
Review 1 

This manuscript evaluates the performance of two machine learning models in predicting 
groundwater (GW) levels across a dataset of ~5000 wells in Germany. The study examines 
the influence of both dynamic and static input features on the accuracy of GW level 
predictions and seeks to enhance the understanding of hydrogeological systems. 

The objectives, methodology, results, and discussion are clear, well-structured, and 
thoroughly explained. The study aligns well with the scope of the journal, and HESS readers 
would benefit from and appreciate its findings. In my opinion, the manuscript is close to its 
final form. However, I would like to raise the following points for consideration:  

We thank Reviewer 1 for the positive assessment of our manuscript. Below we address the 
suggestions (marked in blue). 

• The manuscript specifies particular values for hyperparameters (e.g., dropout rate, 
batch size, etc.). Are these values based on specific rules or conventions? Did you 
test alternative values? While this may not significantly affect the overall conclusions, 
I believe it would be helpful to clarify this for the reader. 

Thank you for your suggestion. We initially selected hyperparameter (HP) values based on 
empirical heuristics recommended by domain experts, aiming to reduce overfitting and 
minimize training time. As noted in line 160 ff., the final values for dropout rate and batch size 
were chosen to achieve these goals. The decision to set the number of training epochs to ten 
was based on the convergence of the training and validation loss observed during preliminary 
testing. In particular, models based on the N-HiTS architecture would converge before the 10th 
epoch. 

We will modify section 2.3 (lines 160 ff.) accordingly:  

“All model variants were trained with ten different random seeds to account for the stochasticity 
in the initialisation of model weights. Large batch sizes were used (TFT: 4096, N-HiTS: 1024) 
to avoid overfitting and to accelerate the training. The risk of overfitting was further reduced by 
the application of early stopping on the validation loss, a dropout rate of 0.2, and learning rate 
scheduling using stochastic weight averaging after the second epoch (Izmailov et al., 2019). 
Thus, the selected hyperparameter values were based on empirical heuristics recommended 
by domain experts, aiming to reduce overfitting and minimize training time. All model variants 
were trained for a maximum of ten epochs, a duration sufficient to ensure model convergence. 
In many cases, training terminated earlier due to the implementation of the early stopping 
criteria.” 

• Is there a specific reason for setting the prediction horizon to a maximum of 12 
weeks? 

The aim of our study was to provide seasonal groundwater level predictions. The different 
seasons are known for their substantial impact on groundwater recharge, and thus on 
groundwater levels. Accordingly, we selected a prediction horizon of 12 weeks, equivalent to 
approximately three months, as an appropriate timespan for reflecting seasonal patterns. 
Furthermore, we observed a decrease in model performance with longer horizons as shown 
in figure 3. A 12-week prediction horizon allowed us to maintain acceptable predictive 
performance across the more than 5,000 monitoring wells. 
 
Figures B9 and B10 indicate that attention is higher one year before the prediction than at 
times closer to it. Could you elaborate on why this happens? 



We interpret the results in figures B9 and B10 as likely related to the autocorrelation function 
of many of the observed groundwater level time series. Based on the intrinsic feature 
importance of the TFT, we know that the most important feature is the historical groundwater 
level. For the one-week prediction, the groundwater level from the corresponding week one 
year prior to the prediction is likely the most influential information for the TFT models, as 
reflected in the attention scores. This is likely due to the seasonality observed in many 
groundwater monitoring wells. Accordingly, for the 12-week prediction, the groundwater levels 
from the week one year prior and 12 weeks before the prediction are the most important time 
steps. To support our interpretation, we will include the autocorrelation for the 52nd week as 
well as the 12th week of each groundwater hydrograph in the Supplement as additional 
explanation. We will also add a reference in the description of figures B9 and B10 to the 
autocorrelation. 

 

• In figure B10, why are attention values not zero in the interval of 0–10 weeks? Does 
this imply that the algorithm is somehow using inputs from these time steps? I 
suggest including a diagram to illustrate how inputs and outputs operate in the ML 
algorithms (e.g., similar to Figure 1 in Kratzert et al., 2018). This would help clarify 
which specific information is being utilized and when. 

 
We thank the Reviewer for the suggestion to clarify how input features operate in the models. 
We will add a figure in the method section.  
Both architectures follow an encoder-decoder structure. The encoder creates a latent 
representation of the input features, while the decoder uses this representation to generate 
predictions. The historical groundwater levels, historical climatic features and the static 
features are processed in the encoder. In the decoder, the climatic features for the prediction 
horizon (so-called future knowns) and the static features are used, while groundwater levels 
are not used. The non-zero attention values observed during the 12-week prediction likely 
reflect the information the Temporal Fusion Transformer (TFT) extracts from the future known 
features during these time steps. 
 


