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Abstract. Floods are a recurring global threat, causing lives lost, property damage, and agricultural impacts. Accurate and 

timely flood inundation forecasts are crucial for effective disaster preparedness and mitigation. However, traditional flood 

forecasting methods often face challenges in terms of computational demands and data requirements, particularly when 

applied to large geographic areas. This study presents a novel approach to scaling a data-driven flood forecasting framework, 

Forecasting Inundation Extents using REOF (Rotated Empirical Orthogonal Function) (FIER), to large geographic regions. 15 

FIER leverages historical satellite imagery and streamflow data to predict flood inundation extents offering a solution in 

regions typically considered data-scarce for traditional hydrodynamic modelling (i.e., lacking detailed bathymetry and 

friction coefficients information). We demonstrate the effectiveness of applying FIER over a large geographic extent using 

watershed boundaries to create individual FIER models and then mosaicking the results geographically to provide large 

flood inundation predictions. The Upper Mississippi Alluvial Plain in the United States was used as a test region. We 20 

evaluated multiple buffer sizes, ranging from 0 to 50km, for watersheds for generating the data-driven FIER models to 

reduce edge effects along watershed boundaries when mosaicking the individual FIER implementations. The FIER method 

using watersheds, coupled with different forecast lead times from the National Water Model operational streamflow 

forecasts, was used to accurately predict the extent of surface water for select flood and low flow use cases. Our results show 

that the scaled FIER approach using watersheds yields higher accuracies for different error metrics, including the Structural 25 

Similarity Index Measure (SSIM), RMSE, and MAE. We found that scaling FIER using a watershed approach yielded 

statistically significant better performance compared to the baseline area using the Kolmogorov-Smirnov test: this is 

particularly true when using buffer sizes for the watersheds of 0-10km and when applying a cumulative distribution function 

(CDF) matching post-processing correction to the FIER outputs. This approach offers a promising solution for large-scale 

flood forecasting, particularly in data-scarce regions where data required for traditional hydrodynamic modelling is lacking 30 

or ungauged basins. Future research will focus on refining the framework to incorporate additional hydrological variables 

and improve the accuracy of long-range flood inundation predictions. 
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1 Introduction 

Natural disasters, with flooding the most prevalent, are estimated to cause over $300 billion in annual direct asset losses 

globally (Hallegatte et al. 2017). A recent study by the World Bank suggests that 1.47 billion people, or 19 percent of the 35 

world population, are directly exposed to substantial risks during 1-in-100-year flood events. Of these 1.47 billion people 

exposed to flood risk, 89 percent live in low- and middle-income countries (Rentschler and Salhab, 2020). Climate change 

projections for 2030 indicate that the proportion of the population exposed to floods will increase (Tellman et al., 2021). 

Since 1980, 42 riverine and urban flooding events in the United States have cost a total of $197.2B (on average $4.4B per 

year) (Smith, 2020). Research has found that flood exposure and damages in the U.S. could also be exacerbated in the future 40 

due to anthropogenic climate change, population growth, and urban development (Tate et al., 2021; Wing et al., 2022). 

Accurate and timely forecasts that capture the spatiotemporal evolution of flood inundations with sufficient lead time for 

actions are crucial for mitigating the devastating impacts of floods on communities and infrastructure. 

Hydrodynamic modeling is a widely used method for simulating the spatiotemporal behavior of flood inundation by creating 

inundation maps computed from modeled streamflow from hydrologic models (Teng et al., 2017). Modeling of streamflow 45 

using hydrologic models requires accurate forcing data, parameterization, and calibration which can lead to inherit errors in 

the predicted streamflow outputs (Renard et al., 2010). Furthermore, hydrodynamic models are highly sensitive to inputs, 

including the streamflow, the boundary and initial conditions, the digital elevation model (DEM) used, and friction 

coefficients, all of which are difficult to obtain and have associated variation and uncertainty.  These uncertainties in 

hydrodynamic model calibration and data inputs significantly influence the uncertainty of flood inundation predictions 50 

(Bates et al., 2014; Teng et al., 2017) with the inundation extent estimates most sensitive to topography and friction 

coefficients (Yalcin, 2020). Hydrodynamic models carry a heavy computational burden, especially for a more accurate high-

resolution large-scale forecasting framework, that could affect forecast lead-time and accuracy (Ben-Haim et al., 2019). 

While continental-scale hydrodynamic models such as LISFLOOD-FP (Sampson et al., 2012),  CaMa-Flood (Yamazaki et 

al., 2011), or HyMAP (Getirana et al., 2012) are more computationally efficient and have been successfully implemented at 55 

large scale, they are typically run as “offline” models or are set up to run at a coarse resolution (1 - 25 km resolution) which 

limits the use for operational flood inundation purposes at the local level.  Even these more efficient models still require 

detailed parameterization, which can introduce errors, making them impractical in some cases due to data requirements, 

uncertainty, and complexity. 

An area of active research in flood forecasting leverages advancements in Earth observations and machine learning to 60 

enhance prediction accuracy and provide spatially explicit inundation information. Data-driven approaches are being 

explored to establish relationships between rainfall forecasts, satellite-observed inundation patterns, and other 

hydrometeorological variables, enabling more efficient and potentially accurate flood extent predictions. For example, a 

recent study published methods for forecasting inundation extent using Earth observation data, such as rainfall forecasts with 

machine learning approaches to estimate water fraction (Du et al., 2021). Another example that uses machine learning to 65 
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estimate flood inundation extent is the Google Flood Forecasting system (Nevo et al., 2022), which trains a per-pixel 

thresholding algorithm on historical satellite observations of flooding using simulated streamflow as inputs. These research 

efforts integrating historical satellite data, machine learning algorithms, and hydrologic variables highlight a promising 

avenue for developing robust flood forecasting systems. 

A promising data-driven framework for predicting surface water extents using satellite and hydrologic data is the Forecasting 70 

Inundation Extents using Rotated Empirical Orthogonal Function (FIER) framework (Chang et al., 2020). This framework 

operates by extracting historical patterns to identify recurring spatial and temporal patterns of flooding using a statistical 

technique called Rotated Empirical Orthogonal Function (REOF) analysis (Kaiser, 1958). Then these flood patterns are then 

correlated with historical hydrological data (e.g., streamflow, water levels) to build regression models. Using simulated 

(retrospective or forecast) hydrological data as input, FIER synthesizes corresponding flood maps. FIER allows user to 75 

simulate inundation maps without the need to develop and calibrate a complex hydrologic and hydrodynamic model from 

scratch, instead utilizing existing, often operational, streamflow forecasts. The main advantages of this framework are its 

computational efficiency, scalability, and ability to operate in data-scarce regions. While relying on existing modelled 

streamflow from operation systems can be advantageous, users also inherit the errors from operational model outputs which 

can lead to some performance degradation in the outputs. To date FIER implementations are typically trained on and applied 80 

to specific regions, limiting their applicability to broader areas. Hydrological regimes, topography, and flood characteristics 

vary significantly across different geographical locations, requiring regionally tailored implementations for accurate 

predictions. This is due to FIER being a data driven method meaning that the method is dependent on the data inputs and the 

patterns it can extract from the data. FIER has been applied to the Mekong Delta (Chang et al., 2023) and small regions in 

the US (Rostami, et al., 2024) but it is unknown how the method will perform when attempting to develop the model for 85 

very large areas (e.g., all of the Mississippi basin) when there may be varying patterns of floods. Moreover, there is a 

computational challenge as the nature of developing the flood patterns requires loading data in memory for processing so 

applying FIER over large areas can be a challenge. Expanding the spatial coverage of FIER is crucial for the applicability of 

the method for an operational product over large areas. 

This paper explores the feasibility of applying FIER in a manner that creates a consistent inundation forecast for both 90 

flooding and low-flow cases for large areas making the methods applicable for operational use. We apply FIER for multiple 

watersheds across a large area and test combining them to create a seamless surface water predictions. The results of the 

method are compared against a baseline implementation of FIER for a single area to compare how the combination for large 

area simulation compares to the traditional methods. The technical implementation and statistical validation are described. 

Furthermore, we provided additional analysis to highlight the method’s capability to provide accurate flood forecasts. This 95 

approach has the potential to be highly beneficial for operational flood forecasting and can contribute to more effective 

decision-making in the events of floods. By enabling the application of FIER to large river basins with diverse hydrologic 

characteristics, this research paves the way for developing robust, computationally efficient inundation forecasting systems 

worldwide, particularly in data-scarce regions where traditional hydrodynamic models are often infeasible. 
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2 Details on the FIER framework 100 

The FIER framework offers a novel approach to flood inundation forecasting, leveraging a data-driven method to produce 

spatial flood inundation estimates without the complexities and computational needs of traditional hydrodynamic models 

such detailed data, parameterization, and calibration for successful implementation. While FIER involves its own data 

processing and model fitting steps, the framework shared as an open-source Python package is designed to be accessible. At 

its core, FIER establishes a statistical relationship between historical flood patterns, derived from satellite imagery, and 105 

corresponding hydrological data, typically streamflow or water levels. This relationship is then used to predict historical and 

future flood extents based on modeled hydrological conditions. 

The FIER process begins by applying Empirical Orthogonal Functions (EOF) (Lorenz, 1956) to a multi-temporal stack of 

satellite images that capture historical flood events. EOF, a variant of Principal Component Analysis (PCA), decomposes the 

spatiotemporal variability of the images into a set of orthogonal spatial patterns, and their corresponding temporal variations. 110 

The original images can be reconstructed by weighted combinations of these components. In many cases the signal from any 

individual component may not be significantly different from random noise, therefore a Monte Carlo significance test 

(Hannachi, 2004) is performed to identify the significant components. The extracted significant components that are retained 

represent truncated information. In some fields physical meaning can be assigned to components, but the extracted 

significant components may not contain isolated signals, meaning individual components are hard to interpret as physical 115 

processes (Dommenget and Latif, 2002), therefore a rotation is applied, in this case the varimax rotation, which changes the 

orientation of the factors without altering their fit to the data to obtain simple structures. This makes it easier to physically 

interpret the inundation patterns in the components. The process of rotating the EOF is known as Rotated Empirical 

Orthogonal Function (REOF) analysis. The resulting spatial patterns are termed Rotated Spatial Modes (RSMs) whereas 

their corresponding temporal variations are called Rotated Temporal Principal Components (RTPCs). Each RSM represents 120 

a distinct spatial pattern, while its associated RTPC describes how that pattern evolves over time. Next, a correlation analysis 

is performed that identifies the RTPCs that are significantly correlated with the hydrological data, representing flood-

relevant modes. Regression models are then built to link these flood-relevant RTPCs to the corresponding hydrological 

variable. These regression models can consist of using generalized linear models (Chang et al., 2020) or more sophisticated 

machine learning/deep learning approaches (Chang et al., 2023). To forecast flood inundation, forecasted hydrological data 125 

are used as the input into the trained regression models to predict future RTPCs. These predicted RTPCs are then multiplied 

by their corresponding RSMs and summed to synthesize a forecasted flood signal (essentially a reverse PCA), which can be 

further processed to generate a map of predicted flood extent. Figure 1 displays a flowchart schematic which summarizes the 

FIER process, readers are directed to (Chang et al., 2020, 2023) for additional details on the FIER process. 

 130 
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Figure 1: Schematic of the FIER workflow. Adapted from (Rostami, et al., 2024). 

 

Scaling the FIER approach to larger geographic extents presents several challenges. One key limitation is the diminishing 135 

signal of floods as the area of analysis increases. FIER relies on identifying recurring spatial patterns of flooding from 

satellite imagery. As the area expands, these patterns become less distinct and more challenging to extract, particularly in 

regions with diverse hydrological regimes or where flooding is not widespread. This can lead to reduced accuracy and 

difficulty in establishing robust relationships between flood patterns and hydrological variables because the REOF process 

may extract other signals occurring on the land surface. 140 

Additionally, computational challenges arise when processing large volumes of satellite data and performing REOF analysis 

over extensive areas. The FIER training implementation requires significant computational resources and processing time 

when applied to large areas at regional to continental scales. However, applying predictions using the framework are 
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relatively fast. For example, applying the REOF process part of the FIER training over large areas requires reading in an 

entire time series of satellite imagery into memory and applying the PCA and REOF process over massive arrays. This 145 

challenge limits its applicability to select organizations with such computational resources and hinders its operational 

feasibility due to computational needs and runtime. These limitations necessitate exploring alternative approaches, such as 

the proposed watershed-based scaling method, to overcome the diminishing flood signal and computational bottlenecks 

associated with scaling FIER to larger geographic extents. 

3 Materials & Methods 150 

3.1 Study Area 

This study focuses on a flood plain as part of the lower Mississippi basin, more specifically the region extending from 

approximately St. Louis, Missouri past Memphis, Tennessee. This region was selected because it is characterized by 

extensive floodplains along the Mississippi River and complex network of tributaries which experience flooding and 

droughts. The primary inflows to this segment of the Mississippi are from its own upstream reaches and major tributaries 155 

like the Missouri River (joining upstream of the study area near St. Louis) and the Ohio River (joining near the downstream 

end of our baseline area at Cairo, Illinois). The Cumberland and Tennessee Rivers are major tributaries to the Ohio, 

contributing significant volume to the system.. Furthermore, there are reservoirs, namely the Kentucky Lake, Lake Barkley, 

and Pickwick Lake on the eastern side, Rend Lake in the north, and Sardis Lake to the south within the region which are 

used for hydropower generation and to regulate flow into the Mississippi River to reduce flooding. Additional structures 160 

along the study area include dikes and levees constructed by The US Army Corps of Engineers for flood control (Watson et 

al., 2013). The Mississippi River near the inflow of the study area measured at the USGS gauge in St. Louis has an average 

streamflow of 6,197 m3/s with a peak streamflow ranging from 29,166. – 101,940 m3/s for years 2012-2020. Flood events in 

the lower Mississippi area are primarily triggered by rainfall and snowmelt. More recently, the region is experiencing a shift 

in climate leading to increases in streamflow (Yin et al., 2023). In 2011 and 2019 there were flooding events related to heavy 165 

precipitation and late spring snowmelt (Gledhill et al., 2020) where the recent flood event in 2019 was regarded as one of the 

longest lasting events in the past century (Pal et al., 2020). Conversely to the reported long-term climatic changes, the 

Mississippi River also experiences significant droughts with the most recent record-low water levels being recoded in 2022 

and 2023, particularly in the Memphis area. Droughts and the low water levels are caused by a lack of precipitation in the 

Mississippi River basin and extreme temperatures contributing to excessive evapotranspiration (Muñoz et al., 2023). All 170 

these factors lead to a complex hydrology for the region making it an ideal candidate for testing the scalability of the FIER 

method. 

Figure 2 shows the study area along with historical average (2012-2020) surface water fraction derived from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) sensors. The study uses two subsets of the broader region for testing the 

methods: 1) a baseline region and 2) the watersheds surrounding the baseline region (see details in section 3.3 Experimental 175 
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Design for further explanation on the two subregions). The baseline region is marked in red whereas the watersheds are 

shown with the black outlines. 

 

Figure 2: Study area map showing the average surface water fraction derived from the VIIRS sensor from 2012-2020 along with 

two subregions, the baseline region for FIER in red and the surrounding watersheds in black. 180 
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3.2 Data 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is an optical sensor onboard the Suomi-NPP, NOAA-20, and 

NOAA-21 satellites. The VIIRS sensors provide images with a spatial resolution of 375 meters across five spectral bands 

ranging from visible to thermal infrared channels and has a swath width of 3,000 km with a consistent across-scan spatial 185 

resolution. These sensor characteristics ensure more comprehensive global daily coverage and make it more favorable than 

the MODIS data for flood mapping (Li et al., 2020, 2022). The National Oceanic and Atmospheric Administration (NOAA) 

uses the VIIRS imagery from the three satellites to produce an operational daily surface water fraction estimate for the entire 

globe (Li et al., 2018). The VIIRS water fraction product produced by NOAA was used to extract the spatiotemporal patterns 

of surface water and flood changes using the FIER framework. These data were accessed from the AWS Registry of Open 190 

Data, specifically the NOAA Joint Polar Satellite System (JPSS) cloud storage bucket (https://registry.opendata.aws/noaa-

jpss/). The data were ingested into Google Earth Engine (Gorelick et al., 2017) as an ImageCollection. Earth Engine was 

used to preprocess the VIIRS data and extract data cubes in the format required for processing with FIER.  We used the full 

record of VIIRS water fraction maps for the study, 2012-01-20 to 2023-12-31, however the VIIRS water fraction data has a 

missing period from 2021-01-01 to 2023-08-10 that was excluded from the study. While SAR imagery offers cloud 195 

penetration advantages and has been used with FIER (Chang et al., 2023), VIIRS was selected for this study due to its 

extensive and consistent daily historical archive dating back to 2012, which is crucial for extracting robust spatio-temporal 

patterns via REOF over a long period and diverse hydrological conditions (Rostami et al., 2024). 

We used the National Water Model (NWM) streamflow data as the hydrologic variable to predict the flood-relevant 

temporal patterns with FIER. The NWM (Cosgrove et al., 2024) is a hydrologic modeling framework developed by NOAA 200 

at the National Water Center in Tuscaloosa, Alabama that simulates streamflow data for over 2.7 million river reaches across 

the United States along with other hydrologic information such as snow water equivalent and soil moisture. The NWM 

forecasts include two datasets, the retrospective dataset which is a historical simulation from 1979 to 2023 and the 

operational dataset which is run every day to produce operational forecasts since late 2018. The operational dataset includes 

a short-range 18-h deterministic forecast that provides flow estimates on an hourly time step, a medium-range forecast with 205 

10 days (member 1) and 8.5 days (members 2–6) with a 3-h time step and a long-range 30-day four-member ensemble 

forecast on a 6-h time step. The short-range forecast is initialized every hour and the medium- and long-range forecasts are 

initialized every 6 h. In addition to the forecast runs there is also an analysis and assimilation run which is a nowcast of 

current streamflow conditions that includes data assimilation from streamflow gauges and a run with no data assimilation. 

We used both NWM datasets in this study; the retrospective data version 3.0 were used to fit the FIER temporal components 210 

to the historical simulated streamflow whereas the operational products were used to predict flood extent for select cases. 

The retrospective data was accessed through the AWS Registry of Open Data from the NOAA National Water Model 

CONUS Retrospective Dataset (https://registry.opendata.aws/nwm-archive/). The operational data was accessed via the 

Google Cloud Public Dataset on BigQuery (Markert et al., 2024b). 
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3.3 Experimental Design 215 

The experimental design for this study aims to evaluate the effectiveness and accuracy of scaling the FIER method across 

larger spatial extents. We tested two approaches: applying FIER to a singular baseline area encompassing a portion of the 

study area, which is used as the control, and applying FIER to multiple watersheds individually before mosaicking the results 

together. The study area was subdivided into 46 smaller watersheds using HUC8 watershed boundaries (see Fig. 4.2 for 

geographical representation of the watersheds). This comparison is meant to assess whether dividing the region to run FIER 220 

individually and then mosaicking together impacts the accuracy of the flood predictions. The basins were selected by 

identifying watersheds that intersected the baseline area using a 50km buffer which is the maximum buffer size tested. This 

insured that we could compare the mosaicked outputs to the baseline area with every watershed that would have data from 

the baseline area while addressing the need to test applying FIER over larger areas.  Given that the FIER method is data-

driven, the patterns it can extract and the results of flood inundation are based on the data inputs. This can cause edge effects 225 

along watershed boundaries when mosaicking the individual FIER implementations. To mitigate potential edge effects and 

ensure smooth transitions between mosaicked watershed predictions, varying buffer sizes (0, 1, 2, 5, 10, 20, and 50 km) were 

tested when processing individual watersheds. The buffer sizes do not represent any relationship to the watershed size and 

are meant to represent a range from no buffer to a substantial one to identify general trends in applying buffer sizes to reduce 

FIER mosaicking edge effects. 230 

The FIER framework requires that all pixels in a time-series be present to use to extract patterns, therefore only imagery with 

99.9% clear sky conditions, a threshold to retain mostly clear scenes while allowing for minor imperfections in automated 

cloud masking. were used to limit the gaps in space for the extracted spatial patterns. Water fractions were predicted and 

evaluated using dates where the observed imagery had a greater than 90% clear sky conditions. The dates used for training 

were not evaluated for performance and used only to fit the FIER framework. This selection process retained approximately 235 

5.3-21.6% of daily images for training and 25.1-40% for the evaluation dataset, varying by watershed due to cloud cover 

prevalence. 

FIER predictions use truncated information from the modes that are correlated with hydrologic variables, meaning 

mathematically the predicted water fraction cannot maintain its original scale of 0 to 100%. Other research (Rostami et al, 

2024) have applied a quantile mapping method to the FIER predictions which restore the complete signal range as much as 240 

possible. Quantile mapping is widely used in climate and hydrology studies to correct the biases in model-estimated values 

(Enayati et al., 2020; Farmer et al., 2018). The method matches the quantiles of Cumulative Distribution Functions (CDFs) 

from the predicted to the observed. The CDFs were calculated for all FIER trials (baseline and different buffers) using only 

the dates that were used for training on a per-pixel basis. The quantile mapping post-processing was applied for the 

prediction dates for all FIER trials. The two versions of FIER outputs, the original FIER predictions and post-processed 245 

predictions utilizing quantile mapping, were evaluated. This allows for evaluating the impact of post-processing on the 

accuracy of the mosaicked results compared to the baseline. 
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3.4 Statistical Analysis 

To effectively compare the different experiments with the baseline, a statistical analysis was performed to understand and 

compare the accuracies as well as test if there are statistical differences between the experiments and baseline.  The accuracy 250 

assessment employs multiple metrics: Structural Similarity Index Measure (SSIM) (Wang et al., 2004) to assess the spatial 

accuracy of flood extents, Root Mean Square Error (RMSE) to quantify the accuracy of intensity of flood predictions, 

Relative RMSE to assess the errors relative to the observed value, and lastly Mean Absolute Error (MAE) as another 

statistical measure to quantify the accuracy of  intensity of flood predictions (Jackson et al., 2019). 

The SSIM metric is defined by equation 1: 255 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 ,         (1) 

Where x is the pixel sample mean of x, y is the pixel sample mean of y, x
2 is the variance of x, y

2 the variance of y, xy is 

the covariance of x and y, x is the test image, y is the reference image, c1=(k1L)2, c2=(k2L)2 two variables to stabilize the 

division with weak denominator, L is the dynamic range of the pixel-values (in this case 100 to represent the range of water 

fraction), k1=0.01 and k2=0.03 by default. The SSIM index is calculated on various windows of an image, in this case we 260 

used an 11x11 Gaussian kernel for the calculation, and then averaged across the image to get the final SSIM metric. The 

SSIM has a range of -1 to 1 where 1 indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect anti-

correlation. 

The RMSE metric is calculated using equation 2: 

𝑅𝑀𝑆𝐸 = √
1

n
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖  ,          (2) 265 

Where xi are the observations, yi are the observed values, and n is the number of observations. 

The RRMSE metric is calculated using equation 3: 

𝑅𝑅𝑀𝑆𝐸 = √
1

n
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖

1
𝑛
∑ (𝑦𝑖

2)𝑛
𝑖

 ,           (3) 

Lastly, the MAE is defined as equation 4: 

𝑀𝐴𝐸 =
1

n
∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖  ,           (4) 270 

These error metrics were calculated for each pixel comparing the predictions to the observed and then averaged across the 

baseline area for each date of prediction. The baseline area was used to calculate the metric averages to keep the area 

consistent between the baseline and mosaicked results so that the results can be compared without influence of different 

areas. 
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The last statistical test used was the Kolmogorov-Smirnov test (Massey, 1951) to statistically compare the distributions of 275 

the evaluation metrics between the baseline and mosaicked results for both original and post-processed FIER outputs. This 

test compares whether two samples came from the same distribution. The test was performed for each metric and for every 

buffer size but keeping the baseline consistent. Lastly, the one-sided test was used to identify whether a given error metric 

was statistically greater than or less than the baseline. For the SSIM metric we tested if the mosaicked predictions are 

significantly greater than the baseline. For the other error metrics (RSME, RRMSE, MAE) we tested if the mosaicked 280 

predictions are significantly lower than the baseline.  

3.5 Case Studies 

The statistical analysis described in the previous section was done using retrospective NWM streamflow as inputs into FIER, 

however, running FIER for actual flood extents will involve using the operational NWM streamflow predictions. Using case 

studies serves to provide an evaluation of using the operational NWM for specific flood and low flow cases. We selected the 285 

statistically best FIER experiment for running the use cases. 

To identify dates to use as cases for the low flow example, we selected a representative reach within the region close to the 

center of the baseline region along the Mississippi River. The streamflow data for the representative reach was averaged by 

month. The months with the lowest streamflow for 2019 and 2020 was used to select two dates (one from 2019 and one from 

2020) as the low flow cases. These years were selected because they included operational NWM forecasts starting in late 290 

2018 and overlap with available VIIRS imagery which had a substantial gap in data from 2021-01-01 to 2023-08-10.  This 

process was done using the NWM operational analysis and assimilation data. Figure 3 displays the hydrographs for the reach 

where the low flow periods can be seen in 2019 and 2020. It should be noted that while the Mississippi River has been 

reported that increase in streamflow are expected due to long-term shifts in the climate Yin et al. (2023), the Mississippi 

River has experienced droughts reported by recent research (Muñoz et al., 2023) leading to the downward trend in 295 

streamflow. 

For the high flows, there were fewer options to select therefore a different approach was taken. We calculated the return 

periods for floods based on the NWM retrospective data for the representative reach within the region. We calculated the 

return periods on data from 1980-2018 using the Gumbel Type 1 distribution: 

𝑄𝑟𝑝 = − log (− log (1 −
1

rp
)) ∙ 𝜎 ∙ 0.7797 ∙ 𝜇 − (0.45 ∙ 𝜎) ,       (5) 300 

where Qrp is the return period flow, rp is the return period in years,  is the standard deviation of the dataset, and  is the 

average of the dataset. Next, we identified flood events from the NWM operational analysis and assimilation dataset from 

late 2018 - 2020 by comparing their peak flows to these calculated return period thresholds. We used the NWM operational 

product to determine flood events for the case studies because these are the data that would hypothetically be used in actual 

situations for forecasting FIER. Another criterion for selection was finding dates where the data were reserved and not used 305 
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for training the models but used for evaluation. We selected a date that exceeded a 50-year return period in 2019 as well as a 

separate date that exceeded a 5-year return period as flooding case studies to evaluate FIER predictions. We selected these 

events in order to have an extreme flooding event and a more common flooding case. 

 

Figure 3: Streamflow hydrograph from the National Water Model (NWM) for the representative reach showing (a) retrospective 310 
simulations from 1980-2017 and (b) operational simulations from the analysis_assim run from 2018-2024. Horizontal lines indicate 

the 2-, 5-, 10-, 25-, and 50-year flood recurrence interval discharge values for the stream reach. 

 

We ran FIER with streamflow data from a nowcast from the analysis and assimilation, 7-day medium-range forecast, and 

with a 15-day long-range forecast from the NWM to evaluate how different forecast runs and time horizons affect the FIER 315 

outputs. Since NWM produces sub-daily streamflow predictions, we averaged the streamflow values for the prediction date 

to use as inputs into FIER. For this initial scaling study daily average streamflow values were used as inputs to FIER to align 

with the daily VIIRS observation frequency and simplify the analysis, however, since NWM provides sub-daily streamflow 

the FIER predictions could be produced on a sub-daily time step and is a potential area for future refinement and operational 

use. The medium-range and long-range NWM streamflow predictions have multiple ensemble runs, so we averaged these 320 

across the different ensembles. Similarly, while NWM forecasts include ensembles, these were averaged for this study to 

provide a deterministic input to FIER. Incorporating ensemble streamflow to generate probabilistic inundation forecasts with 

FIER is a relevant avenue for future work. The medium-range and long-range streamflow predictions have multiple 

initialization times; we used the 00Z initialization for the forecasts to have a single forecast when calculating the streamflow 

values for the FIER extent predictions. We used the same statistics to evaluate the outputs from FIER for each of these use 325 

cases. 
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4 Results 

4.1 Statistical Analysis 

The experimental design aimed to assess the feasibility of applying the FIER method over larger geographic scales by 

segmenting the area of interest (AOI) into multiple smaller watersheds and then mosaicking the results together. An analysis 330 

of the REOF process and regressions are provided in Appendix A. Here we focus on comparing the results of the mosaicked 

process to running FIER over a larger baseline area. Figure 4 displays the average error metrics and how they vary with 

buffer sizes. First, applying FIER to multiple watersheds and then mosaicking the results does not lead to poor statistical 

performance compared to running FIER over the baseline AOI. When considering the original FIER outputs (green lines), 

Fig. 4 shows that the performance of the mosaicked results perform better than the baseline when the buffer size is smaller 335 

(0-10 km). When the buffer size is larger (20-50 km), the error metrics of the mosaicked results (green lines) trend more 

closely aligned with the baseline (dashed green line). For the SSIM metric specifically, the original mosaicked outputs at 

smaller buffer sizes (0-10 km) are not substantially greater than the baseline SSIM. For the RRMSE metric, the mosaicked 

results show higher errors from the original FIER outputs (no correction applied) compared to the baseline outputs but are 

closer to the baseline for the 1 and 2 km buffer experiments. When considering the post-processed outputs (blue lines), the 340 

mosaicked results perform better than the baseline for all the error metrics except for RRMSE. This is particularly notable 

for the SSIM metric, indicating that the post-processing applied to the mosaicked outputs are able to better capture the spatial 

patterns of observed flood inundation more effectively than either the baseline FIER output with post-processing or original 

outputs. 

A noteworthy observation is the increase in error metric values for the post-processed FIER outputs compared to the original 345 

outputs, particularly noticeable in the RMSE and RRMSE values (Fig. 4 blue lines compared to green lines in graphs b and 

c). While there is also an increase in SSIM outputs with post-processing (Fig. 4a), the increase in SSIM shows improvement 

whereas an increase in RMSE/RRMSE indicates worse performance. Interestingly, the RMSE for the post-processed 

mosaicked results is much lower than that of the post-processed baseline output (blue lines in graph b). Moreover, this 

pattern of increasing error values is not present for MAE (graph d). RMSE and RRMSE gives more weight to larger errors, 350 

meaning these metrics are more sensitive to outliers than MAE. The results suggest that the post-processing reduces many 

smaller absolute errors but can introduce or amplify a few larger errors, particularly if the distributions of predicted and 

observed values used for CDF matching have significant differences in their tails or if the underlying flood patterns are 

complex and not perfectly captured by the limited modes. 

Limited research has been conducted on properly validating inundation map and the interpretation. Those studies that have 355 

been published have focus on binary (water/no-water) maps (e.g. Schumann, 2019 and Landwehr et al., 2024). Conversely, 

there are well-known metrics and guidance for model for continuous variables from hydrologic simulations (e.g. Moriasi et 

al., 2005) however the guidance does not directly map to evaluating output images of continuous values such as water 

fraction. Therefore, the error metrics chosen and interpretation are based on important properties to evaluate for inundation 
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predictions (water fraction intensity and spatial patterns) and to compare different configurations without making universal 360 

claim of satisfactory outputs. Determining whether the outputs for a specific implementation of FIER should be the role of 

the practitioner considering their tolerance for specific errors. 

 

 

Figure 4: Graphs illustrating the impact of varying buffer sizes on the performance of the FIER method for flood inundation 365 
mapping, assessed using the areal average of four different metrics: (a) Structural Similarity Index Measure (SSIM), (b) Root 

Mean Squared Error (RMSE), (c) Relative Root Mean Squared Error (RRMSE), and (d) Absolute Error. The green lines 

represent the original FIER outputs, while the blue lines depict the corrected outputs after applying a CDF matching post-

processing step. The dashed lines indicate the baseline performance metrics obtained from applying FIER to a single, larger AOI. 

 370 

The other statistical analysis we performed was to compare the distributions of the errors. Figure 5 displays the CDF for the  

various error metrics and compares the baseline FIER predictions to the mosaicked FIER predictions with different buffer 
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sizes. The CDF plots show that the original outputs (top row) have similar curve shapes aside from at the upper quantiles 

(0.8 - 1) where the mosaicked results for SSIM metric show more values with better performance compared to the baseline 

(black line). Conversely, the RMSE, RRMSE, and MAE curves show more values with greater errors compared to the 375 

baseline. The plots displaying the post-processed CDFs (bottom row) display a different pattern compared to the original 

outputs. The SSIM curve for the mosaicked outputs displays better SSIM values compared to the baseline. However, the 

RMSE, RRMSE, and MAE CDF plots show that the post-processed mosaicked results have fewer values with less error 

(better performance) compared to the baseline for the lower quantiles (0 - 0.4) but have more values with higher errors 

(worse performance) at the upper quantiles (0.8 - 1) suggesting that the majority of errors for the post-processed results are 380 

due to large discrepancies with the observed. This supports the finding from comparing buffer sizes (Fig. 4) where the 

averaged RMSE metric worsens after the correction. The larger number of high error values can lead to higher RMSE and 

lower MAE errors because the RMSE metric is more sensitive to outliers than MAE. 

 

Figure 5: Cumulative distributions of different error metrics for the FIER spatial scaling experiments. The top row (a-d) shows 385 
the original FIER outputs, while the bottom row (e-h) shows the outputs after applying CDF matching as post-processing. 

Different colors represent varying buffer sizes used when delineating individual watersheds for the mosaicked FIER approach. 

The black line represents the baseline FIER run over the larger area. The metrics include: (a, e) SSIM, (b, f) RMSE, (c, g) 

RRMSE, and (d, h) MAE. 

 390 

Table 1 provides the p-values from one-sided Kolmogorov-Smirnov tests, indicating whether the distributions from the 

various approaches are statistically different. The p-values from the Kolmogorov–Smirnov test reveal that there are 

significant differences between the baseline FIER and the mosaic approach across both the various error metrics and buffer 

sizes. In general, the buffer sizes of 20 and 50 km show that the mosaicked results are not statistically better (higher SSIM or 

lower RMSE, RRMSE, and MAE) than the baseline for the original outputs. Furthermore, the mosaicked results for buffer 395 
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sizes of 0-10 km have significantly better performance only for the SSIM and RMSE. While the mosaic outputs have values 

less than the baseline for the MAE metric, this difference is not significant. Additionally, the mosaicked outputs have a 

higher RRMSE than the baseline. 

For the corrected FIER outputs, all buffer sizes show statistically significant differences in SSIM compared to the baseline 

with post-processing applied, indicating that by correcting the mosaicked outputs, the results are better able to capture the 400 

spatial distribution of flooding than using a single FIER process for a larger AOI. Furthermore, mosaic outputs show 

significantly better performance compared to the baseline AOI for the RMSE and MAE metrics. In particular, the p-values 

show that the buffer sizes 0-10 km are significantly less for RMSE, buffer size of 20 and 50 km are not significantly better. 

Whereas buffer sizes 0-20 km show statistically significant better performance compared to the baseline AOI for MAE and 

the buffer size of 50km is not significant. While the RRMSE metric was lower than the baseline for the corrected mosaicked 405 

results, the differences for all buffer sizes was not significant. This highlights that while post-processing aligns the spatial 

distribution of the flood predictions from FIER, it does not eliminate the inherent differences in the magnitude and spread of 

intensity-based errors between the two approaches. Overall, the Kolmogorov-Smirnov test results confirm that scaling FIER 

by mosaicking smaller watersheds produces statistically distinct error distributions. For the corrected outputs, the buffer 

sizes of 0-10 km generally result in more accurate predictions (higher SSIM, lower RMSE and MAE) compared to the 410 

original baseline outputs, and also often outperform the post-processed baseline outputs (as seen in Fig. 4). 

 

Table 1: p-values from one-sided Kolmogorov-Smirnov tests comparing the distributions of evaluation metrics for FIER 

predictions with varying buffer sizes to the baseline FIER predictions. A lower p-value indicates a statistically significant 

difference between the distributions. Values denote significance at the 95% level are denoted with an asterisk (*), while values at 415 
the 99% level are denoted with double asterisks (**). 

 Original Corrected 

Buffer SSIM RMSE RRMSE MAE SSIM RMSE RRMSE MAE 

0 0.0419* 0.0076** 0.9999 0.9878 0.0076** 0.0076** 0.6925 0.0076** 

1 0.0241* 0.0074** 0.9813 0.1227 0.0074** 0.0025** 0.3697 0.0074** 

2 0.0239* 0.0073** 0.9948 0.1865 0.0073** 0.0025** 0.3658 0.0073** 

5 0.0234* 0.0072** 0.9973 0.1519 0.0072** 0.0044** 0.4869 0.0072** 

10 0.0219* 0.0132* 1.0000 0.9826 0.0067** 0.0221** 0.6211 0.0089** 

20 0.0876 0.1721 1.0000 0.9985 0.0064** 0.0648 0.6122 0.0749** 

50 0.6267 0.2464 1.0000 0.9852 0.0121* 0.1276 0.4941 0.1087 

 

These findings suggest that scaling the FIER method spatially by mosaicking results from smaller watersheds is a viable 

approach based on the error metrics tested. The mosaicked approach consistently achieves comparable or better spatial 

pattern accuracy (SSIM) than the baseline. Furthermore, CDF matching generally improves the SSIM of the mosaicked 420 
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results and can improve RMSE/MAE compared to the original mosaicked outputs, leading to statistically significant 

improvements over the baseline, particularly for 0-10 km buffers. Furthermore, we found that the difference in mosaicked 

results error metrics are statistically significant. Larger buffer sizes (20 km and 50 km) do not show consistent improvements 

and may even lead to higher errors in some cases. This suggests that excessive buffering can blur the flood signal and reduce 

the accuracy of the predictions. 425 

4.2 Case Studies 

We performed the statistical analysis to understand the overall errors associated with running FIER over larger geographic 

scales using retrospective NWM streamflow as inputs, however, running FIER for actual flood extents necessitates using the 

operational NWM streamflow predictions for forecast predictions. We selected two dates with flooding and two dates with 

low flows then ran FIER for those time periods with only one buffer size to better understand how FIER does for extreme 430 

cases using the NWM operational data. 

We selected which buffer size to use for the case study based on the statistical analysis that found a buffer size of 1 km or  2 

km for mosaicked FIER outputs seems to be the most promising for operational use. While other buffer sizes show 

improvements in either SSIM or RMSE, we selected the 1 km buffer as it was found to strike a good balance between 

accurately capturing both the spatial extent and intensity of flooding when compared to the baseline.  The corrected outputs 435 

for the 1km buffer generally demonstrate a better balance of error metric results (SSIM, RMSE, MAE) when considering 

overall performance improvements against the baseline and the impact of correction, which suggests that the CDF matching 

post-processing effectively reduces overall error in the flood inundation estimates, even if RMSE itself might see a slight 

increase for this specific buffer compared to its uncorrected version (Fig 4b). While we selected the 1km buffer size over a 

2km buffer because the errors are slightly lower, these differences are marginal. 440 

Figure 6 displays the results for running the mosaicked FIER process with the operational NWM predictions for the selected 

flood dates. Examining the 2019-02-25 flood event (top two rows), which exceeded the 50-year return period, FIER 

demonstrates consistent performance across nowcast, medium-range (7-day), and long-range (15-day) forecasts. The second 

row is zoomed into the baseline area to highlight more higher-resolution differences. Generally, it appears that the 

predictions capture the spatial dynamics of the flood, but the long-range prediction has a noticeably smaller extent than the 445 

nowcast or medium-range predictions. The 2020-02-15 flood event (bottom two rows), exceeding a 5-year return period, 

shows similar results where the forecasts are able to capture the extent of flooding, in this case, similar to the 2019 event's 

longer lead times, the further the lead time for prediction, the smaller the prediction of flood extents, suggesting more 

uncertainty with longer range forecasts. In particular, the long-range forecasts (Fig. 6, right column) also reveal complex 

spatial differences compared to the medium-range forecasts. For instance, while the overall extent might shrink with lead 450 

time, some localized areas, particularly in the eastern part of the region show decreased water fraction for the tributaries may 

possibly reflecting spatial variations in NWM forecast accuracy and its effects on the FIER outputs. Appendix B provides 

additional figures highlighting differences maps of the different forecasts compared to the observation. Table 2 tabulates the 



18 

 

error metrics for each simulation compared to the observation. While the long-range forecast exhibits slightly lower RMSE 

compared to the nowcast and medium-range for the 2019-02-25 flood event, the differences are marginal, and all forecasts 455 

achieve SSIM values above 0.57, indicating reasonable agreement with the observed flood extent. This suggests that FIER 

can provide reasonably consistent flood inundation predictions even with extended lead times, allowing for proactive flood 

mitigation measures. 

The 2020-02-15 flood event, exceeding the 5-year return period, showcases comparable performance across forecasts 

horizons. The long-range forecast for this event achieves the highest SSIM of 0.67 and lowest RMSE of 16.04 among its 460 

predictions, highlighting FIER's potential for capturing more frequent flood events with reasonable accuracy. The nowcast 

for this event, however, shows a slight decrease in performance compared to the forecasts. The degradation in performance 

for the forecasts compared to the retrospective FIER simulations is likely due to the errors in the NWM streamflow 

predictions over the extended lead times. 

 465 

Table 2: Performance statistics for the FIER-predicted water fraction maps for two flood events 2019-02-25, the 50-year flood, and 

2020-02-15, the 5-year flood. 

Date Forecast SSIM [-] RMSE  

[Water fraction] 

RRMSE [%] MAE  

[Water fraction] 

2019-02-25 Nowcast 0.5723 16.9233 78.482 3.9396 

Medium range 0.5766 17.2939 80.201 4.0435 

Long range 0.6664  16.2569 75.391 3.5162 

2020-02-15 Nowcast 0.5414 18.4803 79.022 4.6667 

Medium range 0.6233 16.3844 70.060 3.6701 

Long range 0.6676 16.0370 68.575  3.4319 
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 470 

Figure 6. Comparison of observed and FIER-predicted water fraction maps for the two selected flood events: 2019-02-25, the 50-

year flood (top two rows), and 2020-02-15, the 5-year flood (bottom two rows) The lower rows are a zoomed view for the baseline 

area to highlight local differences in the predictions. Predictions use the nowcast, medium-range (7-day lead time) and long-range 

(15-day lead time) streamflow from the NWM. White areas are missing data due to clouds, cloud shadows and other poor-quality 

data. 475 
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The evaluation of FIER performance during low flow periods, using operational NWM streamflow predictions and the 

selected 1 km buffered and corrected configuration, reveals consistent and accurate results. Figure 7 displays the results for 

running the mosaicked FIER process with the operational NWM predictions for the selected low-flow dates. Table 3 shows 

the resulting error statistics comparing the FIER mosaicked predictions with the observation for the two selected low-flow 

dates. For the 2019-09-29 low flow event, FIER exhibits high SSIM values (above 0.73) across all forecast ranges, indicating 480 

strong agreement with the observed low flow conditions. The long-range (15-day) forecast demonstrates the lowest RMSE 

(8.53), RRMSE (59.00%), and MAE (0.89), suggesting that FIER can effectively capture low flow dynamics especially with 

extended lead times. This capability is particularly valuable for water resource management applications, such as drought 

monitoring and water allocation planning. Similarly, the 2020-10-21 low flow event shows consistent performance across all 

forecast ranges, with SSIM values exceeding 0.73. Again, the long-range forecast achieves the lowest RMSE (8.01) and 485 

MAE (0.79), reinforcing the ability of FIER to accurately predict low flow conditions with extended lead times. The visual 

comparison of the FIER-predicted water fraction maps (Fig. 7) with the observed data further supports these findings. The 

FIER outputs using the operational NWM streamflow outputs, while still capturing the general low flow patterns, show some 

minor deviations such as on the eastern side of the study regions for the 2019-09-25, likely attributed to the inherent 

uncertainties in the model streamflow predictions. 490 

These results highlight the potential of the scaled FIER method for operational inundation prediction during low flow and its 

ability to generate reliable and accurate predictions of surface water extent during low-flow conditions,. This is important 

because an operational system should ideally perform sensibly whether flows are high or low. The consistent performance 

across different forecast ranges, coupled with the high SSIM values and low error metrics, demonstrates the capability of 

FIER to provide reliable and accurate low flow predictions. This information, by providing spatially explicit maps of surface 495 

water extent (e.g., surface water dynamics), can be crucial for informing water management decisions, such as simulating 

impacts due to dam constructions (Do et al., 2025). 

 

Table 3: Performance statistics for the FIER-predicted water fraction maps for two selected low-flow dates: 2019-09-29 and 2020-

10-21. 500 

Date Forecast SSIM [-] RMSE  

[Water fraction] 

RRMSE [%] MAE  

[Water fraction] 

2019-09-29 Nowcast 0.7381 9.8846 68.336 1.2012 

Medium range 0.7580 8.6568 59.848 0.9179 

Long range 0.7688 8.5340 58.998 0.8879 

2020-10-21 Nowcast 0.7374 8.7395 61.268 0.9843  

Medium range 0.7394 8.7107  61.067 0.9571 

Long range 0.7713 8.0128 56.174 0.7921 
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Figure 7. Same as Fig. 6 except for the two selected low-flow dates: (top two rows) 2019-09-29 and (bottom two rows) 2020-10-21. 

Predictions use the nowcast, medium-range (7-day lead time) and long-range (15-day lead time) streamflow from the National 505 
Water Model. White areas are missing data. 
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5 Discussion 

5.1 Advantages and Limitations of the Watershed-Based Approach 

Scaling the FIER method to larger geographic extents necessitates breaking the larger AOI into subunits. Hydrological 

regimes, topography, and flood characteristics vary significantly across different geographical locations, requiring regionally 510 

tailored implementations for accurate predictions. Furthermore, FIER is a data driven method meaning that the method is 

dependent on the data inputs and the patterns it can extract from the data. Using watersheds as the fundamental unit offers 

several advantages. Primarily, watersheds inherently delineate areas with interconnected hydrological regimes, ensuring that 

flood signals within each unit are driven by a common set of forcing factors. This allows for the development of regionally 

tailored FIER models that better capture the unique flood characteristics of each watershed. Additionally, by dividing a large 515 

area into smaller watersheds, the computational burden of FIER can be significantly reduced, facilitating parallel processing 

and enabling the application over extensive regions where limitations of computer resources can inhibit applying one FIER 

model. 

Despite these advantages, the watershed-based approach presents certain limitations. One challenge lies in the potential for 

discontinuities at watershed boundaries when mosaicking individual FIER predictions. Abrupt transitions in predicted water 520 

fractions can arise due to variations in model parameters or data availability across watersheds. We showed that 

implementing the buffered approach around each watershed during the FIER fitting process allows for the mosaicking of 

multiple smaller FIER predictions to a large-scale surface water predict with reasonable accuracy compared to a baseline 

(Fig. 4) by incorporating information from neighboring areas and smoothing the flood signal across boundaries. However, 

the optimal buffer size is likely to vary depending on watershed characteristics and requires careful consideration. We found 525 

that selecting an excessively large buffer size risks blurring the flood signal and reducing the accuracy of predictions. More 

investigation is needed into what factors contribute to varying accuracy, particularly watershed characteristics such as size, 

topography, land cover, meteorology/climatology and flooding events. 

Furthermore, the choice of watershed scale (i.e. HUC8 vs HUC12) has the potential to influence the performance of the 

scaled FIER model. Utilizing smaller, more numerous watersheds allows for finer details and can potentially capture 530 

localized flood dynamics more effectively. However, using more watersheds comes at the cost of increased computational 

complexity and the potential for greater boundary discontinuities. Conversely, larger watersheds simplify the mosaicking 

process but may omit fine-grained flood signals and fail to capture fine-scale variations in inundation extent. Ultimately, the 

optimal watershed scale and buffer size are likely to be site-specific and require careful evaluation based on the hydrological 

characteristics, computational resources, and desired level of spatial detail for the application. For this study we only used 535 

the HUC8 watershed scale for comparing how FIER performs when mosaicking; using different watersheds scales was out 

of scope for this work but is a topic for future research. 
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5.2 Implications for Large-Scale Flood Inundation Forecasting 

The results from this study show that FIER can be successfully implemented over large areas using a mosaicking approach. 

The successful scaling of the FIER method holds significant implications for operational flood inundation forecasting at 540 

regional and continental scales. FIER's data-driven nature and computational efficiency make it particularly well-suited for 

large-scale applications where traditional hydrodynamic models are often computationally prohibitive or require extensive 

data inputs. By leveraging readily available satellite imagery and streamflow forecasts from hydrological models, like the 

NWM, FIER can provide rapid and accurate flood inundation predictions without the need for a complex modeling 

framework, high-resolution topographic data, or traditional calibration of physical parameters although the selection of 545 

optimal watershed scale and buffer size requires careful evaluation, akin to sensitivity analysis. This independence from 

detailed site-specific data typically required for hydrodynamic models such as high-resolution bathymetry and spatially 

distributed friction coefficients makes FIER a powerful tool for forecasting floods in data-scarce regions or ungauged basins, 

expanding the reach of flood inundation forecasting services to previously underserved regions (Chang et al., 2023; Do et al., 

2025). It is important to note, however, that since FIER learns from historical data and the range of historical surface water 550 

dynamics, significant future alterations to floodplains such as new major flood control measures not present in the historical 

record or substantial shifts in hydrologic regimes could necessitate model retraining or adjustments to maintain forecast 

accuracy. 

The scaled FIER method offers a valuable resource for a wide range of applications related to flood risk assessment, disaster 

preparedness, and water resource management. By providing timely and accurate flood inundation forecasts for events, FIER 555 

can support the development of effective early warning systems, enabling communities to prepare for and mitigate the 

impacts of flooding. In the context of water resource management, FIER can contribute to simulating flood responses to 

changes in hydrologic conditions which can inform flood risk assessments and guide long-term land-use planning decisions, 

optimizing reservoir building and operations (Do et al., 2025), assessing the effectiveness of flood control measures, and 

evaluating the impacts of climate change and human activities on flood regimes. Furthermore, FIER's ability to generate 560 

flood inundation maps from historical and even future long-term projected data can provide extents for specific return-

periods which are vital with regards to climate change and planning (Wing et al., 2024). The scalability and computational 

efficiency of FIER hold promise to support large-scale flood inundation forecasting, enabling a more proactive and data-

driven approach to flood risk management. 

5.3 Caveats and Limitations 565 

The watershed-based approach for scaling FIER, while promising, presents several limitations that warrant further 

investigation. The use of buffer zones, while mitigating abrupt transitions at watershed boundaries, may introduce artificial 

delineations that may not accurately represent the complex hydrological connectivity of real-world systems. For instance, in 

areas with complex topography or where floodwaters overtop watershed divides, the buffer zones may lead to inaccuracies in 
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the mosaicked flood predictions. As demonstrated in the statistical analysis, buffer sizes between 1-10 km showed the most 570 

promising results, but further research is needed to optimize buffer zone selection based on specific watershed characteristics 

and flood dynamics. Similarly, the choice of watershed scale presents a trade-off between spatial resolution and 

computational complexity. While smaller watersheds offer finer detail, they increase the potential for boundary 

discontinuities and computational burden. Conversely, larger watersheds simplify mosaicking but risks over smoothing the 

flood signal and missing localized flood events. The optimal scale is likely to be site-specific, requiring careful consideration 575 

of the desired level of detail and available computational resources. 

Furthermore, the current FIER implementation's reliance solely on streamflow data as the hydrological driver, in this case 

NWM streamflow outputs. This limits its applicability in data-scarce regions or where streamflow observations are 

unreliable. Other large scale model data (e.g. GEOGLOWS, Hales et al., 2022) can be used and tested to understand how 

sensitive the approach is to input streamflow particularly for data-scare regions across the globe. GEOGLOWS provides 15-580 

day streamflow predictions at 3 hour time steps for 51 ensemble streamflow predictions for approximately 7 million reaches 

across the globe, it is lower spatial resolution but has broader coverage as well as has different forecast horizons and 

ensemble members compared to NWM which would provide an interesting sensitivity analysis.  Additionally, the focus on 

streamflow-driven flooding may not adequately represent other flood types, such as coastal flooding, flash floods, or pluvial 

flooding, which are not directly tied to streamflow variations. Expanding the framework to incorporate other hydrological 585 

variables, such as precipitation, soil moisture, and antecedent conditions, could enhance its robustness and broaden its 

applicability. It should be noted that the FIER processing framework as is can handle arbitrary hydrologic inputs for fitting 

but would require the user to prepare the data as inputs which is currently not implemented in the scripts shared. A critical 

aspect is the quality of the satellite-derived water fraction product used to train FIER, in this study the VIIRS data. While 

VIIRS provides valuable daily observations for large-scale monitoring, it is subject to inherent uncertainties beyond the 590 

already mentioned data gaps due to cloud cover . Integrating data from multiple satellite sensors, such as SAR and optical 

imagery could further improve the temporal density and quality of the input data (Markert et al., 2018). Furthermore, the 

accuracy of satellite-derived water fraction estimates can be significantly affected by land cover type; for instance, detecting 

surface water is notoriously challenging under dense forest canopies, within complex urban environments where water 

surfaces may be small or obscured, or in areas with extensive emergent vegetation (Li et al., 2020). Shadows and certain soil 595 

types can also be misclassified as water. Additionally, automated QAQC processing for satellites provide satisfactory cloud 

masking the masking trades off between over- and underestimation of clouds, resulting in misclassified clouds. These 

uncertainties in the input satellite imagery, representing potentially imperfect and incomplete inundation areas, directly 

propagate into the FIER model during its training phase, as the process extracts historical inundation patterns from this data. 

Consequently, FIER predictions may inherit these imperfections, potentially leading to underestimations of flood extent in 600 

areas where water is obscured by vegetation or overestimations due to misclassifications. This implies that for real-world 

hydrological applications, particularly those requiring high precision in specific challenging land cover types (e.g., detailed 

damage assessment in forested floodplains or urban flood mapping), the potential for such inaccuracies in FIER outputs must 
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be carefully considered. It is important to note that given FIER is a data-driven approach and determines flooding signals 

from historical data, there could be deviations from the data that are used to train the models and significant long-term 605 

changes in hydrological regimes due to climate change or floodplain characteristics due to new infrastructure or defenses. 

These changes could reduce the accuracy of FIER predictions for long-term operational use. However, periodic retraining 

should be completed to account for such changes caused by climate change or infrastructure. Finally, it is crucial to 

acknowledge that the performance of the scaled FIER model may vary across different geographic regions with diverse 

hydrological regimes and flood characteristics (Prince et al., 2025). The location used in this study along the Mississippi 610 

River is humid with varying land cover types compared to the Western US which is much drier but also experiences flooding 

where FIER may be applicable. Further validation and testing in various environments are necessary to assess its 

generalizability and transferability beyond the study areas examined in this research. 

5.4 Future Work 

While this study demonstrates the potential of the scaled FIER method for large-scale flood inundation forecasting, several 615 

avenues for future research can further enhance its accuracy and applicability. First, exploring alternative regression 

methodologies between streamflow and the FIER-derived temporal patterns (RTPCs) could improve the model's ability to 

capture complex flood dynamics. Other studies (e.g. Chang et al., 2023, Rostami, et al., 2024) have used dense neural 

networks (DNN) to create the forecasts in the FIER framework. Incorporating non-linear regression techniques, like DNN, in 

a scalable manner and additional hydrological variables, such as precipitation and soil moisture, may enhance the model's 620 

predictive capabilities. Second, addressing the limitations of input satellite data is crucial for enhancing FIER's reliability 

(Wan et al., 2025). Advanced data fusion methods, which synergistically combine optical data (like VIIRS) with SAR and 

potentially higher-resolution sensors, offer a promising avenue particularly with respect to gaps due to cloud cover (Markert 

et al., 2018, 2024). Such fusion approaches can provide more complete and accurate historical flood observations, thereby 

improving the quality of the data used to train FIER and, consequently, the reliability of its predictions. Further research 625 

could also focus on developing land cover specific error characterizations for input satellite data or incorporating ancillary 

datasets to characterize water detection accuracy. A quantitative assessment of NWM streamflow forecast errors and their 

direct propagation into FIER inundation uncertainty was beyond this study's scope but is crucial for future operational 

implementation. A systematic analysis of the relationship between buffer size and watershed characteristics is crucial for 

optimizing the mosaicking process including buffer sizes relative to watershed area. By examining factors like watershed 630 

size, shape, topography, and land cover, we can develop guidelines for selecting appropriate buffer sizes for different 

regions, minimizing boundary discontinuities while preserving the accuracy of individual FIER predictions. Additionally, it 

was mentioned that only one watershed scale was tested (HUC8) and different sizes of watersheds need to be tested to 

understand how the FIER results will be affected by watershed sizes. This can lead to a hybrid approach where buffer size 

and watershed scale for running FIER can be data-driven and yield better results over large areas. Finally, to further enhance 635 

computational efficiency, masking out watersheds with historically limited flooding from the analysis can significantly 
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reduce processing time. This targeted approach focuses computational resources on areas most prone to flooding, enabling 

more efficient application of FIER over large geographic extent. 

6 Conclusion 

This study aimed to address the critical need for efficient and accurate large-scale flood inundation forecasting by applying 640 

the FIER method, a data-driven technique previously demonstrated at smaller scales, over large areas. Recognizing the 

limitations of traditional hydrodynamic models and the need for a computationally efficient approach for operational flood 

forecasting, we investigated the feasibility of using a watershed-based approach to scale FIER, leveraging the inherent 

hydrological connectivity of watersheds and then mosaicking results to create a single flood map for a given simulation. Our 

analysis focused on flood-prone regions in the United States, the Upper Mississippi Alluvial Plain, where flooding occurs 645 

often. 

The results demonstrate the effectiveness of the watershed-based approach for scaling FIER. Statistical analysis of the 

mosaicked FIER predictions, using retrospective NWM streamflow data, revealed that buffer sizes of 1-10 km achieved the 

best balance between accurately capturing the spatial extent (SSIM) and intensity (RMSE) of flooding. The average SSIM 

metric ranged from 0.714 to 0.715 for the original FIER outputs and 0.797 to 0.804 for the corrected outputs. The average 650 

RMSE metric ranged from 7.15 to 7.45 percent for the original FIER outputs, and from 7.91 to 8.21 percent for the corrected 

outputs. Notably, the corrected FIER outputs, using a CDF matching post-processing technique, consistently showed better 

SSIM error values compared to the original outputs but higher RMSE and lower MAE, suggesting the overall error was 

reduced but also introduced larger errors. Overall, the correction improves the predictions and yields significantly better 

error metrics compared to a baseline for the 1-10 km buffer sizes. Case studies using operational NWM streamflow forecasts 655 

for specific flood and low flow events further validated the performance of the scaled FIER method. The 1 km buffered and 

corrected FIER outputs were used for the case study and coupled with NWM forecasts with varying forecast lead times. 

These flood extent predictions accurately forecasted both the extent of inundation, achieving SSIM values above 0.54-0.66 

for flood events and above 0.73 for low flow events. 

The watershed-based FIER approach offers several advantages, including the ability to capture regional flood characteristics 660 

and the ability to set up and run efficiently without the need of prohibitively expensive hardware resources. However, 

limitations such as boundary effects, sensitivity to watershed scale, and reliance on streamflow data require further 

investigation. Future research should focus on optimizing buffer zone selection based on watershed characteristics, exploring 

alternative regression methodologies, incorporating additional hydrological variables, and expanding the framework to 

encompass non-fluvial flood processes. These advancements will further enhance the scalability, accuracy, and applicability 665 

of FIER for large-scale flood inundation forecasting, enabling more effective flood risk management and water resource 

planning. 
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Appendix A: FIER fitting statistics 

We performed additional analysis to investigate and highlight the results of the fitting process between the REOF and 

hydrologic data. We separated the analysis into the baseline area and the full area with the different watersheds. 670 

For the baseline area, we found that the first three modes of spatio-temporal patterns were significant and account for about 

93% of the total variance of the VIIRS water fraction image time series. Hereafter, the first modes of the RSM or RTPC will 

be called RSM-01 or RTPC-01, respectively with the second mode of RSM or RTPC will be called RSM-02 or RTPC-02, 

respectively, and so forth.   

Figure A1 displays the results of the REOF and fitting for the baseline area. The top row displays the first three RSMs, 675 

revealing distinct spatial flooding patterns captured by VIIRS water fraction data. RSM-01 exhibits a widespread pattern 

encompassing the main stem of the Mississippi River and its tributaries, suggesting a dominant mode of flooding associated 

with high flows in the main channel. RSM-02, highlights localized flooding patterns in the southeastern portion of the basin, 

potentially indicating areas susceptible to backwater effects or tributary flooding. RSM-03 shows a more dispersed pattern 

with both positive and negative values, suggesting a complex mode of flooding that may be influenced by a combination of 680 

factors. The middle row in Fig. A1 presents the time series of the corresponding RTPCs and normalized NWM streamflow 

for the representative reach. The close alignment between the RTPC fluctuations and streamflow variations, particularly for 

RTPC-02, indicates a strong correlation between these temporal patterns and the hydrological driver. The scatter plots 

(bottom row) show the relationship between RTPCs and normalized NWM streamflow. While linear regression was used 

here for simplicity and consistency with previous FIER implementations (Chang et al., 2020), some scatter plots (e.g., for 685 

RTPC-01) suggest that more complex, non-linear fitting functions or robust regression methods accounting for outliers might 

yield different fits. The influence of high-leverage points on the linear fit is apparent in some cases. Exploring alternative 

regression techniques such as those implemented by (Rostami et al., 2024) or (Wan et al., 2025) is a key area for future FIER 

development as discussed in Section 5.4).  The three RTCPs have a Pearson’s R correlation coefficient of 0.7342, 0.8722, 

and 0.7615 for modes RTPC-01, RTPC-02, and RTPC-03, respectively. This correlation between the RTCPs and streamflow 690 

is further quantified in the bottom row, which shows scatter plots of the RTPCs against normalized NWM streamflow, along 

with the fitted regression models. The Nash-Sutcliffe Efficiency (NSE) values (0.61, 0.77, and 0.63) for the three fitted 

models, generally considered to indicate acceptable to good performance in hydrological modeling, confirm the positive 

statistical relationships established between the flood patterns and streamflow, demonstrating the effectiveness of the 

regression models in capturing these relationships.  695 
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Figure A1: Spatiotemporal patterns and regression models for the baseline area. (Top) The first three Rotated Spatial Modes 

(RSMs) derived from REOF analysis of VIIRS water fraction data. Red colors generally indicate positive correlations with the 

modes RTPC (increased water fraction when the mode is active), while blue colors indicate negative correlations or opposing 

RTPC. (Middle) Time series of the corresponding Rotated Temporal Principal Components (RTPCs) (blue) and normalized NWM 700 
streamflow (orange) for the representative reach. (Bottom) Scatter plots of the RTPCs against normalized NWM streamflow, 

along with the fitted regression models (red dashed lines) and their corresponding Nash-Sutcliffe Efficiency (NSE) values. 

 

Figure A2 provides a view of how the performance of the scaled FIER method varies across different buffer sizes and 

watersheds. Given that there is so much data across the different REOF and regression processes, Fig. A2 summarizes the 705 

number of RSMs (left column), correlation between RTCPs and streamflow (middle column) and NSE from the fitted model 

(right column) for each watershed. Table A1 also provides the mean and stand deviation in parenthesis for each of the 
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metrics across all watersheds.  Examining the number of significant RSMs, we observe a general trend of an increasing 

number of significant RSMs with larger buffer sizes. This suggests that incorporating information from neighboring 

watersheds through buffering enhances the ability of REOF analysis to capture distinct flood patterns. However, the average 710 

Pearson's correlation coefficient between RTPCs and streamflow remains relatively consistent across buffer sizes, ranging 

from an average of 0.727 to 0.765. This indicates that the strength of the relationship between flood patterns and streamflow 

is not significantly affected by the buffer size. Interestingly, the average NSE of the fitted regression models shows a more 

nuanced pattern. While smaller buffer sizes (0-2 km) exhibit relatively lower NSE values, indicating moderate model 

performance, the NSE gradually increases with larger buffer sizes, peaking at 0.616 for the 50 km buffer. This suggests that 715 

incorporating broader spatial context through larger buffer zones can improve the predictive capability of the regression 

models. However, it's important to note that the standard deviation of NSE also varies with buffer sizes. Overall, the analysis 

suggests that while the number of significant modes and the strength of the correlation between flood patterns and 

streamflow are not significantly impacted by buffer size, larger buffer zones can potentially enhance the predictive accuracy 

of the regression models. However, the increased variability in model performance with larger buffer sizes necessitates a 720 

careful consideration of the trade-offs between model complexity and accuracy when selecting the optimal buffer size for a 

given application. It is important to distinguish these REOF component fitting statistics from the final inundation map 

accuracy metrics discussed in the main paper. While better component fits (e.g., higher NSE for the RTPC-streamflow 

regression) are generally desirable, the optimal buffer size for the final map accuracy (e.g., SSIM, RMSE) involves a 

balance, as very large buffers might improve individual component fits by incorporating more data but could also smooth out 725 

critical flood details or introduce noise from distant, less relevant areas, potentially degrading the final mosaicked inundation 

map. 

 

Table A1: Summary statistics of REOF analysis and regression model performance for varying buffer sizes. The table shows the 

range of significant modes, average Pearson's correlation coefficient, and average NSE for each buffer size, with standard 730 
deviations in parentheses. 

Buffer size Range of Significant RSMs  Avg Pearson’s R Avg fit NSE 

0 km 1 - 8 0.727 (0.038) 0.587 (0.060) 

1 km 1 - 8 0.728 (0.039) 0.586 (0.063) 

2 km 1 - 8 0.732 (0.037) 0.594 (0.070) 

5 km 1 - 8 0.741 (0.041) 0.611 (0.070) 

10 km 1 - 8 0.742 (0.032) 0.599 (0.052) 

20 km 2 - 10 0.745 (0.037) 0.602 (0.058) 

50 km 1 - 11 0.765 (0.029) 0.616 (0.049) 
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Figure A2: Spatial distribution of FIER model performance metrics for varying buffer sizes. The figure displays maps showing 

(left) the number of significant RSMs identified by the Monte Carlo test, (middle) the average Pearson's correlation coefficient 735 
between the RTPCs and streamflow, and (right) the average Nash-Sutcliffe Efficiency (NSE) of the fitted regression models for 

each watershed, across different buffer sizes (0 km, 1 km, 2 km, 5 km). 
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Figure A2 (continued): Same as Fig. A2 but showing for the buffer sizes 10 km, 20 km, and 50 km 740 
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Appendix B: Case Study Difference Maps 

 

Figure B1: Maps highlighting the observed water fraction from VIIRS and difference from FIER-predicted water fraction maps 

(predicted – observation) for the two selected flood events: 2019-02-25, the 50-year flood (top two rows), and 2020-02-15, the 5-

year flood (bottom two rows). Warmer colors show underprediction from FIER whereas cooler colors show over prediction. White 745 
areas are missing data. To be used as comparison with Fig. 6 



33 

 

 

Figure B2: Same as Fig. B1 except for the two selected low-flow dates: (top two rows) 2019-09-29 and (bottom two rows) 2020-10-

21. To be used as comparison with Fig. 7 
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Python. 755 

Data availability 

The data used in the study are openly available online. The VIIRS water fraction data can be accessed from the AWS 

Registry of Open Data, specifically the NOAA Joint Polar Satellite System (JPSS) cloud storage bucket 

(https://registry.opendata.aws/noaa-jpss/). We processed and stored the VIIRS water fraction data for North America 

publicly on Earth Engine with the following collection ID: “projects/byu-hydroinformatics-gee/assets/noaa_jpss_floods”, we 760 

make no explicit guarantees to maintaining the collection on Earth Engine and the NOAA source should be considered the 

authoritative source. The NWM retrospective data can be accessed through the AWS Registry of Open Data from the NOAA 
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