt-out days 45

We evaluated the satellite-derived SMOD from SWHLX and
Theia with in situ SMODs (Sect. 2.3). To compute the in situ
SMOD from the reconstructed in situ snow depth time series
(Sect. 2.3), we used a snow depth threshold HS0 to separate
the daily snow depths into binary snow or no-snow labels. 50

That is, a snow label was assigned if the snow depth was
greater than or equal to HS0. We used a HS0 value of 1 cm as
it was already identified as the best threshold for Sentinel-2
snow products (Barrou Dumont et al., 2021). We tested the
sensitivity of the results to HS0 with increments of 1 cm and 55

found no significant differences for values below 5 cm (not
shown here). Then, we computed the SMOD for each hy-
drological year from the same definition, i.e. the last day of
the longest uninterrupted snow period. We excluded every
SMOD value which coincided with a missing value in the 60

original observed time series, since they were reconstructed
using the model at that time step. In this way, we only eval-
uated the satellite SMOD with observed values, but we still
took advantage of the entire reconstructed time series to iden-
tify the longest uninterrupted snow period. The agreement 65

between the in situ and satellite SMODs was evaluated using
the statistical distribution of the residuals for every hydrolog-
ical year at each station’s 1SMOD (Eq. 1):

1SMOD= SMODsatellite
year, station−SMODin situ

year, station. (1)

The SMOD accuracy is expected to increase with the num- 70

ber of clear-sky observations, as a higher number of clear-
sky observations reduces the importance of the interpolation
in the SMOD calculation. Therefore, we sought to estab-
lish a relationship between the number of annual clear-sky
observations (NOBS) and the SMOD errors. However, our 75
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Figure 3. The 25 d hydrological period of snow, no-snow, and no-data days representing how snow periods are interpolated. The longest
snow cover duration (SCD) starts with the snow onset day (SOD) on day 12 and ends with the snow melt-out day (SMOD) on day 21.

Table 1. Seasonal weights used to sample Theia products to emulate
SWHLX acquisitions over tile 31TCH.

Autumn Winter Spring Summer
Sep–Nov Dec–Feb Mar–May Jun–Aug

0.255 0.208 0.240 0.297

in situ dataset did not sample the full distribution of the to-
pography in the study region. Thus, we generated an addi-
tional reference dataset from the Theia products, taking ad-
vantage of the high revisit of combined Sentinel-2 and Land-
sat 8 acquisitions to produce a spatially distributed refer-5

ence SMOD dataset. We selected all Theia Level-2B prod-
ucts of tile 31TCH (Pyrenees) for HY 2017. We randomly
sampled a subset of these products, following the seasonal
probability of SPOT and Landsat acquisitions during the pe-
riod 1986–2014. This probability was obtained by normaliz-10

ing the seasonal distribution of SWHLX data from HY 1986
to HY 2015 (Table 1). From this undersampled time series
of Theia products, we re-computed the SMOD and NOBS.
The process was repeated by incrementally increasing the
sampling size from 10 images to the number of available15

Sentinel-2 images minus 1. At each increment, the random
sampling was repeated five times. This generated dataset
allowed us to study the relationship between the sampled
1SMOD and NOBS values. To characterize the SMOD er-
rors, we used the median absolute error (MAE), the root20

mean square error (RMSE), and the interquartile range (IQR)
(Appendix B).

We also evaluated the temporal stability of the SMOD er-
ror, because a time-dependent error could create spurious
trends (Bayle et al., 2024b). Hence, we analysed the temporal25

evolution of 1SMODs at two stations where SMOD values
are available over the entire study period while respecting
the minimum number of observations that we defined as a
threshold for computing trends (see Sect. 3.3).

3.3 Snow melt-out day trends 30

SMOD trends were computed using a Mann–Kendall (MK)
test of the combined time series of SWHLX and Theia. The
MK test is a method for detecting consistently increasing or
decreasing trends in temporal series (Kendall, 1948; Mann,
1945) and is often used in snow hydrology, including SMOD 35

trend analysis (Klein et al., 2016; Nedelcev and Jenicek,
2021; Wang et al., 2016; López-Moreno et al., 2020). We
used the Python implementation pymannkendall (Hussain
and Mahmud, 2019) to compute the MK test and the slope
of the trend using the Theil–Sen method (Sen, 1968). We 40

considered a trend to be statistically significant if its p value
was below 0.05. To evaluate the distribution of trends by el-
evation, we discretized the digital elevation model with the
same 300 m elevation bands as those of the SAFRAN system
(Durand et al., 1999). The analysis was stratified by a region 45

of approximately 1000 km2 and within each massif by to-
pographical class (Fig. 4). The regions called “massifs” are
relatively homogeneous with respect to their principal cli-
matological characteristics at a given elevation, slope, and
aspect (Durand et al., 1999). We restricted this analysis to 50

elevation bands at 1500 m± 150 m and above to focus on ar-
eas of seasonal snow cover. As a reference, in the Pyrenees,
there is snow on the ground at least 50 % of the time be-
tween December and April at elevations above 1600 m (Gas-
coin et al., 2015). For every triplet of year, massif, and eleva- 55

tion band, we calculated the median of all the corresponding
SMOD pixel values (no glaciers, TCD ≤ 50). We excluded
the triplets for which less than 1000 valid SMOD values
were available. For every combination of massif and eleva-
tion band, a trend was obtained by calculating the Sen slope 60

from the SMOD time series.
Trends were also calculated using the classes of topo-

graphical aspect and diurnal anisotropic heat (DAH). DAH
represents the distribution of the heating of the surface by the
Sun. It has been used to study snow spatial variability during 65

the ablation season (Cristea et al., 2017) and plant growth re-
sponses to changes in snow cover at above-treeline elevations
(Choler, 2023). It can be approximated by Eq. (2) (Böhner
and Antonić, 2009), where a is the aspect of the slope, β is
the slope angle, and αmax is the aspect with the maximum 70



Z. Barrou Dumont et al.: Snow melt-out trends in the French Alps and Pyrenees (1986–2023) 7

Figure 4. Pyrenees and French Alps divided into 23 massifs each. Massifs 35–46 are on the Spanish side of the Pyrenees (except for Andorra).

total heat surplus after a day–night cycle.

DAH= cos(αmax− a)× arctanβ (2)

We used αmax= 212° (a direction between south and
south-west) following Bayle et al. (2024a).

Since the accuracy of SMOD is expected to decrease when5

the number of observations is low, we only considered the
cases when NOBS was above a threshold. This minimum
NOBS threshold (NOBSmin) was applied in the SMOD pixel
selection process before calculating the SMOD medians.
However, a high NOBSmin threshold might prevent the cal-10

culation of SMOD medians for some combinations of massif
and elevation band, especially in the years 1986 and 1987,
when the available acquisitions were lower. Hence, we as-
sessed the sensitivity of SMOD medians and their availabil-
ity to NOBSmin.15

Another source of uncertainty is the interannual variabil-
ity, which can create spurious trends if the period of trend
calculation is too short with respect to the natural variabil-
ity. To test the robustness of our SMOD trends to the study
period, we computed a trend matrix of every possible time20

period of 20 HYs or more between 1986 and 2022 for ev-
ery combination of massif and elevation band. The trend of
a period was only calculated if the SMOD median values of
the first and last HYs of the period were available and if at
least 95 % of the period’s years were available (19 years for25

a period of 20 years, 35 years for a period of 37 years).

4 Results

The first part of this section presents an evaluation of SMODs
obtained from both SWHLX and Theia against in situ data,
together with a study of their uncertainties. The second part 30

answers the second question of this work and leverages the
high spatial resolution of the data to establish SMOD trends
for HY 1986 to HY 2022 stratified with respect to the massifs
delimited by Météo-France and the topographical classes.

4.1 Evaluation of snow melt-out days 35

Our in situ data spanned HYs 1986 to 2018. With HS0= 1
and for the Theia dataset, we found an MAE of 8 d, an RMSE
of 23 d, and a median 1SMOD of −1 d (Fig. 5). Combining
Theia and SWHLX gave an MAE of 11 d, an RMSE of 28 d,
and a median 1SMOD of 0 d. Both SWHLX and Theia per- 40

formed better at higher SMODs, corresponding to June and
July (i.e. above 275 d).

Both in situ and satellite-based SMODs tended towards
200 (19–20 March) at lower elevations (1200 ± 150 m) and
up to 280 (7–8 June) at 2400 ± 150 m (Fig. 6). We observed 45

no significant bias towards an overestimation or underesti-
mation with satellite-based SMODs in the Alps, but we ob-
served an overestimation in the Pyrenees for every available
elevation band except for 2400 m. This calls for caution when
interpreting trends in the Pyrenees. The better performance 50

in the Alps contributed to the overall results due to the lower
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Figure 5. Scatterplots between satellite-based SMODs and station SMODs at HS0= 1 for the combination of Theia and SWHLX between
HYs 1986 and 2018.

number of in situ data in the Pyrenees and their lower ele-
vation. From both stations which provide a SMOD reference
value over the full study period, we did not find a clear trend
in the evolution of the bias over time (Fig. D1).

The synthetic dataset derived from the Theia products5

allowed us to sample a larger number (> 10 000) of data
(Fig. 7). We found an error variance that was significantly
higher than 0 for NOBS ≤ 26 and a bias for NOBS ≤ 11
which starts increasing for NOBS ≤ 7. Excluding outliers,
1SMOD was below 30 d for NOBS ≥ 19. We observed a10

negative correlation between NOBS and the different error
metrics for NOBS ≤ 26 (Fig. 7). Beyond NOBS= 26, the er-
ror metrics were less sensitive to the NOBS value.

4.2 Snow melt-out day trends

Based on the previous analysis, we selected NOBSmin= 1015

as the threshold before aggregating SMOD values by re-
gion and computing the SMOD trends. We found that higher
NOBS values led to a significant reduction in the available
combinations of HY, massif, and elevation bands from which
a SMOD median could be calculated (Fig. D2 in the Ap-20

pendix). Despite the large error that can be obtained with
NOBS= 10 at the pixel level, the median values by massif
and elevation band were similar to the ones that can be ob-
tained with a higher NOBSmin (Fig. D3 in the Appendix).
For these reasons, NOBSmin= 10 was chosen to report the25

results below, but we repeated the analysis with higher val-
ues and found similar results, albeit with more gaps.

For HYs 1986 to 2022, all statistically significant trends
were negative. In the French Alps, non-significant trends

were either negative or less than ± 1 d per decade (Fig. 8). 30

Significant negative trends were mostly seen in the northern
massifs at 1500 m, in the central east at 1800 m, and in the
central south at 2100 m. The trends generally became weaker
at 2400 m and stronger again at 2700 m and above. At 2400 m
and above, the Mont Blanc massif had a consistently sig- 35

nificant decreasing trend which reached −14 d per decade at
3000 m.

In the Pyrenees, all statistically significant trends were
also negative and mostly found in the eastern half (Fig. 9).
The Pre-Pireneu and Cadi Moixero massifs were not rep- 40

resented because they were not sufficiently covered by the
Sentinel-2 tiles. Negative trends were less pronounced than
in the Alps, and non-significant positive trends were also ob-
served below the 2100 m elevation band. Most of the data at
1500 m were missing on the Spanish side due to the lack of 45

SPOT 1C images further inside Spanish territory. Stratifica-
tion of the analysis with respect to aspect and DAH revealed
significant trends (see Figs. S1–S4 in the Supplement), es-
pecially on south- and west-facing slopes in massifs such as
Haut-Var, Haut-Verdon, and Aspe Ossau. However, we did 50

not find a clear influence of aspect or DAH on the distribu-
tion of the SMOD trends. There were too few valid SMOD
trends on north- and east-facing slopes to report values for
these classes.

We found that the trends were sensitive to the period of 55

computation (start and end years), but the impact was more
evident in the Pyrenees. Here we show Mont Blanc in the
French Alps (Fig. 10) and the Aran massif in the Pyre-
nees (Fig. 11). In the Mont Blanc massif, the trends can be-
come positive (non-significant) for periods starting between 60
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Figure 6. Normalized histogram of the in situ SMOD, satellite (SWHLX+Theia) SMOD, and residuals (1SMOD) stratified by elevation
bands in the Pyrenees (a, d, g) and Alps (b, e, h). The right column (c, f, i) compares both mountain ranges.

1992 and 1999 and ending between 2011 and 2018. In the
Aran massif, at 1500 and 1800 m, we find positive (signifi-
cant) trends for periods ending before 2020. Above 1800 m,
and similarly to the Alps, we found an interval of (non-
significant) positive trends with starting years near 1995.5

5 Discussion

5.1 Snow melt-out day errors

The satellite SMOD was in relatively good agreement with
the in situ SMOD, with half of the 1SMOD below 11 d.
We found an overestimation of the SMOD that was simi- 10

lar to previous works using MODIS data. Dietz et al. (2012)
observed SMOD overestimations that were larger than un-
derestimations from daily MODIS time series over Europe,
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Figure 7. (a) 1SMOD distribution per NOBS from the synthetic dataset derived from Sentinel-2 over the 31TCH tile for HY 2017.
(b) 1SMOD MAE, IQR, and RMSE per NOBS from the synthetic dataset derived from Sentinel-2 over the 31TCH tile for HY 2017.

Figure 8. French Alps massif-wise SMOD trends for HYs 1986
to 2022. SMOD values were aggregated from ≥ 1000 pixels with
NOBSmin ≥ 10. Areas are grey when less than 35 years of SMOD
data were available due to us not having enough pixels or due to
non-existent elevation bands. Dots identify statistically significant
trends (p value< 0.05).

and the same was observed over the Tian Shan (Wang and
Xie, 2009). Notarnicola (2020) also reported positive biases
at low and middle latitudes (including the Alps and Pyrenees)
while showing negative biases at high latitudes, similarly to
Lindsay et al. (2015), who found negative biases over Alaska.5

The main hypotheses mentioned to explain the biases were
the uncertainties caused by cloud pixels delaying the obser-
vation of snow or no-snow days and the impact of MODIS

Figure 9. Pyrenees massif-wise SMOD trends for HYs 1986 to
2022. SMOD values were aggregated from ≥ 1000 pixels with
NOBSmin ≥ 10. Areas are grey when less than 35 years of SMOD
data were available due to us not having enough pixels or due to
non-existent elevation bands. Dots identify statistically significant
trends (p value< 0.05).

medium-resolution pixels covering heterogenous mountain
topography and snow–no-snow transition areas as well as 10

forested and urban areas close to the ground stations used
for validation. Positive biases were also found over European
mountains using lower resolutions (Metsämäki et al., 2018).
Their histogram of 1SMOD values between 0.1° resolution
optical images and 25 km microwave images was distributed 15

similarly (a mode at zero and positive values reaching up to
100 d) to the one shown above with a similar RMSE.
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Figure 10. Mont Blanc massif (French Alps). Results of the Mann–
Kendall test over the trend of the SMOD median of each eleva-
tion band (± 150) are filtered for NOBSmin ≥ 10 and applied to
all possible combinations of start and end dates involving at least
20 years for HYs 1986 to 2022. Colors indicate the SMOD trend
in days per decade, and dots indicate statistically significant trends
(p value< 0.05).

The French Alps showed no negative or positive bias. In
contrast, the French Pyrenees showed positive biases at ele-
vation bands from 1500 to 2100 m and a smaller negative bias
at 2400 m. Results are more uncertain on the Spanish side of
the Pyrenees, where only four stations were available. While5

the in situ data in the 2400 m elevation band were limited
and should be treated with caution, the Alps and Pyrenees
data indicate that the SMOD error is reduced at higher ele-
vations. To determine whether the changes in bias with el-
evation could be partially explained by variations in TCD,10

we calculated the correlation between TCD and elevation for
all pixels with elevations greater than 1200 m and TCD val-
ues between 1 and 50. We found no correlation (−0.01) be-
tween the two. Our hypothesis for the lower performances
over the Pyrenees compared to the Alps is that the mountain15

range suffers from both a reduced number of high-elevation
stations and a smaller proportion of NOBS above or equal

Figure 11. Aran massif (Pyrenees). Results of the Mann–Kendall
test over the trend of the SMOD median of each elevation band
(± 150) are filtered for NOBSmin ≥ 10 and applied to all possi-
ble combinations of start and end dates involving at least 20 years
for HYs 1986 to 2022. Colors indicate the SMOD trend in
days per decade, and dots indicate statistically significant trends
(p value< 0.05).

to 25. The proportions of NOBS ≥ 25 are 77.4 % for 1201
values over the Alps and 61 % for 308 values over the Pyre-
nees (Fig. 12). 20

We note that the errors discussed above were obtained
at the pixel level. Hence, they represent an upper bound of
the error on the SMOD values that were eventually used for
the trend analysis, since we performed a spatial aggregation
of at least 1000 pixel values before computing the trends 25

(Sect. 3.3).
SWH enables us to partly overcome the lack of cloud-free

observations when using Landsat data only, especially in ar-
eas where Landsat revisit times are long (Barrou Dumont
et al., 2023). SMOD images can also be computed at 20 m 30

instead of 30 m, and the enhanced spatial–temporal resolu-
tion of a combined SWH–Landsat dataset results in a SMOD
image with more spatial details than a SMOD image from
Landsat only (Fig. 13). However, it should be noted that this
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Figure 12. Distribution of NOBS values between the stations of the
Alps and the stations of the Pyrenees.

benefit is spatially variable due to the on-demand acquisi-
tion mode of SPOT satellites. In the Pyrenees, for example,
we observed that SWH acquisitions were more frequent over
French territory.

5.2 Snow melt-out day trends5

A low number of statistically significant trends, together with
the presence of positive trends at elevation bands of 1500
and 2100 m for shorter uninterrupted periods, was also ob-
served in the Pyrenees by López-Moreno et al. (2020) be-
tween 1986 and 2018. They specifically found an increase in10

the snow duration at the Aspe Ossau massif and increases
in the snow depths at Navarra at 1500 m and Luchonnais
at 2100 m. These observations coincide for Aspe Ossau and
Navarra, with satellite-based positive SMOD trends calcu-
lated for periods of 20 years or more over the same areas15

(see Fig. D4 in the Appendix). They do not coincide with
the satellite-based neutral and negative trends calculated at
Luchonnais at 2100 m.

Notarnicola (2022) found, for the 1982–2020 period over
the Pyrenees, a small (< 5 %) non-significant increase in the20

SCA between December and May that is consistent with the
positive trends of SMOD seen at low elevations. The over-
all absence of significant trends over the Pyrenees for the
1986–2023 period can be explained by the influence of the
Mediterranean climate on the southern and eastern Pyrenees,25

which is characterized by high interannual variability. De-
spite a well-identified warming trend (OPCC-CTP, 2018),
natural climate variability and in particular winter precipi-
tation variability can mask the effect of warming on snow
cover duration. In particular, the variability in snowfall is30

partly controlled by the North Atlantic Oscillation at decadal
timescales (Lemus-Canovas et al., 2024).

We found mostly negative SMOD trends in the French
Alps, ranging between −3 and −10 d per decade, in agree-
ment with previous studies in the European Alps over similar35

time periods using in situ data (Klein et al., 2016; Matiu et al.,

2021), reanalyses (Monteiro and Morin, 2023), or satellite
observations (Notarnicola, 2022).

We found significant trends at high elevations, unlike pre-
vious works using coarser-resolution remote sensing data 40

(Hüsler et al., 2014), which highlights the value of high-
resolution remote sensing in this scope. In particular, trends
are significant and strongly negative for elevations above
2100 m in the Mont Blanc massif, which is consistent with
previous work (CREA, 2024). Negative trends are stronger 45

in the northern Alps at 1500 m and in the southern Alps at
2100 m. This was also observed by Durand et al. (2009) for
the 1958–2005 period. This spatial gradient is consistent with
the Alps’ climate, as seasonal snow is found at higher eleva-
tions in the southern Alps. Our dataset also shows that trends 50

in the Mont Blanc massif were positive (non-significant) for
periods starting between 1992 and 1999 and ending between
2011 and 2018 and negative for periods starting in 2000 and
after. This illustrates the importance of using remote sensing
time series spanning multiple decades to draw robust conclu- 55

sions regarding snow cover trends in European mountains.
However, our dataset still remains too small to characterize
some multi-decadal climatic variations. In particular, in the
Alps, Durand et al. (2009) and Marty (2008) hypothesized
the presence of a break year in the mid-1980s marking an 60

abrupt transition between two periods, with the first having
significantly higher snow cover duration and snow depth than
the second. A similar conclusion was drawn from recent re-
analyses (Monteiro and Morin, 2023; Beaumet et al., 2021).
Our study period started either in or after this break year and 65

thus does not capture this transition.

6 Conclusions

The objective of this work was to analyse SMOD trends in
the French Alps and Pyrenees as well as their spatial variabil-
ity. We combined different collections of SPOT, Landsat, and 70

Sentinel-2 products to create an unprecedented time series of
high-resolution snow cover products. We used this dataset to
compute 20 m resolution SMOD images for 37 hydrologi-
cal years from September 1986 to August 2023. Despite nu-
merous challenges in terms of image processing, temporal 75

gap filling, and data fusion, the estimated SMODs were in
agreement with SMOD data obtained from the in situ snow
depth time series. This allowed us to estimate SMOD trends
from HYs 1986 to 2022 for different regions by topographi-
cal class (elevation, aspect, and DAH). 80

We found a general reduction in the SMOD, reveal-
ing a widespread trend towards an earlier disappear-
ance of the snow cover, with an average reduction of
TS25.51 d per decade over the French Alps and a standard de-
viation of 4.85 d per decade. Over the Pyrenees, we found an 85

average reduction of 4.04 d per decade with a standard de-
viation of 4.45 d per decade. The results were less homoge-
neous in the Pyrenees, where we also found a few positive
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Figure 13. Alpe d’Huez, hydrological year 1997: comparison between the 20 m resolution SMOD maps from DLR-Landsat (b) and
SWHLX (c).

trends at 1500 m, but these trends were not robust to chang-
ing periods. Overall, the results were consistent with previ-
ous studies over these mountain ranges. However, the studied
period might not be long enough to detect trends in areas
of short-lived snow cover (“marginal snowpacks”, López-5

Moreno et al., 2024) and areas under the influence of the
Mediterranean climate. Other points of interest are the fol-
lowing:

– In the French Alps, there is a transition of the sta-
tistically significant negative trends from the north at10

1500 m to the south at 2100 m. This may reflect the cli-
matic gradient like the increasing elevation of the 0°
isotherm.

– There is a strong correlation between the pixel-wise
SMOD uncertainties and the NOBS when the latter is15

under 26, and a linear function of NOBS could be used
to model the SMOD error and generate a pixel-wise
quality mask accompanying the SMOD products for
more local applications.

– The 20 m resolution pixels give enough data points to20

build SMOD medians robust to the uncertainties from
the lower NOBS and to build significant trends from
deeper levels of stratification (massif, elevation, aspect,
and DAH).

Other snow phenology variables like the snow onset day 25

or the snow cover duration could also be estimated using the
same dataset. However, the snow onset day is probably sub-
ject to higher uncertainty due to the presence of clouds when
the snow season begins. Ultimately, the snow cover products
(Level 2B) could be used to evaluate and/or constrain clima- 30

tological reanalyses of the snow cover through data assimi-
lation in combination with in situ data and existing meteoro-
logical models. For that purpose, the error observation could
be estimated from our results as a function of the number of
available observations. Finally, the same satellite data could 35

be used to study vegetation trends with the near-infrared band
of the images.

Appendix A: Snow and cloud classification in historical
SPOT images

Barrou Dumont et al. (2024) developed an emulator of SPOT 40

images from Sentinel-2 Level-1C images to train a statisti-
cal model of snow and cloud classification in SPOT images.
Indeed, the emulation approach allowed pairing of a pseudo-
SPOT image with a Sentinel-2 Level-2B product that pro-
vides the labels (snow, no snow, and cloud) required for the 45

training. The trained model was a U-Net convolutional neural
network (Ronneberger et al., 2015), which yielded high pre-
cision in detecting snow and minimal false snow pixel iden-
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tification. However, haze and highly transparent and semi-
transparent clouds could be detected in Sentinel-2 images
thanks to their higher number of spectral bands and their
radiometric quality. These clouds were almost invisible in
pseudo-SPOT images, creating “false” clouds in the train-5

ing dataset and causing an overestimation of cloud pixels by
U-Net.

To solve this issue, we filtered the cloud pixels from the
training data according to how they were detected. The cloud
mask in the Level-2B products was generated with the MAJA10

software, which provides information on the way in which
a cloud pixel was detected (Hagolle et al., 2017). In par-
ticular, one way of detecting clouds was a combination of
pixel-wise mono-temporal reflectance thresholds in the blue,
red, NIR, and SWIR bands. Cloud pixels detected with the15

mono-temporal threshold were certain to also be visible in
the SPOT 1–5 instruments. Keeping only these cloud pixels
reduced the number of misleading labels.

Cloud shadow pixels were also removed from the train-
ing to capitalize on the observation of Barrou Dumont et al.20

(2024) that U-Net was able to detect snow in less illuminated
areas.

We also changed the number of times the training dataset
was run through the neural network (number of epochs). In
Barrou Dumont et al. (2024), this starts with short parallel25

preliminary training for 40 epochs to look for the best weight
initialization where U-Net can converge to a state of mini-
mum loss, and it continues with more intensive training for
200 epochs. One solution to ensure that U-Net converges to
the state of minimum loss afforded by its architecture and the30

training data is to remove the limit on the number of epochs
and to stop each training step when U-Net stops improving
for a given number of epochs (40 for preliminary training,
200 for intensive training).

One U-Net model was trained for each of the five SPOT35

instruments and by mountain range (French Alps and Pyre-
nees), i.e. a total of 10 models. The SWIR band in SPOT 4
HRVIR and SPOT 5 HRG was emulated and included as an
additional input in the training of the SPOT 4 and SPOT 5
models. For the Pyrenees, Sentinel-2 training images were40

selected randomly using the same methodology as Bar-
rou Dumont et al. (2024). For the French Alps, the Sentinel-2
tiles are 31TGM, 31TGL, 31TGK, 31TGJ, 32TLS, 32TLR,
32TLQ, and 32TLP, and only complete images (data on the
image edges) were selected (the complete images correspond45

to a relative orbit number of 108 for the French Alps). This
represented totals of 46 images over the Pyrenees and 92 im-
ages over the French Alps. Inference was then applied to each
model to extract snow and cloud cover maps from the entire
SPOT dataset. Because the inference of a pixel depends on50

the value of the surrounding pixels, we masked pixels too
close (2000 m) to the border of the image or too close to no-
data areas of the image to ensure equal performance of the
neural network across the data.

Appendix B: Statistical metrics 55

The confusion matrix aggregates the different combinations
of predicted and observed (e.g. ground truth) values. When
the prediction is a binary choice (snow or snow-free), the
correct prediction of the value of interest (snow) is called a
true positive (TP) and its incorrect prediction is called a false 60

positive (FP). The correct prediction of the alternative value
(snow-free) is called a true negative (TN), and its incorrect
prediction is called a false negative (FN) (Table B1). These
metrics can then be used to calculate the precision (which is
the fraction of correct predictions of snow), the recall (which 65

is the fraction of observed snow which has been retrieved),
and the F1 score (which is the harmonic mean of the preci-
sion and the recall) (Eq. B1). The F1 score is particularly well
adapted to evaluating a classifier over an unbalanced dataset,
which is to be expected when using satellite images of moun- 70

tain ranges.

Table B1. Confusion matrix between predictions and observations
of the snow and no-snow classes.

2× 2 confusion matrix

Prediction/observation Snow No-snow

Snow TP FP
No-snow FN TN

Precisionsnow =
TP

TP+FP

Recallsnow =
TP

TP+FN

F1snow =
2×Precisionsnow×Recallsnow

Precisionsnow+Recallsnow
(B1)

Common metrics for the evaluation of continual outputs
like the SMOD include the RMSE, which is the quadratic
mean of the difference between predicted and observed val- 75

ues. Because the errors are squared, the RMSE is sensitive to
outliers, as even a few large errors can raise its value signifi-
cantly. The MAE is the median of the differences where the
sign of the difference is ignored to avoid cancellations be-
tween positive and negative errors. In contrast to the RMSE, 80

the MAE is not affected by outliers. The IQR is the differ-
ence between the 75th and 25th percentiles of a dataset. The
RMSE is expressed as

RMSE(y, ŷ)=

√∑N−1
i=0 (yi − ŷi)

2

N
, (B2)

with i the value number, N the number of values, y the pre- 85

dicted value, and ŷ the observed value.



Z. Barrou Dumont et al.: Snow melt-out trends in the French Alps and Pyrenees (1986–2023) 15

Appendix C: Agreements between satellite products

C1 Evaluation of SWH and DLR-Landsat agreement

To assess the differences and similarities between the SWH
and DLR-Landsat datasets, pairs of overlapping SPOT and
Landsat Level-2B products were assembled from same-day5

acquisitions and were re-projected to 30 m resolution (us-
ing nearest-neighbour resampling). A comparison of the two
datasets was first made qualitatively with a visual compari-
son of the Level-2B products between the SPOT instruments
HRV, HRVIR, and HGR and the Landsat instruments TM,10

ETM+, and OLI in both cloudy and cloud-free contexts. A
quantitative assessment was also conducted by computing a
contingency matrix of the labels, excluding pixels under the
water and glacier masks and with TCD> 50 %. The compar-
ison was restricted to the snow and no-snow labels, excluding15

cloud pixels, because cloud cover can change in the time in-
terval between two same-day acquisitions. Landsat Level-2B
products have a shadowed area and water body label, which
was merged with the cloud label as no-data values. From the
contingency matrix between SWH and DLR-Landsat data,20

we derived the F1, recall, and precision scores of SWH (see
Appendix B). The use of these metrics typically implies that
a predicted dataset is compared to a reference dataset, but, in
this case, they served to study the similarities between both
datasets.

Table C1. Distribution of snow and cloud labels among the SWH and DLR-Landsat pairs.

Mountain range French Alps Pyrenees

No. of pixels/no. of pairs 3.3× 108/726 4.3× 108/614

Dataset SWH DLR-Landsat SWH DLR-Landsat
Percentage of snow labels 13 10.9 8.8 7.3
Percentage of cloud labels 28 31.9 26.7 27.2

25

We assembled 1340 pairs of Landsat (DLR-Landsat) and
SPOT (SWH) products acquired on the same day. There
were more snow pixels and fewer cloud pixels from SWH
than from DLR-Landsat (Table C1), and the differences were
larger in the Alps than in the Pyrenees. When cross-masking 30

cloud labels from both datasets, both products had high
agreement with each other, with a snow recall of 0.99 and
a snow precision of 0.98 for an F1 score of 0.98. Visual com-
parisons can be found in the Appendix (Figs. C1–C3). They
illustrate the overall good agreement between both datasets 35

despite the different methods to generate them as well as
the differences in the classifications. Border areas between
the snow-covered and no-snow regions contained ambigu-
ous pixels that were harder to classify correctly (Fig. C1).
The DLR-Landsat method hid these pixels under a cloud 40

label, avoiding the risk of generating false snow positives.
Inversely, SWH 2B products classified those pixels as ei-
ther snow or no-snow. Other noticeable differences between
DLR-Landsat and SWH were that SWH overestimated the
sizes of existing clouds (Fig. C2) and that shadowed snow 45

areas were misclassified as clouds with the DLR-Landsat ap-
proach (Fig. C3).
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C2 Evaluation of Sentinel-2 and Landsat 8 agreement
in the Theia dataset

The same quantitative evaluation of Appendix C1 was ap-
plied over eight pairs of snow products from Landsat 8 (L8)
and Sentinel-2 (S2). These image pairs were acquired on5

the same day between November 2017 and June 2018, cov-
ering areas in the Alps and Pyrenees. From a dataset of
7.7× 107 pixels, 34 % and 31 % were classified as snow
by S2 and L8, respectively; 96 % of the L8 snow pixels were
detected with S2, and 89 % of the S2 snow pixels were de-10

tected with L8, for an F1 score of 0.92 between the two prod-
ucts.

Figure C1. The Pyrenees on 25 May 1987: 30 km× 30 km scene with (a) the Landsat 5 TM image (green, red, and SWIR), (b) the DLR-
Landsat 2B product, (c) the SPOT 1 HRV image (green, red, and NIR), and (d) the SWH 2B product.
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Figure C2. The Alps on 13 October 2005: 12 km× 12 km scene with (a) the Landsat 7 ETM+ image (green, red, and SWIR), (b) the
DLR-Landsat 2B product, (c) the SPOT 4 HRVIR image (green, red, and SWIR), and (d) the SWH 2B product.

Figure C3. The Alps on 3 December 2013: 12 km× 12 km scene with (a) the Landsat 8 OLI image (green, red, and SWIR), (b) the DLR-
Landsat 2B product, (c) the SPOT 5 HRG image (green, red, and SWIR), and (d) the SWH 2B product.
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Appendix D: Additional figures

Figure D1. Yearly NOBS (a) and 1SMOD (b) values from the two stations which only recorded observed snowmelt dates (not gap-filled)
for the entirety of the study period.

Figure D2. Number of available SMOD medians from every combination of massif and elevation band as a function of NOBSmin for all
HYs before 1995. A loss of data was observed for NOBSmin thresholds above 10, with a stronger effect before 1989. For later periods, a
NOBSmin of 26 still allows us to maintain most of the available combinations of massif and elevation band. For 1986, a NOBSmin of 26
reduces the available combinations of massif and elevation band to 28.
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Figure D3. Yearly average of the SMOD medians from each combination of massif and elevation band, with a confidence interval of 95 %,
for NOBSmin values of 10, 18, and 26. The distribution is robust to NOBSmin, except for earlier years at a NOBSmin value of 26, due to the
significant reduction in the available combinations.

Figure D4. Massifs Aspe Ossau (1500 m), Navarra (1500 m), and Luchonnais (2100 m). Results of the Mann–Kendall test over the trend of
the SMOD median are filtered for NOBSmin ≥ 10 and applied to all possible combinations of start and end dates involving at least 20 years
for HYs 1986 to 2022. Colors indicate the SMOD trend in days per decade, and dots indicate statistically significant trends (p value< 0.05).
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Code availability. The Level-3B processor which computes the
SMOD from satellite image time series is available from the let-
it-snow repository at https://zenodo.org/records/1414452 (Simon et
al., 2018).

Data availability. The SMOD images produced for this study are5

available at https://doi.org/10.5281/zenodo.15063934 (Barrou Du-
mont and Gascoin, 2024). The SMOD time series are updated ev-
ery year using Sentinel-2 products and are distributed as Level-3B
products of the Theia snow collection (Gascoin et al., 2019).

Supplement. The supplement related to this article is available on-10
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