Dear Scott King,

Many thanks for your review. We have responded to each of the comments you made in detail below, and have revised the text as indicated. Line numbers indicate lines in the 'tracked changes' pdf that we will submit to the editor today.

Kind Regards,

Gwynfor Morgan & co-authors.

RC2.01	This is an interesting and generally well-written contribution. There is a lot of
	discussion about phase transformations so this work is timely. I noted the
	presentation as "good" because I struggled with some of the figures and felt
	the author's need to do better. The text is clear and concise—almost terse—
	but fully understandable. With some revision to the figures the presentation
	would be excellent.
	Noted – we hope that the amendments have made the text less terse and
	easier to understand.
RC2.02	I struggle because the authors neglect temperature-dependent rheology
	until the last section, especially because we have shown that it is important
	in layering 20+ years ago (King and Ita, 1995) but, I recognize that the
	authors are trying to do a clean series of calculations and keep things as
	simple as possible. At the very least, they need to acknowledge the
	important role temperature-dependent rheology can play.
	We have added this discussion into the revised manuscript (lines 94-96).
	We hope the additional text clarifies the limitations of our rheology
RC2.03	The work uses the Bousinessq approximation and does not include the
	latent heat associated with the phase changes. That is the correct
	approximation (latent heat has the same non-dimensional terms as
	adiabatic compression and shear heating, so if you include it you should at
	least use extended Bousinessq). My question is have you thought about the
	role of latent heat? Is it secondary? You should alert the reader to this
	upfront. An old but useful ? reference might be Ita and King, 1994 where we
	found the formulation of the equations wasn't a major factor suggesting that
	is right. I don't know whether this 30 year old work stands the test of time or
	not.
	We did briefly discuss this – in our discussion of the reference simulation
	(line 122 in the revised manuscript). We have added an additional citation to
	the Ita & King 1994 paper and have modified our language slightly to clarify
	our meaning.
RC2.04	Line 37: This is odd coming from me—because I am a big fan of non-
	dimensional formulations—but it would help you communicate to the non-
	geodynamics deep earth reader if you listed the related Clapeyron slopes
	along with values of P here.
	We have listed these in the revised manuscript (line 38 of the revised
	manuscript).
RC2.05	Line 40: You should list Table 1 before listing Table 2 (or reverse the order)

	This has been corrected. Thanks for noting this error.
RC2.06	Line 48: Actually, Ita and King, 1994 and 1998 did what you describe in the
	much more distance past at least for the olivine system reactions, there
	wasn't enough pyroxene/garnet data to do that part.
	Citation to Ita & King 1994 added, and the sentence modified slightly.
	apologies for the insufficient reference to literature.
RC2.07	Lines 54: I'm not sure Branching or Curving should be capitalized that's a
	copy editor thing.
RC2.08	Line 78: Post-Garnet -> post-garnet
RC2.09	Lines 84-85: Curving -> curving; Branching -> branching
RC2.10	Figure 3: Post-Garnet -> post-garnet
	Thanks for indicating these errors to us. Corrected.
RC2.11	Line 106: Because you are focused on slabs/downwellings, this seems to be
	a real short coming. You should call attention to it for the reader. Here I think
	about Christensen, 1984 "In almost all cases power-law rheology leads to
	considerably different flow patterns and heat transfer properties than those
	predicted for Newtonian convection."
	We have added some discussion on this to this section (lines 126-130 in
	revised manuscript). Thanks
RC2.12	Line 108: Olivine-out -> olivine-out
	Corrected, thank you.
RC2.13	Figure 5, lines 144-146: presenting two slices through a 3D model is not very
	intuitive as we know (e.g., Tackley et al., 1993) that different behavior can be
	happening in different parts of the sphere. I was going to suggest showing
	radial correlation functions or maps at the 660 km depth but, I saw later that
	you present radial temperature histograms (Fig. 11) and so you must have
	the code to do this. I would find that more persuasive. I realize the challenge
	is that when you have some slabs stagnating and some not this might be
	misleading but, I think those would be more reliable than the single slices.
	Temperature histogram comparing simulations 100 and 101 now included
	as figure A1 in revised manuscript.
RC2.14	Lines 160-164: I wonder if you can come up with a way to quantify
	stagnation or not a bit better. I think we used to use things like the reduction
	in radial velocity near the transformation. I admit it might suffer the
	challenges I brought up regarding radial correlation functions but, I find the
	reliance on patterns—especially when not shown as in this passage—to be
	unsatisfying.
	End-of simulation radial RMS velocity and mass flux at 720 km depth added
	as figure A3 and discussed in Sections 2.6.1 (line 209-213 and 2.6.2 (line
	227-240 in revised manuscript).
RC2.15	Line 169-168: This wording is a bit cumbersome. Maybe something more
	like, "As we increase the proportion of the donwelling subject to counter-
	convective forcing, stagnation becomes more likely.
	We have clarified the language here (line 202 in revised manuscript).
RC2.16	Figures 6 and 7: Here I found the images and the text unsatisfying. I believe
	you would make a stronger case if you had a more quantitative measure. It

	took a lot of flipping back and forth to try and see the difference between
	these.
	We have added radial RMS velocity and mass flux at 720 km depth plots to
	our appendix (figure A3) and discussed them in the main text (see response
	to RC2.14).
RC2.17	Figure 8: The slope of the grey band (not rough region) is not constrained by
	the calculations. I assume the authors are using theory to guide the
	slope. It is unfortunate that they have so many calculations with Pcool
	greater than -0.025 but, I would not suggest they leave any off. It appears
	that those calculations could have been used to better determine the line
	(ahh, hindsight is 20/20). Plotting the change of regime suggested by Ishii et
	al. (2023) would help to make the point in lines 184-185. My impression is
	that the slope is not the important point of the figure, the point is that the
	change happens well short of where Ishii et al. predict.
	This figure is now figure 7. We have added an indication of the Ishii et al data
	for the PGt reaction to this figure. We have changed the sign of the slope
	since inspecting the mass flux data and the radial velocity data suggests
	simulation 107 is close to whole-mantle convection, but we still have some
	stagnating downwellings in the temperature field, suggesting 107 is close to
	the transition between the two regimes. You are correct, the main point of
	the figure is that the change in dynamic regime happens at much higher
	phase buoyancy parameter than Ishii et al suggest. We note this in the main
	text on lines 220 and 225 in the revised manuscript.
DC0 10	Lines 010, 010. They are in a much laws with the Events Key an atalyii where here is
RC2.10	Lines 212-216: There is a problem with the Frank-Kamenetskii rheology
RG2.10	(equation 7) when used for slabs. Because of the exponential it is too weak
KC2.18	(equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago
RU2.18	(equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005).
KU2.18	(equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing
NC2.18	 (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings
NC2.18	(equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility
KC2.18	 Lines 212-216: There is a problem with the Frank-Kamenetskil rheology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on
KC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskil meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics.
RC2.18 RC2.19	 Lines 212-216: There is a problem with the Frank-Kamenetskil meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11.
RC2.18	 Lines 212-216: There is a problem with the Frank-Kamenetskil meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology
RC2.18	 Lines 212-216: There is a problem with the Frank-Kamenetskil rheology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology
RC2.18	 Lines 212-216: There is a problem with the Frank-Kamenetskil meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above.
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskii rheology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown
RC2.18	 Lines 212-216: There is a problem with the Frank-Kamenetskii meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskii rheology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskii meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a significant geodynamic effect. In the revised text we explain how the
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskil meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a significant geodynamic effect. In the revised text we explain how the rheological simplifications of a 'weak' temperature dependency we apply in
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskil meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a significant geodynamic effect. In the revised text we explain how the rheological simplifications of a 'weak' temperature dependency we apply in our circulation model move us towards conditions where downwelling
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskii meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a significant geodynamic effect. In the revised text we explain how the rheological simplifications of a 'weak' temperature dependency we apply in our circulation model move us towards conditions where downwelling stagnation is more likely, not less. For the conclusion we reach we don't feel
RC2.18	Lines 212-216: There is a problem with the Frank-Kamenetskii meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a significant geodynamic effect. In the revised text we explain how the rheological simplifications of a 'weak' temperature dependency we apply in our circulation model move us towards conditions where downwelling stagnation is more likely, not less. For the conclusion we reach we don't feel that further calculations are necessary to apply the understanding to the
RC2.18	 Lines 212-216: There is a problem with the Frank-Kamenetski meology (equation 7) when used for slabs. Because of the exponential it is too weak (see Javaheri et al, 2024 or King, 2009). It has been shown some time ago that rheology matters (King and Ita 2005). The text now includes some discussion about the possibility that increasing the temperature-dependence of the viscosity will make the downwellings less likely to stagnate (line 270-274 in revised manuscript). This possibility doesn't change the conclusions about the role of the garnet-out reaction on Earth's mantle dynamics. Section 3.21 find this section to be more persuasive because of Figure 11. Adding one more calculation without the temperature-dependent rheology would be useful and would mitigate some of my concerns over rheology above. We do not feel that this further calculation is necessary – we have shown that for the simplest possible case PGt with the currently proposed value of the phase buoyancy parameter is an order of magnitude away from having a significant geodynamic effect. In the revised text we explain how the rheological simplifications of a 'weak' temperature dependency we apply in our circulation model move us towards conditions where downwelling stagnation is more likely, not less. For the conclusion we reach we don't feel that further calculations are necessary to apply the understanding to the Earth. This is discussed on lines 273-274 and 317-320 of the revised

RC2.20	References:
	Ita, J. J. and S. D. King, The influence of thermodynamic formulation on
	simulations of subduction zone geometry and history, Geophysical
	Research Letters, 125, 1463-1466, 1998.
	Ita, J. J., and S. D. King, The sensitivity of convection with an endothermic
	phase change to the form of governing equations, initial conditions, aspect
	ratio, and equation of state, Journal of Geophysical Research, 99, 15,919-
	15,938, 1994.
	King, S. D., On topography and geoid from 2D stagnant-lid convection
	calculations, Geochemistry, Geophysics, Geosystems, 10, Q3002,
	2009. doi:10.1029/2008GC002250
	King, S. D., and J. J. Ita, The effect of slab rheology on mass transport across
	a phase transition boundary, <i>Journal of Geophysical Research</i> , 100, 20,211-
	20,222, 1995.
	Pejvak Javaheri, Julian P. Lowman, Paul J. Tackley, 2024. Spherical geometry
	convection in a fluid with an Arrhenius thermal viscosity dependence: The
	impact of core size and surface temperature on the scaling of stagnant-lid
	thickness and internal temperature, Physics of the Earth and Planetary
	Interiors, 349, 10/15/, https://doi.org/10.1016/j.pepi.2024.10/15/.
	lackley, P.J., Stevenson, D.J., Glatzmaler, G.A. and Schubert, G., 1993.
	Effects of an endothermic phase transition at 670 km depth in a spherical
	model of convection in the Earth's mantle. <i>Nature</i> , 361(6414), pp.699-704.