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Abstract. Extreme hydro-meteorological events can have a substantial impact on vegetation and ecosystems. In particular,

with heatwaves and droughts projected to become more frequent due to climate change, understanding their effects on forests

is crucial. The goal of our study is to find the most relevant predictors for forest damage in Europe at monthly to annual

timescales. Using a Random Forest approach, we pinpoint hydro-meteorological conditions associated with low normalized

difference vegetation index (NDVI) events. We train the model using the NDVI from the Advanced Very High Resolution5

Radiometers (AVHRR) as the predictand, and a range of variables from the ERA5 and ERA5-Land reanalysis as hydro-

meteorological predictors. These predictors include maximum temperature at 2 meters and dewpoint temperature, precipitation,

surface latent heat flux, and soil moisture up to 18 months before the observed damage. The random forest model exhibits a

high prediction skill over most gridpoints in Europe, with a critical success index greater than 0.75 for 67% of gridpoints.

Notably, warm and dry conditions in spring and early summer emerge as essential predictors. Additionally, we emphasize a10

longer-term relationship between hydro-meteorological conditions and forest damage. For instance, low dewpoint temperatures

one year before the studied summer impact broad-leaved forests, while soil moisture during the preceding autumn influences

low greenness events in coniferous forests, albeit with location-specific variations.

1 Introduction

Forests cover about 202 millions hectares in Europe (FAO, 2020), or about 32 % of its land area. It is now well understood15

that forests offer essential ecosystem services such as soil conservation and fertility, water storage, regulation, and purification,

protection against landslides and avalanches, air cleaning, wood production, habitat for a high biodiversity, without forgetting

their aesthetic, spiritual and recreational value (Jenkins and Schaap, 2018). Due to climate change favoring diseases and pests

(Pureswaran et al., 2018), the death of trees over large forest areas as observed in recent years (i.e., forest dieback; Senf et al.,

2020; Adams et al., 2017) is likely to have significant consequences on the economy and society, including loss of wood quality,20

increased erosion, and flood risk, and degradation of landscape quality.
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The health of trees and forests strongly depends on hydro-meteorological conditions. In particular, dry and hot conditions

can be highly detrimental to forests (Brodribb et al., 2020). Droughts can lead to early leaf senescence, parasite infestations,

higher fire risk, loss of canopy greenness, and enhanced crown and tree mortality (Brun et al., 2020; Frei et al., 2022; Mariën

et al., 2021; Sperlich et al., 2015). Large and persistent deviations from normal conditions can impact the photosynthesis25

capacity and carbon intake (Hinckley et al., 1979; Sperlich et al., 2015). In addition, consecutive dry years can lead to a larger

impact on forests than the individual impact of dry years, due to the increased vulnerability of the trees (Anderegg et al., 2015).

Adverse hot and dry conditions causing forest damage are expected to become more frequent and more intense under climate

change (IPCC, 2022). Moreover, Meier et al. (2021) showed that a longer growing season amplified drought effects due to

earlier spring leaf unfolding.30

An improved understanding of the hydro-meteorological drivers of forest damage and their relative importance on different

timescales will benefit the potential for advance prediction of such damage. In turn, successful predictions of forest health

would benefit the design and implementation of efficient protection measures. Such predictions are expected to be possible due

to a range of drivers affecting the greenness of trees and acting on timescales of weeks to years. For example, precipitation and

temperature conditions strongly influence forest health. Hermann et al. (2023) showed that, in Europe, reduced summer forest35

greenness is preceded by positive temperature anomalies and negative precipitation anomalies in spring. Adverse air and soil

humidity conditions can also impact tree health, such as anomalies in vapor-pressure deficit (Grossiord et al., 2020; McDowell

et al., 2022), potential evapotranspiration (Young et al., 2017), or soil moisture (Alavi, 2002).

Preventive actions can be taken before conditions trigger forest vulnerability. Examples include forest-fire prevention (Fer-

reira et al., 2015), sanitation logging, and predation using long-legged flies (Medetera spp.) to prevent spruce bark beetle (Ips40

typographus) infestations (Jan Weslien et al., 2024). On longer timescales of years to decades, a good understanding of forest

susceptibility to meteorological conditions may help managers target regions with the highest priority to adaptation and select

tree species that are better adapted to future conditions. In this context, we choose to study hydro-meteorological variables

available from operational forecasts covering the subseasonal-to-seasonal (S2S) timescale. For example, the ECMWF sub-

seasonal forecasts cover timescales up to 1.5 months in advance and have been used to predict extreme events (Domeisen et al.,45

2022) and their surface impacts (White et al., 2022) from a range of atmospheric conditions. In particular, the ECMWF S2S

forecast model includes the following hydro-meteorological variables: 2-meter temperature, precipitation, dew-point temper-

ature (as an estimate of air humidity), soil moisture with soil-water equivalent, and surface latent heat flux (as an estimate of

potential evapotranspiration). Our analysis establishes a link between these hydro-meteorological variables and forest health,

allowing forest practitioners to anticipate adverse conditions based on the ECMWF S2S forecast.50

Machine learning can leverage extensive data to predict vegetation states based on weather and climate conditions (John Nay

and Gilligan, 2018; Vogel et al., 2021; Kladny et al., 2024). In this work, we introduce an automated procedure to identify and

quantify adverse hydro-meteorological S2S conditions for forests in Europe. We employ a random forest (RF) classification to

predict low greenness events. The RF model is a non-parametric algorithm, based on decision trees. Therefore, the RF model

has the advantage of being both flexible and easily interpretable. From a large set of potential predictors, we pinpoint crucial,55

location-specific periods and variables impacting European forests.
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2 Data

2.1 NDVI data

Forest damage can be assessed using a range of indices, including vegetation indices based on satellite Earth observation, for a

direct assessment of vegetation stress over large areas (Bannari et al., 1995; Zeng et al., 2022). We employ here the normalized60

difference vegetation index (NDVI, Kriegler et al., 1969; Rouse et al., 1974), a measure of vegetation greenness, widely used to

monitor the health of forests (Zhou et al., 2003; Pettorelli et al., 2005; Buras et al., 2021; Rumpf et al., 2022). When measured

over large areas compared to the size of an individual tree, the NDVI captures forest vitality losses, resulting from reduced

canopy greenness or tree mortality.

The NDVI is defined by NDVI = NIR-red
NIR + red , where NIR and red represent the spectral reflectance measurements in the near-65

infrared and red portion of the electromagnetic spectrum, respectively. The NDVI values corresponding to vegetation are

typically between 0 and 1, with values close to one indicating very green, dense, and healthy vegetation. Lower NDVI values

indicate either sparse vegetation or browning of the vegetation, a visible sign that the plants are undergoing stress or damage.

We use the daily NDVI dataset generated from the Advanced Very High Resolution Radiometers (AVHRR) onboard the

National Oceanic and Atmospheric Administration’s (NOAA) satellites NOAA-6 to -19, and the EUMETSAT MetOp satel-70

lites series (MetOp1, MetOp2 and MetOp3) Local Area Coverage (LAC) dataset archived at University of Bern, Switzerland

(Dupuis et al., 2024; Barben et al., 2024; Weber et al., 2021). The advantage of the AVHRR dataset over Europe is the long

period of data availability, from 1981 to 2022 (for our analysis), as well as the fine spatial resolution of about 0.01◦W× 0.01◦N

(effective footprint of approximately 1 km2).

Changes in sensor versions (AVHRR/1-3) require a homogenization of the spectral response function before combining the75

data of the different sensors. This processing is performed with a polynomial correction with NOAA-9 as a reference (see,

Trishchenko et al., 2002; Trishchenko, 2009; Fontana et al., 2009). We discarded NOAA-15 due to poor data quality and

MetOp3 due to the absence of specific correction coefficients for the spectral response function (see Fig. A1 in the appendix

for the time distribution of the satellites used).

We average the daily AVHRR NDVI to a 10-day composited dataset, that has the advantage of offering a gap-free and80

consistent dataset. In the present case, three NDVI scenes are available each month. The scenes cover the time periods from

the 1st to the 10th day, the 11th day to the 21st and finally from the 21st day until the end of the month, respectively. In

the following, a composite refers to a 10-day averaged NDVI. The AVHRR-NDVI dataset comprises different quality flags

linking to cloud probability and satellite viewing angle. We discard data points with too high image uncertainty due to clouds

or satellite viewing angles (see details in the appendix, Sec.A). To obtain a single time series out of the observations from the85

different satellites, we retain for a given composite and a given pixel the daily maximum of NDVI for each satellite available

for a given composite.
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2.2 From NDVI to binary forest damage

We summarize the vegetation greenness information brought by the NDVI with the binary damage data to encapsulate the

state of the forest during summer (July-August), at the same grid resolution as the drivers (0.1◦, see section 2.3). Fig. B1 in90

the appendix displays the entire time series of binary forest damage. In a nutshell, a 0.1◦ gridpoint (GP) is said to experience

a low-greenness event, if more than 80% of the forest pixels (within this given GP) experience a negative anomaly of NDVI,

during more than 80% of the July-August composites. More specifically, the binary forest damage, Yt (for t = 1981, . . . ,2022)

is defined through three steps, following the method of Hermann et al. (2023):

1. Monthly linear detrending of the composite NDVI time series (Bastos et al., 2017);95

2. Computation of NDVI’j , the NDVI anomalies for every composite j in July-August. NDVI’j is defined by: NDVI’j =
NDVIj−medianJA(NDVI)

IQRJA(NDVI) , with NDVIj the detrended NDVI on composite j, medianJA(NDVI) the median of July-August

detrended NDVI and IQRJA the inter-quartile range of July-August detrended NDVI;

3. Upscaling of the AVHRR NDVI grid on the ERA5 land grid (from 0.01◦ to 0.1◦) and binarization to anomalies for the

whole summer, with the following rule:100

Yt =





1 if > 80% of the forest GPs experience ≥ 5 composites with NDVI’ < 0

0 otherwise

for a given year t. The criterion "≥ 5 composites with NDVI’ < 0" implies "≥ 5 composites out of 6 with NDVI’ < 0",

as the total number of 10-day composites in July-August is 6.

We only consider GPs (on the 0.1◦×0.1◦ grid) with forest coverage of at least 10%. The forest coverage and forest type

(broad-leaved, coniferous, mixed forests, see Fig. D1) are extracted from the CORINE (Coordination of Information on the

Environment) Land Cover for the reference year 2018 (EEA, 2020).105

During step 3., we discard forest GPs with more than one missing data point per summer (out of 6 composites). This

requirement ensures an actual extremeness of the summers, with at least 5 composites out of 6 presenting negative NDVI

anomalies (Yt = 1 in step 3). Due to a low NDVI quality in 1988, this year had to be discarded for all GPs in Europe (hence

the absence of 1988 in Fig. B1).

Although Hermann et al. (2023) relied on MODIS NDVI observations (Didan, 2015), we observe consistent patterns of low-110

greenness events over Europe between 2002 and 2022, by comparing Fig. C1. in their analysis and Fig. B1 in our study. These

coherent patterns advocate for using AVHRR data for extended temporal coverage. In addition, AVHRR offers a finer spatial

resolution than MODIS (approximately 100m versus 250m). The resolution of the NDVI dataset can impact the significance of

the results as demonstrated by Rumpf et al. (2022), who found 77% of pixels with a greening trend using Landsat, compared

to 56% with MODIS in Choler et al. (2021).115
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MAM(t-1) JJA(t-1) SON(t-1) DJF(t) Mar(t) Apr(t) May(t) Jun(t) Jul(t)DJF(t-1)
Max 2m temp.

Dewpoint temp.

Soil moist.(0-7cm)

Soil moist.(7-28cm)

Soil moist.(28cm-1m)

Total precip.

Srf. lat. heat flux

Forest damage
year t

(= 0 or 1)
Preceding hydro-meteorological conditions 

Table 1. 10 variables and 7 time-steps considered as potential drivers. Each of the 70 cells is a predictor for the binary forest damage in

summer of the year t.

2.3 Hydro-meteorological predictors

To capture potential adverse conditions for forests (Hermann et al., 2023; Grossiord et al., 2020; Young et al., 2017; Alavi,

2002), we select the following seven hydro-meteorological variables as potential drivers for low-greenness events: maximum 2-

m temperature, maximum 2-m dewpoint temperature, soil moisture at depths 0-7 cm, 7-28 cm, 28-100 cm, total precipitation,

and surface latent heat flux. We extract these seven variables for the period 1980-2022 from the ERA5 and ERA5-Land120

reanalysis datasets for (Hersbach et al., 2019; Muñoz-Sabater et al., 2021). Reanalysis data offers dynamically consistent

variables with a large, uniform spatio-temporal coverage. For temperature, dew-point temperature, and soil moisture, we use

ERA5-Land data on a 0.1◦ resolution, and for total precipitation and surface-latent heat flux, we use ERA5 data on a 0.5◦

resolution.

We compute the variables’ monthly mean anomalies between March and July of the same year of the studied summer (forest125

damage in July-August), and the seasonal mean anomalies up to 18 months before the studied summer (Table 1). For a given

variable, the monthly (seasonal) mean anomaly is defined by x−x̄
σx

, where x is the monthly (seasonal) mean of the variable, x̄

is the climatology –i.e. the monthly (seasonal) mean of the variable averaged over 1980-2022– and σx is the climatological

standard deviation of the variable’s mean (seasonal). We use seasonal anomalies (December-February, March-May, June-

August, September-November), rather than monthly, for the preceding conditions anterior to 5 months before July-August, as130

only strongly anomalous conditions are expected to have a long-term lagged impact.

Each cell in Table 1 is used as a predictor for forest damage for a given year. With the term “predictor”, we refer to a variable

at a given time step. Consequently, there are 70 potential predictors in total.
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2.4 Aggregating data for longer time series

The binary forest damage, our predictand, is a time series of 41 data points between 1981 and 2022, which is too short for a135

robust estimation of the statistical link between predictors and predictand. We therefore artificially create longer time series

using the large amount of data available spatially. The 25 time series of GPs located in the same 0.5◦×0.5◦ grid box are stacked

temporally by assuming that the damage in neighboring GPs is driven by the same predictors (see Fig. C1 in the appendix). We

thereby obtain longer times series, up to 1025 data points (25×41) for each sub-region. Note that 1025 is the maximum length,

which is obtained only if the 25 GPs are forest GPs (as defined in section 2.2), with a sufficient data quality for every summer140

(as specified in sections 2.1 and 2.2). For a robust statistical fitting, we discard stacked, balanced times series shorter than 80

datapoints.
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3 Method

3.1 Random forest

A large number of predictors (70, see Section 2.3) are potential candidates to explain forest damage. To identify the most145

important predictors and their link to forest damage, we employ a random forest (RF) model (Breiman, 2001). The principle

of a RF model is to compute a large number of decision trees, each fitted with a random sub-selection of the initial data, to

assess the average link of each predictor with the predictand (binary forest damage here) and its importance compared to the

others. We use 300 decision trees and 3 predictors per tree. These hyperparameters are found to be a good trade-off between

performance and computation time (not shown). We randomly divide the time series into a training subsample (75%) and a150

testing subsample (25%). The training data is used to both fit the RF model and calibrate the cutoff level of the RF output, to

assign a probability of damage to a “0” or a “1”, to compute the critical success index on the testing data (see the following

section 3.2).

The years with forest damage represent extreme conditions and are rare by definition. For a majority of gridpoints (GPs),

less than 15 % of the years are “1”s (see Fig. B2 in the appendix). The rest of the years are “0”s, that is, normal years without155

relevant forest damage. For a higher performance of the RF, we force the impact data to be balanced by discarding “0” years

in order to have the same amount (rounded up to ten) of “0”s and “1”s in the impact data. This random removal of years

additionally breaks potential temporal autocorrelation induced by stacking time series temporally. In the end, we obtain a

model for 1248 GPs over Europe.

The output of the RF function includes the mean decreased accuracy, a measure of the predictor’s importance. The mean160

decreased accuracy of a given predictor quantifies the loss in predictive performance when this predictor is not included in the

decision tree.

We use partial dependence analysis to interpret the influence of single variables (Friedman, 2001; RDocumentation, 2024).

A partial dependence plot shows how the average probability of observing a specific outcome (e.g. forest damage) changes

with a single input variable. The mean probability is calculated across all observations for the other predictors. The partial165

dependence is plotted employing the following formula:

f̃(x) =
1
2n

n∑

i=1

(
log

(
p1(x,xiC)

1− p1(x,xiC)

))
,

where x is the value of the predictor for which partial dependence is calculated, p1 is the proportion of votes for the class “1”

(forest damage), and xiC are all the other predictors in the training data and n is the length of the training data. f̃ is calculated

for all the values of x in the training data. A high f̃(x) indicates that the value x for the chosen predictor is associated with a170

high probability of forest damage.

3.2 Performance

We measure the skill of the RF model on the testing data with the critical success index (CSI; Schaefer, 1990). The CSI is

defined as CSI = TP
TP+FP+FN , where TP is the number of true positives (successfully predicted and observed low greenness
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event, Yt = 1), FP is the number of false positives (i.e. false alarm, the model wrongly predicted a low greenness event) and175

FN is the number of false negatives (i.e. missed events, the model erroneously predicted Yt = 0). The CSI focuses on the

predictive skill of the low greenness events, which is the quantity of interest in our analysis. The accurately predicted normal

years (Yt = 0) are not considered. The CSI varies between 0 and 1, the higher the better. A CSI of 0.5 means that the model

predicted as many TP as the sum of FP and FN .

To assess the performance over all cut-off levels (see section 3.1), we additionally compute the AUC, that is the area under180

the ROC curve (Swets, 1988). The ROC (receiver operating characteristic) curve displays the true positive rate versus the false

positive rate, against all cutoff levels. The AUC varies between 0 and 1, with values of 0 to 0.5 meaning counterpredictions,

value of 0.5 meaning predictions not different than random, and values higher than 0.5 indicating increasingly good predictions.

3.3 LASSO regression

We additionally run a LASSO logistic regression (Tibshirani, 1996), with the same predictors, predictand, training, and testing185

data as for the RF. Vogel et al. (2021) demonstrated that the LASSO regression shows good performance in identifying mete-

orological drivers of extreme events (low wheat yield, in their study). We therefore employ the LASSO logistic regression as

a benchmark for the predictive skill. The penalty factor on the coefficients norm (λ1se in Vogel et al., 2021) is obtained with a

10-fold cross-validation.
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Figure 1. (a) CSI and (b) AUC (as defined in section 3.2) of the random forest model, evaluated for the training dataset.

4 Results190

4.1 Performance

As a first step, we evaluate the performance of the random forest (RF) classification model at predicting low-greenness events

from the hydro-meteorological predictors (i.e. from the aforementioned variables and time periods, Table 1). The RF model

exhibits excellent predictive performance for forest damage over Europe (see Fig. 1): 99% of the GPs have a CSI greater than

0.5 (Fig. 1(a)). In other words, for 99% of the gridpoints (GPs), the model run on the testing data predicts at least as many true195

positives (TP) as false positives (FP) and false negatives (FN) together. 67% of the GPs have a CSI greater than 0.75 (i.e. at

least three times as many TP as FP and FN together). The AUC also indicates a good performance, with 83% of the GPs

having an AUC greater than 0.9. The high AUC proves that the good performance does not depend on the cutoff level. In other

words, the true positive rate is much higher than the false positive rate for all cutoff levels between 0 and 1.

There is no specific region showing a lower skill. The Balkans and Sweden exhibit particularly large areas of high skill, for200

both metrics.

When aggregating GPs temporally to obtain longer time series, we formulated the hypothesis that the neighboring 0.1◦×0.1◦

GPs in a 0.5◦×0.5◦ grid box are driven by the same predictors. The high skill of the RF, in terms of both CSI and AUC, confirms

that this hypothesis is sound.

In comparison with RF, the LASSO model exhibits a lower CSI for 80% of the GPs, and a lower AUC for 86% of the GPs205

(not shown). Only 92% of the GPs exhibit a CSI greater than 0.5 for LASSO (99% for RF). Regarding the AUC, 52% of

the GPs attain an AUC above 0.9 with LASSO (83% for RF). An advantage of the LASSO logistic regression is the simple,

linear link between predictors and predictand. This simplified link is outperformed by RF, allowing for flexible non-linear

relationships between predictors and predictand.
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4.2 Important drivers of forest damage210

4.2.1 Example for two gridpoints

As an introduction of the important output of the RF model, we display the results for two GPs in Europe (their location is

displayed in red in Fig. D1): one in a broad-leaved forest in France and one in a coniferous forest in Sweden.

For the broad-leaved GP in the Jura forest in France (Fig. 2, gridpoint (A)), the most important variables include dew point

temperature, max 2-m temperature, soil moisture between 0 and 21 cm, and total precipitation (left panel). The important time215

periods are spring and early summer of the same year when the damage occurs, as well as summer and spring conditions one

year preceding forest damage, for soil moisture and temperature. The 3 most important predictors are maximum dew point

temperature in March, maximum 2-m temperature in June and soil moisture (7-21cm) during the preceding summer. Positive

anomalies of dewpoint temperature in March are largely associated with forest damage, indicating that moist conditions in

early spring are adverse for the forest at this GP. Warm conditions in June increase the likelihood of forest damage, as indicated220

by the partial dependence of maximum 2-m temperature. Negative soil moisture anomalies in summer the year before are

associated with a higher probability of forest damage.

For the coniferous GP in Sweden (Fig. 2, GP (B)), the low greenness events are largely explained by the hydro-meteorological

conditions during the preceding year, especially the conditions in spring, autumn, and summer. Soil moisture between 0 and

21 cm is particularly important (6 predictors out of the 10 most important). The link between total precipitation in spring the225

year before and forest damage is non-linear: both positive and negative anomalies are associated with a higher probability of

damage, although the impact of dry conditions is stronger. The same non-linear signal is observed for soil moisture during the

same period. However, only small negative anomalies of soil moisture in autumn are associated with forest damage.

4.2.2 Results over Europe

To summarize the model results for all GPs over Europe, we display, for each predictor, the percentage of GPs over Europe230

that selected this predictor as one of the ten most important predictors in the RF model (Fig. 3(A)). The time period with the

strongest influence on forest damage is spring and early summer right before the studied summer, especially for maximum

2-m temperature and soil moisture. In particular, the most selected predictor is maximum 2-m temperature in June, with 39%

of the GPs retaining this predictor as one of the 10 most important ones. Additionally, 22% (resp. 19%) of the GPs retained

total precipitation in May (resp. April) as an important predictor. We observe a small signal of long-term impact of spring and235

autumn the year before. During the previous year, maximum 2-m temperature and dew point temperature are among the top 10

predictors for 23% and 20% of the GPs, respectively.

As forests are quite heterogeneous in Europe (Ozenda, 1994; Leuschner and Ellenberg, 2017; Lindner et al., 2014), we

separate the analysis into broad-leaved and coniferous forests. Most of the broad-leaved forest GPs are located in the southern

half of Europe, while most of the coniferous forests are located in the northern half (see Fig D1). This separation into tree types240

therefore roughly divides Europe into a northern and a southern area. Although the broad-leaved/coniferous separation discards

many GPs that are classified as mixed forests, it allows for a clear identification of important variables and time periods.
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Figure 2. First column: 10 most important predictors (y-axis), i.e. predictors with the largest mean decrease accuracy (x-axis) for a gridpoint

in broad-leaved forests in France (A) and a gridpoint in coniferous forests in Sweden (B) (location indicated on Fig. 1). Second, third, and

fourth column: partial dependence of the forest damage (y-axis) with the predictor’s anomalies (x-axis), for the 3 most important predictors.

For the broad-leaved forests, the most selected predictor is maximum 2-m temperature in June of the year of the damage

(126 GPs, i.e. 48% of the broad-leaved GP, Fig 3 (B)). Except for two GPs, the ensemble of partial dependence plots shows two

clear plateaus, separating negative and positive temperature anomalies, the latter being associated with forest damage (Fig. 4245

(A), first panel). The same is true for the second most selected predictor, maximum 2-m temperature in May of the year of the

damage (101 GPs, i.e. 38% of the broad-leaved GP, Fig. 4 (A), second panel). Soil moisture (7-100 cm) in May, June, and July,

and total precipitation in March, May and June of the same year also play a role for 35% and 32% of the GPs, respectively

(Fig 3 (B)). In addition, there is an influence of spring conditions one year before for 2-m temperature and dewpoint temperature

(for 28% and 27% of the GPs). Negative anomalies of dewpoint temperature, i.e. dry air conditions, correspond to a higher250

probability of forest damage, for 27% of the broad-leaved GPs (Fig. 4 (A), last panel). These partial dependence patterns for

broad-leaved forest do not depend on the latitude of the GP (see colors in Fig. 4 (A)).

The spring and early summer conditions before the studied summer are important predictors for coniferous forest damage

(Fig. 3 (C)). The most selected predictor is maximum 2-m temperature in July (109 GP, i.e. 36% of the GP), followed by

dewpoint temperature in the same month (31%), maximum temperature, and soil moisture (1-7 cm) in June (30 %) and total255

precipitation in March of the same year. We also observe an influence of conditions in preceding years, especially for soil mois-
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ture in summer and autumn the year before (24%). Compared to broad-leaved forests, the link between important predictors

and coniferous forest damage is more heterogeneous (Fig. 4 (B)). Surprisingly, some GPs at high latitudes show that negative

anomalies of maximum 2-m temperature in July are associated with a higher probability of forest damage (see the blue lines in

the first panel of Fig. 4 (B)). For some forest GPs at lower latitudes, positive anomalies of maximum 2-m temperature in July260

correspond to a higher probability of damage than negative anomalies (see the black lines, first panel of Fig. 4 (B))). Negative

anomalies of dew point temperature in July (i.e. dry conditions in July) are associated with a higher forest damage probability.

The link with soil moisture in autumn the year before is non-linear for some GP and overall very dependent on the GP, making

a generalization over the region tricky. However, there is a slight indication that negative soil moisture anomalies in the fall of

the previous year may be linked to a higher probability of forest damage.265

Altogether, the sub-seasonal to seasonal conditions of temperature and soil moisture in spring and early summer are the most

important features to explain summer forest damage in Europe. Temperature and moisture conditions in spring, summer, and

autumn the year before play a smaller role. The more relevant captured conditions for low greenness events in broad-leaved

forests are hot and dry, in spring and early summer (of the same year or the preceding year). Lower-than-average summer

temperatures are among the most adverse conditions for coniferous forests, with exceptions depending on the GP.270
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(A)

(B)

(C)

Figure 3. Importance of the predictors for all forest gridpoints. Each cell represents one predictor, i.e. a given variable (y-axis) at a specific

time period (x-axis). The color shading of each cell indicates the percentage of gridpoints where this predictor ranks among the top 10 most

important predictors in the random forest model. The percentage is calculated for (A) all forest gridpoints over Europe, (B) broad-leaved

forest gridpoints only, and (C) coniferous forest gridpoints only.
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Figure 4. Partial dependence of forest damage (y-axis) with a given predictor anomalies (x-axis), for broad-leaved forest (A) and coniferous

forest (B). The predictors are (A) maximum 2-m temperature in June and May of the same year, and maximum dewpoint temperature in

spring of the preceding year, for broad-leaved forests only and (B) maximum 2-m temperature and dewpoint temperature in July of the same

year, and soil moisture (0-7 cm depth) in autumn of the preceding year, for coniferous forests only. The color shade indicates the latitude.

For each dependence plot, we display only the gridpoints for which the predictor is one of the top 10 predictors.

5 Discussion

5.1 Identified adverse conditions

Our model identified dry and hot conditions as adverse conditions for European broad-leaved forests, i.e. high temperature and

low dew-point temperature, agreeing with existing literature (Rita et al., 2019; Beloiu et al., 2022; Rubio-Cuadrado et al., 2018;

Senf et al., 2020). Broad-leaved forests are predominantly located in the central and southern part of Europe (Fig. D1), often275

water-limited, with an increasing trend of drought frequency (Vicente-Serrano et al., 2014; Gudmundsson and Seneviratne,

2016; Rita et al., 2019).

The observed link between dry conditions and increased coniferous forest damage probability (dew point in July of the same

year and soil moisture in the preceding year) is consistent with existing literature, which highlights drought stress as a factor

for bark beetle infestations (Dobbertin et al., 2007; Müller et al., 2022). The link between July temperature and coniferous280

forest browning is rather heterogeneous over Europe. For low latitudes grid points, the association between forest damage and

warm July temperature aligns with the fact that dry and hot conditions are adverse conditions (Senf et al., 2020; Müller et al.,
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2022). For high latitudes coniferous forests, a possible explanation for the association between cold July temperatures and low

greenness could be that Northern Europe is energy-limited (see Fig. 1 in McVicar et al., 2012).

We established a statistical link between the preceding seasonal conditions and forest damage during the following year,285

hinting towards a source of inter-annual predictability for European forests. Indeed, forests impacted by extreme summer

conditions are more vulnerable to adverse conditions the following year Brun et al. (2020); Frei et al. (2022). Consecutive

years with adverse conditions may reduce tree resilience, reflecting a “memory effect” (Anderegg et al., 2015; Hermann et al.,

2023). A causality analysis (Peters et al., 2017) could explore the role of previous summers’ forest state as a predictor, although

this framework is beyond the scope of our study.290

As an initial criterion, we aimed to include relevant variables from S2S forecast model output, so that our results may be

used subsequently to use S2S forecasts for prediction. While vapor-pressure deficit (VPD) can significantly impact trees by

reducing stomatal conductance and photosynthesis (Grossiord et al., 2020; McDowell et al., 2022; Schoenbeck et al., 2022),

this variable is unavailable in S2S forecasts. We therefore chose dew-point temperature to measure the water content in the air.

We excluded soil temperature, as its variability is driven by air temperature, which is already a predictor in our model.295

We also discarded snow water equivalent for a better comparison between regions, as this variable may be relevant only in

snowmelt-driven catchments. We hypothesize that the precipitation and temperature contain the information that snow water

equivalent would bring. We did not consider wind storms, focusing on long-term, large-scale forest damage. Storm damage,

though potentially extreme, is more localized (Hermann et al., 2023) and should be assessed with higher resolution NDVI

datasets (Giannetti et al., 2021).300

5.2 Technical details

As CORINE land cover maps are only available from 1990, we used a static forest mask for the whole NDVI time series

(EEA, 2020, Corine Land Cover 2018). At least between 1990 and 2006, most areas in Europe exhibit stable or slightly

increasing forestland Kuemmerle et al. (2016). We hypothesize that the changes in forest cover do not substantially influence

the identification of large-scale damages as identified in our analysis305

AVHRR data has a medium spatial resolution (1.1 km at nadir) and does not capture the fine vegetation variability. Higher

resolution datasets can better capture high-resolution vegetation dynamics (Benson et al., 2024; Kladny et al., 2024), but have

a lower temporal resolution. We chose AVHRR data as a tradeoff between long temporal availability and spatial resolution,

emphasizing that the identified forest damage are large-scale anomalies (on a 0.1◦ grid).

Soil moisture is challenging in reanalysis datasets due to sparse and varied measurement points and soil types. Nonetheless,310

Zheng et al. (2024) shows that ERA5-Land soil moisture is one of the most reliable reanalysis products and correlates well with

observations. We use reanalysis to ensure consistency with the other ERA5 variables and we compute soil moisture anomalies

to reduce systematic bias uncertainty.

Overall, while these choices may influence the performance of the RF, its high predictive accuracy substantially reduces the

concern regarding their impact.315
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6 Conclusions

In this study, we provided an automated procedure to pinpoint relevant hydro-meteorological drivers for forest damage over

Europe. We used the AVHRR NDVI data, which spans a temporal range of 41 years, to capture the state of European forests

during summer. We used the fine spatial resolution of the AVHRR data to create a sufficiently long time series for conducting a

random forest (RF) classification. The RF model is run individually for all 0.5◦×0.5◦ forest gridpoints in Europe and demon-320

strates strong predictive performance for identifying low-greenness events during summer based on prior hydro-meteorological

conditions. The high CSI indicates that given a cutoff level (that assigns a probability of damage to a "0" or a "1"), the model ac-

curately predicts low-greenness events more often than missing an extreme or producing a false alarm. The high AUC indicates

that the performance does not depend on the cut-off level. Our model demonstrates a high predictive score and is sufficiently

general to compare the link between drivers and forest damage across all grid points in Europe.325

We show that the most essential time periods are primarily spring and early summer preceding the studied summer. Temper-

ature and soil moisture conditions in spring and early summer are the most important predictors of European summer forest

damage. Temperature, dew-point temperature, and soil moisture in the preceding year also play a role, indicating a multi-year

impact of hydro-meteorological conditions. The identified important predictors in Europe are mainly related to dry and hot

conditions, especially for broad-leaved forests or low latitudes coniferous forests. However, coniferous forests exhibit more330

heterogeneous and non-linear relationships between hydro-meteorological predictors and summer low forest greenness events.

The crucial conditions and time-periods are identified locally and all the hydro-meteorological variables considered here

are available as sub-seasonal to seasonal forecast products. Therefore, regional forest management organizations can use our

method findings to anticipate and plan preventive measures. Such preventive measures would mitigate the economic and envi-

ronmental costs of forest damage.335
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Code and data availability. ERA5 and ERA5 land data are publicly available (https://confluence.ecmwf.int/display/CKB/How+to+download+

ERA5). The AVHRR NDVI data can be accessed on the following link: https://doi.org/10.48620/400. The codes and data supporting the find-

ings of this study will be made publicly available on Githib upon acceptance for publication. Reviewers may request access to the codes and

data prior to publication.
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Appendix A: Quality control of the AVHRR NDVI composites
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Figure A1. List of the satellites used for our study and the years for which they are available (x-axis)

The 10-day AVHRR NDVI dataset Dupuis et al., 2024, hosted at the University of Bern has been derived by computing the

median NDVI valued across ten consecutive days. Prior to the compositing, a cloud mask is applied to the single satellite image

to filter out pixels contaminated by clouds. Each pixel in the AVHRR dataset was subject to quality control before computing360

the 10-day composites from the daily NDVI data. For a given observation, the pixel is masked out if the satellite viewing angle

is higher than 55◦. Additionally, the sun zenith angle must be below 80◦ for the observation to be valid. Similarly, if the cloud

probability mask is above 30 % or the quality of the cloud mask is not qualified as ’good’, then the pixel is masked out. We

then compute the 10-day composite as the mean NDVI value for the valid days over the 10 days. The number of valid pixels

used for the compositing generating is recorded, as well as the number of pixels exhibiting cloud probabilities between 1% and365

30%. If less than two valid days are valid for a given 10-composites, the composite is set to missing data.
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Appendix B: Forest damage

Figure B1. Time series of forest damage on a 0.1◦×0.1◦ grid, as defined in Section 2.2. A forest gridpoint is displayed in orange if it

experiences a low-greeness event (Yt = 1, in Sec. 2.2), and in green for normal years (Yt = 0, in Sec. 2.2).
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Figure B2. (a) Spatial representation and (b) histogram (GP = gridpoint) of the percentage of years with damage on the forest for the 0.1◦

grid, as defined in Section 2.2.

Appendix C: Data processing

0.5° (latitudes)

0.5° (longitudes)

41 datapoints

25*41 = 1025 datapoints (maximum)

(at least 3* 41 = 123 datapoints)

…

…

…

…

…….

Stack (time-dimension)

Figure C1. Stacking procedure to obtain longer time series. All of the 0.1×0.1 forest GPs in a 0.5×0.5 box are stacked in time. The same

procedure is applied for the preceding hydro-meteorological conditions, individually for each GP.
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Appendix D: Forest Type

Forest Type
broad-leaved
coniferous
mixed forest

Figure D1. Forest type on the grid of the random forest model’s output (0.1◦× 0.1◦ grid). The random forest model was run on 1248

gridpoints in total, among which 263 of them are broad-leaved forest gridpoints and 303 of them are coniferous forest gridpoints. The two

red stars indicate the location of the two gridpoints studied in Fig. 2.
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