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Abstract. Floods are a recurring global threat, causing lives lost, property damage, and agricultural impacts. Accurate and 

timely flood inundation forecasts are crucial for effective disaster preparedness and mitigation. However, traditional flood 

forecasting methods often face challenges in terms of computational demands and data requirements, particularly when 

applied to large geographic areas. This study presents a novel approach to scaling a data-driven flood forecasting framework, 

Forecasting Inundation Extents using REOF (Rotated Empirical Orthogonal Function) (FIER), to large geographic regions. 15 

FIER leverages historical satellite imagery and streamflow data to predict flood inundation extents without relying on 

complex hydrodynamic models. We demonstrate the effectiveness of applying FIER over a large geographic extent using 

watershed boundaries to create individual FIER models and then mosaicking the results geographically to provide large 

flood inundation predictions. The Upper Mississippi Alluvial Plain in the United States was used as a test region. We 

evaluated multiple buffer sizes for watersheds for generating the data-driven FIER models to reduce edge effects along 20 

watershed boundaries when mosaicking the individual FIER implementations. The FIER method using watersheds, coupled 

with different forecast lead times from the National Water Model operational streamflow forecasts, was used to accurately 

predict the extent of surface water for select flood and low flow use cases. Our results show that the scaled FIER approach 

using watersheds yields higher accuracies for different error metrics, including the Structural Similarity Index Measure 

(SSIM), RMSE, and MAE. The metrics for the watershed-scaling approach resulted in SSIM ranging from 0.699-0.804, 25 

RMSE range of 7.15- 8.60, and an MAE range of 1.09-1.88 compared to a baseline area with SSIM ranging from 0.643-

0.693, RMSE range of 8.112-	 11.681, and an MAE range of 1.969-1.989. We found that scaling FIER using a watershed 

approach yielded statistically significant better performance compared to the baseline area: this is particularly true when 

using buffer sizes for the watersheds of 0-10km and when applying a post-processing correction to the FIER outputs. This 

approach offers a promising solution for large-scale flood forecasting, particularly in data-scarce regions or ungauged basins. 30 

Future research will focus on refining the framework to incorporate additional hydrological variables and improve the 

accuracy of long-range flood inundation predictions. 
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1 Introduction 

Natural disasters, with flooding the most prevalent, are estimated to cause over $300 billion in annual direct asset losses 

globally (Hallegatte et al. 2017). A recent study by the World Bank suggests that 1.47 billion people, or 19 percent of the 35 

world population, are directly exposed to substantial risks during 1-in-100-year flood events. Of these 1.47 billion people 

exposed to flood risk, 89 percent live in low- and middle-income countries (Rentschler and Salhab, 2020). Climate change 

projections for 2030 indicate that the proportion of the population exposed to floods will increase (Tellman et al., 2021). 

Since 1980, 42 riverine and urban flooding events in the United States have cost a total of $197.2B (on average $4.4B per 

year) (Smith, 2020). Research has found that flood exposure and damages in the U.S. could also be exacerbated in the future 40 

due to anthropogenic climate change, population growth, and urban development (Tate et al., 2021; Wing et al., 2022). 

Accurate and timely forecasts that capture the spatiotemporal evolution of flood inundations with sufficient lead time for 

actions are crucial for mitigating the devastating impacts of floods on communities and infrastructure. 

Hydrodynamic modeling is a widely used method for simulating the spatiotemporal behavior of flood inundation by creating 

inundation maps computed from modeled streamflow (Teng et al., 2017). These hydrodynamic models are highly sensitive 45 

to inputs, including the streamflow, the boundary and initial conditions, the digital elevation model (DEM) used, and friction 

coefficients, all of which are difficult to obtain and have associated variation and uncertainty.  These uncertainties in 

hydrodynamic model calibration and data inputs significantly influence the uncertainty of flood inundation predictions 

(Bates et al., 2014; Teng et al., 2017) with the inundation extent estimates most sensitive to topography and friction 

coefficients (Yalcin, 2020). Hydrodynamic models carry a heavy computational burden, especially for a more accurate high-50 

resolution large-scale forecasting framework, that could affect forecast lead-time and accuracy (Ben-Haim et al., 2019). 

While continental-scale hydrodynamic models such as LISFLOOD-FP (Sampson et al., 2012),  CaMa-Flood (Yamazaki et 

al., 2011), or HyMAP (Getirana et al., 2012) are more computationally efficient and have been successfully implemented at 

large scale, they are typically run as “offline” models or are set up to run at a coarse resolution (1 - 25 km resolution) which 

limits the use for operational flood inundation purposes at the local level.  Even these more efficient models still require 55 

detailed parameterization, which can introduce errors, making them impractical in some cases due to data requirements, 

uncertainty, and complexity. 

An area of active research in flood forecasting leverages advancements in Earth observations and machine learning to 

enhance prediction accuracy and provide spatially explicit inundation information. Data-driven approaches are being 

explored to establish relationships between rainfall forecasts, satellite-observed inundation patterns, and other 60 

hydrometeorological variables, enabling more efficient and potentially accurate flood extent predictions. For example, a 

recent study published methods for forecasting inundation extent using Earth observation data, such as rainfall forecasts with 

machine learning approaches to estimate water fraction (Du et al., 2021). Another example that uses machine learning to 

estimate flood inundation extent is the Google Flood Forecasting system (Nevo et al., 2022), which trains a per-pixel 

thresholding algorithm on historical satellite observations of flooding. Indeed, integrating historical satellite data, machine 65 
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learning algorithms, and hydrologic model outputs offers a promising avenue for developing robust flood forecasting 

systems. 

A promising data-driven framework for predicting surface water extents using satellite and hydrologic data is the Forecasting 

Inundation Extents using Rotated Empirical Orthogonal Function (FIER) framework (Chang et al., 2020). This framework 

operates by extracting historical patterns to identify recurring spatial and temporal patterns of flooding using a statistical 70 

technique called Rotated Empirical Orthogonal Function (REOF) analysis (Kaiser, 1958). Then these flood patterns are then 

correlated with historical hydrological data (e.g., streamflow, water levels) to build regression models. Using simulated 

(retrospective or forecast) hydrological data as input, FIER synthesizes corresponding flood maps. The main advantages of 

this framework are its computational efficiency, scalability, and ability to operate in data-scarce regions. FIER 

implementations are typically trained on and applied to specific regions, limiting their applicability to broader areas. 75 

Hydrological regimes, topography, and flood characteristics vary significantly across different geographical locations, 

requiring regionally tailored implementations for accurate predictions. This is due to FIER being a data driven method 

meaning that the method is dependent on the data inputs and the patterns it can extract from the data. FIER has been applied 

to the Mekong Delta (Chang et al., 2023) and small regions in the US (Rostami, et al. in review) but it is unknown how the 

method will perform when attempting to develop the model for very large areas (e.g.,all of the Mississippi basin) when there 80 

may be varying patterns of floods. Moreover, there is a computational challenge as the nature of developing the flood 

patterns requires loading data in memory for processing so applying FIER over large areas can be a challenge. Expanding the 

spatial coverage of FIER is crucial for the applicability of the method for an operational product over large areas. 

This paper explores the feasibility of applying FIER in a manner that creates a consistent flood forecast for large areas 

making the methods applicable for operational use. We apply FIER for multiple watersheds across a large area and test 85 

combining them to create a seamless surface water predictions. The results of the method are compared against a baseline 

implementation of FIER for a single area to compare how the combination for large area simulation compares to the 

traditional methods. The technical implementation and statistical validation are described. Furthermore, we provided 

additional analysis to highlight the method’s capability to provide accurate flood forecasts. This approach has the potential to 

be highly beneficial for operational flood forecasting and can contribute to more effective decision-making in the events of 90 

floods. By enabling the application of FIER to large river basins with diverse flood characteristics, this research paves the 

way for developing robust, computationally efficient flood inundation forecasting systems worldwide, particularly in data-

scarce regions where traditional hydrodynamic models are often infeasible. 

2 Details on the FIER framework 

The FIER framework offers a novel approach to flood inundation forecasting, leveraging a data-driven method to produce 95 

spatial flood inundation estimates without the complexities and computational needs of traditional hydrodynamic models. At 

its core, FIER establishes a statistical relationship between historical flood patterns, derived from satellite imagery, and 
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corresponding hydrological data, typically streamflow or water levels. This relationship is then used to predict historical and 

future flood extents based on modeled hydrological conditions. 

The FIER process begins by applying Empirical Orthogonal Functions (EOF) (Lorenz, 1956) to a multi-temporal stack of 100 

satellite images that capture historical flood events. EOF, a variant of Principal Component Analysis (PCA), decomposes the 

spatiotemporal variability of the images into a set of orthogonal spatial patterns, and their corresponding temporal variations. 

The original images can be reconstructed by weighted combinations of these components. In many cases the signal from any 

individual component may not be significantly different from random noise, therefore a Monte Carlo significance test 

(Hannachi, 2004) is performed to identify the significant components. The extracted significant components that are retained 105 

represent truncated information. In some fields physical meaning can be assigned to components, but the extracted 

significant components may not contain isolated signals, meaning individual components are hard to interpret as physical 

processes (Dommenget and Latif, 2002), therefore a rotation is applied, in this case the varimax rotation, which changes the 

orientation of the factors without altering their fit to the data to obtain simple structures. This makes it easier to  physically 

interpret the inundation patterns in the components. The process of rotating the EOF is known as Rotated Empirical 110 

Orthogonal Function (REOF) analysis. The resulting spatial patterns are termed Rotated Spatial Modes (RSMs) whereas 

their corresponding temporal variations are called Rotated Temporal Principal Components (RTPCs). Each RSM represents 

a distinct spatial pattern, while its associated RTPC describes how that pattern evolves over time. Next, a correlation analysis 

is performed that identifies the RTPCs that are significantly correlated with the hydrological data, representing flood-

relevant modes. Regression models are then built to link these flood-relevant RTPCs to the corresponding hydrological 115 

variable. These regression models can consist of using generalized linear models (Chang et al., 2020) or more sophisticated 

machine learning/deep learning approaches (Chang et al., 2023). To forecast flood inundation, forecasted hydrological data 

are used as the input into the trained regression models to predict future RTPCs. These predicted RTPCs are then multiplied 

by their corresponding RSMs and summed to synthesize a forecasted flood signal (essentially a reverse PCA), which can be 

further processed to generate a map of predicted flood extent. Figure 1 displays a flowchart schematic which summarizes the 120 

FIER process, readers are directed to (Chang et al., 2020, 2023) for additional details on the FIER process. 
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Figure 1: Schematic of the FIER workflow. Adapted from (Rostami, et al. in review). 

 125 

Scaling the FIER approach to larger geographic extents presents several challenges. One key limitation is the diminishing 

signal of floods as the area of analysis increases. FIER relies on identifying recurring spatial patterns of flooding from 

satellite imagery. As the area expands, these patterns become less distinct and more challenging to extract, particularly in 

regions with diverse hydrological regimes or where flooding is not widespread. This can lead to reduced accuracy and 

difficulty in establishing robust relationships between flood patterns and hydrological variables because the REOF process 130 

may extract other signals occurring on the land surface. 

Additionally, computational challenges arise when processing large volumes of satellite data and performing REOF analysis 

over extensive areas. The FIER implementation requires significant computational resources and processing time when 

applied to large areas at regional to continental scales. For example, applying the REOF process over large areas requires 
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reading in an entire time series of satellite imagery into memory and applying the PCA and REOF process over massive 135 

arrays. This challenge limits its applicability to select organizations with such computational resources and hinders its 

operational feasibility due to computational needs and runtime. These limitations necessitate exploring alternative 

approaches, such as the proposed watershed-based scaling method, to overcome the diminishing flood signal and 

computational bottlenecks associated with scaling FIER to larger geographic extents. 

3 Materials & Methods 140 

3.1 Study Area 

This study focuses on a flood plain as part of the lower Mississippi basin, more specifically the region extending from 

approximately St. Louis, Missouri past Memphis, Tennessee. This region was selected because it is characterized by 

extensive floodplains along the Mississippi River and complex network of tributaries which also experience flooding. The 

confluence of multiple major rivers occurs in the region including the Mississippi, Ohio, Tennessee, and Cumberland Rivers.  145 

Furthermore, there are reservoirs within the region which are used for hydropower generation and to regulate flow into the 

Mississippi River to reduce flooding. Flood events in the lower Mississippi area are primarily triggered by rainfall and 

snowmelt. More recently, the region is experiencing a shift in climate leading to increases in streamflow (Yin et al., 2023). 

In 2011 and 2019 there were flooding events related to heavy precipitation and late spring snowmelt (Gledhill et al., 2020) 

where the recent flood event in 2019 was regarded as one of the longest lasting events in the past century (Pal et al., 2020). 150 

All these factors lead to a complex hydrology for the region making it an ideal candidate for testing the scalability of the 

FIER method. 

Figure 2 shows the study area along with historical average (2012-2020) surface water fraction derived from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) sensors.  The study uses two subsets of the broader region for testing the 

methods: 1) a baseline region and 2) the watersheds surrounding the baseline region (see details in section 2.3 Experimental 155 

Design for further explanation on the two subregions). The baseline region is marked in red whereas the watersheds are 

shown with the black outlines. 
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Figure 2: Study area map showing the average surface water fraction derived from the VIIRS sensor from 2012-2020 along with 
two subregions, the baseline region for FIER in red and the surrounding watersheds in black. 160 
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3.2 Data 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is an optical sensor onboard the Suomi-NPP, NOAA-20, and 

NOAA-21 satellites. The VIIRS sensors provide images with a spatial resolution of 375 meters across five spectral bands 

ranging from visible to thermal infrared channels and has a swath width of 3000 km with a consistent across-scan spatial 165 

resolution. These sensor characteristics ensure more comprehensive global daily coverage and make it more favorable than 

the MODIS data for flood mapping (Li et al., 2020, 2022). The National Oceanic and Atmospheric Administration (NOAA) 

uses the VIIRS imagery from the three satellites to produce an operational daily surface water fraction estimate for the entire 

globe (Li et al., 2018). The VIIRS water fraction product produced by NOAA was used to extract the spatiotemporal patterns 

of surface water and flood changes using the FIER framework. These data were accessed from the AWS Registry of Open 170 

Data, specifically the NOAA Joint Polar Satellite System (JPSS) cloud storage bucket (https://registry.opendata.aws/noaa-

jpss/). The data were ingested into Google Earth Engine (Gorelick et al., 2017) as an ImageCollection. Earth Engine was 

used to preprocess the VIIRS data and extract data cubes in the format required for processing with FIER.  We used the full 

record of VIIRS water fraction maps for the study, 2012-01-20 to, however the VIIRS water fraction data has a missing 

period from 2021-01-01 to 2023-08-10 that was excluded from the study. 175 

We used the National Water Model (NWM) streamflow data as the hydrologic variable to predict the flood-relevant 

temporal patterns with FIER. The NWM (Cosgrove et al., 2024) is a hydrologic modeling framework developed by NOAA 

at the National Water Center in Tuscaloosa, Alabama that simulates streamflow data for over 2.7 million river reaches across 

the United States along with other hydrologic information such as snow water equivalent and soil moisture. The NWM 

forecasts include two datasets, the retrospective dataset which is a historical simulation from 1979 to 2023 and the 180 

operational dataset which is run every day to produce operational forecasts since late 2018. The operational dataset includes 

a short-range 18-h deterministic forecast that provides flow estimates on an hourly time step, a medium-range forecast with 

10 days (member 1) and 8.5 days (members 2–6) with a 3-h time step and a long-range 30-day four-member ensemble 

forecast on a 6-h time step. The short-range forecast is initialized every hour and the medium- and long-range forecasts are 

initialized every 6 h. In addition to the forecast runs there is also an analysis and assimilation run which is a nowcast of 185 

current streamflow conditions that includes data assimilation from streamflow gauges and a run with no data assimilation. 

We used both NWM datasets in this study; the retrospective data version 3.0 were used to fit the FIER temporal components 

to the historical simulated streamflow whereas the operational products were used to predict flood extent for select cases. 

The retrospective data was accessed through the AWS Registry of Open Data from the NOAA National Water Model 

CONUS Retrospective Dataset (https://registry.opendata.aws/nwm-archive/). The operational data was accessed via the 190 

Google Cloud Public Dataset on BigQuery (Markert et al., 2024b). 
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3.3 Experimental Design 

The experimental design for this study aims to evaluate the effectiveness and accuracy of scaling the FIER method across 

larger spatial extents. We tested two approaches: applying FIER to a singular baseline area encompassing a portion of the 

study area, which is used as the control, and applying FIER multiple watersheds individually before mosaicking the results 195 

together. The study area was subdivided into 46 smaller watersheds using HUC8 watershed boundaries (see Fig. 4.2 for 

geographical representation of the watersheds). This comparison is meant to assess whether dividing the region to run FIER 

individually and then mosaicking together impacts the accuracy of the flood predictions. Given that the FIER method is data-

driven where the patterns it can extract, and the results of flood inundation are based on the data inputs. This can cause edge 

effects along watershed boundaries when mosaicking the individual FIER implementations. To mitigate potential edge 200 

effects and ensure smooth transitions between mosaicked watershed predictions, varying buffer sizes (0, 1, 2, 5, 10, 20, and 

50 km) were tested when processing individual watersheds. Multiple buffer sizes were tested to determine the optimal buffer 

size for minimizing discrepancies at watershed boundaries. 

The FIER framework requires that all pixels in a time-series be present to use to extract patterns, therefore only imagery with 

99.9% clear sky conditions were used to limit the gaps in space for the extracted spatial patterns. Water fractions were 205 

predicted and evaluated using dates where the observed imagery had a greater than 90% clear sky conditions. The dates used 

for training were not evaluated for performance and used only to fit the FIER framework. 

FIER predictions use truncated information from the modes that are correlated with hydrologic variables, meaning 

mathematically the predicted water fraction cannot maintain its original scale of 0 to 100%. Other research (Rostami et al, in 

review) have applied a quantile mapping method to the FIER predictions which restore the complete signal range as much as 210 

possible. Quantile mapping is widely used in climate and hydrology studies to correct the biases in model-estimated values 

(Enayati et al., 2020; Farmer et al., 2018). The method matches the quantiles of Cumulative Distribution Functions (CDFs) 

from the predicted to the observed. The CDFs were calculated for all FIER trials (baseline and different buffers) using only 

the dates that were used for training on a per-pixel basis. The quantile mapping post-processing was applied for the 

prediction dates for all FIER trials. The two versions of FIER outputs, the original FIER predictions and post-processed 215 

predictions utilizing quantile mapping, were evaluated. This allows for evaluating the impact of post-processing on the 

accuracy of the mosaicked results compared to the baseline. 

3.4 Statistical Analysis 

To effectively compare the different experiments with the baseline, a statistical analysis was performed to understand and 

compare the accuracies as well as test if there are statistical differences between the experiments and baseline.  The accuracy 220 

assessment employs multiple metrics: Structural Similarity Index Measure (SSIM) (Wang et al., 2004) to assess the spatial 

accuracy of flood extents, Root Mean Square Error (RMSE) to quantify the accuracy of intensity of flood predictions, 
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Relative RMSE to assess the errors relative to the observed value, and lastly Mean Absolute Error (MAE) as another 

statistical measure to quantify the accuracy of  intensity of flood predictions (Jackson et al., 2019). 

The SSIM metric is defined by equation 1: 225 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = ("#!#!$%")("'!#$($)
(#!$$##$$%")('!$$'#$$%$)

 ,         (1) 

Where µx is the pixel sample mean of x, µy is the pixel sample mean of y, sx2 is the variance of x, sy2 the variance of y, sxy is 

the covariance of x and y, x is the test image, y is the reference image, c1=(k1L)2, c2=(k2L)2 two variables to stabilize the 

division with weak denominator, L is the dynamic range of the pixel-values (in this case 100 to represent the range of water 

fraction), k1=0.01 and k2=0.03 by default. The SSIM index is calculated on various windows of an image, in this case we 230 

used an 11x11 gaussian kernel for the calculation, and then averaged across the image to get the final SSIM metric. The 

SSIM has a range of -1 to 1 where 1 indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect anti-

correlation. 

The RMSE metric is calculated using equation 2: 

𝑅𝑀𝑆𝐸 = ,)
*
∑ (𝑥+ − 𝑦+)",
+  ,          (2) 235 

Where xi are the observations, yi are the observed values, and n is the number of observations. 

The RRMSE metric is calculated using equation 3: 

𝑅𝑅𝑀𝑆𝐸 = /
"
%∑ (.&/0&)$'

&
"
'∑ (0&

$)'
&

 ,           (3) 

Lastly, the MAE is defined as equation 4: 

𝑀𝐴𝐸 = )
*
∑ |𝑥+ − 𝑦+|,
+  ,           (4) 240 

These error metrics were calculated for each pixel comparing the predictions to the observed and then averaged across the 

baseline area for each date of prediction. The baseline area was used to calculate the metric averages to keep the area 

consistent between the baseline and mosaicked results so that the results can be compared without influence of different 

areas. 

The last statistical test used was the Kolmogorov-Smirnov test (Massey, 1951) to statistically compare the distributions of 245 

the evaluation metrics between the baseline and mosaicked results for both original and post-processed FIER outputs. This 

test compares whether two samples came from the same distribution. The test was performed for each metric and for every 

buffer size but keeping the baseline consistent. Lastly, the one-sided test was used to identify whether a given error metric 

was statistically greater than or less than the baseline. For the SSIM metric we tested if the mosaicked predictions are 
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significantly greater than the baseline. For the other error metrics (RSME, RRMSE, MAE) we tested if the mosaicked 250 

predictions are significantly lower than the baseline. 

3.5 Case Studies 

The statistical analysis described in the previous section was done using retrospective NWM streamflow as inputs into FIER, 

however, running FIER for actual flood extents will involve using the operational NWM streamflow predictions. Using case 

studies serves to provide an evaluation of using the operational NWM for specific flood and low flow cases. We selected the 255 

statistically best FIER experiment for running the use cases. 

To identify dates to use as cases for the low flow example, we selected a representative reach within the region close to the 

center of the baseline region along the Mississippi River. The streamflow data for the representative reach was averaged by 

month. The months with the lowest streamflow for 2019 and 2020 was used to select two dates (one from 2019 and one from 

2020) as the low flow cases. This process was done using the NWM operational analysis and assimilation data. Figure 3 260 

displays the hydrographs for the reach where the low flow periods can be seen in 2019 and 2020. 

For the high flows, there were fewer options to select therefore a different approach was taken. We calculated the return 

periods for floods based on the NWM retrospective data for the representative reach within the region. We calculated the 

return periods on data from 1980-2018 using the Gumbel Type 1 distribution: 

𝑄12 = − log 6− log 61 − )
34
88 ∙ 𝜎 ∙ 0.7797 ∙ 𝜇 − (0.45 ∙ 𝜎) ,       (5) 265 

where Qrp is the return period flow, rp is the return period in years, s is the standard deviation of the dataset, and µ is the 

average of the dataset. Next, we evaluated the return periods against the NWM operational analysis and assimilation from 

late 2018 - 2020 to identify time periods where the flow exceeded return periods. We used the NWM operational product to 

evaluate return periods because these are the data that would hypothetically be used in actual situations for forecasting FIER. 

Another criterion for selection was finding dates where the data were reserved and not used for training the models but used 270 

for evaluation. We selected a date that exceeded a 50-year return period in 2019 as well as a separate date that exceeded a 5-

year return period as flooding case studies to evaluate FIER predictions. We selected these events in order to have an 

extreme flooding event and a more common flooding case. 
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Figure 3: Streamflow hydrograph from the National Water Model (NWM) for the representative reach showing (a) retrospective 275 
simulations from 1980-2017 and (b) operational simulations from the analysis_assim run from 2018-2024. Horizontal lines indicate 
the 2-, 5-, 10-, 25-, and 50-year flood recurrence interval discharge values for the stream reach. 

 

We ran FIER with streamflow data from a nowcast from the analysis and assimilation, 7-day medium-range forecast, and 

with a 15-day long-range forecast from the NWM to evaluate how different forecast runs and time horizons affect the FIER 280 

outputs. Since NWM produces sub-daily streamflow predictions, we averaged the streamflow values for the prediction date 

to use as inputs into FIER. The medium-range and long-range NWM streamflow predictions have multiple ensemble runs, so 

we averaged these across the different ensembles. The medium-range and long-range streamflow predictions have multiple 

initialization times; we used the 00Z initialization for the forecasts to have a single forecast when calculating the streamflow 

values for the FIER extent predictions. We used the same statistics to evaluate the outputs from FIER for each of these use 285 

cases. 

4 Results 

4.1 Statistical Analysis 

The experimental design aimed to assess the feasibility of applying the FIER method over larger geographic scales by 

segmenting the area of interest (AOI) into multiple smaller watersheds and then mosaicking the results together. An analysis 290 

of the REOF process and regressions are provided in Appendix A. Here we focus on comparing the results of the mosaicked 

process to running FIER over a larger baseline area. Figure 4 displays the average error metrics and how they vary with 

buffer sizes. First, applying FIER to multiple watersheds and then mosaicking the results does not lead to poor performance 

compared to running FIER over the baseline AOI. When considering the original FIER outputs (green lines), Fig. 4 shows 

that the performance of the mosaicked results perform better than the baseline when the buffer size is smaller (0-10 km). 295 

When the buffer size is larger (20-50 km) then the error metrics of the mosaicked results begin to trend more closely aligned 
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to the baseline however are not that much lower than the SSIM metric at the lower buffer sizes. This is true for the SSIM, 

RMSE, and MAE metrics. For the RRMSE metric, the mosaicked results show higher errors from the original FIER outputs 

(no correction applied) compared to the baseline outputs but are closer to the baseline for the 1 and 2 km buffer experiments. 

When considering the post-processed outputs (blue lines), the mosaicked results perform better than the baseline for all the 300 

error metrics except for RRMSE. This is particularly notable for the SSIM metric, indicating that the post-processing applied 

to the mosaicked outputs are able to better capture the spatial patterns of observed flood inundation more effectively than 

either the baseline FIER output with post-processing or original outputs. 

A noteworthy observation is the increase in error metric values for the post-processed FIER outputs compared to the original 

outputs, particularly noticeable in the RMSE and RRMSE values (Fig. 4 blue lines compared to green lines in graphs b and 305 

c). Interestingly, the RMSE for the post-processed mosaicked results is much lower than that of the post-processed baseline 

output (blue lines in graph b). Moreover, this pattern of increasing error values is not present for MAE (graph d). RMSE and 

RRMSE gives more weight to larger errors, meaning these metrics are more sensitive to outliers than MAE. The results 

suggest that the post-processing reduces the absolute errors but introduces few larger errors than were present in the original 

outputs. 310 
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Figure 4: Graphs illustrating the impact of varying buffer sizes on the performance of the FIER method for flood inundation 
mapping, assessed using the areal average of four different metrics: (a) Structural Similarity Index Measure (SSIM), (b) Root 
Mean Squared Error (RMSE), (c) Relative Root Mean Squared Error (RRMSE), and (d) Absolute Error. The green lines 
represent the original FIER outputs, while the blue lines depict the corrected outputs after applying a CDF matching post-315 
processing step. The dashed lines indicate the baseline performance metrics obtained from applying FIER to a single, larger AOI. 

 

The other statistical analysis we performed was to compare the distributions of the errors. Figure 5 displays the CDF for the 

various error metrics and compares the baseline FIER predictions to the mosaicked FIER predictions with different buffer 

sizes. The CDF plots show that the original outputs (top row) have similar curve shapes aside from at the upper quantiles 320 

(0.8 - 1) where the mosaicked results for SSIM metric show more values with better performance compared to the baseline 

(black line). Conversely, the RMSE, RRMSE, and MAE curves show more values with greater errors compared to the 

baseline. The plots displaying the post-processed CDFs (bottom row) display a different pattern compared to the original 
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outputs. The SSIM curve for the mosaicked outputs displays better SSIM values compared to the baseline. However, the 

RMSE, RRMSE, and MAE CDF plots show that the post-processed mosaicked results have fewer values with less error 325 

(better performance) compared to the baseline for the lower quantiles (0 - 0.4) but have more values with higher errors 

(worse performance) at the upper quantiles (0.8 - 1) suggesting that the majority of errors for the post-processed results are 

due to large discrepancies with the observed. This supports the finding from comparing buffer sizes (Fig. 4) where the 

averaged RMSE metric worsens after the correction. The larger number of high error values can lead to higher RMSE and 

lower MAE errors because the RMSE metric is more sensitive to outliers than MAE. 330 

 
Figure 5: Cumulative distributions of different error metrics for the FIER spatial scaling experiments. The top row (a-d) shows 
the original FIER outputs, while the bottom row (e-h) shows the outputs after applying CDF matching as post-processing. 
Different colors represent varying buffer sizes used when delineating individual watersheds for the mosaicked FIER approach. 
The black line represents the baseline FIER run over the larger area. The metrics include: (a, e) SSIM, (b, f) RMSE, (c, g) 335 
RRMSE, and (d, h) MAE. 

 

Table 1 provides the p-values from one-sided Kolmogorov-Smirnov tests, indicating whether the distributions from the 

various approaches are statistically different. The p-values from the Kolmogorov–Smirnov test reveal that there are 

significant differences between the baseline FIER and the mosaic approach across both the various error metrics and buffer 340 

sizes. In general, the buffer sizes of 20 and 50 km show that the mosaicked results are not statistically better (higher SSIM or 

lower RMSE, RRMSE, and MAE) than the baseline for the original outputs. Furthermore, the mosaicked results for buffer 

sizes of 0-10 km have significantly better performance only for the SSIM and RMSE. While the mosaic outputs have values 

less than the baseline for the MAE metric, this difference is not significant. Additionally, the mosaicked outputs have a 

higher RRMSE than the baseline. 345 
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For the corrected FIER outputs, all buffer sizes show statistically significant differences in SSIM compared to the baseline, 

indicating that by correcting the mosaicked outputs, the results are better able to capture the spatial distribution of flooding 

than using a single FIER process for a larger AOI. Furthermore, mosaic outputs show significantly better performance 

compared to the baseline AOI for the RMSE and MAE metrics. In particular, the p-values show that the buffer sizes 0-10 km 

are significantly less for RMSE, buffer size of 20 and 50 km are not significantly better. Whereas buffer sizes 0-20 km show 350 

statistically significant better performance compared to the baseline AOI for MAE and the buffer size of 50km is not 

significant. While the RRMSE metric was lower than the baseline for the corrected mosaicked results, the differences for all 

buffer sizes was not significant. This highlights that while post-processing aligns the spatial distribution of the flood 

predictions from FIER, it doesn't eliminate the inherent differences in the magnitude and spread of intensity-based errors 

between the two approaches. Overall, the Kolmogorov–Smirnov test results confirm that scaling FIER by mosaicking 355 

smaller watersheds produces statistically distinct error distributions, and that the buffer sizes 0-10 km are shown to result in 

more accurate predictions based on the error metrics tested compared to the baseline AOI. 

 
Table 1: p-values from one-sided Kolmogorov-Smirnov tests comparing the distributions of evaluation metrics for FIER 
predictions with varying buffer sizes to the baseline FIER predictions. A lower p-value indicates a statistically significant 360 
difference between the distributions. Values denote significance at the 95% level are denoted with an asterisk (*), while values at 
the 99% level are denoted with double asterisks (**). 

 Original Corrected 

Buffer SSIM RMSE RRMSE MAE SSIM RMSE RRMSE MAE 

0 0.0419* 0.0076** 0.9999 0.9878 0.0076** 0.0076** 0.6925 0.0076** 

1 0.0241* 0.0074** 0.9813 0.1227 0.0074** 0.0025** 0.3697 0.0074** 

2 0.0239* 0.0073** 0.9948 0.1865 0.0073** 0.0025** 0.3658 0.0073** 

5 0.0234* 0.0072** 0.9973 0.1519 0.0072** 0.0044** 0.4869 0.0072** 

10 0.0219* 0.0132* 1.0000 0.9826 0.0067** 0.0221** 0.6211 0.0089** 

20 0.0876 0.1721 1.0000 0.9985 0.0064** 0.0648 0.6122 0.0749** 

50 0.6267 0.2464 1.0000 0.9852 0.0121* 0.1276 0.4941 0.1087 

 

These findings suggest that scaling the FIER method spatially by mosaicking results from smaller watersheds is a viable 

approach based on the error metrics tested. The mosaicked approach consistently achieves comparable or better spatial 365 

pattern accuracy (SSIM) than the baseline, and CDF matching further improves the accuracy of errors in water fraction 

estimates (RMSE and MAE) compared to the baseline. Furthermore, we found that the difference in mosaicked results error 

metrics are statistically significant. Larger buffer sizes (20 km and 50 km) do not show consistent improvements and may 

even lead to higher errors in some cases. This suggests that excessive buffering can blur the flood signal and reduce the 

accuracy of the predictions. 370 

https://doi.org/10.5194/egusphere-2024-3491
Preprint. Discussion started: 15 November 2024
c© Author(s) 2024. CC BY 4.0 License.



17 
 

4.2 Case Studies 

We performed the statistical analysis to understand the overall errors associated with running FIER over larger geographic 

scales using retrospective NWM streamflow as inputs, however, running FIER for actual flood extents necessitates using the 

operational NWM streamflow predictions for forecast predictions. We selected two dates with flooding and two dates with 

low flows then ran FIER for those time periods with only one buffer size to better understand how FIER does for extreme 375 

cases using the NWM operational data. 

We selected which buffer size to use for the case study based on the statistical analysis that found a buffer size of 1 km or 2 

km for mosaicked FIER outputs seems to be the most promising for operational use. While other buffer sizes show 

improvements in either SSIM or RMSE, we selected the 1 km buffer as it was found to strike a good balance between 

accurately capturing both the spatial extent and intensity of flooding when compared to the baseline.  The corrected outputs 380 

demonstrate better error metric results (SSIM, RMSE, MAE) compared to the original outputs for the 1km buffer sizes 

which suggests that the CDF matching post-processing effectively reduces overall error in the flood inundation estimates 

therefore we used corrected output for this analysis. While we selected the 1km buffer size over a 2km buffer because the 

errors are slightly lower, these differences are marginal. 

Figure 6 displays the results for running the mosaicked FIER process with the operational NWM predictions for the selected 385 

flood dates. Examining the 2019-02-25 flood event (top two rows), which exceeded the 50-year return period, FIER 

demonstrates consistent performance across nowcast, medium-range (7-day), and long-range (15-day) forecasts. The second 

row is zoomed into the baseline area to highlight more higher-resolution differences. Generally, it appears that the 

predictions capture the spatial dynamics of the flood, but the long-range prediction has a noticeably smaller extent than the 

nowcast or medium-range predictions. The 2020-02-15 flood event (bottom two rows), exceeding a 5-year return period, 390 

shows similar results where the forecasts are able to capture the extent of flooding, however, in this case the further the lead 

time for prediction the smaller the prediction of flood extents, suggesting more uncertainty with longer range forecasts. 

Table 2 tabulates the error metrics for each simulation compared to the observation. While the long-range forecast exhibits 

slightly higher RMSE compared to the nowcast and medium-range for the 2019-02-25 flood event, the differences are 

marginal, and all forecasts achieve SSIM values above 0.57, indicating reasonable agreement with the observed flood extent. 395 

This suggests that FIER can provide reliable flood inundation predictions even with extended lead times, allowing for 

proactive flood mitigation measures. 

The 2020-02-15 flood event, exceeding the 5-year return period, showcases even better performance, particularly for the 

long-range forecast. This forecast achieves the highest SSIM of 0.67 and lowest RMSE 16.04 among all predictions, 

highlighting the potential of FIER for capturing more frequent flood events with high accuracy. The nowcast for this event, 400 

however, shows a slight decrease in performance compared to the forecasts. The degradation in performance for the forecasts 

compared to the retrospective FIER simulations is likely due to the errors in the NWM streamflow predictions over the 

extended lead times. 
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Figure 6. Comparison of observed and FIER-predicted water fraction maps for the two selected flood events: 2019-02-25, the 50-405 
year flood (top two rows), and 2020-02-15, the 5-year flood (bottom two rows) The lower rows are a zoomed view for the baseline 
area to highlight local differences in the predictions. Predictions use the nowcast, medium-range (7-day lead time) and long-range 
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(15-day lead time) streamflow from the NWM. White areas are missing data due to clouds, cloud shadows and other poor-quality 
data. 

 410 
Table 2: Performance statistics for the FIER-predicted water fraction maps for two flood events 2019-02-25, the 50-year flood, and 
2020-02-15, the 5-year flood. 

Date Forecast SSIM [-] RMSE  

[Water fraction] 

RRMSE [%] MAE  

[Water fraction] 

2019-02-25 Nowcast 0.5723 16.9233 78.482 3.9396 

Medium range 0.5766 17.2939 80.201 4.0435 

Long range 0.6664  16.2569 75.391 3.5162 

2020-02-15 Nowcast 0.5414 18.4803 79.022 4.6667 

Medium range 0.6233 16.3844 70.060 3.6701 

Long range 0.6676 16.0370 68.575  3.4319 

 

The evaluation of FIER performance during low flow periods, using operational NWM streamflow predictions and the 

selected 1 km buffered and corrected configuration, reveals consistent and accurate results. Figure 7 displays the results for 415 

running the mosaicked FIER process with the operational NWM predictions for the selected low-flow dates. Table 3 shows 

the resulting error statistics comparing the FIER mosaicked predictions with the observation for the two selected low-flow 

dates. For the 2019-09-29 low flow event, FIER exhibits high SSIM values (above 0.73) across all forecast ranges, indicating 

strong agreement with the observed low flow conditions. The long-range (15-day) forecast demonstrates the lowest RMSE 

(8.53) and MAE (0.89), suggesting that FIER can effectively capture low flow dynamics even with extended lead times. This 420 

capability is particularly valuable for water resource management applications, such as drought monitoring and water 

allocation planning. Similarly, the 2020-10-21 low flow event shows consistent performance across all forecast ranges, with 

SSIM values exceeding 0.73. Again, the long-range forecast achieves the lowest RMSE (8.01) and MAE (0.79), reinforcing 

the ability of FIER to accurately predict low flow conditions with extended lead times. The visual comparison of the FIER-

predicted water fraction maps (Fig. 7) with the observed data further supports these findings. The FIER predictions closely 425 

match the observed low flow extents, particularly for the nowcast and medium-range forecasts. The FIER outputs using the 

streamflow forecasts, while still capturing the general low flow patterns, show some minor deviations, likely attributed to the 

inherent uncertainties in the model streamflow predictions. 

These results highlight the potential of the scaled FIER method for operational low flow forecasting. The consistent 

performance across different forecast ranges, coupled with the high SSIM values and low error metrics, demonstrates the 430 

capability of FIER to provide reliable and accurate low flow predictions. This information can be crucial for informing water 

management decisions, mitigating drought impacts, and ensuring sustainable water resource allocation during periods of low 

flow. 
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Figure 7. Same as Fig. 6 except for the two selected low-flow dates: (top two rows) 2019-09-29 and (bottom two rows) 2020-10-21. 435 
Predictions use the nowcast, medium-range (7-day lead time) and long-range (15-day lead time) streamflow from the National 
Water Model. White areas are missing data. 
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Table 3: Performance statistics for the FIER-predicted water fraction maps for two selected low-flow dates: 2019-09-29 and 2020-
10-21. 440 

Date Forecast SSIM [-] RMSE  

[Water fraction] 

RRMSE [%] MAE  

[Water fraction] 

2019-09-29 Nowcast 0.7381 9.8846 68.336 1.2012 

Medium range 0.7580 8.6568 59.848 0.9179 

Long range 0.7688 8.5340 58.998 0.8879 

2020-10-21 Nowcast 0.7374 8.7395 61.268 0.9843  

Medium range 0.7394 8.7107  61.067 0.9571 

Long range 0.7713 8.0128 56.174 0.7921 

 

5 Discussion 

5.1 Advantages and Limitations of the Watershed-Based Approach 

Scaling the FIER method to larger geographic extents necessitates breaking the larger AOI into subunits. Hydrological 

regimes, topography, and flood characteristics vary significantly across different geographical locations, requiring regionally 445 

tailored implementations for accurate predictions. Furthermore, FIER is a data driven method meaning that the method is 

dependent on the data inputs and the patterns it can extract from the data. Using watersheds as the fundamental unit offers 

several advantages. Primarily, watersheds inherently delineate areas with interconnected hydrological regimes, ensuring that 

flood signals within each unit are driven by a common set of forcing factors. This allows for the development of regionally 

tailored FIER models that better capture the unique flood characteristics of each watershed. Additionally, by dividing a large 450 

area into smaller watersheds, the computational burden of FIER can be significantly reduced, facilitating parallel processing 

and enabling the application over extensive regions where limitations of computer resources can inhibit applying one FIER 

model. 

Despite these advantages, the watershed-based approach presents certain limitations. One challenge lies in the potential for 

discontinuities at watershed boundaries when mosaicking individual FIER predictions. Abrupt transitions in predicted water 455 

fractions can arise due to variations in model parameters or data availability across watersheds. We showed that 

implementing the buffered approach around each watershed during the FIER fitting process mitigates this issue (Fig. 4) by 

incorporating information from neighboring areas and smoothing the flood signal across boundaries. However, the optimal 

buffer size is likely to vary depending on watershed characteristics and requires careful consideration. We found that 

selecting an excessively large buffer size risks blurring the flood signal and reducing the accuracy of predictions. More 460 
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investigation is needed into what factors contribute to varying accuracy, particularly watershed characteristics such as size, 

topography, land cover, meteorology/climatology and flooding events. 

Furthermore, the choice of watershed scale (i.e. HUC8 vs HUC12) has the potential to influence the performance of the 

scaled FIER model. Utilizing smaller, more numerous watersheds allows for finer spatial resolution and can potentially 

capture localized flood dynamics more effectively. However, using more watersheds comes at the cost of increased 465 

computational complexity and the potential for greater boundary discontinuities. Conversely, larger watersheds simplify the 

mosaicking process but may omit fine-grained flood signals and fail to capture fine-scale variations in inundation extent. 

Ultimately, the optimal watershed scale and buffer size are likely to be site-specific and require careful evaluation based on 

the hydrological characteristics, computational resources, and desired level of spatial detail for the application. For this study 

we only used the HUC8 watershed scale for comparing how FIER performs when mosaicking; using different watersheds 470 

scales was out of scope for this work but is a topic for future research. 

5.2 Implications for Large-Scale Flood Inundation Forecasting 

The results from this study show that FIER can be successfully implemented over large areas using a mosaicking approach. 

The successful scaling of the FIER method holds significant implications for operational flood inundation forecasting at 

regional and continental scales. FIER's data-driven nature and computational efficiency make it particularly well-suited for 475 

large-scale applications where traditional hydrodynamic models are often computationally prohibitive or require extensive 

data inputs. By leveraging readily available satellite imagery and streamflow forecasts from hydrological models, like the 

NWM, FIER can provide rapid and accurate flood inundation predictions without the need for a complex modeling 

framework, calibration, or high-resolution topographic data. This data independence makes FIER a powerful tool for 

forecasting floods in data-scarce regions or ungauged basins, expanding the reach of flood inundation forecasting services to 480 

areas previously underserved regions (Chang et al., 2023; Do et al., in review). 

The scaled FIER method offers a valuable resource for a wide range of applications related to flood risk assessment, disaster 

preparedness, and water resource management. By providing timely and accurate flood inundation forecasts for events, FIER 

can support the development of effective early warning systems, enabling communities to prepare for and mitigate the 

impacts of flooding. In the context of water resource management, FIER can contribute to simulating flood responses to 485 

changes in hydrologic conditions which can inform flood risk assessments and guide long-term land-use planning decisions, 

optimizing reservoir building and operations (Do et al., in review), assessing the effectiveness of flood control measures, and 

evaluating the impacts of climate change and human activities on flood regimes. Furthermore, FIER's ability to generate 

flood inundation maps from historical and even future long-term projected data can provide extents for specific return-

periods which are vital with regards to climate change and planning (Wing et al., 2024). The scalability and computational 490 

efficiency of FIER hold promise to support large-scale flood inundation forecasting, enabling a more proactive and data-

driven approach to flood risk management. 
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5.3 Caveats and Limitations 

The watershed-based approach for scaling FIER, while promising, presents several limitations that warrant further 

investigation. The use of buffer zones, while mitigating abrupt transitions at watershed boundaries, may introduce artificial 495 

delineations that may not accurately represent the complex hydrological connectivity of real-world systems. For instance, in 

areas with complex topography or where floodwaters overtop watershed divides, the buffer zones may lead to inaccuracies in 

the mosaicked flood predictions. As demonstrated in the statistical analysis, buffer sizes between 1-10 km showed the most 

promising results, but further research is needed to optimize buffer zone selection based on specific watershed characteristics 

and flood dynamics. Similarly, the choice of watershed scale presents a trade-off between spatial resolution and 500 

computational complexity. While smaller watersheds offer finer detail, they increase the potential for boundary 

discontinuities and computational burden. Conversely, larger watersheds simplify mosaicking but risks over smoothing the 

flood signal and missing localized flood events. The optimal scale is likely to be site-specific, requiring careful consideration 

of the desired level of detail and available computational resources. 

Furthermore, the current FIER implementation's reliance solely on streamflow data as the hydrological driver, in this case 505 

NWM streamflow outputs. This limits its applicability in data-scarce regions or where streamflow observations are 

unreliable. Other large scale model data (e.g. GEOGLOWS, Hales et al., 2022) can be used and tested to understand how 

sensitive the approach is to input streamflow particularly for data-scare regions across the globe.  Additionally, the focus on 

streamflow-driven flooding may not adequately represent other flood types, such as coastal flooding, flash floods, or pluvial 

flooding, which are not directly tied to streamflow variations. Expanding the framework to incorporate other hydrological 510 

variables, such as precipitation, soil moisture, and antecedent conditions, could enhance its robustness and broaden its 

applicability. While the use of VIIRS data provides daily observations, data gaps due to cloud cover remain a challenge. 

Integrating data from multiple satellite sensors, such as SAR and optical imagery could further improve the temporal density 

and quality of the input data (Markert et al., 2018). Finally, it is crucial to acknowledge that the performance of the scaled 

FIER model may vary across different geographic regions with diverse hydrological regimes and flood characteristics. The 515 

location used in this study along the Mississippi River is humid with varying land cover types compared to the Western US 

which is much drier but also experiences flooding where FIER may be applicable. Further validation and testing in various 

environments are necessary to assess its generalizability and transferability beyond the study areas examined in this research. 

5.4 Future Work 

While this study demonstrates the potential of the scaled FIER method for large-scale flood inundation forecasting, several 520 

avenues for future research can further enhance its accuracy and applicability. First, exploring alternative regression 

methodologies between streamflow and the FIER-derived temporal patterns (RTPCs) could improve the model's ability to 

capture complex flood dynamics. Other studies (e.g. Chang et al., 2023, Rostami, et al. in review) have used dense neural 

networks (DNN) to create the forecasts in the FIER framework. Incorporating non-linear regression techniques, like DNN, in 
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a scalable manner and additional hydrological variables, such as precipitation and soil moisture, may enhance the model's 525 

predictive capabilities. Second, FIER is data driven and by using optical satellite imagery from VIIRS may lead to data gaps 

for floods which often occur coincidentally with cloud cover (Markert et al., 2020) which results in FIER not capturing the 

signal. Data fusion methods (e.g. (Markert et al., 2024a) may provide opportunities to capture additional flood observations 

and yield better results for flood periods. A systematic analysis of the relationship between buffer size and watershed 

characteristics is crucial for optimizing the mosaicking process. By examining factors like watershed size, shape, 530 

topography, and land cover, we can develop guidelines for selecting appropriate buffer sizes for different regions, 

minimizing boundary discontinuities while preserving the accuracy of individual FIER predictions. Additionally, it was 

mentioned that only one watershed scale was tested (HUC8) and different sizes of watersheds need to be tested to understand 

how the FIER results will be affected by watershed sizes. This can lead to a hybrid approach where buffer size and 

watershed scale for running FIER can be data-driven and yield better results over large areas. Finally, to further enhance 535 

computational efficiency, masking out watersheds with historically limited flooding from the analysis can significantly 

reduce processing time. This targeted approach focuses computational resources on areas most prone to flooding, enabling 

more efficient application of FIER over large geographic extent. 

6 Conclusion 

This study aimed to address the critical need for efficient and accurate large-scale flood inundation forecasting by applying 540 

the FIER method, a data-driven technique previously demonstrated at smaller scales, over large areas. Recognizing the 

limitations of traditional hydrodynamic models and the need for a computationally efficient approach for event-based 

forecasting, we investigated the feasibility of using a watershed-based approach to scale FIER, leveraging the inherent 

hydrological connectivity of watersheds and then mosaicking results to create a single flood map for a given simulation. Our 

analysis focused on flood-prone regions in the United States, the Upper Mississippi Alluvial Plain, where flooding occurs 545 

often. 

The results demonstrate the effectiveness of the watershed-based approach for scaling FIER. Statistical analysis of the 

mosaicked FIER predictions, using retrospective NWM streamflow data, revealed that buffer sizes of 1-10 km achieved the 

best balance between accurately capturing the spatial extent (SSIM) and intensity (RMSE) of flooding. The average SSIM 

metric ranged from 0.714 to 0.715 for the original FIER outputs and 0.797 to 0.804 for the corrected outputs. Whereas the 550 

average RMSE metric ranged from 7.15 to 7.45 for the original FIER outputs and from 7.91 to 8.21 percent for the corrected 

outputs. Notably, the corrected FIER outputs, using a CDF matching post-processing technique, consistently showed better 

SSIM error values compared to the original outputs but higher RMSE and lower MAE, suggesting the overall error was 

reduced but also introduced larger errors. Overall, the correction improves the predictions and yields significantly better 

error metrics compared to a baseline for the 1-10 km buffer sizes. Case studies using operational NWM streamflow forecasts 555 

for specific flood and low flow events further validated the performance of the scaled FIER method. The 1 km buffered and 
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corrected FIER outputs were used for the case study and coupled with NWM forecasts with varying forecast lead times. 

These flood extent predictions accurately forecasted both the extent of inundation, achieving SSIM values above 0.54-0.66 

for flood events and above 0.73 for low flow events. 

The watershed-based FIER approach offers several advantages, including the ability to capture regional flood characteristics 560 

and the ability to set up and run from compute perspective without the need of prohibitively expensive hardware resources. 

However, limitations such as boundary effects, sensitivity to watershed scale, and reliance on streamflow data require further 

investigation. Future research should focus on optimizing buffer zone selection based on watershed characteristics, exploring 

alternative regression methodologies, incorporating additional hydrological variables, and expanding the framework to 

encompass non-fluvial flood processes. These advancements will further enhance the scalability, accuracy, and applicability 565 

of FIER for large-scale flood inundation forecasting, enabling more effective flood risk management and water resource 

planning. 

Appendix A: FIER fitting statistics 

We performed additional analysis to investigate and highlight the results of the fitting process between the REOF and 

hydrologic data. We separated the analysis into the baseline area and the full area with the different watersheds. 570 

For the baseline area, we found that the first three modes of spatio-temporal patterns were significant and account for about 

93% of the total variance of the VIIRS water fraction image time series. Hereafter, the first modes of the RSM or RTPC will 

be called RSM-01 or RTPC-01, respectively with the second mode of RSM or RTPC will be called RSM-02 or RTPC-02, 

respectively, and so forth.   

Figure A1 displays the results of the REOF and fitting for the baseline area. The top row displays the first three RSMs, 575 

revealing distinct spatial flooding patterns captured by VIIRS water fraction data. RSM-01 exhibits a widespread pattern 

encompassing the main stem of the Mississippi River and its tributaries, suggesting a dominant mode of flooding associated 

with high flows in the main channel. RSM-02, highlights localized flooding patterns in the southeastern portion of the basin, 

potentially indicating areas susceptible to backwater effects or tributary flooding. RSM-03 shows a more dispersed pattern 

with both positive and negative values, suggesting a complex mode of flooding that may be influenced by a combination of 580 

factors. The middle row in Fig. A1 presents the time series of the corresponding RTPCs and normalized NWM streamflow 

for the representative reach. The close alignment between the RTPC fluctuations and streamflow variations, particularly for 

RTPC-02, indicates a strong correlation between these temporal patterns and the hydrological driver. The three RTCPs have 

a Pearson’s R correlation coefficient of 0.7342, 0.8722, and 0.7615 for modes RTPC-01, RTPC-02, and RTPC-03, 

respectively. This correlation between the RTCPs and streamflow is further quantified in the bottom row, which shows 585 

scatter plots of the RTPCs against normalized NWM streamflow, along with the fitted regression models. The high NSE 

values (0.61, 0.77, and 0.63) for the three fitted models confirm the strong statistical relationships established between the 

flood patterns and streamflow, demonstrating the effectiveness of the regression models in capturing these relationships. 
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Figure A1: Spatiotemporal patterns and regression models for the baseline area. (Top) The first three Rotated Spatial Modes 590 
(RSMs) derived from REOF analysis of VIIRS water fraction data. Red colors indicate positive values, while blue colors indicate 
negative values. (Middle) Time series of the corresponding Rotated Temporal Principal Components (RTPCs) (blue) and 
normalized NWM streamflow (orange) for the representative reach. (Bottom) Scatter plots of the RTPCs against normalized 
NWM streamflow, along with the fitted regression models (red dashed lines) and their corresponding Nash-Sutcliffe Efficiency 
(NSE) values. 595 

 

Figure A2 provides a view of how the performance of the scaled FIER method varies across different buffer sizes and 

watersheds. Given that there is so much data across the different REOF and regression processes, Fig. A2 summarizes the 

number of RSMs (left column), correlation between RTCPs and streamflow (middle column) and NSE from the fitted model 

(right column) for each watershed. Table A1 also provides the mean and stand deviation in parenthesis for each of the 600 
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metrics across all watersheds.  Examining the number of significant RSMs, we observe a general trend of an increasing 

number of significant RSMs with larger buffer sizes. This suggests that incorporating information from neighboring 

watersheds through buffering enhances the ability of REOF analysis to capture distinct flood patterns. However, the average 

Pearson's correlation coefficient between RTPCs and streamflow remains relatively consistent across buffer sizes, ranging 

from an average of 0.727 to 0.765. This indicates that the strength of the relationship between flood patterns and streamflow 605 

is not significantly affected by the buffer size. Interestingly, the average NSE of the fitted regression models shows a more 

nuanced pattern. While smaller buffer sizes (0-2 km) exhibit relatively lower NSE values, indicating moderate model 

performance, the NSE gradually increases with larger buffer sizes, peaking at 0.616 for the 50 km buffer. This suggests that 

incorporating broader spatial context through larger buffer zones can improve the predictive capability of the regression 

models. However, it's important to note that the standard deviation of NSE also varies with buffer sizes. Overall, the analysis 610 

suggests that while the number of significant modes and the strength of the correlation between flood patterns and 

streamflow are not significantly impacted by buffer size, larger buffer zones can potentially enhance the predictive accuracy 

of the regression models. However, the increased variability in model performance with larger buffer sizes necessitates a 

careful consideration of the trade-offs between model complexity and accuracy when selecting the optimal buffer size for a 

given application. 615 

 
Table A1: Summary statistics of REOF analysis and regression model performance for varying buffer sizes. The table shows the 
range of significant modes, average Pearson's correlation coefficient, and average NSE for each buffer size, with standard 
deviations in parentheses. 

Buffer size Range of Significant RSMs  Avg Pearson’s R Avg fit NSE 

0 km 1 - 8 0.727 (0.038) 0.587 (0.060) 

1 km 1 - 8 0.728 (0.039) 0.586 (0.063) 

2 km 1 - 8 0.732 (0.037) 0.594 (0.070) 

5 km 1 - 8 0.741 (0.041) 0.611 (0.070) 

10 km 1 - 8 0.742 (0.032) 0.599 (0.052) 

20 km 2 - 10 0.745 (0.037) 0.602 (0.058) 

50 km 1 - 11 0.765 (0.029) 0.616 (0.049) 

 620 
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Figure A2: Spatial distribution of FIER model performance metrics for varying buffer sizes. The figure displays maps showing 
(left) the number of significant RSMs identified by the Monte Carlo test, (middle) the average Pearson's correlation coefficient 
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between the RTPCs and streamflow, and (right) the average Nash-Sutcliffe Efficiency (NSE) of the fitted regression models for 
each watershed, across different buffer sizes (0 km, 1 km, 2 km, 5 km). 625 

 

 
Figure A2 (continued): Same as Fig. A2 but showing for the buffer sizes 10 km, 20 km, and 50 km 

Code availability 

The software/scripts used in this study for data processing, analysis and figure generation are publicly available under the 630 

open-source Apache 2.0 license. The source code used can be accessed at https://github.com/KMarkert/phd-fier-scaling 
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(accessed on 7 Nov 2024). Developer: K.N.M.; year first available: 2024; license: Apache 2.0; programming language: 

Python. 

Data availability 

The data used in the study are openly available online. The VIIRS water fraction data can be accessed from the AWS 635 

Registry of Open Data, specifically the NOAA Joint Polar Satellite System (JPSS) cloud storage bucket 

(https://registry.opendata.aws/noaa-jpss/). We processed and stored the VIIRS water fraction data for North America 

publicly on Earth Engine with the following collection ID: “projects/byu-hydroinformatics-gee/assets/noaa_jpss_floods”, we 

make no explicit guarantees to maintaining the collection on Earth Engine and the NOAA source should be considered the 

authoritative source. The NWM retrospective data can be accessed through the AWS Registry of Open Data from the NOAA 640 

National Water Model CONUS Retrospective Dataset (https://registry.opendata.aws/nwm-archive/). The operational NWM 

data can be accessed via the Google Cloud Public Dataset on BigQuery (https://goo.gle/nwm-on-bq).   

Author contribution 

Conceptualization, K.N.M., H.L, G.P.W., E.J.N. and D.P.A.; methodology, K.N.M.; software, K.N.M.; validation, K.N.M.; 

visualization, K.N.M., G.P.W, and H.L.; supervision: G.P.W., E.J.N., H.L., D.P.A. and R.E.G.; writing—original draft 645 

preparation, K.N.M., G.P.W., E.J.N., H.L. and D.P.A.; writing—review and editing, K.N.M., G.P.W., E.J.N., H.L., D.P.A. 

R.E.G. and F.J.M.; All authors have read and agreed to the published version of the manuscript. 

Competing interests 

K.N.M. is employed by Google; the methods presented use generally available Google technologies. D.P.A. is a member of 

the editorial board of the Environmental Modelling & Software journal. The other authors declare no conflicts of interest. 650 

Acknowledgements 

The authors would like to thank the data providers, particularly the National Oceanic and Atmospheric Administration 

(NOAA) Open Data Dissemination (NODD) Program for providing the JPSS VIIRS data and NWM data freely available for 

use. We would like to thank Google Open Datasets Program for publicly hosting the operational NWM on BigQuery and to 

the Google Earth Engine team for the use of the Earth Engine platform under the non-commercial terms of service for 655 

research. Gemini, a generative AI tool developed by Google, was used during manuscript editing to help improve clarity and 

proper grammar. 

https://doi.org/10.5194/egusphere-2024-3491
Preprint. Discussion started: 15 November 2024
c© Author(s) 2024. CC BY 4.0 License.



31 
 

References 

Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in Flood Inundation Modelling, in: Applied Uncertainty 

Analysis for Flood Risk Management, IMPERIAL COLLEGE PRESS, 232–269, 660 

https://doi.org/10.1142/9781848162716_0010, 2014. 

Ben-Haim, Z., Anisimov, V., Yonas, A., Gulshan, V., Shafi, Y., Hoyer, S., and Nevo, S.: Inundation Modeling in Data 

Scarce Regions, https://doi.org/10.48550/arXiv.1910.05006, 30 October 2019. 

Chang, C. H., Lee, H., Kim, D., Hwang, E., Hossain, F., Chishtie, F., Jayasinghe, S., and Basnayake, S.: Hindcast and 

forecast of daily inundation extents using satellite SAR and altimetry data with rotated empirical orthogonal function 665 

analysis: Case study in Tonle Sap Lake Floodplain, Remote Sensing of Environment, 241, 111732, 

https://doi.org/10.1016/J.RSE.2020.111732, 2020. 

Chang, C.-H., Lee, H., Do, S. K., Du, T. L. T., Markert, K., Hossain, F., Ahmad, S. K., Piman, T., Meechaiya, C., Bui, D. D., 

Bolten, J. D., Hwang, E., and Jung, H. C.: Operational forecasting inundation extents using REOF analysis (FIER) over 

lower Mekong and its potential economic impact on agriculture, Environmental Modelling & Software, 162, 105643, 670 

https://doi.org/10.1016/j.envsoft.2023.105643, 2023. 

Cosgrove, B., Gochis, D., Flowers, T., Dugger, A., Ogden, F., Graziano, T., Clark, E., Cabell, R., Casiday, N., Cui, Z., 

Eicher, K., Fall, G., Feng, X., Fitzgerald, K., Frazier, N., George, C., Gibbs, R., Hernandez, L., Johnson, D., Jones, R., 

Karsten, L., Kefelegn, H., Kitzmiller, D., Lee, H., Liu, Y., Mashriqui, H., Mattern, D., McCluskey, A., McCreight, J. L., 

McDaniel, R., Midekisa, A., Newman, A., Pan, L., Pham, C., RafieeiNasab, A., Rasmussen, R., Read, L., Rezaeianzadeh, 675 

M., Salas, F., Sang, D., Sampson, K., Schneider, T., Shi, Q., Sood, G., Wood, A., Wu, W., Yates, D., Yu, W., and Zhang, Y.: 

NOAA’s National Water Model: Advancing operational hydrology through continental‐scale modeling, J American Water 

Resour Assoc, 1752–1688.13184, https://doi.org/10.1111/1752-1688.13184, 2024. 

Do, S.K., Du, T.L.T., Lee, H. Chang, C.-H., Bui, D.D., Nguyen, N.T., Markert, K.N., Strömqvist, J., Towashiraporn, P., 

Darby, S.E., Bu, L.K.: Assessing impacts of Hydropower Development on Downstream Inundation Using a Hybrid 680 

Modeling Framework Integrating Satellite Data-Driven and Process-based Models, Water Resources Research, in review 

Dommenget, D. and Latif, M.: A Cautionary Note on the Interpretation of EOFs, 2002. 

Du, J., Kimball, J. S., Sheffield, J., Pan, M., Fisher, C. K., Beck, H. E., and Wood, E. F.: Satellite Flood Inundation 

Assessment and Forecast Using SMAP and Landsat, IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 14, 6707–6715, https://doi.org/10.1109/JSTARS.2021.3092340, 2021. 685 

Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., and Chu, X.: Bias correction capabilities of quantile mapping 

methods for rainfall and temperature variables, Journal of Water and Climate Change, 12, 401–419, 

https://doi.org/10.2166/wcc.2020.261, 2020. 

https://doi.org/10.5194/egusphere-2024-3491
Preprint. Discussion started: 15 November 2024
c© Author(s) 2024. CC BY 4.0 License.



32 
 

Farmer, W. H., Over, T. M., and Kiang, J. E.: Bias correction of simulated historical daily streamflow at ungauged locations 

by using independently estimated flow duration curves, Hydrology and Earth System Sciences, 22, 5741–5758, 690 

https://doi.org/10.5194/hess-22-5741-2018, 2018. 

Getirana, A. C. V., Boone, A., Yamazaki, D., Decharme, B., Papa, F., and Mognard, N.: The Hydrological Modeling and 

Analysis Platform (HyMAP): Evaluation in the Amazon Basin, Journal of Hydrometeorology, 13, 1641–1665, 

https://doi.org/10.1175/JHM-D-12-021.1, 2012. 

Gledhill, J. H., Barnett, A. F., Slattery, M., Willett, K. L., Easson, G. L., Otts, S. S., and Gochfeld, D. J.: Mass Mortality of 695 

the Eastern Oyster Crassostrea virginica in the Western Mississippi Sound Following Unprecedented Mississippi River 

Flooding in 2019, shre, 39, 235–244, https://doi.org/10.2983/035.039.0205, 2020. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale 

geospatial analysis for everyone, Remote Sensing of Environment, 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 

2017. 700 

Hales, R. C., Nelson, E. J., Souffront, M., Gutierrez, A. L., Prudhomme, C., Kopp, S., Ames, D. P., Williams, G. P., and 

Jones, N. L.: Advancing global hydrologic modeling with the GEOGloWS ECMWF streamflow service, Journal of Flood 

Risk Management, e12859, e12859, https://doi.org/10.1111/jfr3.12859, 2022. 

Hannachi, A.: A Primer for EOF Analysis of Climate Data, 2004. 

Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., and Ames, D. P.: Introductory overview: Error 705 

metrics for hydrologic modelling – A review of common practices and an open source library to facilitate use and adoption, 

Environmental Modelling & Software, 119, 32–48, https://doi.org/10.1016/j.envsoft.2019.05.001, 2019. 

Kaiser, H. F.: The varimax criterion for analytic rotation in factor analysis, Psychometrika, 23, 187–200, 

https://doi.org/10.1007/BF02289233, 1958. 

Li, S., Sun, D., Goldberg, M. D., Sjoberg, B., Santek, D., Hoffman, J. P., DeWeese, M., Restrepo, P., Lindsey, S., and 710 

Holloway, E.: Automatic near real-time flood detection using Suomi-NPP/VIIRS data, Remote Sensing of Environment, 

204, 672–689, https://doi.org/10.1016/J.RSE.2017.09.032, 2018. 

Li, S., Goldberg, M. D., Sjoberg, W., Zhou, L., Nandi, S., Chowdhury, N., Straka, W., Yang, T., and Sun, D.: Assessment of 

the Catastrophic Asia Floods and Potentially Affected Population in Summer 2020 Using VIIRS Flood Products, Remote 

Sensing, 12, 3176, https://doi.org/10.3390/rs12193176, 2020. 715 

Li, S., Sun, D., Goldberg, M. D., Kalluri, S., Sjoberg, B., Lindsey, D., Hoffman, J. P., DeWeese, M., Connelly, B., Mckee, 

P., and Lander, K.: A downscaling model for derivation of 3-D flood products from VIIRS imagery and SRTM/DEM, 

ISPRS Journal of Photogrammetry and Remote Sensing, 192, 279–298, https://doi.org/10.1016/j.isprsjprs.2022.08.025, 

2022. 

Lorenz, E. N.: Empirical Orthogonal Functions and Statistical Weather Prediction, Massachusetts Institute of Technology, 720 

Department of Meteorology, 112 pp., 1956. 

https://doi.org/10.5194/egusphere-2024-3491
Preprint. Discussion started: 15 November 2024
c© Author(s) 2024. CC BY 4.0 License.



33 
 

Markert, K. N., Chishtie, F., Anderson, E. R., Saah, D., and Griffin, R. E.: On the merging of optical and SAR satellite 

imagery for surface water mapping applications, Results in Physics, 9, 275–277, 

https://doi.org/10.1016/J.RINP.2018.02.054, 2018. 

Markert, K. N., Markert, A. M., Mayer, T., Nauman, C., Haag, A., Poortinga, A., Bhandari, B., Thwal, N. S., Kunlamai, T., 725 

Chishtie, F., Kwant, M., Phongsapan, K., Clinton, N., Towashiraporn, P., and Saah, D.: Comparing Sentinel-1 Surface Water 

Mapping Algorithms and Radiometric Terrain Correction Processing in Southeast Asia Utilizing Google Earth Engine, 

Remote Sensing 2020, Vol. 12, Page 2469, 12, 2469, https://doi.org/10.3390/RS12152469, 2020. 

Markert, K. N., Williams, G. P., Nelson, E. J., Ames, D. P., Lee, H., and Griffin, R. E.: Dense Time Series Generation of 

Surface Water Extents through Optical–SAR Sensor Fusion and Gap Filling, Remote Sensing, 16, 1262, 730 

https://doi.org/10.3390/rs16071262, 2024a. 

Markert, K. N., da Silva, G., Ames, D. P., Maghami, I., Williams, G. P., Nelson, E. J., Halgren, J., Patel, A., Santos, A., and 

Ames, M. J.: Design and implementation of a BigQuery dataset and application programmer interface (API) for the U.S. 

National Water Model, Environmental Modelling & Software, 179, 106123, https://doi.org/10.1016/j.envsoft.2024.106123, 

2024b. 735 

Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46, 68–

78, https://doi.org/10.2307/2280095, 1951. 

Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., Kratzert, F., Elidan, G., Dror, 

G., Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., Yuklea, L., Royz, M., Giladi, N., Peled Levi, N., Reich, O., 

Gilon, O., Maor, R., Timnat, S., Shechter, T., Anisimov, V., Gigi, Y., Levin, Y., Moshe, Z., Ben-Haim, Z., Hassidim, A., and 740 

Matias, Y.: Flood forecasting with machine learning models in an operational framework, Hydrology and Earth System 

Sciences, 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022. 

Pal, S., Lee, T. R., and Clark, N. E.: The 2019 Mississippi and Missouri River Flooding and Its Impact on Atmospheric 

Boundary Layer Dynamics, Geophysical Research Letters, 47, e2019GL086933, https://doi.org/10.1029/2019GL086933, 

2020. 745 

Rostami, A., Chang, C.-H., Lee, H., Wan, H.-H, Du, T.L.T., Markert, K.N.M., Williams, G.P., Nelson, E.J., Li, S., Straka III, 

W., Helfrich, S., Gutierrez, A.L.: Forecasting Flood Inundation in the U.S. Flood-prone Regions through Data-Driven 

Approach (FIER): Using VIIRS Water Fractions and the National Water Model, Remote Sensing, in review 

Sampson, C. C., Fewtrell, T. J., Duncan, A., Shaad, K., Horritt, M. S., and Bates, P. D.: Use of terrestrial laser scanning data 

to drive decimetric resolution urban inundation models, Advances in Water Resources, 41, 1–17, 750 

https://doi.org/10.1016/J.ADVWATRES.2012.02.010, 2012. 

Smith, A. B.: U.S. Billion-dollar Weather and Climate Disasters, 1980 - present (NCEI Accession 0209268), 

https://doi.org/10.25921/stkw-7w73, 2020. 

Tate, E., Rahman, M. A., Emrich, C. T., and Sampson, C. C.: Flood exposure and social vulnerability in the United States, 

Nat Hazards, 106, 435–457, https://doi.org/10.1007/s11069-020-04470-2, 2021. 755 

https://doi.org/10.5194/egusphere-2024-3491
Preprint. Discussion started: 15 November 2024
c© Author(s) 2024. CC BY 4.0 License.



34 
 

Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S.: Flood inundation modelling: A review of 

methods, recent advances and uncertainty analysis, Environmental Modelling & Software, 90, 201–216, 

https://doi.org/10.1016/j.envsoft.2017.01.006, 2017. 

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural 

similarity, IEEE Transactions on Image Processing, 13, 600–612, https://doi.org/10.1109/TIP.2003.819861, 2004. 760 

Wing, O. E. J., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., Neal, J. C., Porter, J. R., and Kousky, 

C.: Inequitable patterns of US flood risk in the Anthropocene, Nat. Clim. Chang., 12, 156–162, 

https://doi.org/10.1038/s41558-021-01265-6, 2022. 

Wing, O. E. J., Bates, P. D., Quinn, N. D., Savage, J. T. S., Uhe, P. F., Cooper, A., Collings, T. P., Addor, N., Lord, N. S., 

Hatchard, S., Hoch, J. M., Bates, J., Probyn, I., Himsworth, S., Rodríguez González, J., Brine, M. P., Wilkinson, H., 765 

Sampson, C. C., Smith, A. M., Neal, J. C., and Haigh, I. D.: A 30 m Global Flood Inundation Model for Any Climate 

Scenario, Water Resources Research, 60, e2023WR036460, https://doi.org/10.1029/2023WR036460, 2024. 

Yalcin, E.: Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS 

hydrodynamic model simulations for urban flood hazard analysis, Nat Hazards, 101, 995–1017, 

https://doi.org/10.1007/s11069-020-03906-z, 2020. 770 

Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description of floodplain inundation dynamics in a global 

river routing model, Water Resources Research, 47, 4501, https://doi.org/10.1029/2010WR009726, 2011. 

Yin, S., Gao, G., Li, Y., Xu, Y. J., Turner, R. E., Ran, L., Wang, X., and Fu, B.: Long-term trends of streamflow, sediment 

load and nutrient fluxes from the Mississippi River Basin: Impacts of climate change and human activities, Journal of 

Hydrology, 616, 128822, https://doi.org/10.1016/j.jhydrol.2022.128822, 2023. 775 

https://doi.org/10.5194/egusphere-2024-3491
Preprint. Discussion started: 15 November 2024
c© Author(s) 2024. CC BY 4.0 License.


