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Abstract. Phytoplankton account for around half of planetary primary production and are instrumental in regulating ocean

biogeochemical cycles. Around 70% of our ocean is characterised by either seasonal or permanent stratification. In such re-

gions, it has been postulated that two distinct planktonic ecosystems exist, one that occupies the nutrient-limited surface mixed

layer, and the other that resides below the mixed-layer in a low-light, nutrient-rich environment. Owing to challenges observing

the planktonic ecosystem below the mixed layer, less is known about it. Consequently, it is rarely characterised explicitly in5

marine ecosystem models. Here, we develop a simple, two-layered box model comprising of an ecosystem (Nutrient, Phyto-

plankton and Zooplankton, NPZ) in the surface mixed layer and a separate one (NPZ) in a subsurface layer below it. The two

ecosystems are linked only by dynamic advection of nutrients between layers and controls on light attenuation. The model

is forced with surface light (modelled from top-of-atmosphere) and observations of mixed layer depth. We run our model at

the Bermuda Atlantic Time-series Study site (BATS) and compare results with a 30+ year time-series of phytoplankton and10

nutrient observations. When compared with observations, the model simulates contrasting seasonal and interannual variability

in phytoplankton in the two layers, reproducing trends post 2011 caused by ocean warming and explaining the drivers. Results

lend support to the hypothesis that the euphotic zone of stratified systems can be described using two vertically separated plank-

tonic ecosystems. Nevertheless, simulating the ecosystem in the subsurface layer was more challenging than the ecosystem in

the surface mixed-layer, suggesting more work is needed to study controls on subsurface planktonic communities.15

1 Introduction

Phytoplankton are photosynthetic single-celled microorganisms, that form the base of the oceanic food web. Their contribution

to Earth’s primary production is similar to terrestrial plants, accounting for approximately half of it (Longhurst et al., 1995;

Field et al., 1998). These tiny organisms play a crucial role in regulating the global carbon, nitrogen and phosphorus cycles,

making them vital for Earth’s climate regulation (Falkowski et al., 1998; Falkowski, 2012). Over the past century, a warming20

climate has been reported (Allen et al., 2018), and direct (e.g. change in carbon-to-chlorophyll ratio; C:Chl ratio) and indirect

(e.g. changes in stratification) impacts on phytoplankton dynamics have been identified as a consequence (e.g., Winder and

Sommer, 2012; Behrenfeld et al., 2016).
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Around 70 % of the ocean is characterised by either seasonal or permanent stratification, with this percentage thought to

be increasing with climate change (e.g., Polovina et al., 2008; Gruber, 2011; Leonelli et al., 2022). Our understanding of25

phytoplankton dynamics is primarily based on satellite observations of chlorophyll-a. However, stratified oceans often feature

a relatively shallow nutrient depleted mixed layer with a deep chlorophyll maximum (DCM) below it, at depths of 80–120

m where nutrient concentrations are higher (Cullen, 1982; Fasham et al., 1985), which is hidden from the satellites (Cullen,

2015; Cornec et al., 2021; Stoer and Fennel, 2024). The community of phytoplankton at the DCM is thought to contribute

significantly to biogeochemical cycling in stratified waters, but remains understudied (Dai et al., 2023; Viljoen et al., 2024;30

Stoer and Fennel, 2024). Considering the potential expansion of stratified waters with climate change (Li et al., 2020), it is

important we learn more about phytoplankton dynamics below the mixed layer.

In a stratified ocean, the euphotic zone can be divided theoretically into two layers (Dugdale, 1967). The upper zone extends

from the surface to the bottom of the mixed layer, and is characterized by high light but depleted nutrients. The lower zone

between the bottom of mixed layer and the euphotic zone is low in light but replete in nutrients (Eppley et al., 1973; Small et al.,35

1987). To understand the vertical distribution of phytoplankton in stratified waters from observations collected at sea, empirical

methods have been employed to partition profiles of total phytoplankton biomass into vertically separated layers. For example,

Lange et al. (2018) show that high-light adapted and low-light adapted Prochlorococcus dominate the surface and subsurface

layers respectively in the tropical Atlantic. Brewin et al. (2022) developed an algorithm to partition phytoplankton vertically

into two communities within the upper ocean of the northern Red Sea. Recently, Viljoen et al. (2024) used this algorithm to par-40

tition phytoplankton into two vertically separated communities within the Sargasso Sea (at the Bermuda Atlantic Time-series

Study site (BATS)). They found that two communities exhibit distinct and contrasting responses to climate variability over

multidecadal timescales. From 2011 to 2022, chlorophyll in the surface mixed layer showed a decreasing trend while chloro-

phyll below the mixed layer and above the euphotic zone displayed an increasing trend (Viljoen et al., 2024). Understanding

the mechanisms controlling the different trends in these two vertically separated phytoplankton communities may help improve45

predictions of future changes to the base of the marine ecosystem in stratified waters. Exploring these mechanisms requires the

development of a suitable ecosystem model.

A wide range of ecosystem models are available to the biological oceanographic community, ranging from simple single

Nutrient-Phytoplankton-Zooplankton (NPZ) models to complex models with multiple nutrient, detrital and plankton state

variables. Although simple, NPZ models have proven remarkably useful for both theoretical investigation of marine ecosystems50

and for interpretation of observations (see Franks, 2002). A NPZ box model with physical forcing (mixed layer forcing)

developed by Evans and Parslow (1985) has provided useful insights into phytoplankton annual cycles within the mixed layer

(see Miller and Wheeler, 2012). Building on this early work, the first nitrogen-based NPZD model (where the D refers to a

detrital state variable) was developed by Fasham et al. (1990), who also proposed the most widely-used set of parameters for

NPZ modelling. This model was later validated at BATS (Fasham, 1993), providing a foundation for further NPZD model55

development. Efforts have been devoted to further NPZD model development to address various scientific questions at BATS.

For instance, Hurtt and Armstrong (1996, 1999) developed a model based on Fasham et al. (1990) to improve the simulation

of chlorophyll concentrations and primary production dynamics, through comparisons with observations. Doney et al. (1996)
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developed a 1D, physically coupled NPZD model, following the rationale of Fasham et al. (1990), to investigate the seasonal

interaction between physics and biology in the upper ocean at BATS. Spitz et al. (1998) assimilated observations from BATS60

to refine poorly known parameters in the NPZD model of Fasham et al. (1990). Similarly, Schartau and Oschlies (2003)

assimilated observations to derive a set of parameters that enhance the NPZD model performance in different locations in the

North Atlantic Ocean, including at BATS. The NPZD model of Fasham et al. (1990) has also been coupled with a 3-D physical

modelling framework (Sarmiento et al., 1993), to simulate ecosystems at a global scale (e.g. Oschlies and Garçon, 1999; Fennel

et al., 2006; Gruber et al., 2006; Druon et al., 2010).65

In this paper, we build on the early work of Dugdale (1967) and the NPZ box model of Evans and Parslow (1985), to

construct a simple two-layered vertically structured NPZ model that partitions the euphotic zone of stratified waters into a

surface high-light nutrient-depleted layer, and a subsurface low-light nutrient-replete layer, using the mixed layer depth and

base of the euphotic zone as our boundaries. Our model is built on the assumption that these two layers host two different

ecosystems (Dai et al., 2023), and are linked by dynamic advection of nutrients between layers and the attenuation of light.70

We use data collected at the Bermuda Atlantic Time-series Study site (BATS, a seasonally stratified ocean) to evaluate the

construction of our model, and to test whether it can capture seasonal and multi-decadal variability in phytoplankton dynamics

within and below the mixed layer, and perhaps explain the opposite trends in these two vertically separated layers over the

2011 to 2022 period observed by Viljoen et al. (2024). A key novelty of our model is the implementation of a different set

of parameters for each layer, setting it apart from existing ecosystem models. A detailed description of the model functions,75

parameters, and datasets used is provided in Section 2. The findings from sensitivity tests, model outputs, comparisons with

observations and the mechanism of different trends post 2011 in two communities are presented in Section 3. Finally, Section

4 offers a concluding discussion of our findings.

2 Method

2.1 Model description80

We present a two-layered NPZ model, building on the single-layer model of Evans and Parslow (1985). Figure 1 shows a

schematic outline of our model, displaying the interaction of different nutrients, phytoplankton and zooplankton pools. The

surface layer extends from the sea surface down to the mixed layer depth (zm), while the subsurface layer spans from the

bottom of zm to the euphotic depth (zeu) representing the depth limit of the euphotic zone (EU). In this model, zeu is defined

as the depth at which 0.001 % of surface light level is available (note this is considerably deeper than the common definition of85

the 1 % of surface light level, owing to the fact growth by phytoplankton has been observed well below the 1 % light level (Cox

et al., 2023) and to ensure that the bottom boundary of the model is always deeper than zm. A key assumption is made in the

structure of our model: the two different phytoplankton and zooplankton communities, in the two layers (Dai et al., 2023), do

not interact directly. Essentially, we make the assumption that each ecosystem is adapted to the environment it resides in, and

thus takes a competitive advantage. The two ecosystems are linked only through the exchange in nutrients between two layers90

as indicated by the arrows in Figure 1. Our model is run using two forcings, zm which comes from observational data at the
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Figure 1. Schematic diagram of the two-layer ecosystem model. Light and dark blue shades represent the surface and subsurface layers

respectively. Ps, Zs and Ns (Pd, Zd and Nd) refer to the phytoplankton, zooplankton and nutrient pools at the surface (subsurface) respectively.

zm and zeu refer to mixed layer depth and euphotic zone respectively. Mixing and entrainment represent the mixing and entrainment effects

driven by the zm, which is highlighted by the pink dashed line. Dark red dashed lines represent the nutrient excursion from the surface to the

subsurface layer. The arrow direction denotes the direction of the nitrogen cycle.

Bermuda Atlantic Time-series Study site (BATS) (see description below) and broadband surface light. Following Miller and

Wheeler (2012) and Brock (1981), we model daily averaged solar radiation at BATS site (31◦) assuming clear sky conditions

modulated by the atmospheric attenuation coefficient (Atm) and PAR fraction (fpar), and this light is attenuated through the

mixed layer (with the attenuation coefficient a function of pure water and surface chlorophyll concentration) and averaged95

within the mixed layer, for use in surface layer modelling. Similarly, we continue to attenuate light (with the attenuation

coefficient a function of pure water and subsurface chlorophyll concentration) between zm and zeu, averaging it to represent

the subsurface light forcing.
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In the surface layer of our model, the rationale is similar to the model of Evans and Parslow (1985). The change in zooplank-

ton concentration is controlled by the grazing, mortality and also the dilution and concentration effect due to fluctuations in100

zm (See Eq. (7)). A key modification we introduced is changing from a linear response of the zooplankton mortality term to a

quadratic response, to enhance the stability of the model (e.g., Denman, 2003; Edwards and Yool, 2000; Steele and Henderson,

1992). As in Evans and Parslow (1985), the dynamics of phytoplankton concentration are controlled by phytoplankton growth

and mortality, zooplankton grazing as well as the effect of zm (See Eq. (6)). For the growth term, we calculate the growth

rates of nutrients and light respectively and apply Liebig’s Law of the Minimum to regulate phytoplankton growth (Eq. (4)).105

Additionally, to ensure a conservative model, we modify the Evans and Parslow (1985) model by changing the asymmetric

effect of zm to a symmetric effect to ensure a conservative model. In other words, in our model, the mixed layer incorporates

both dilution and concentration effects to both nutrient and phytoplankton concentrations (See Eq. (5–6)). Furthermore, as in

the Evans and Parslow (1985) model, the nutrient cycle in our model is controlled by the growth and death of phytoplankton

and zooplankton, as well as the mixing and entrainment effect driven by zm (Eq. (5)). For the mixing effect, we adopt a fraction110

of zm (µm in Table 1) to represent the dynamic mixing processes between two layers following the approach of Miller and

Wheeler (2012), rather than using a fixed coefficient as in the Evans and Parslow (1985) model. Considering previously used

fixed coefficients, such as 0.1 m d−1 (Fasham et al., 1990) and 0.5 m d−1 (Macías et al., 2007), we select µm = 0.0055 to yield

a time-mean µm · zm of 0.3 m d−1, a mid-range value that aligns well with the 0.25 m d−1 used in Fennel et al. (2001).

In the subsurface layer, the dynamics of phytoplankton and zooplankton concentration adhere to principles similar to those in115

the surface layer. However, phytoplankton growth in the subsurface layer is simplified, and dependent solely on light (Eq. (16)),

as light availability is significantly weaker and nutrients are substantially higher than the surface layer. The nutrient cycle in

the subsurface layer (Eq. (17)), however, is more complex. It not only involves the phytoplankton and zooplankton cycle in the

subsurface layer but also involves the phytoplankton and zooplankton excursion from the surface layer (Eq. (14)). In addition,

nutrients in the subsurface layer are injected into the surface layer via mixing and entrainment processes. This exchange120

between nutrient pools in the surface and subsurface layers serves as the crucial link connecting the processes between the two

layers.

In summary, the model equations for dissolved nutrients (N), phytoplankton (P) and zooplankton (Z) concentration dynamics

in the surface and subsurface layers are shown as follows:
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Surface layer:125

dzm

dt
= ζ(t), (1)

ζ+(t) = max(0, ζ(t)), (2)

Φs =
asϵsP

2
c,s

as + ϵsP 2
c,s

, (3)

Gs = min{Vmaxs
(1− exp(

−αsIs

Vmaxs

)),
VmaxsNc,s

Ks + Nc,s
} (4)

dNc,s

dt
=−GsPc,s + µpmsPc,s + (1− γs−µg)ΦsZc,s + µzcsZ

2
c,s +

(µmzm + ζ+(t))(Nc,d−Nc,s)
zm

− ζ(t)
zm

Nc,s, (5)130

dPc,s

dt
= GsPc,s−msPc,s−ΦsZc,s−

ζ(t)
zm

Pc,s, (6)

dZc,s

dt
= γsΦsZc,s− csZ

2
c,s−

ζ(t)
zm

Zc,s, (7)

Ik =
Vmaxs

αs
(8)

I∗ =
Is

Ik
(9)

χs =
I∗

θm(1− exp(−I∗))
(10)135

Chlac,s = Pc,s ∗ (C : N) ∗MWC ∗
1
χs

(11)

Subsurface layer:

zD = zeu− zm, (12)

dzD

dt
= η(t), (13)

ϕ =
(1−µz)csZ

2
c,szm

zD
+

µgΦsZc,szm

zD
+

(1−µp)msPc,szm

zD
, (14)140

Φd =
adϵdP

2
c,d

ad + ϵdP 2
c,d

, (15)

Gd = Vmaxd
(1− exp(− αdId

Vmaxd

)) (16)

dNc,d

dt
=−GdPc,d + mdPc,d + (1− γd)ΦdZc,d + cdZ

2
c,d−

η(t)
zD

Nc,d−
(µmzm + ζ+(t))(Nc,d−Nc,s)

zD
+ ϕ, (17)

dPc,d

dt
= GdPc,d−mdPc,d−ΦdZc,d−

η(t)
zD

Pc,d, (18)

dZc,d

dt
= γdΦdZc,d− cdZ

2
c,d−

η(t)
zD

Zc,d, (19)145

Chlac,d = Pc,d ∗ (C : N) ∗ 1
χd
∗MWC (20)
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Where Nc,s, Pc,s, Zc,s and Chlac,s represent the dissolved nutrients, phytoplankton, zooplankton and chlorophyll-a con-

centration at the surface layer. Similarly, Nc,d, Pc,d, Zc,d and Chlac,d represent the dissolved nutrients, phytoplankton, zoo-

plankton and chlorophyll-a concentration at the subsurface layer. Φs and Φd represent the grazing at the surface and subsurface

layer respectively which share the same ‘Holling Type III’ response (Denman and Peña, 2002) but with different parameters150

at different layers. ϕ represents the influence of the export production from the surface layer to the subsurface layer nutrient

pool. Gs shows the growth rate of the phytoplankton at the surface, determined by the processes most limiting to surface light

(Vmaxs
(1−exp(−αsIs

Vmaxs
))) or nutrients (Vmaxs Nc,s

Ks+Nc,s
) (Michaelis-Menten uptake, Franks, 2002). However, at the subsurface layer,

the growth of phytoplankton (Gd) is set to be only limited by subsurface light (Id). zD is the thickness of the subsurface layer.

To calculate the surface chlorophyll concentration (Chlac,s) in this model, we convert phytoplankton from nitrogen units155

in mol to carbon units in mg by multiplying by the molecular weight of carbon (MWC in Table 1) and the Redfield ratio

(C : N in Table 1). Then, we convert the carbon to chlorophyll using the surface carbon-to-chlorophyll ratio (χs) following

the Eq.(8-10) originating from Geider et al. (1997) and Jackson et al. (2017), where θm is the maximum chlorophyll-to-carbon

ratio and I∗ is dimensionless irradiance. According to Jackson et al. (2017), a suitable value for θm at the surface is 0.01

gChla gC−1. I∗ is defined by Eq.(9) where Is is the surface photosynthetically active radiation and Ik is defined as a ratio160

of maximum chlorophyll-normalized production over the chlorophyll-normalized initial slope of the photosynthesis irradiance

curve (Jackson et al., 2017). Since our model does not include chlorophyll-normalized parameters, we approximate Ik as Vmaxs

αs

to calculate χs.

To calculate the subsurface chlorophyll concentration (Chlac,d), we followed a similar method as calculating Chlac,s, but

used a fixed C:Chl ratio in the subsurface layer (χd). According to Viljoen et al. (2024), χd tends to be stable at the subsurface165

and shows a lower value than the surface layer. Thus we fixed χd as 156, half of the modelled time-mean χs, which also falls

in a range of 1-226 observed by Viljoen et al. (2024).

2.2 Model parameterisation

Table 1 summarises the parameters used in our model, their meanings, values, units and supporting references. In this two-layer

NPZ model, most of the basic parameters (fpar, Kdw, αs, ms and γs) at the surface come from Fasham et al. (1990) which170

forms the most widely-used values for NPZ modelling. Kdw and Kdps are parameters used to calculate the total attenuation

coefficients (Kds ) at the surface layer (see Eq.(21)), such that

Kds = Kdw + Kdps ∗Chlac,s, (21)

where Kdw refers to the attenuation of pure water and Kdps is the chlorophyll-specific light attenuation at the surface. Similarly,

Kdw and Kdpd
are parameters used to calculate the total attenuation coefficients (Kdd

) at the subsurface layer (see Eq.(22)),175

such that

Kdd
= Kdw + Kdpd

∗Chlac,d, (22)

where Kdpd
is the chlorophyll-specific light attenuation at the subsurface. In this model, we use different values for Kdps

and Kdpd
as field studies have shown the chlorophyll-specific attenuation of phytoplankton changes vertically in stratified
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Table 1. Parameters used in our two-layered NPZ model, their meanings, values, units and supporting references.

Parameter Symbol Value Unit Reference

Solar constant SolarK 1373 Wm−2 Miller and Wheeler (2012)

Atmospheric attenuation Atm 0.5 — Miller and Wheeler (2012)

PAR fraction fpar 0.41 — Fasham et al. (1990)

Light attenuation due to water Kdw 0.04 m−1 Fasham et al. (1990)

Surface chlorophyll-specific light attenuation coefficient Kdps 0.028 m2(mgChla)−1 Uitz et al. (2008)

Initial value for surface nutrient concentration No 0.1 mmolNm−3 Anugerahanti et al. (2020)

Initial value for nutrient concentration in the subsurface layer Ndo 2.5 mmolNm−3 Anugerahanti et al. (2020)

Initial value for phytoplankton concentration at the surface Po 0.2 mmolNm−3 Kantha (2004)

Initial value for zooplankton concentration at the surface Zo 0.25 mmolNm−3 Anugerahanti et al. (2020)

Initial value for chlorophyll concentration at the surface Chlo 0.1 mgm−3 Anugerahanti et al. (2020)

Initial value for phytoplankton concentration at the subsurface Pdo 0.1 mmolNm−3 Doney et al. (1996)

Initial value for zooplankton concentration at the subsurface Zdo 0.05 mmolNm−3 Anugerahanti et al. (2020)

Initial value for chlorophyll concentration at the subsurface Chldo 0.13 mgm−3 Anugerahanti et al. (2020)

Initial value for mixed layer depth zmo 52 m Time-mean zm at BATS

Initial value for euphotic zone zeo 250 m Anugerahanti et al. (2020)

Half-saturated for phytoplankton nutrient uptake at surface layer Ks 0.7 mmolNm−3 Hurtt and Armstrong (1999)

Initial slope of the P/I curve at surface layer αs 0.025 day−1(Wm−2)−1 Fasham et al. (1990)

Phytoplankton mortality rate at surface layer ms 0.09 day−1 Fasham et al. (1990)

Phytoplankton maximum growth rate at surface layer Vmaxs 1.2 day−1 Schartau and Oschlies (2003)

Zooplankton assimilation efficiency at surface layer γs 0.75 — Fasham et al. (1990)

Maximum grazing rate at surface layer as 2 day−1 Oschlies and Garçon (1999)

Prey capture rate at surface layer ϵs 1 (mmolNm−3)−2day−1 Oschlies and Garçon (1999)

Zooplankton quadratic mortality rate cs 0.2 (mmolNm−3)−1day−1 Pasquero et al. (2005)

Dead zooplankton fraction immediately available as nutrient µz 0.2 — Pasquero et al. (2005)

Zooplankton grazing substance fraction sinking to the subsurface layer µg 0.2 — Pasquero et al. (2005)

Dead phytoplankton fraction immediately available as nutrient µp 0.2 — Pasquero et al. (2005)

Mixing fraction coefficient µm 0.0055 — Fennel et al. (2001)

Subsurface chlorophyll-specific light attenuation coefficient Kdpd 0.026 m2(mgChla)−1 Uitz et al. (2008)

Initial slope of the P/I curve at subsurface layer αd 0.256 day−1(Wm−2)−1 Schartau and Oschlies (2003)

Phytoplankton mortality rate at subsurface layer md 0.05 day−1 Schartau and Oschlies (2003)

Phytoplankton maximum growth rate at subsurface layer Vmaxd 0.27 day−1 Schartau and Oschlies (2003)

Zooplankton assimilation efficiency at subsurface layer γd 0.9 — Schartau and Oschlies (2003)

Maximum grazing rate at subsurface layer ad 1.575 day−1 Schartau and Oschlies (2003)

Prey capture rate at subsurface layer ϵd 1.6 (mmolNm−3)−2day−1 Schartau and Oschlies (2003)

Zooplankton quadratic mortality rate at subsurface layer cd 0.34 (mmolNm−3)−1day−1 Schartau and Oschlies (2003)

Maximum chlorophyll-to-carbon ratio at surface layer θm 0.01 gChlagC−1 Jackson et al. (2017)

C:N Redfield ratio for phytoplankton C : N 106
16

mmolC(mmolN)−1 Redfield (1958)

Molecular weight of Carbon MWC 12 mgC(mmolC)−1 —

C:Chl ratio at subsurface layer χd 156 — Half of the modelled time-mean C:Chl ratio at surface layer

waters (Uitz et al., 2008). We approximate the chlorophyll-specific light attenuation from the chlorophyll-specific absorption180
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coefficient of phytoplankton derived by Uitz et al. (2008), making Kdps
= 0.028 m2(mg Chla )−1 and Kdpd

= 0.026 m2(mg

Chla)−1.

The initial value for surface phytoplankton (Po) and chlorophyll (Chlo) concentration is set to 0.2 mmolN m−3 and 0.1 mg

m−3 based on observations at BATS reported by Kantha (2004) and Anugerahanti et al. (2020) respectively. On top of that,

No is set to 0.1 mmolN m−3 according to the time-mean of the in situ data on NO3 over 1998–2007 at BATS (Anugerahanti185

et al., 2020). Observational data for zooplankton at different depths is more challenging to find. To keep consistency, we chose

the Zo = 0.25 mmolN m−3, based on the experiment that produces phytoplankton and nutrient results closely matching in

situ data (PPE in Figure 2 in Anugerahanti et al. (2020)). The initial value of mixed layer depth (zmo
) is set to be 52 m, the

time-mean value of zm from 1990 to the end of 2022 at the BATS location (data is described below). Given that the time-mean

chlorophyll tends to be near zero at 250 m (Anugerahanti et al., 2020), we define the initial value of the euphotic zone (zeo ) as190

250 m.

Regarding the initial values at the subsurface layer, Pdo
is challenging to determine since few studies present phytoplankton

concentrations in mmolN m−3 at various depths. Nevertheless, based on the vertical phytoplankton concentration profile from

0 to 250 m at the BATS location simulated by the NPZD model from Doney et al. (1996), phytoplankton concentration at

50–250 m approximately ranges from 0.05 to 0.15 mmolN m−3. Consequently, Pdo
is given as 0.1 mmolN m−3, in the centre195

of that range. Given that time-mean Chlac,d varies from 0.01 to 0.25 mg m−3 between 50–250 m (Anugerahanti et al., 2020),

Chldo is defined in the centre of the range at 0.13 mg m−3. For Zdo and Ndo , we follow the same methodology used to

determine initial values in the surface layer, but select values at around 200 m from Anugerahanti et al. (2020).

We employ the most traditional values for the maximum grazing rate (as) and prey capture rate (ϵs) in the surface layer,

as outlined by Oschlies and Garçon (1999). The zooplankton quadratic mortality rate (cs) and the coefficients related to the200

excretion of the nutrients from the first to the second layer (µz , µg and µp) are adopted from Pasquero et al. (2005), which is

also used in other literature (e.g., Sandulescu et al., 2007; Yaya et al., 2021). Given that our hypothesis is tested at the BATS

location, characterized by a seasonally stratified ocean, we adjusted the initial values, Vmaxs and Ks to reflect the conditions

specific to this area. Schartau and Oschlies (2003) show that Vmaxs
has a strong seasonal cycle at BATS location ranging

from around 1 to 1.4 day−1. Accordingly, we select the Vmaxs
=1.2 day−1, an average value of this range. Given the range of205

0.45-0.91 mmolN m−3 for the half-saturation constant for phytoplankton nutrient uptake at the surface layer (Ks) at BATS, as

reported by Hurtt and Armstrong (1999), we adopt Ks=0.7, a midpoint of that range.

In the subsurface layer, given that no study has employed different parameters at different layers in an NPZ model, it is

challenging to adjust the parameters based on existing literature. However, as we know the light availability should be much

lower at the subsurface, which implies the initial slope of the photosynthesis irradiance curve (αd) and phytoplankton maximum210

growth rate (Vmaxd
) at the subsurface should be higher and lower than the surface respectively (Fasham, 1993). Schartau and

Oschlies (2003) provide a set of parameters by assimilating observational data at the BATS location, including a higher αd

and lower Vmaxd
which are used in our model. To maintain consistency, we use their parameters for the rest of subsurface

parameters.
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2.3 Model sensitivity analysis215

To determine the sensitivity of model parameters, we conducted a series of experiments. First, the model was run from 1990 to

2022 with the parameters listed in Table 1 with the chlorophyll, zooplankton and nutrient concentration stocks at the surface and

subsurface layers saved (default run). Next, the model is run again with each parameter (except for SolarK, Kdw, C : N and

MWC which are well-known and stable) individually increased and decreased by 10 % while keeping the remaining parameters

fixed (sensitivity runs). We then calculate the time-mean values of each state variable in sensitivity runs and default run and220

computed the ratios by dividing the former by the latter. Eventually, these ratios construct a general range (Λ), illustrating how

the mean values deviate from the default run in response to a 10 % change (increase or decrease) in each parameter in Table 1.

2.4 Model validation

Ship-based data from BATS (1990–2022) were used to calculate integrated stocks of chlorophyll and dissolved NO2+NO3,

as well as mixed layer depth (zm) used in this study, following the methodology outlined by Viljoen et al. (2024). Temperature225

profiles from CTD casts (Johnson et al., 2024) were used to compute zm, specifically for profiles with concurrent temperature

and salinity data that included measurements in the surface (<11 m). The zm was calculated using the temperature-based

algorithm implemented in the holteandtalley Python package (Holte and Talley, 2009). Chlorophyll-a concentrations were

extracted from high-performance liquid chromatography (HPLC) pigment data (Johnson et al., 2023), including only profiles

with a minimum of six depth measurements and coincident CTD and particulate organic carbon (POC) bottle data. Dissolved230

inorganic nitrogen (DIN) measurements were obtained from nitrate+nitrite profiles on the BATS data server (http://bats.bios.

edu/bats-data/). Only DIN profiles with at least six measurements in the upper 350 m and that aligned with selected HPLC

chlorophyll-a and temperature profiles were used. All CTD, HPLC, and DIN data were restricted to profiles within a 0.5◦

latitude and longitude box around the BATS site.

We ran our model with the parameters in Table 1, from 1990-01-01 to 2022-12-31, in a daily timestep at BATS, to derive235

chlorophyll and nutrient concentration daily timeseries. To estimate the stocks of chlorophyll and nutrients in the model,

we multiplied the vertical-averaged concentration in each layer by the thickness of each layer. The thickness of the surface

and subsurface layer are zm and zD (see Eq. (12)) respectively. Next, to compare model output with observations, we used

the observational chlorophyll and nutrients integration above zm timeseries at BATS from Viljoen et al. (2024) as referenced

observational stocks at the surface layer, as we use the same zm, which is also used as the bottom boundary for the surface layer240

in the model. For the subsurface layer stock calculation, we first integrate observational chlorophyll and nutrient concentrations

at BATS from zm to the final depth (zk) shallower than the euphotic zone (zeu) where data is available and then divided by the

(zk minus zm) to obtain the averaged concentration between zm and zk. This average concentration was used as a representative

value for the entire water column from zm to zeu, and then multiplied by the model subsurface thickness (zD) to derive the

subsurface phytoplankton and nutrient stocks.245

In addition to the timeseries of stocks, we also calculate a time-mean climatology of surface and subsurface chlorophyll and

nutrient stocks. To determine the relationship between observational and model outputs, we calculate Spearman’s correlation
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coefficient (Corr.) and the significance level (p) using only the time steps where data are available for both observations and

model outputs.

2.5 Data deseasonalisation and trend analysis250

To compare model estimates of interannual variability with observations, we first resampled the daily timeseries from the

model to be monthly timeseries using the monthly median as described in Viljoen et al. (2024). To keep the same method that

Viljoen et al. (2024) used, we dealt with missing values in observations using a median climatology. Finally, we decompose the

surface and subsurface chlorophyll stocks in the model and observations and extract the deseasonalised timeseries, following

the same method applied in Viljoen et al. (2024), using the Python function MSTL from the statsmodels.tsa.seasonal package,255

with a period of 12 representing the months of the year. We then calculate the Spearman’s correlation coefficient (Corr.) and

significance (p) of the deseasonalised timeseries between the model and observations.

To utilize this model to determine the drivers of the different post-2011 trends at the surface and subsurface layer (Viljoen

et al., 2024), we first resample daily surface and subsurface light, surface C:Chl ratio, surface and subsurface chlorophyll,

phytoplankton, zooplankton and DIN concentration from the model to a monthly timeseries and decomposed it to produce260

deseasonalised data following the method described above. To examine the trend of each timeseries post 2011, linear regression

analysis (Python sklearn.linear_model.LinearRegression) is first applied to all extracted deseasonalised data described above

(including modelling and observational timeseries) over 2011-2022. Based on this linear regression, we extract the slope (S) of

the trend between 2011 (including 2011) and the end of 2022 and obtain the p-value to examine the significance of the trend.

Also, according to the linear regression, we calculate the percentage change (∆) in the fitted model as the relative difference265

between the start and end values of the model fit between 2011 and 2022.

3 Results

3.1 Model sensitivity

The range of two values (Λ) for each parameter is shown in Figure 2. In the histogram, the larger Λ varies from 1.0 the greater

the difference between the adjusted and default model outputs. Among the eight state variables (Chlas, Ps, Ns, Zs, Chlad,270

Pd, Nd, Zd), Ns show large ranges (>0.94–1.06) when varying 4 parameters (Ndo , zeo , Ks and Vmaxs ). This suggests that

surface nutrient stocks are sensitive to changes in these parameters, reflecting their dependence on initial deep ocean nutrient

stocks and surface phytoplankton growth.

Following Ns, chlorophyll (Chlad), phytoplankton (Pd) and zooplankton (Zd) stock in the subsurface layer exhibit the next

highest sensitivity in this model. They show a tendency to be sensitive to changes in parameters at the subsurface layer (notably275

md, Vmaxd
and ϵd) and the light attenuation coefficient in the atmosphere (Atm and fpar). In addition, Chlad is also sensitive

to change in χ. These suggest the net growth of phytoplankton and light play the most important role in modulating Chlad, Pd

and Zd, and the subsurface C:Chl ratio has a large impact on Chlad. In contrast, surface chlorophyll (Chlas) stock is sensitive
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Figure 2. (a–b) Sensitivity of model output (difference in time-mean, denoted Λ) for surface-layer-integrated chlorophyll (Chlas), phy-

toplankton (Ps), nutrients (Ns)and zooplankton (Zs) and subsurface-layer-integrated values (Chlad, Pd, Nd, Zd), when increasing and

decreasing each parameter from Table 1 (except for SolarK, Kdw, C : N and MWC ) by 10 % individually whilst keeping the remaining

values fixed.

primarily to the change in parameters at the surface layer. The key parameter θm in the photoacclimation model also plays

an important role in determining Chlas. Compared to Chlas, surface zooplankton (Zs) and phytoplankton stock (Ps) tend to280

be more stable, primarily sensitive to Ndo , zeo and ms. This indicates that the initial assumption of the deep ocean nutrient

stocks and the death of phytoplankton have a impact on Zs and Ps. Nd tends to be the most stable parameter resilient to the

changes in all parameters except for Ndo
and zeo

. However, notebaly, the range of Λ in Nd is the second largest (0.86–1.14)

when varying zeo
compared to Λ in other parameters. These findings indicate that changes in most of the parameters hardly

impact Nd. However, the determination of Ndo
and zeo

is pivotal to good Nd estimation.285

From a parameter perspective, this model is not sensitive to changes in the µz , µg , µp and initial values except for zeo

and Ndo. This indicates that this model is not sensitive to changes in the excursion process from surface to subsurface layer,

and changes in most of the initial values. However, zeo
and Ndo show large ranges of Λ for all state variables at the surface

layer (especially for surface zooplankton stock) and subsurface nutrient stock. This highlights the importance of getting initial

nutrient stock conditions in the subsurface layer right.290

3.2 Model forcing, output and validation

Figure 3 shows the daily forcing and outputs of the two-layered model from 1990 to 2022. The light forcing at the surface

(solid yellow line) and subsurface layers (dashed yellow line) are presented in Figure 3a. Surface light ranges from 22 to 262

W m−2 with the minimum in winter and the peak during summer. Subsurface light shows a similar seasonality though its
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Table 2. The concentration of chlorophyll, phytoplankton, zooplankton and nutrients at two layers in the model. Chlac,s, Pc,s, Zc,s and

Nc,s represents the chlorophyll-a, phytoplankton, zooplankton and DIN vertically averaged concentration in the surface layer timeseries, and

Chlac,d, Pc,d, Zc,d and Nc,d means the chlorophyll-a, phytoplankton, zooplankton and DIN vertically averaged concentration between the

bottom of the zm and zeu timeseries from the model. The time-mean (R̄), minimum (Rmin) and maximum (Rmax) of these timeseries are

presented. The units of each parameter are shown in square brackets. Given that the model stabilized in the initial month, the statistics are

based on the timeseries from 1990-02-01 to 2022-12-31.

Chlac,s [mg m−3] Pc,s [mmolN m−3] Zc,s [mmolN m−3] Nc,s [mmolN m−3] Chlac,d [mg m−3] Pc,d [mmolN m−3] Zc,d [mmolN m−3] Nc,d [mmolN m−3]

R̄ 0.07 0.21 0.18 0.09 0.06 0.12 0.10 1.73

Rmin 0.01 0.08 0.05 0.04 0.00 0.00 0.01 0.78

Rmax 0.28 0.62 1.47 0.50 0.33 0.65 0.49 4.91

intensity decreases, ranging from 0 to 11 W m−2. The mixed layer depth (zm) forcing from observations at BATS, is shown295

in Figure 3b (solid pink line). zm also has a strong seasonality, with a minimum in summer and a maximum in winter. It can

be as shallow as 10 m during summer, and as deep as 200 m in winter. Below zm, the euphotic zone (zeu) estimated from the

model is shown in Figure 3b (dashed pink line), which shows a contrasting seasonality to zm with the shallowest zeu in winter

and deepest zeu in summer.

Figures 3c-f illustrate the vertically averaged concentrations of phytoplankton, zooplankton and dissolved inorganic nitrogen300

(DIN) within the surface layer in the model (solid lines). In the initial month of the simulation (Jan in 1990), the model exhibits

instability, reflected by a spike value (0.8 mmolN m−3) in the phytoplankton concentration at the surface layer. Nevertheless,

the model quickly stabilizes. Consequently, the statistical analysis presented here is based on model outputs from 1990-02-

01 to the end of 2022 (Table 2). Surface chlorophyll-a, phytoplankton, zooplankton and DIN surface concentrations show

ranges of 0.01–0.28 mg m−3, 0.08–0.62 mmolN m−3, 0.05–1.47 mmolN m−3 and 0.04–0.5 mmolN m−3 respectively, with305

mean values of 0.07 mg m−3, 0.21 mmolN m−3, 0.18 mmolN m−3 and 0.09 mmolN m−3 for chlorophyll, phytoplankton and

zooplankton, and DIN concentration (Table 2). This model also displays seasonality in these state variables. During winter

and spring, nutrient availability increases in the surface layer (with a deeper mixed layer) and slightly higher concentrations

of phytoplankton and chlorophyll result. This is followed by a maximum zooplankton concentration in the subsequent month

driven by grazing on phytoplankton. These findings reveal that, at the surface layer, the phytoplankton concentration remains310

relatively stable over the year, but is slightly higher in spring driven by the increase in DIN and light availability, providing

somewhat more food to zooplankton.

Compared to the surface layer, subsurface chlorophyll (Figure 3c, dashed green line) concentration magnitude is very similar,

reflected by a similar range of 0–0.33 mg m−3 with a time-mean of 0.06 mg m−3 (Table 2). However, subsurface phytoplankton

(Figure 3d, dashed orange line) and zooplankton (Figure 3e, dashed brown line) concentrations decrease to ranges of 0–0.65315

mmolN m−3 and 0.01–0.49 mmolN m−3 respectively with the time-mean values of 0.12 mmolN m−3 and 0.10 mmolN

m−3 respectively (Table 2). In addition, phytoplankton and zooplankton concentrations in the subsurface layer show strong

seasonality, contrasting to that in the surface layer. When chlorophyll and phytoplankton concentration in the subsurface layer
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Figure 3. (a) Solid (dashed) yellow lines refer to vertical-averaged light within the surface (subsurface) layer in the model from 1990 to

2022. (b) Solid and dashed pink lines represent the observational zm from BATS and zeu simulated by the model respectively from 1990

to 2022. (c) Solid (dashed) lines mean the model output of chlorophyll-a concentration vertically averaged within the surface (subsurface)

layer from 1990 to 2022. (d) as in (c) but for phytoplankton concentration. (e) as in (c) but for zooplankton concentration. (f) as in (c) but for

nutrient concentration.
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Table 3. The integration of chlorophyll and nutrients from model and observation, and their relationship. Chlas and Ns represent the Chl-a

and DIN integration timeseries within the surface layer; Chlad and Nd mean the Chl-a and DIN integration timeseries between the bottom

of the zm and zeu, R̄, Rmin, Rmax and σ represent the time-mean, minimum, maximum, standard deviation of each timeseries described

above. The correlation coefficient, Corr.(model,obs), shows the relationship between the full signal of each timeseries in the model and

observation; its corresponding p-value is shown in angle brackets. ˆRmin and ˆRmax means the minimum and maximum of the time-mean

climatology of Chlas, Chlad, Ns and Nd. Mmin and Mmax mean the month when ˆRmin and ˆRmax show. Values are shown for the model

and observations (in parenthesis). The units of each parameter are shown in square brackets, except for Corr.(model,obs) which does not

have units. Given that the model stabilized in the initial month, the statistics of the full timeseries are based on the timeseries from 1990-02-01

to 2022-12-31.

R̄ Rmin Rmax σ Corr.(model,obs) ˆRmin
ˆRmax Mmin Mmax

Chlas [mg m−2] 5.01(5.70) 0.14 (0.07) 60.49(30.19) 6.94(7.40) 0.77 <p=0.00> 0.52 (0.32) 13.63(15.36) July(July) Jan(Jan)

Chlad [mg m−2] 17.96(26.19) 0.00(0.00) 107.42(94.66) 19.69 (14.93) 0.31 <p=0.00> 1.89(11.57) 39.94(35.24) Feb(Jan) Aug(Sep)

Ns [mmol m−2] 4.71 (2.94) 0.52(0.0) 48.03(73.68) 4.62(9.67) 0.62 <p=0.00> 1.21(0.04) 11.04(10.25) July (Sep) Jan(Mar)

Nd [mmol m−2] 460 (468) 256(101) 545(1040) 57(157) 0.004 <p=0.94> 396(413) 505(500) Sep(Mar) May (Nov)

reaches the minimum, the surface concentration tends to be higher and vice versa. Minimum chlorophyll concentration in the

surface layer, coupled with the shallowest zm and highest surface light in summer, creates conditions of higher light availability320

in the subsurface layer, increasing phytoplankton growth. This increased growth in subsurface phytoplankton subsequently

supports the zooplankton growth.

The DIN concentration in the subsurface layer (Figure 3f, dashed blue line) ranges from around 0.78 to 4.91 mmolN m−3

with a time-mean value of 1.73 mmolN m−3, which is notably higher than that in the surface layer (See Table 2). This difference

in two DIN pools and the distinctive light environments between the two layers (Figure 3a) highlight the different conditions325

for phytoplankton growth: the surface layer is characterized by depleted nutrients but adequate light, whereas the subsurface

layer is dominated by weak light but abundant nutrients. These conditions likely create two distinct environments to which

different phytoplankton communities have adapted.

To compare the model output with observational data from BATS, chlorophyll and DIN stocks are calculated at each layer.

Figure 4a first shows the chlorophyll integrated from the sea surface to zm from model output (green line) and observations330

(dark solid dots) spanning from 1990 to 2022. When masking the observational missing values in modelling output, the obser-

vations and modelling output show a strong and significant correlation (Corr.=0.77, Table 3). After the model stabilizes (since

1990-02-01), modelling chlorophyll ranges from 0.14 to 60.49 mg m−2, which is higher than the observed range of 0.07–30.19

mg m−2 as shown in Table 3. However, modelling surface chlorophyll stock shows a similar time-mean value of 5.01 mg m−2

as in observations (5.7 mg m−2). Also, the standard deviation from the model (6.94 mg m−2) is very similar to in observations335

(7.4 mg m−2). These findings indicate the two-layered model successfully simulates the surface chlorophyll stock dynamics,

including the intra-annual variability.
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Figure 4. (a) Daily chlorophyll stocks at the surface layer from the model (green solid line) and observations (dark solid dots) from 1990

to 2022. (b) Daily chlorophyll stocks at the subsurface layer from the model (green dashed line) and observations (dark hollow dots) from

1990 to 2022. (c) Daily nitrogen stocks at the surface layer from the model (blue solid line) and observations (dark hollow dots) from 1990

to 2022. (d) Daily nitrogen stocks at the surface layer from the model (blue dashed line) and observations (dark hollow dots) from 1990 to

2022. (e-h) as in (a-d) but for their time-mean climatology.

Figure 4e compares monthly averaged chlorophyll stocks above the zm from modelling output (green solid line) and obser-

vations (dark solid dots). Observed chlorophyll stocks show a strong seasonal variability with a maximum (15.36 mg m−2) in

January and a minimum (0.32 mg m−2) in July. The model mirrors this seasonal cycle perfectly by showing a similar peak340

(13.63 mg m−2) in January and a minimum (0.52 mg m−2) in July (Table 3).
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Figure 4b shows the subsurface chlorophyll integrated from zm to zeu from the model (green dashed line) and observations

(black hollow dots). The modelling and observational timeseries also show a significant positive correlation (Corr.=0.31) al-

though lower than the one at the surface layer. Table 3 shows that subsurface chlorophyll integration in the model ranges from

0 to 107.42 mg m−2, closely matching the observed range of 0 to 94.66 mg m−2. However, in general, the model estimates345

relatively lower chlorophyll stocks in the subsurface layer compared to observations, as indicated by a lower time-mean value

of 17.96 mg m−2 in the model than 26.19 mg m−2 observed at BATS. Different from the mean values, the standard deviation

from the model (19.69 mg m−2) is higher than in observations (14.93 mg m−2), which indicates the model simulates larger

intra-annual variability than in the observations.

Despite simulating a similar seasonality (Figure 4f), the model shows lower stocks during spring with discrepancies in the350

timing of the minimum and maximum months at the subsurface layer. Table 3 shows the model predicts these extremes in

February (1.89 mg m−2) and August (39.94 mg m−2), while observations show them in January with a higher value of 11.57

mg m−2 and September with a similar value of 35.24 mg m−2. The discrepancy is especially obvious from January to May. A

possible explanation for the low values in the model during these months is that the averaged subsurface light is too low in the

model (Figure 3a) to simulate phytoplankton growth in the subsurface layer.355

Figures 4a-b and e-f illustrate that surface and subsurface chlorophyll stocks show inverse intra-annual and seasonal vari-

ability, as seen in both the model and observations. Following a decline in surface chlorophyll seen both in the model and

observations (Fig. 4e), subsurface chlorophyll stocks increase (Fig. 4f). These suggest that the distinct vertical differences in

phytoplankton seasonal dynamics at BATS illustrated in observations are successfully captured by the two-layered model.

Figure 4c shows the surface DIN stocks from the model (blue solid line) and NO3+NO2 stocks from observations (black360

solid dots). After eliminating the missing values in observations in the model, the surface nitrogen stocks show a strong

relationship between modelling and observational outputs, indicated by a significant correlation (Corr.=0.62, Table 3). The

surface DIN stock in the model ranges from 0.52 to 48.03 mmol m−2, smaller than the range of 0–73.68 mmol m−2 in

NO3+NO2 observations. This model simulates a higher time-mean DIN but smaller standard deviation (4.71±4.62 mmolN

m−2) than in the observations (2.94±9.67 mmolN m−2). This suggests that this model successfully simulates the surface365

nitrogen cycle but overestimates the time-mean nitrogen stocks and underestimates their variability.

Figure 4g shows that modelled and observational DIN stocks in the surface layer show similar seasonality. The observational

NO3+NO2 stocks show maximum values of 10.25 mmol m−2 in March and minimum values of 0.04 mmol m−2 in September.

The model surface DIN also shows a similar maximum of 11.04 mmol m−2 but in January and reaches a minimum (1.21 mmol

m−2) in July (Table 3). Figure 4g reveals that the discrepancy between model and observation is more evident in autumn and370

winter when the surface nutrient observations are generally extremely low, close to zero.

The subsurface DIN integration from the model (blue dashed line) and subsurface NO3+NO2 integration from observations

(black hollow dots) are presented in Figure 4d. A small non-significant correlation coefficient (Corr.=0.004) between observa-

tional and modelling outputs suggests this model cannot simulate the variability in the NO3+NO2 dynamics in the subsurface

layer. This indicates the Nd has large uncertainties in this model which is also reflected in the sensitivity analysis in Section 3.1.375

However, Table 3 shows that the model estimates a similar time-mean value of 460 mmolN m−2 as seen in observations (468
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mmolN m−2) with a smaller standard deviation (57 mmolN m−2) compared with observations (157 mmolN m−2). Similarly,

a smaller range in Nd of 256–545 mmolN m−2 is seen in the model compared to observations (101–1040 mmolN m−2) as

reported in Table 3. These findings suggest that this model estimates a reasonable value of DIN stocks in the subsurface layer

when compared with observations, but cannot simulate the variability in the observations.380

Figure 4h also confirms the findings described above. The NO3+NO2 stocks in the subsurface show a minimum (413 mmolN

m−2) in March and a maximum (500 mmolN m−2) in November in observations (Table 3). This seasonality is almost the

reverse of the pattern in the surface layer seen from observations. Although this reversing pattern is not captured by the model,

it estimates a similar seasonal minimum (396 mmolN m−2) and maximum (505 mmolN m−2).

3.3 Drivers of post-2011 trend in chlorophyll-a in the two layers385

The deseasonalised chlorophyll stocks (Chlas) at the surface layer over 1990–2022 from the model (green solid line) and

observations (black solid line) are shown in Figure 5a. They show very good agreement reflected by a significant positive

correlation coefficient (0.78) shown in Table 4. This coefficient even increases to 0.85 if only comparing the deseasonalised

Chlas over 2011–2022 (Table 4). This suggests this two-layer NPZ model has a strong ability to simulate the interannual

variability in surface chlorophyll stocks, particularly over 2011–2022.390

The observational Chlas shows a significant decreasing trend from 2011 to the end of 2022 (black straight line in Figure

5a), also reported by Viljoen et al. (2024). Table 4 confirms this significant decreasing trend by showing a slope of -0.41 mg

m−2 yr−1 in observations. This decreasing trend post 2011 is also captured in the two-layered model (green line in Figure 5a),

with a very similar trend (S=-0.42 mg m−2 yr−1 in Table 4) as seen in observations.

Figure 5b shows the deseasonalised subsurface chlorophyll stock timeseries (Chlad) from the model (green dashed line)395

and observations (black dashed line). Although the correlation is weaker than seen in Chlas, it is still significant (Corr. =0.44

in Table 4). This correlation becomes strong over 2011–2022, reflected by an increase in Corr. to 0.75 (Table 4). This indicates

that the model is also capable of simulating interannual variability of chlorophyll in the subsurface layer, particularly post

2011, albeit weaker than at the surface layer. Looking at 2011-2022, in contrast to the decreasing trend in Chlas, Chlad show

an increasing trend both in model and observations (Figure 5b). Table 4 confirms this increasing trend, showing a similar400

significant positive slope of the Chlad post-2011 trend in the model (S=1.31 mg m−2 yr−1) and observations (S=1.43 mg m−2

yr−1).

To understand the drivers of the decreasing trend in Chlas over 2011–2022, we first show the interannual variability of

observational mixed layer depth (zm) (Figure 5c) and surface chlorophyll concentration (Chlac,s) from the model (Figure

6a). Figure 5c demonstrates a decreasing trend in zm since 2011 (S=-2.57 m yr−1 in Table 4). Similarly, the chlorophyll405

concentration shows a decreasing trend (S=-0.002 mg m−3 yr−1) which mirrors the decrease in chlorophyll stocks. ∆ of

Chlac,s is -26.8 %, which means chlorophyll concentration decreased by approximately 27 % from 2011 to 2022. This further

confirms the decreasing trend of Chlas is related to the decrease in Chlac,s rather than purely driven by a decreasing surface

layer water volume.
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Table 4. The trend and change of state variables from the model over 2011–2022 and the relationship between chlorophyll biomass from

model and observation. In this table, Chlas and Chlad represent the surface and subsurface integration of the chlorophyll respectively.

Chlac,s, zm, χs, Is, Pc,s, Nc,s and Zc,s represent the deseasonalised MLD, surface chlorophyll concentration, surface C:Chl ratio, surface

light, surface phytoplankton concentration, surface DIN concentration and surface zooplankton concentration from the model. Similarly,

Chlac,d, Id, Pc,d, Nc,d, and Zc,d represent the chlorophyll concentration, light, phytoplankton concentration, DIN concentration and zoo-

plankton concentration at the subsurface layer from the model. S means the slope of the post-2011 trend of parameters mentioned above.

All S are significant except for the trend of Zc,s. The unit of S for each parameter is shown as [S] in square brackets. ∆ denotes the per-

centage change in the fitted model output for each parameter described above between 2011-01-01 and 2022-12-31. The values from the

observations are shown in parenthesis and the rest of values are from model. The correlation coefficient, Corr.(model,obs), shows the

relationship between the deseasonalised full timeseries over 1990–2022 in the model and observation; its corresponding p-value is shown

in angle brackets. Similarly, Corr.(model,obs)2011 shows the relationship between the deseasonalised timeseries over 2011-2022 in the

model and observation.

S [S] ∆ [%] Corr.(model,obs) Corr.(model,obs)2011

Chlas -0.42(-0.41) [mg m−2 yr−1] -68.4 0.78<p=0.00> 0.85<p=0.00>

Chlac,s -0.002 [mg m−3 yr−1] -26.8

zm -2.57 [m yr−1] -45.3

χs +4.54 [yr−1] +19.2

Is +2.71 [W m−2 yr−1] +26.8

Pc,s -0.001 [mmolN m−3 yr−1] -7.7

Nc,s -0.000 [mmolN m−3 yr−1] -3.8

Zc,s -0.001 [mmolN m−3 yr−1] -5.1

Chlad +1.31 (+1.43) [mg m−2 yr−1] + 179.2 0.44<p=0.00> 0.75<p=0.00>

Chlac,d +0.004 [mg m−3 yr−1] +172.9

Id 0.058 [W m−2 yr−1] +45.5

Pc,d +0.008 [mmolN m−3 yr−1] +172.9

Nc,d -0.040 [mmolN m−3 yr−1] -24.0

Zc,d +0.006 [mmolN m−3 yr−1] +126.4

Next to understand the drivers of decreasing Chlac,s post 2011, we also show the surface C:Chl ratio (χs), light (Is),410

phytoplankton (Pc,s), nutrient (Nc,s) and zooplankton (Zc,s) concentrations from the model (Figures 6b-e). χs and Is shows

an increasing trend since 2011 (Figure 6b), reflected by positive slope of 4.54 yr−1 and 2.71 W m−2 yr−1 respecitvley (see

Table 4). From 2011 to 2022, χs and Is increase by around 19.2 % and 26.8 %. In contrast to surface light trend, Pc,s shows

a weak decreasing trend (S=-0.001 mmolN m−3 yr−1) and a decrease of 7.7%. Nc,s shows a near zero decreasing trend and

Zc,s does not show a significant trend (p=0.05), which is also reflected by their small change in percentage of -3.8 % and -5.1415

% respectively. Our results suggest that the change in surface chlorophyll concentration is primarily driven by the change in

surface light and χs rather than the change in phytoplankton growth. The shoaling of mixed layer depth enhances the light in
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the surface layer leading to an increasing C:Chl ratio, which further contributes to a decreasing chlorophyll biomass from 2011

to 2022.

To explore the mechanism behind the increasing Chlad trend post 2011, we also show the deseasonalised chlorophyll420

concentration (Chlac,d) in Figure 7a. Similar to Chlad, Chlac,d shows an increasing trend (S=0.004 mg m−3 yr−1) and has

increased by 172.9 % from 2011 to 2022 (Table 4). Similarly, this increasing trend is also seen in Id, Pc,d and Zd, which show

a S of 0.058 W m−2 yr−1, 0.008 mmolN m−3 yr−1 and 0.006 mmolN m−3 yr−1 respectively. A large change in the percentage

is also seen in Id (+45.5 %), Pc,d (+172.9 %) and Zd (+126.4 %). Particularly, the change in percentage in Pc,d is identical to

Chlac,d, owing to the fact the model has a fixed χd. These findings suggest that the increase in subsurface chlorophyll biomass425

is driven by the increase in phytoplankton concentration, which is a result of an increase in light in the subsurface layer due to

the shoaling of mixed layer depth and reduction in Chlas. This mechanism is further confirmed by a decreasing trend (S=-0.04

mmolN m−3 yr−1) and a change in percentage of -24 % in Nc,d, as more nutrient is taken up with subsurface phytoplankton

growth.

Figure 5. (a) deseasonalised chlorophyll integration above zm (surface layer) timeseries from 1990 to 2022 from the two-layered NPZ model

(green) and from observations (black). Straight lines correspond to the linear regressions fitted to deseasonalised data from 2011 to the end

of 2022 (post-2011 includes 2011–2022) from model data (green) and observations (black). (b) as in (a) but for deseasonalised chlorophyll-a

integration between zm and zeu (subsurface layer) timeseries. (c) as in (a) but for deseasonalised observational MLD (zm) at BATS.
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Figure 6. (a) deseasonalised chlorophyll-a concentration vertical-averaged above zm(surface layer) timeseries from 1990 to 2022 from the

two-layered NPZ model. Straight lines correspond to the linear regressions fitted to de-seasonalized data from 2011 to the end of 2022

(post-2011 includes 2011–2022) from model data. (b) deseasonalised surface C:Chl ratio (purple) and light (yellow) timeseries from 1990 to

the end of 2022 from the two-layered NPZ model. Purple (yellow) straight dashed line means the linear regressions fitted to de-seasonalized

surface C:Chl ratio (light) data from 2011 to the end of 2022 (post-2011 includes 2011–2022) from the two-layered NPZ model. (c) as

in (a) but for the deseasonalised surface phytoplankton concentration from the model. (d) as in (e) but for the deseasonalised surface DIN

concentration from the model. (e) as in (a) but for the deseasonalised surface zooplankton concentration from the model.
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Figure 7. (a) deseasonalised chlorophyll-a concentration vertical-averaged between zm and zeu (subsurface layer) timeseries from 1990 to

2022 from the two-layered NPZ model. Straight lines correspond to the linear regressions fitted to de-seasonalized data from 2011 to the

end of 2022 (post-2011 includes 2011–2022) from model data. (b) as in (a) but for deseasonalised subsurface light timeseries from 1990

to the end of 2022 from the two-layered NPZ model. (c) as in (a) but for the deseasonalised subsurface phytoplankton concentration from

the model. (d) as in (e) but for the deseasonalised subsurface DIN concentration from the model. (e) as in (a) but for the deseasonalised

subsurface zooplankton concentration from the model.
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4 Discussion430

We have built a two-layered NPZ box model of the stratified ocean that assumes the marine ecosystem in the euphotic zone

can be partitioned into two distinct communities: one located within the mixed layer and the other situated below the mixed

layer and above the very base of the euphotic zone (defined here as the 0.001 % light level). These two communities reside in

two different environments: a (typically) nutrient-limited one within the mixed layer and a light-limited one below it.

Model estimates of the time-mean vertically averaged phytoplankton concentration is 0.21 mmolN m−3 in the surface layer435

(above the mixed layer depth) and 0.12 mmolN m−3 in the subsurface layer (between the below the mixed layer and above

the euphotic zone). These estimates align well with the near-surface value given by Kantha (2004) (0.2 mmolN m−3), and

the time-mean range of 0.05–0.15 mmolN m−3 at between depth of 100–250 m simulated by the coupled physical and NPZD

model of Doney et al. (1996). Similarly, this model estimates a time-mean surface chlorophyll concentration of 0.07 mg m−3

which is consistent with the estimate (around 0.09 mg m−3) modelled by an NPZD model at BATS (Spitz et al., 2001) and the440

time-mean from observations (around 0.1 mg m−3) (Anugerahanti et al., 2020). Also, this model provides a range of 0–0.33

mg m−3 for chlorophyll concentration at the subsurface layer, which is consistent with the observational range of 0–0.25 mg

m−3 and modelling range of 0–0.35 mg m−3 given by Anugerahanti et al. (2020).

Regarding zooplankton, limited by fixed observations at 200 m at BATS (Madin et al., 2001), we cannot make a direct com-

parison of our model estimates with these observations. Nonetheless, our model provides comparable time-mean zooplankton445

concentration estimates of 0.18 mmolN m−3 above the mixed layer and 0.1 mmolN m−3 below it, which are consistent with

those reported by Anugerahanti et al. (2020). They utilize a complex 3D ecosystem model (MEDUSA) to reveal a vertical

profile of zooplankton concentration ranging from 0 to 0.3 mmolN m−3 at the near-surface decreasing to 0–0.1 mmolN m−3

at 200 m (Anugerahanti et al., 2020).

Vertically averaged concentrations of modelled dissolved inorganic nitrogen (DIN) in the two layers align with other studies450

at BATS. The time-mean of DIN concentration averaged within the mixed layer is around 0.09 mmolN m−3 in very good

agreement with situ data of DIN at BATS, of around 0.1 mmolN m−3 within upper 50 m (Anugerahanti et al., 2020; Hurtt

and Armstrong, 1999). The DIN concentration within the mixed-layer shows a range of 0.04–0.5 mmolN m−3 which is also

consistent with the range (0–0.6 mmolN m−3) modelled by Spitz et al. (2001). In addition to the surface layer, the subsurface

time-mean DIN concentration vertically averaged below the mixed layer and above the euphotic zone (1.73 mmolN m−3)455

in our model, agrees with the observational nitrate concentration record (1.75 mmolN m−3; Anugerahanti et al., 2018) and

modelling output at 160m (of around 2 mmolN m−3) from a 1D algal group-based phytoplankton model (Salihoglu et al.,

2008).

Our model simulates the vertical-integrated chlorophyll for two ecosystems using a dynamical model of the C:Chl ratio at the

surface layer and a fixed C:Chl ratio at the subsurface layer. The chlorophyll integration within the mixed layer in this model460

shows a strong seasonal cycle with a maximum (13.63 mg m−2) in spring and a minimum (0.52 mg m−2) in summer, in good

agreement with in situ observations at BATS. Furthermore, this seasonality reconciles closely with the median climatology

(around 2.5–18.5 mg m−2) of the surface chlorophyll integration partitioned from the vertical profiles using a sigmoid-based
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function (Viljoen et al., 2024). Although different integration boundaries make more direct comparisons with other studies

difficult, the range of chlorophyll integrations is also comparable with those modelling and observations reported by Doney465

et al. (1996) within the upper 140 m (10–30 mg m−2) at BATS.

Both model and in situ data show that phytoplankton in the two layers have a contrasting seasonality at BATS, which is also

seen in statistical partition results of (Viljoen et al., 2024) and in other seasonally stratified regions like the northern Red Sea

(Brewin et al., 2022). The subsurface chlorophyll stock shows a seasonality with a minimum (1.89 mg m−2) in spring and a

maximum (39.94 mg m−2) in autumn. The maximum matches the in situ measurements (35.24 mg m−2), while the minimum470

displays a larger discrepancy from observations (11.57 mg m−2) in spring. However, this minimum value estimated from

our two-layered model agrees with the minimum (near zero) of the chlorophyll integration below the mixed layer partitioned

using a conceptual model applied to vertical profiles in Viljoen et al. (2024). The former maximum from our models is also

comparable but higher than the maximum of their median chlorophyll integration climatology (around 20 mg m−2) (Viljoen

et al., 2024). This discrepancy may be attributed to the deeper integration boundary used in our model and also the different475

choice of climatology (time-mean and median) (Viljoen et al., 2024). Given that the measurements below 50 m are scarcer,

especially in spring (Anugerahanti et al., 2020), than near-surface measurements, the values predicted by our model may still

be considered reasonable.

This model simulates a strong seasonality in DIN stocks accumulated within the mixed layer, in agreement with in situ

data (Fig. 4c and g). It shows a peak (11.04 mmolN m−2) in spring, agreeing with the peak value in situ measurements480

(10.25 mmolN m−2) of NO2+NO3 stocks, and a minimum (1.21 mmolN m−2) in summer, slightly higher than shown in

observations (0.04 mmolN m−2). These lower values (near zero) of in situ measurements during summer and autumn are

limited by the sensitivity of the method used for measuring DIN (Steinberg et al., 2001; Lomas et al., 2013), unable to resolve

low concentrations of DIN. Thus, our estimate could be a reasonable representative of the seasonal minimum surface DIN

stocks.485

Our results underscore the challenge of accurately simulating subsurface communities, likely due to difficulties in accurately

determining parameters for the subsurface layer. Modelling subsurface nitrate dynamics, especially seasonality, is particularly

challenging with a simplified model. Despite this, our model aligns with observed time-mean DIN values (around 460 mmolN

m−2), closely matching NO2+NO3 integrated stocks (468 mmolN m−2). Moreover, while uncertainties in deep-ocean nitrate

dynamics remain, these have minimal effect on subsurface phytoplankton growth which is driven by subsurface light. Sensi-490

tivity analysis further emphasizes the importance of determining subsurface parameters for simulating subsurface chlorophyll

and nutrient dynamics. Although the parameters for the subsurface layer in our model are derived from the assimilation of the

observational data at BATS (e.g., Schartau and Oschlies, 2003), there is a need for more precise parameterizations tailored to

the specific subsurface environment to enhance our understanding of phytoplankton communities’ responses to climate change.

This can only be achieved through modellers working together with observationalists, targeting key measurements of important495

subsurface parameters, and improving understanding of controls on subsurface phytoplankton.

Some studies have observed increasing trends in integrated chlorophyll at BATS (e.g. 150m-integration from 1989 to 2003

Saba et al., 2010). However, recently, Viljoen et al. (2024) observed the opposite trends in surface and subsurface chlorophyll
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integration between 2011 to 2022. This opposite trend is also captured in this two-layered model. Our model reveals that shoal-

ing mixed layer depth increases the light availability both at the surface and subsurface layers. However, the two phytoplankton500

communities at the surface and subsurface layers show different responses to this increase in light intensity. At the surface

layer, the C:Chl ratio in this model shows an increasing trend over 2011-2022, which is also seen from Viljoen et al. (2024).

This change in C:Chl ratio explains most of the change in surface chlorophyll biomass. Although our model shows a decreasing

trend in phytoplankton concentration whereas Viljoen et al. (2024) showed no trend in surface, this change is small (7.7%), and

there is little trend in surface nutrient concentration, and no trend in zooplankton. These support the mechanism at the surface505

layer observed in Viljoen et al. (2024), that intensifying light does not directly drive a decrease in carbon stocks, instead, it

changes the physiology of phytoplankton by increasing the C:Chl ratio which leads to a decreasing chlorophyll biomass over

2011-2022. Different from the surface layer, an increasing trend in chlorophyll stocks is still seen from both observations and

our model. This is because the growth of phytoplankton is purely driven by the light in the subsurface and the C:Chl ratio is

fixed. The intensifying light directly leads to an increase in phytoplankton and chlorophyll biomass, confirmed by the large510

consistent change in subsurface light, chlorophyll, phytoplankton and zooplankton concentration, which also agrees with the

observations in Viljoen et al. (2024). Understanding these mechanisms will help improve projections of future chlorophyll

stocks in stratified systems with ocean warming.

Despite our model providing valuable insights into vertical variations in plankton community composition and helping to

understand drivers of trends during the past decade at BATS, it is important to acknowledge its limitations. The processes515

designed in this model do not incorporate all the key biogeochemical processes in stratified systems, such as nitrogen fixa-

tion and iron limitation, which should be considered in future developments. Moreover, the model does not explicitly account

for important biological components such as bacteria, viruses, and detritus, which play a crucial role in nutrient cycling and

ecosystem functioning. Our model does not incorporate the diversity of phytoplankton or zooplankton within the two layers.

It also assumes the conservation of phytoplankton and nutrients within the mixed layer during shoaling, which may overes-520

timate the surface phytoplankton, as they could be lost from the surface layer when mixed layer shoals. We also assume that

the two vertically separated communities of phytoplankton and zooplankton do not directly interact, only implicitly through

the exchange in nutrients between layers. Good agreement between model output and observations supports this assumption.

Nevertheless, future work should investigate if an explicit interaction between ecosystems would further improve model sim-

ulations. There are also other limitations related to model application. As a two-layered box model, coupling it with other525

more complex physical models will not be straightforward. Furthermore, the parameters presented in this study are specifically

designed for the BATS site and will likely require adjustment for other stratified locations.

5 Summary

We developed a two-layer NPZ model for stratified oceans, partitioning the euphotic zone into a surface layer above the

mixed layer depth and a subsurface layer below it for the first time. The model applies distinct parameters in each layer to530

capture the contrasting environmental conditions for phytoplankton growth at BATS. This model also managed to simulate the
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chlorophyll seasonal and interannual variability both at the surface and subsurface layers, reproducing observed contrasting

trends in chlorophyll between two layers over the past decade. Furthermore, the model identifies distinct mechanisms driving

these contrasting trends offering valuable insights for projecting chlorophyll dynamics in stratified oceans. While the model

provides meaningful results, we acknowledge its limitations and suggest directions for future work.535
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