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Abstract.
Glacier surges are spectacular events that lead to surface elevation changes of tens of meter-metres in a period of a few
months to a few years, with different patterns of mass transport. Existing methods ef-etevation-change-estimate-of-to derive

elevation change associated with surges, and subsequent quantification of their-mass-transported-the transported mass, rely on
differencing pairs of digital elevation models (DEMs) that are-ret-may not be acquired regularly in time. Mere-and-more-long

time—series—of-elevation-data—are-becoming-avatlable—In this study, we propose a workflow to filter and interpolate a dense

time series of DEMs specifically for the study of surge events. We test this workflow on a global 20-year dataset of DEMs
from the optical satellite sensor ASTER—The-multi-steps-Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). The multistep procedure includes linear non-parametric Locally Weighted Regression and Smoothing Scatterplots
(LOWESS) filtering and Approximation by Localized Penalized Splines (ALPS) interpolation. We run the workflow over the
Karakoram mountain range (High Mountain Asia). We compare the produced dataset to previous studies for four selected surge
events, on Hispar, Khurdopin, Kyagar and Yazghil glaciers. We demonstrate that our workflow captures thickness changes at
on a monthly scale with detailed patterns of mass transportation. Such patterns inetades-include surge front propagation s-and

-among others. OQur results
allow a remarkably detailed description of glacier surges at the scale of a large region. The workflow preserves most of the

changes in dynamic balance line, an

elevation change signal, with underestimation or smoothing in a limited number of surge cases.

1 Introduction

Surge events are extreme cases of the continuous spectrum of glacier flow instabilities (Herreid and Truffer, 2016). Surges
are quasi-periodic events eharacterised-by-an—characterized by abnormally rapid glacier flow, lasting from several months
to years (Cuffey and Paterson; 2010)—(Bhambri et al., 2017; Cuffey and Paterson, 2010). Large masses of ice are transported
during surge events, causing important thickness changes (Bhambri et al., 2017, 2022). They occur on a limited number of
glaciers -ealled-known as surge-type glaciers—They-, which are clustered in a few parts-regions of the globe, among which is
Karakeram—-the Karakoram in High Mountain Asia (Sevestre-and-Benn;2045)(Guillet et al., 2022; Sevestre and Benn, 2015).
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Surges can occur on both land-terminating and tidewater glaciers, and on either polythermal or temperate glaciers (Cuffey and

Paterson, 2010). The mechanisms behind the surge phenomenon (reasons—for-being-surge-typeorigin, surge trigger, etc.) are
1 !..... 0O - Terleth-et-al- 0 - Theéeersen-et-al- N24- ia..ze:

understood, and this subject continues to be the subjects of developments and theories (e.g., Benn et al., 2023; Crompton et al., 2018; Terlet

The variations of the glacier surface elevation is a major key of observation for this field of study. The study of elevation changes
over time can give some insight into the current state of a glacier in its surge cycle. It permits to compute the volume of ice

transferred during a surge event, along with the spatial extent affected (e.g., Bhambri et al., 2022; Gao et al., 2024; Steiner et al.,

. A few surge-type glaciers may begin surging after a critical mass has built up in the reservoir; an information that is accessible
with elevation differencing (Kotlyakov et al., 2018; Lovell et al., 2018). Elevation data, and by extension surface slope,
can be used to compute and analyse basal shear stress, which may play a critical role in the triggering of surges (Beaud
et al., 2022; Thggersen et al., 2024). Remote sensing analysis from satellite imagery permits to generate various products
for the study of surges (Paul et al., 2022). Among them, digital elevation models (DEMs) can be produced at local to global
., Hugonnet et al., 2021).
Such data have been used in numerous studies, ranging from the inventorying of surge-type glaciers to detailed case studies
Bhambiri et al., 2022; Guillet et al., 2022; Guo et al., 2020; Round et al., 2017). However, the use of DEMs for the stud

scale, providing observations of the elevation of the glacier surface and its variation along time (e.

B3

of surges is often limited to a few dates or specific case studies. Surges are short-term events with important elevation changes,
and surge-type elevation time series are non-linear. The retrieval of mass transfer variations happening during single surge
events requires dense elevation time series with a resolution of one or a few months in principle. Temporally dense elevation
time series from satellites covering a long period of time have recently become available for studying glacier elevation change.
Such acquisitions started around the year 2000, with time series now spanning more than two decades, long enough to capture
entirely a number of surge events. Elevation measurements from altimetry mission (laser or radar)-benefitsfrom-good-temporal
resotutions, such as ICESat-2, CryoSat-2 etc.) benefit from a good temporal resolution, but their spatial resolution-and coverage

Sparsity.
revents most spatial analysis (e.g. ropagation) as opposed to high resolution DEMs (e.g., Wang et al., 2021; Yue et al.,

. Several studies use-SAR-dense-have used dense SAR time series on surge case studies, usually without time series fil-
tering technique (Round et al., 2017; Wendt et al., 2017; Zhang et al., 2023). Dense elevation time series have-been—used
in—stadies—offrom optical sensors have been successfully used to study long-term elevation trends and multi-year glacier
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sensor is the only optical stereo mission that provides systematic and global acquisitions, but it has a spatial resolution of 15

m (Berthier et al., 2023). The DEMs derived from these sensors have elevation precisions of similar magnitude and semetime

large-neises-Theyneed-techniques-of-filtering-sometimes large artefacts (e.g., cloud sensitivity, jitter, lack of stereo correlation
on saturated/textureless terrain...). Noisy DEMs require specific filtering techniques that preserve surge signals (i.e., preserve

elevation observations before, during and after the surge). Basic thresholds and linear methods might misinterpret surge ob-

servations as outliers. Also, the volume transported or slope should be computed at consistent dates across a whole glacier.

Thus, a final step of interpolation is required. Various approaches have been implemented in the context of glacier elevation

time series analysis. A recent study has exploited a Bayesian framework by inference applied to elevation change to filter

outliers, which requires prior knowledge from diverse sources (Guillet and Bolch, 2023). It has been tested on surge-type
laciers, and it applies equally to dense time series. Hugonnet et al. (2021) have implemented a complex workflow for ASTER

elevation time series over glaciers at global scale. It captures limited-a number of non-linear elevation change, but fails to
accurately reflect sudden changes associated with surge events. In Hugonnet et al. (2021) filtering and interpolation meth-
ods involve Gaussian Process Regression, based on_a multi-term kernel defined by the variance of non-surge-type-elevation
at global scale. Shekhar et al. (2021) developed a spline-based approximation framework to model elevation changes with

heterogeneous data, that can also be used for filtering. Another approach fremWang-and-Kiib-(2615)not applied to surges
is from Wang and Kdidb (2015): it detects outliers, when no reference elevation exists, with a RANSAC (RANdom SAmple

Consensus) algorithm. Other-methods—e or-the-processing-of-time-series-of-glacier surface-veloeityCharrieret-al+20

elevation;such-as-tinear-Linear non-parametric local regressionregressions (LOWESS) thathas-have been used for non-surge

glacier surface velocities (Derkacheva et al., 2020) and are suitable for elevation data. Existing procedures have different abil-

In this study, we p
aim at developing a workflow to analyse outlier-prone, moderate-precision and high-temporal-resolution elevation dataset

adapted to the specificity of surge events. We 4
use-algorithms-from-the-literature-use established algorithms to filter outliers and interpolate elevations at monthly scale —We
while preserving surge elevation signals. We apply it to an ASTER DEM dataset from Hugonnet et al. (2021). We produce a



95

100

105

110

115

120

125

regional dataset in the Karakoram region covering more than 100 surge-type glaciers. We assess-the-workflew-performanees;
and-we-compare-the-outeome-evaluate the performance of the workflow compared to the results of Hugonnet et al. (2021). We
also compare the surge characteristics such as volumes transferred to other products and studies.

2 Data

In this study, we focus on the Karakoram region (Fig. 1). We use two existing surge-type glacier inventories that cover at least
the period 2020-t0-2026-2000 to 2018 in this region (Guillet et al., 2022; Guo et al., 2022). According to Guo et al. (2022),
which considers glaciers larger than 0.4 km?, there are 354 surge-type glaciers (individualizing-with individualized tributaries)
in the Karakoram and 128 probable or possible ones, representing abeut-8-6approximately 8. 6% of the regional number of
glaciers (39.5% in term-terms of area). Guillet et al. (2022) identified 223 surge-type glaciers en-among glaciers larger than 5
km? (not individualizing tributaries). These studies show-indicate that surge-type glaciers representsrepresent 39% to 45% of
the glacierized area in this-the Karakoram region.

We use the DEMs produced in the global study of Hugonnet et al. (2021), which ranged from 07/2000 to 09/2019 in this
regionthe Karakoram. They are generated from satellite images of the Advanced-Spaceborne ThermalEmissionand Refleetion
Radiometer(ASTER)-sensor—They-ASTER sensor. The DEMs have been processed at 30 m resolution with the MMASTER
workflow, running under the open-source photogrammetric 11brary MicMac (Girod et al., 2017; Rupnik et al., 2017). Fhey-are

at-All DEMs have been reprojected

to 100 m spatial resolution

M&e}eva&eﬂ—dfffefeﬂee—mﬂ%WMTanDEM -X on-iee-free-terrain—above—20-m-have-beenremoved

Hugoennetetal; 2021 Rizzoli-etal5- 2017 global DEM (Rizzoli et al., 2017). We use all ASTER elevations produced-estimated
by MicMac for any stereo-correlation score, with lower correlation being-associated-to-associated with higher uncertainty

(Hugonnet et al., 2021).

Finally, we apply a

reprocessing step specific to this dataset: 1) we filter pixels with a difference of more than 400 m between the ASTER DEM
and the analysis-Ea 3 3 Hle-and+ o 3 3 150 3

s-GLO-90 reference DEM 2) we merge the same-date 180

km DEM strips generated by Hugonnet et al. (2021) by keeping, in each pixel, the elevation with the highest correlation score.

The sampling is not regular in time and space, and parts of the mountain range have about twice as many DEMs as others
(Fig. 1). Overall, -

apart—Said-differently, 40%<(7530% (62%, respectively) of the dates in the time series periods are between unfiltered-observa-
tions which are less than six menth-months apart (a year, respectively) (Fig. 2, solid orange line).
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Figure 1. Study-Map of the study area ever-in the Karakoram, with regional location indicated in the inset map. The colour scale
shows the number of pre-fittered—pre-processed ASTER-derived elevation observations over the period 2000-2019 from Hugennet—et
atHugonnet et al. (2021). {262H)—Glacier outlines from RGI7.0 are shown in dark-tenesblack. M@%\MM
analysed in section 4 and 5 are outlined in red: i i i

We use the Copernicus DEM GLO-90 (European Space Agency and Airbus, 2022) as a reference elevation (Eurepean-Space-Ageney-ane
for coarse filtering of very large outliers. It is edited from the-data of the TanDEM-X mission between 2011 and 2015. The

impact of radar penetration is negligible compared to the threshold used (hundreds of metres).

130 3 Methods
3.1 General workflow

We aim to develop a workflow to filter and interpolate stacks of ASTER DEMs, specifically designed to handle surge events.

We use the workflow of Hugonnet et al. (2021) as a baseline to which-we-compare our own workflow. It is-netewerthy-should

be noted that Hugonnet et al. (2021) handled the same ASTER DEMs ;-but-it(without our pre-processing step), but was not
135 specifically designed for surge-type-surge-type glacier elevation changes. Our workflow is divided into three-main-seetionstwo

main steps (Fig. 3).

First, we tmplemeﬂ{—pfe-ﬁ{{em%steps—Seeeﬂd—Wﬁﬁlter the dataset to remove remaining outliers —Third;—we—interpolate
in three steps:
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Figure 2. Data gap and temporal coverage of the time series at different processing level. In blue, the proportion of the interpolated on-glacier
data gap per-dateover the time series period, before-and-after the processing workflow. In orange, the proportion of days that fall below the
time interval range (e.g., nearty-7562% of any date in the time series periods are between unfittered-pre-processed observations less than a

year apart). The x-axis are independent, the y-axis is shared.

around-data-gapsremeves-further-outliers—It removes pixels adjacent to outliers, as they also have reduced precision due
to the photogrammetric processing.

5. Removal of time series with less than 10 points: we consider such time series not dense enough for our application.
6. Regulartemporal-interpolation-with- AEPS-REME:-

Second and finally, we interpolate the time series with-at regular time intervals using a B-spline method with-which includes
an automatic hyperparametrisation —We-develop—it-algorithm (ALPS-REML), detailed in subsection 3.3. The interpolated

elevations are provided as a monthly time series.
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Figure 3. The-complete-workflow-Workflow of the elevation time series processing, with an example of time series processed. Abbreviations:
"“FSTSa" ~in the caption and map of Fig. 7.c. A version of the filtering of the time series, coloured by the elevation error estimate, is provided

3.2 LOWESS filter

7-We filter the elevation time

series using the Lee&HyLWagmeé%%egfeweﬁmmdSmeeﬂmg—Se&&efp}%&QX%HLOWESS algorithm in a sequence

detailed later (Cleveland and Devlin, 1988; Derkacheva et al., 2020). It is a non-parametric, moving weighted regression. We

use the Python scikit-misc implementation. For our dataset, the output of the regression is to-too sensitive to noise overall and
too smooth over surges to be used directly as an interpolation of the elevation, so we use it for filtering only.

Here are the main parameters that have been tuned manually (Fig. 4):

— span-itis-the-Span: smoothing parameter, expressed as the fraction [0-1] of points of the time series used at each local

regression. A larger value implies more smoothing. We set it at 0.4 and 0.3 for the two iterations, respectively.
— degreeDegree: degree of the local polynomial regression. We choose a degree 2.

— familyFamily: assumed distribution of the errors, with a choice between "gaussian" (fit is performed with a least-squares)

and "symmetric" (fit is performed robustly by redescending M-estimators). We use "symmetric".
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— weightsWeights: weights to be given to individual observations in the sum of squared residuals. We use the uncertainty
provided for each elevation in Hugonnet et al. (2021), which models heteroscedasticity (variable error) as a function of

slope and the quality of stereo-correlation based on elevation differences on stable terrain (Hugonnet et al., 2022).

We use the LOWESS algorithm in the following sequence (Fig. 5): we run two iterations of the LOWESS regression with a
decreasing smoothing factor. At each iteration, we compute a threshold envelope around the regression which is used to remove
points falling outside of it. The envelopes are derivative-varying to prevent the filtering-fromremoving-truefilter from removing
accurate observed signals close to surge events - : tve- tons-of-outh Srespeeti (plot in Fig.
derivative) is a potential surge, and then use a larger threshold. For the first iteration, the threshold is 150 m for fast-varying.
elevation above 50 m yr' derivativeteonstant-elevation)-te-, and then linearly down to 45 m at lower elevation change rate.
The threshold is lower for the second iteration : 100 m {resp-—+50-m)-at-above 50 m yr'! derivative(assumed-to-be-a-potentiat
strge-stgnab—The-werstelevation change rate, down to 30 m below. The worse time series have large temporal data gaps which

can create computational errors for small smoothing parameters. Therefore, at each regression, we implement a step-by-step

increase in the smoothing parameter in case of such errors, depicted as the faction value in Fig. 5. In case of computational

error remaining after a +0.05 (resp. +0.10) increase of the fraction parameter, we filter out the full time series.
3.3 ALPS - REML interpolation

ALPS or Approximation by Localized Penalized Splines is a unified time series medeling-modelling framework introduced
in Shekhar et al. (2021). ALPS builds on the localized nature of B-spline basis functions to model time series with highly

non-uniform sampling;-thereby-improving-thestate-of the-artin-this-demain. In this research, we use a mixed modeling-analog
modelling analogue of the statistical B-spline regression model introduced in Shekhar et al. (2021). This is motivated from

by the capability of the mixed models to segregate high-frequeney-andtowfrequeney-high-frequency and low-frequenc
components of the overall model, thus allowing us to narrow down the effect of the regularization/smoothing specifically on

the high-frequeney-high-frequency components that drive the overfitting-behavierover-fitting behaviour.

Another change inherent in our approach, as compared to the approach described in Shekhar et al. (2021), is the model fitting
algorithm. As described in Shekhar et al. (2021), the original ALPS model used the Generalized Cross Validation (GCV) metric
for estimating the model parameters. However, here we take an alternative route and use the restricted maximum likelihood
(REML) approach for fitting our model. Just-to-give-a-little-background,-GCV metric quantifies the generalization error of
model by predicting at data points, not used for fitting the regression model. And-henee;-Hence, the minimization of GCV
metric forces the model to predict accurately at unseen locations as described in Wahba (1990). REML on the other hand
formulates the problem from a statistical perspective and optimizes the regression parameters such-so that the probability of
observing the data is maximized. A more detailed exptaination-explanation of REML can be found in Ruppert et al. (2009).
The reason for choosing REML over GCV in this work can be attributed to the fact that GCV is well known to under-estimate

underestimate model uncertainty, thereby providing over-confident predietion-predictions which in some extreme cases can be
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Figure 4. Impacts of the different LOWESS parameters on the filtered time series. Each column corresponds to the different LOWESS results

for different values of each of the four main parameter. Plain lines are the final selected values. The line corresponds to three different data

points (TSa-c in the line order, locations shown on Fig. 7.c).

misleading. Additionally, for the time series under consideration in this work, the ALPS model with the original GCV based
model fitting was everfitting-over-fitting to noise, making it unsuitable. In order to produce interpolated results in this paper,
we use the same ALPS-REML code. Wehowever-, however, set a degree of the basis functions p of 4, and an order of penalty
qof 1.

3.4 Gaussian Process regression

Gaussian Process (GP) regression is a non-parametric method ;-for-which-we-ean-define-akernelwith-mathematical funetions

ity—tnear—trend——that relies on estimating the data

covariance to provide an optimized interpolator (Cressie, 1993; Rasmussen and Williams, 2005; Williams, 2007). Under certain
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assumptions, including notably second-order stationarity, GP regression has been shown to be the “best linear unbiased

predictor”. It is the method used by Hugonnet et al. (2021) on this same dataset, to compute long-term mass balance esti-

mations worldwide.

of-the-elevation-changes—We use a GP covariance with terms estimated in Hugonnet et al. (2021) through a global variogram

analysis. This analysis identified several kernel components (periodic, local, linear, etc.), that are not specifically tuned for

surges.

We note that, contrary to GP regression, ALPS approximates the data with polynomials under the assumption of a degree

of smoothness of the data, with no need for us to inform the behaviour of the data. Although both GP regression and ALPS
need domain knowledge to decide the covariance kernel and spline degree/penalty respectively, from a user’s perspective usin
GPs can be more complex owing to the well studied difficulty of optimizing the kernel, mean function and dimensionalit

Pu, 2024). For ALPS on the

other hand, we simply manually select degrees and penalty orders from a small set of choices.

10



220 Reparametrization of the kernel used by Hugonnet et al. (2021) gave slightly worse results than those obtained with the
ALPS-REML method. Our limitation with GP regression lies in the kernel definition which is done according to the variance
of elevation changes. Each surge event is different in variances, which is also very different from the data variance in guiescent
periods or on non-surge-type glaciers. We tried different settings of the kernels, that differ from the study of Hugonnet et al. (2021).
- We removed the seasonal term of the model. The length scale and the magnitude parameters of the remaining terms were

225 manually tuned after testing. We added radial basis function terms of length scales of a few months and with a variance of
a few tens/hundreds of square meters. The kernels that provided a suitable interpolation were slightly outperformed by the
ALPS-REML algorithm. This could be reevaluated for other datasets (for e.g. less noisy), more complex steps or adapted GP
regression processes and future advances (e.g., de-trending before GP regression or using other predictors).

3.5 Volume transfer estimate

230 We estimate the volume transferred during seme-surge events by assessing both the positive and negative glacier net volume
changes over specific areas. Unless specified, the extent is the surge-affected area manually drawn from the elevation change
map at-the-surge-timingcalculated over the surge duration. We separate the reservoir and the receiving areas in-into two distinct
polygons. It is difficult to constrain precisely the initiation and termination of surges. The surge dates (Table 1) are estimated
visually from two sources: the pre-processed timeseries and the interpolated elevation changes. None of these sources permits

235 us to be sure of the exact month of start or end of the surge. We estimate the dates from interpolated elevation change (e.g.
Fig. 8) when computing volume transfers, such "apparent” dates are less exact but capture the overall mass transferred in our
generated dataset, We may also estimate the dates from pre-processed time series (not affected by filtering and interpolation
defects) for information or validation, which permits us to be more exact although we are still limited by the number of
observations. For example, for the time series Fig. S2.a in the Supplement (from the Khurdopin glacier), the surge period

240  estimate at this location from the interpolated time series would be around 2016-06 to 2019-02, against 2016-12 to around
late-2017 (there is no observation between 2017-06 and 2018-07, thus time series at other locations are required for a better

estimate).
To compute the velume-transferred-we-differentiate-transferred volume, we subtract the elevation at two dates. We then mask
the surrounding areas. We interpolate (small) data gaps in the elevation change maps with a bilinear interpolation. Finally, the

245

swe retrieve the

volume by multiplying the mean elevation change with the delineated area.
The sum between-of the volume changes in the two areas gives the volume imbalance. We alse-provide-an-imbalance-—in

meter:-we-divide the volume imbalance by the surge-affected area —Thisimbalanee-is-morerepresentative-of the-corresponding
uniform-elevation—change—to_provide the metric imbalance in metre (as if the imbalance was uniformly distributed on the
250 surge-affected area). The metric imbalance is directly comparable to the elevation change uncertainty, and it permits-allows us

to compare the results independently of the glacier size.

11
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3.6 Uncertainty of volume transfer estimates

We calculate indicative uncertainties of the volume transfer estimates. These uncertainties do not explicitly take into account
ossible errors introduced during the filtering and interpolation of each event.
Our uncertainty is estimated with the following formula.

oay =+/(ch ((p+5(1—p)A 2+ (maz(dAV_ dAV. 2
The first member of the formula account for the uncertainty in average elevation difference. oh is the uncertainty in

the mean elevation difference obtained by propagating the pixel-wise measurement uncertainty. The pixel-wise uncertainty is
estimated from elevation differences between the interpolated ASTER DEMs and reference DEMs (SPOTS HRS, SPOT6 and

HMA DEM; details in subsection 5.1), considered as the true elevation, over four surge events (Hispar, two dates on Braldu

surge, and Kunyang elaciers; Fig. 10) within the surge-affected zone. It is therefore representative of the error on glaciers

during surge events. From each dataset, we reconstruct an empirical variogram using the SciKir GStar Python library and all
variograms are normalized by their variance and aggregated by taking the mean. We then fit the experimental variogram with a
double-range Gaussian model (estimated ranges of 1.4 and 19 km) and estimate the mean elevation difference uncertainty from
the number of effective samples calculated from the model with the xDEM Python library (Supplementary Fig. S11). Agreq is
the area of the delineated zone and p the proportion of Auyeq With valid observations (ranging from 0.92 to 1, median of 0.99).
This formulation assumes that the uncertainties of spatially interpolated observations is 5 times larger than the measurement
uncertainties, as in Berthier et al. (2014).

The second member of the formula estimates the volume uncertainty due to the manual delineation of the area over which the
volume change is computed. dAV_100m and AV, 100 are the differences between the volume change estimated over the
delineated area and the volume change estimated over an area with a buffer of -100 or +100 m, respectively. This assumes an
uncertainty in our manual delineation of 1 pixel, which is reasonable given the strong contrast in elevation on the edges of the
surge reservoir and receiving areas.

We propagate the uncertainties to the volume imbalance, assuming independent errors, with the following equation:_

TV _ba = A\IAY. )2+ (TAV reccining)?
The uncertainty in metric imbalance is then expressed as oy <ur face bal = 222l with A_total the total area considered.

4 Results
4.1 Performance of the outlier filtering

We compare the filter and the temporal interpolation developed te-in this study with those of Hugonnet et al. (2021) en-in
locations that are affected by surges, but also for all the-glaciers-ef-glaciers in the region (Fig. 6, Fig. 7). In Hugonnet et al.
(2021), the iterative GP regression filtering is responsible for removing some high-amplitude surge signals (Fig. 6.c1-2, or

abnormal gap Al circled in red in Fig. 7.a). In Hugonnet et al. (2021), the kernel of the GP regression filter does not model
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well the eh&ngeﬂﬁe}eva&eﬁmthat is typlcally observed during sufgeeveﬂ%&—Thee}evaﬂeﬂ—ehaﬂgefafemeéeﬂed

Wﬁ%@mw(e g., Fig. 6.cl). Medfﬁe&&eﬂ%ef—f}n%keme}%e—aﬂevffeﬁfmﬂgeﬁeh&ngeﬁﬁ
elevation-have net proven—te-be-efficient-enetgh—In our workflow, the LOWESS filter behaves with varying performance,
dependmg on the time series quahty (n01se temporal density, surge amphtude) It dees-conserve-nearly-all known-surgeevents
r-preserves well the surge signal of 3 of the 4 events we
analyse in subsection 4.3, and this observation seems to extend to a number of surge events in the Karakoram. One exception

is periods of low temporal density during surge events, especially when combined to strong melt before and after the surge.
A typical example of this-such erroneous filtering is a part of the front of the Khurdopin glacier (FigSupplementary Fig.

S2.2%a). In this time series, two critical observations are filtered out around 2017 s-and-the-during the short surge. The ALPS-
REML interpolation smooths the signal even further-, as both LOWESS and ALPS fits are sensitive to the lack of elevation

measurements at abrupt trend changes, with fewer point to constrain the fitting. Strong melt in the receiving area increases the
elevation-change smoothing effect of the fits by reducing the average elevation change locally before and after the surge.

The LOWESS workflow is also sensitive to the weight estimate and noise on-unfavourable-terrain-(in textureless and steep
areas ), for example, resulting in more-tnrealistic-erratiefiltering-than-these-of-the-originat-study-the filtering being

oversensitive to noise compared to the original workflow (red circles B1-2 in Fig. 7.b). This filter oversensitivity occurs on
time series with scattered elevations, and it is often due to the correlation error-score that is not very representative of the actual

pixel quality: outliers may have lower uncertainties than ebservations-close-to-the-true-elevation-more accurate observations
(e.g., Fig—2%e-Supplementary Fig. S2.e or S7 at 15 km). These types of leeations-location are not predominant in surge-
affected areas, and a number of them are completely filtered out by-the-folowing-stepsof-the-filter—Thefiltered-out-during
subsequent filtering steps. Thus, filtered areas (data gaps) and spurious elevations are more prevalent with our method s-mestly

W&WM&%MM&%WMW%

Afterfiltering,S0%-of eonseeutive In summary, our filter better preserves the surge signals that were filtered out in the
workflow of Hugonnet et al. (2021). However, the new filter is more noise-sensitive over textureless accumulation areas and
rough terrain, leading to data gaps or artifacts with large elevation changes. The preprocessing step removed 46% of the original
regional dataset (number of on-glacier elevati i ‘
9-months—apart-to—7-menths—Said-differently, nearly 40%—(75pixel), and the filtering step removed a further 42% of the

reprocessed dataset (69% removed in total compared to the original dataset). After filtering, nearly 30% (62%, respectively)
of any date in the time series periods are between unfiltered-observations less than a-year<(two-9 months apart (one and a

half years, respectively)apart-against-, Before filtering, for the same percentage, it was a half-year befere-filtering-(one year,
respectively) (Fig. 2, solid orange line). The time series are about half as dense as before, temporally.
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4.2 Performance of the temporal interpolation

The interpolation of Hugonnet et al. (2021) is a GP regression with the same kernel as for the filtering. Fig. 6.a-b1 shows
edge effects at the temporal bound of the time series due to the linear member-term of the kernel. The-seasonal-memberIt is

noteworthy to mention that by its design, the original kernel is optimized to preserve a linear trend to extrapolate out of the
observation period of each pixel. The seasonal term of the kernel creates the undulations-ef-a-one-year length-sealeperiodicity.
In comparison, our workflow shows only limited border effects. #The workflow presented in this study better fits changes

in trends (ex. Fig 6.a1-2), and preserves most of the surge signal (Fig 6.c2). However, dense clusters of points are regularly
over-fitted, creating wavelet-artefacts-at-a—few—month-sealesspurious high frequency oscillations spanning typically about 6
to 12 months, as illustrated in Fig. 6.c2 around 2006 and 2011 or 6.a2 around 2006. Comparing the final interpolated eleva-
tion changes over two years (Fig. 7.c-d), our workflow can capture the complete surge signal of Hispar and Braldu glaciers

yred circles C1-3

in Fig. 7.c), which was not the case for the previous workflow. At these locations, the original method of Hugonnet et al. (2021)
removes-completety-completely filters out the surge signal, filling the period with the global trend or a completely smoothed
trend (e.g., Fig—2?Supplementary Fig. S1). Moreover, several reservoir or receiving areas of the surges have-weakest-show
smaller elevation changes with the original method, which tend to smooth remaining surge signals, both in time and in eleva-

tion (e.g., Fig. 6.c1 and FigSupplementary Fig. S2.22-d). The maximum en-glacier-spatial coverage of on-glacier interpolated
elevation over Karakeram-is-about-the Karakoram is around 80% from 2005 to 2015 (Fig. 2, solid blue line). Seme-glaciers-are

4.3 Analysis of selected surge events

To illustrate the outputs of our method, we analyse afew-four surge events that have been studied in the literature. They occur

on four glaciers: Hispar, Khurdopin, Kyagar and Yazghil glaciers. Fig. 8 shows the spatio-temporal evolution of the surface
elevation-of-selectedglaciers-along-theireenterline-glaciers surface elevation along their centreline (green line on Fig. 7).d,
except for Kyagar glaciereut-of-the-area)., outside the visible area of the map). Time series, extracted at regular intervals alon

the selected centrelines are shown in Supplement (Fig. S3 to S7).

We ean-observe the influence of Kunyang tributary surge that reached Hispar main glacier tongue (around kilometre 40) in
early 2008 (Fig. 8.a, area al). The surge front propagates downstream for several years with a decreasing speed-propagation rate
(2009-2012;; Fig. 8.a, area al), while strong thinning starts at the junction and approximatively-five-approximately 5 kilometres
upstream of the surge front. A slight and short positive elevation change on the main trunk of Hispar up to a few hundred meters
before the junction (around 49 km), starting one year after the surge reached the main trunk, may indicate mass accumulation
from a blockage of the ice flow (Fig. 8.a, area a2). The time series (not presented here) confirms this thickness gain. Mean-
while, a slight and more regular buitdup-build-up or thickening occurs above, upslope of 25 km (Fig. 8.a, area a6). The Hispar
strge-of-the-surge of Hispar main trunk seems to start in early to mid-2014 and end mid-26+6-around June 2016 (area between
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Figure 6. Comparison of pre-fitter-the filter and interpolation methodsef-the-data’s-processing—: (a-etal-cl) from Hugonnet et al. (2021)
against this-woerkflow-(a-e2a2-c2) the workflow presented in this study. The three time series show-all show a surge around 264+5:-their2015.

Their location is represented on the map Fig. 7.c (points TSa-c). We avoid overlaying points for readability (i.e., points exist but are masked

in lower-level time series, in legend order). The uneertainty-confidence interval is valid for the interpolation only and not the whole workflow:
itis the 1 o standard deviation credible interval for GP regression (Hugonnet et al., 2021), and it is the 95% t-confidenee-confidence interval

for ALPS-REML ¢this-werkflow)-(Shekhar et al., 2021)

the lines a3 and a4 on Fig. 7.d and Fig. 8), with small mass displacement until the end of 2017, downslope of the Kunyang
350 junction. Sharp wavelets-spurious high-frequency oscillations of positive and negative elevation changes oeeti+-from mid-2013
to mid-2014, which we attribute to artefacts of our method, are visible horizontally on the- HovméHer-diagram-Fig. 8.a. The
time series shows dense and very scattered elevation observations at this period even on stable ground (FigSupplementary Fig.
S2.2%c), causing these artefacts. This spread may be due to tilts or undulations remaining in the DEMs. The results indicate

that the dynamic balance line location is not stable in time. On the branch of the Hispar Pass (setree-head of one of the main
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Figure 7. a-b: maps-Maps of maximum elevation change after thefiltier-methodsfiltering. c-d: elevation-Elevation change maps over two
years (Hispar glacier surge period). The green points and their labels (TSa-c) in c) correspond to the localisation of the time series in Fig.

6 (a-c). Their coordinates are (EPSG:4326): TSa (75.863, 36.055), TSb (75.295,36.089) and TSc (75.861,36.200). The green lines on d ¥

are the eentertines—centrelines of the Hispar-glacier-studied glaciers. The red circles (bottom-left-branch-of-the Hispar PassA 1-C3) -Yazghil
ghacierteenter-teft)-and Khurdopin-glacier-the dotted lines (eenterad-5 and d3) show or delimitate areas discussed in the text.

branches, location on Fig. 7.d), the reservoir area extends from 5 km of-from the pass, at an icefall (line a3 on Fig. 7.d and Fig.

&), down to 20 km from the pass at the junction with the Yutmaru tributary in the first part of the surge. From the end of 2015
to the end-termination of the surge, tthen-extends-the reservoir area limit propagates down by 5-10 more-kitometres-down
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kilometres (below the junction) (line a5 on Fig. 7.d and Fig. 8). We plot an elevation time series at this location (Fig. 6.b2,

location TSb on Fig. 7.c))-

. The receiving area extends from the
to nearly 40 km from the pass at the junction with the Kunyang tributary (line a4 on Fig. 7.d and Fig. 8.a).

We now assess the volume of ice transferred during the surge, from 2014-01-01 to 2016-09-01. We calculate a volume change
over the reservoir area of -24++-2421 4 374 x10% m®, and of 34+6-3108 + 177 x10° m* over the receiving area (Table 1).

The imbatanee resutting-is-of 700-resulting imbalance is 687 + 414 x10° m?, which represents an evenly distributed layer of
4-55-4.46 & 2.69 m thick over the whole surge-affected area. ﬂEhed-rffefeﬂeebefweeHe}mﬂegaiﬂﬂﬂd%ess—e%tmbalaﬂee—ts

Weﬁﬂ&}yseﬂﬂefe%ﬂeﬂyfh&eﬁwg&ewﬁs—vmib}eﬁﬁﬁg—&murdopm glacier has a gradual-surge-onsetorpre-surge
strong mid-glacier thickening signal until
WMMWMWWWM@% 8.b, area
bl). Fhe-"This mass build-up front™extendsfrom-about 27-may be the geometry readjustment of the glacier in its guiescent
phase, after the previous surge in 1998 (Quincey et al., 2011). The lower limit of this build-up area propagates downward from
about 25.5 km of the glacier seuree-in abet epresentig-areguls = H

to_about 33.5 km in 2015, The limit advances approximately 600 m per year during this period, which is approximately-6
about 7 times faster than the surface velocity (measured 2 km upstream of the front), according to velocities (temporal baseline
from 300 to 430 days) from the NASA MEaSUREs ITS_LIVE project repository (Gardner et al., 2022). During this period,

we do not observe a clear mass transfer from an upper reservoir area, which thus seems different from a slow surge onset. The
upper limit of the build-up area and-then-ef-(which will mostly become the reservoir area) is stable in time, at the bottom of an
The surge starts in 2016, the-surge-front-continuing-the-"pre-surge™frontwith the build-up front becoming a surge front wuth

a higher propagation rate. Both our filter and interpolation methods here fail to eapture-fulty-fully capture the surge signal of
the receiving area (see discussion section 5.2). #This failure leads to an apparent surge end in early-2019 on interpolated data,

which is overestimated by about a year and a half according to non-interpolated time series (FigSupplementary Fig. S2.22-a).

A distinct and local positive elevation change pattern in-is visible after the surge around kilometre 23 (Fig. 8.b, area b2).

Kyagar glacier is located about 110 km te-the-East-east of the other glaciers (Fig. 1). A slight mass buitdup-build-up is visible
since the beginning of the time series in the first ten-10 kilometres of the glacier, and extends #p-down to about 14 km a few

years before the surge —ttstarts-areund-the-end-of(Fig. 8.c, area cl). The surge as visible on interpolated data starts in 2013 or
the startbeginning of 2014, and ends intate264+5-around 2016 (Fig. 8.c, area c2). However, the actual surge is certainly shorter,

The beginning of the surge appears sooner in the interpolated time series, and the end is also represented nearly a year later

from what is visible on the non-interpolated time series of most of the receiving area. During the surge period, there are about
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1-2 observations per year. There-is-an-area-where-An area or poor quality in the ASTER time series is-of-bad-qualityresulting

in-some-results in artefacts after processing, at 5 km from the glacier seureehead, which is located around the equilibrium line

ases-(Fig. 8.c, area c3). This area seems
to be in the reservoir area, therefore causing a bias in the volume transfer calculation. We manually draw a mask to remove

of the glacier -

artefacts for a better estimate (Table 1).

Our dataset captures a full surge cycle of Yazghil glacier. On this glacier, the surge signal has a low amplitude (approximately

ten metres) compared to the time series, and thus noise is often overfitted —Fhis—results-resulting in frequent interpolation

artefacts. Some seasonal signal seems also to be fitted, for example during the period 2013-2016 thanks to denser and consistent
time series (horizontal lines on the-HovmoHer-diagramFig. 8.d). A surge starts in-tate-around August to November 2003 and
ends ti-tate-around October 2006 orearty-to February 2007 (Fig. 8.d, area d1), and a new surge starts in 264+7-orearty 26482016
or 2017 (the end is not captured; 8.d area d2). One-of-the-tributaries-of -Yazghil-glacier-(Gunetion-at-km—18)-is-also-surge-type;

)
nd AARn a AV vreed—dy o—OH ud ha K dur—and—emptvine—oe ha fret oo _QAAMQ

wea 4 < stest ela : - pa < surge-The build-up phase of
the second surge is visible, representing about half of the quiescence phase (Fig. 8.d area d3, delimited by dotted lines d3 on
Fig. 7.d). This-may-berelated-to-the-effect-of the-tributary-surge-thatstopped-at thejunetion-but-could-have-yeti
i ' i One of the tributaries of Yazghil glacier (junction at km 18) is also surge-type, and seems to
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) Reservoir Receiving
Glacier Date start Date end
) ] ) ) vol. change vol. change
RGI 7.0 code [time series] | [time series]
[Surface area] [Surface area]

Hispar 2014-01 2016-09 o 52421 £374x 10° m? o 53108 £ 177 x 10°m® | 687
21670 [2014-05] [2016-06] [106 km?] » [48 km?] 4
Yazghil 2003-07 2007-01 6 5 "32+30x 106 m3 6 5 63+26x 10® m3 32
21865 [2004-01] [2006-08] [8 km?] » [6 km?] 2
Khurdopin 2016-03 2019-03 o 5 —813£136x 10° m? 6 5 113+64x 10° m? -100
14958 [2016-04] [2017-07] [33 km?] [15 km?] -
Kyagar 2012-11 2017-01 6 5 “271+92x 10° m? 6 3 269 + 55 x 10° m3 -2
14958 [2013-10] [2015-12] [21 km?] [8 km?] -(
Kyagar without o 5 217+ 116x 10° m? s 5 269+55x10°m? 52
artefact [20 km?] [8 km?] 1

Table 1. Timing and velume-transferred volume of the surges for-of four glaciers in the study area. The main dates are given according
to the HovméHer-diagrams-on-interpolated ehanges-¢levation time series on the centrelines (Figure 8). We compute the volame-transferred
volume ("vol. change") from interpolated DEMs at these dates to eapture-estimate the corresponding volume change from both reservoir
and receiving areas. The dates between brackets are those estimated visually on non-interpolated time series, thus less smoothed, given for
indication. They are not accurate to the month due to ASTER acquisition dates. Volume-changes-are-inx+0%m>-The volume change and the
imbalance computation method is detailed in the-subsection 3.5. Fhe-data-gap-ts-given-in-pereentage-of For these glaciers, the surge-affected
area—The-percentage between-brackets-is-the-of data gap propertionremaining-after a-the workflow presented in this study is ranging from 0

10 5.6% (median of 1.4%), and after bilinear interpolation it is of the-elevation-ehange( to 0.8% (median of 0.2%). The prefix of RGI codes
is "RGI2000-v7.0-G-14-".

5 Discussion

5.1 Processing quality

remove-outhiers—To assess the quality of our results, we 1) compare our interpolated elevations with external DEMs produced

from high resolution satellite imagery, and 2) test the sensitivity of the interpolation to data gaps. Note that the uncertaint

estimate of the ALPS-REML algorithm, which is represented in the figures, does not represent the uncertainty of the whole
workflow.

First, we compare the interpolated elevation with external DEMs, produced from optical very-high resolution satellite im-
agery (Fig. 9). This comparison provides a validation of estimated elevation during a few surge events. We use SPOTS5 HRS

and SPOT6 DEMs generated by Berthier and Brun (2019), and along-track HMA DEMs (Shean, 2017) (list in Table S2 of
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the Supplement). We co-register each external DEM on the ASTER interpolation —The-NMAD-seore-on stable terrain. The
Normalized Median Absolute Deviation (NMAD) after co-registration ranges from 6.8 to 15.6 m (median 7.4 m), which shows
a-good agreement with discrepancies of a few meters. Extreme cases occur locally with differences reaching tens of meters, but
it is generally unclear which dataset is flawed. The case study of Khurdopin glacier surge ;-diseussed-abeve,shows-however
that-a-diserepaney-shows that a wrong estimate of a hundred meters of our workflow is credible on exceptional events —and at
precise dates during the surge (Supplementary Fig. S2.a). The map of elevation differences shows moderate differences overall,
which earn-may be important locally (Fig. 10). Systematic differences appear over the whole glaeiersglacier: e.g., the median
difference is of -4.3 m (standard deviation of 9.7 m) on Hispar glacier on 2015-10-13, -5.2 m (standard deviation of 8.7) on
Braldu glacier on 2015-11-28. Larger local differences are located around the surge front: e.g., up to 24 m at Hispar surge front

on 2015-10-13. We-compute-the-percentile-of-elevation-change-The elevation difference values during a surge event and during
quiescence {Table-??)—The-results-do not show important differenee-differences at the scale of the surge-affected area —(Fig.

11). The discrepancy associated te-with a surge period is overall of the same magnitude as other noise, considering the large

standard-deviationsdispersions.

comes from the

relative temporal sparsity of the input observations. Here, we investigate the impact of data gaps on our interpolated time
e Wswgﬂour study area ;during

mfemelafed—ﬁem—&empem%b#ew—deﬁﬁ%y—ﬂm&%eﬁe&are characterised by a low temporal density of observations during surge
events (e.g., less than 3 ebservationsper year)

(Fig. 1). In such situations, our method of filtering and interpolation usually leads to an underestimate of the velame-transferred
transferred volume and an overestimate of the surge duration (e.g., twice its duration for the-Kyagar glacier), even when relying
on the filtered time series and not on the interpolated one. Onset and end dates cannot be precise to a few months for a surging
area with only one or two observations per year (e.g., the-case-study-of-the-Kyagar glacier surge).

To test the sensitivity of the ALPS-REML method to data gapgaps, we interpolate an elevation time series after removing
all points in a 450-day moving window (Fig. 12). Each iteration results in a period of at least 450 days without observation.
For the selected time series a) and c), the test shows strong smoothing, although the surge signal is still visible over large time

frames. The interpolated dates of the surge onset (erding;respeetivelyrespectively ending) are advanced (delayed;respeetively
respectively delayed) up to two years compared to the original interpolation. The surge elevation change can be underestimated
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Figure 9. a-c: Comparison ef-elevation-between elevations from SPOT DEMs (SPOT5 HRS and SPOT6) and HMA DEMs against-and
ASTER elevations interpolated at the same dates. The time series are identical to previous ones (TSa-c in the panel order, Fig. 7.c).

up-to-about-by up to 20 meters. This can be larger for larger time gaps or surges with stronger elevation changes before or
after the surge. Case b) is specific, as it lies close to the dynamic balance line (in the receiving area at an early stage of the
surge, and then in the reservoir area). The surge signal is completely smoothed out when the-data gaps occur in the middle

of the surge. Other specific eases-of-surgessurge cases, with limited elevation changes but with strong melt or strong buildups
build-ups before or after the surge, could be prone to the same problem. An-ASTER dataset-generated-with-smatter noisesand

align-wel-with-the previeus-ones-(Paul-et-al5-2047)-Regarding the surge of the main trunk of Hispar described in section 4.3,
our date estimates (mid-2044-from both interpolated and pre-processed time series (early-2014 to mid-2016) are very-close to
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Figure 10. DBifference-of-elevation-a-d: Elevation difference between SPOT DEMs (SPOTS5 HRS and SPOT6) and HMA DEMs against
ASTER elevations-DEMs interpolated at the same dates. The areas selected are the-Hispar glacier (a, surge in 2014-2016), its Kunyang
tributary (b, surge in 2007-2008), and two over the-Braldu glacier (c-d, surge in 2013-2016). The panels have the same colour range. The

green dots show sampled time series (Fig. 6, 7.c and 9).

the previeus-study-date-date estimated in previous studies (autumn 2014 to mid-2016), which were based on remotely sensed
velocities (Pautetal;2047-Guo-et-al5-2026)(Guo et al., 2020; Paul et al., 2017). Paul et al. (2017) notices a 6-month stop of
the surge front around 35 km, up to mid-2015-¥¢ it is slightly visible here at a similar time (Fig. 8.a, line a4). The fact that the

reservoir area does not extends-extend above the icefall has already been observed on other glaciers, including Khurdopin in our
study (Nolan et al., 2021; Echelmeyer et al., 1987).
teefall—erea%e&Nel%&e%al—@OQ&—)—Teﬂeﬂ%e%al—@O%—%The dlsplacement of the dynamic balance line of-d Vggg&th1s surge has
not been mentioned in other studies —for Hispar,

as the data they use (velocities and a limited number of DEMs spaced in time) may not permit to observe this phenomena

Guo et al., 2020; Paul et al., 2017; Rashid et al., 2018). However, the phenomenon has already been reported and attributed to
variations in driving stress (Burgess et al., 2012). Bhambri et al. (2022) estimate volume changes over the period 2014-2020
from ASTER DEM s of -2785 x10° m? in the reservoir area, and 2581.6 & 465 x10% m? in the receiving area. Our estimates-over
the-surge dates-are-similarestimate for the reservoir area volume change—24H-x10%m3 (aboutdiffer by 13%difference; Fable
H—Wetfind-atarger-difference-, and 20% in the receiving area %ﬁ%ﬂ@ﬂ@ﬁﬂ—@@%&—f@fﬂhﬂm@%ﬁg&m}&@@g
1). The smaller volume estimated by Bhambri et al, (2022) may be explained by the melting of the deposited ice volume likely
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Figure 11. TestHistograms of interpelation-robustness—For-the threeselected-timeseries-elevation difference between the reference DEMs
and the DEMS of Figour workflow interpolated at the same dates. 65-we-remeve-points-during-456-continuous-days-overa-moving window
for-whieh We consider only surge-affected areas. Vertical dotted lines are the median of each interpotationhistogram. The largest median is

ears that separate the surge termination and elevation observations. If we extend the period of volume change calculation from

2014-10 to 2018-08 (the latest date before large data gaps at-the-end-of-the-time-series;from2044-01-t0-2018-08the-velume

change-estimate-is-eloser-to-their result:—2736-in our time series) to better match that of Bhambri et al. (2022), we estimate
a volume change of -2255 + 181 /2793-2634 & 410 x10° m® (2%and-819% and 2% difference, respectively) —Fhe-closer
to their estimate. The differences are within uncertainties, although there is a two years difference between the two estimates
periods.

The difference between our estimated volume gain and loss is equivalent to a layer of 4.46 & 2.69 m thickness over the surge
area. This imbalance is unexpected as the surge occurs over a short time period and mass should be roughly conserved. The
imbalance is quite similar when using two filtered ASTER DEMs over a similar period, instead of the interpolated series, or

when calculated over the full glacier system instead of over the delineated reservoir/receiving areas. The impact of crevasse
opening during the surge on the apparent surface elevation have-has not been assessed-

graata brge-on WE-00 v O braop g1d O poiia O 0D vattoiS© vera b6 b ar:
) ) >

— especially regarding our imbalance, but it may represent a non-negligible volume. The propagation-of-thepre-surge-or
thiekening front-have-however-opening of crevasses can be equivalent to up to 0.2 m thickness over regional scale of the
Greenland Ice Sheet (Chudley etal., 2025). As inland parts of these regions are largely crevasse-free, we can expect such
volume to be significantly larger over the highly crevassed post-surge surface of Hispar glacier, at least one meter magnitude.
By mid-2018 our imbalance is close to zero, as well as is the imbalance of Bhambri et al. (2022) with an end term in 2020,
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Figure 12. Sensitivity of our interpolation method to large data gaps. For the three selected time series (TSa-c of Fig. 6 and location visible

on Fig. 7.c), we remove points during 450 continuous days over a moving window and run the interpolation, displayed with orange lines.

500 when a number of crevasses have already closed. Khurdopin and Kyagar glaciers were already highly crevassed before the

surge, and such crevasse opening effect may be less important.

We now discuss the recent surge of Khurdopin glacier. The geometry readjustment and the propagation of a build-up front

during quiescence has not been observed —Fhe-strge-on this glacier, to our knowledge. The existence of kinematic waves or
505 surge fronts that propagate the surge instability have regularly been observed on other surges (e.g., Cuffey and Paterson, 2010; Kotlyakov et
- with unclear definition of the phenomena, For Khurdopin glacier, the mechanism seems different from both a kinematic wave
or a slow surge onset. As opposed to these processes, here we observe a constant thickening after the downward extension of
the build-up area with no upper reservoir area drained. Turrin et al. (2013) observed, with velocity data, the propagation of a
surge front (moving as a kinematic wave) several years before the surge of Bering glacier, triggered by the passing of the front
510  through the reservoir area. The build-up lower limit for Khurdopin also propagated faster than the surface velocity. The surge
started in October 2016 according to Imran and Ahmad (2021), a-bit-about 7 months later than our spring-26+6-estimate (Table

1), and late August 2015 according to Steiner et al. (2018) . Steiner et al. (2018) estimate the volume received in the receiv-
ing area at 1182 x10% m? during late August 2015 (elevation extrapolated linearly from TanDEM-X in 2011) to May 2017
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(ASTER) data, after reassessment of the estimate (Jakob Steiner, personal communication). Our estimate over a similar period
(2015-09-01 to 2017-06-01is425-) is 426 & 34 x10° m*. Hewever, both-eurBoth estimates do not agree, although we do not
have an uncertainty estimate for one volume. Our filter and interpolation methods here-fail-to-eapture-futtyfail to fully capture
the surge signal of the receiving area, in the lower part of the glacier (Fig. 8.b area b3). This failure is due to a low point density
combined with a strong thinning signal after the surge (Fig—2?-aSupplementary Fig. S2.a, in 2017). The filter-workflow-did
removefiltering workflow removes some of the 2-3 DEM acquisitions over 2017 and 2018with-, which have credible values.

May 2017 is the month with the largest difference between the
DEM observations and the interpolation, with an elevation change underestimation eompared-with-the-pre-filtered-data—Over
sueh-areasthat reaches 100 m compared to the pre-processed time series. Over a portion of the receiving area, the apparent
surge signal duration after interpolation is about 3 years instead of less-than-approximately 1 year on pre-processed time series,
and may miss locally a maximum of 40 m (about 30%) of the tetal-elevation—ehange-surge elevation amplitude over these
three years. Our estimate of the velume-transferred~80++7Hx+H0%m> is-thusstightly transferred volume in Table 1 is thus

underestimated in the receiving area. Our uncertainty estimate is also largely underestimated, as it does not take into account
the erroneous filtering. The difference of pre-filtered-the pre-processed DEMs from 2015-08-20 te-and 2017-05-21 shows a cu-

mulative positive WMW&Q@&XIW m?. It is +52153% more than with the interpolation, sti-yet
nearly half of the estimate of Steiner et al. (2018) which may be also partially overestimated due to their linear extrapolationas
the-gradual-surge-onsetextendsfurther down-glacierfrom-the-, as the 2000-2011 trend does not accounts for the later build-up
front propagation that we observe. The maximum thickness gain noted by Steiner et al. (2018) was 160 m over this period,
against 122 m with our pre-fitiered-pre-processed DEMs (70 m on interpolated DEMs). Fhisshows-the limit-of ourmethod-in

The case of Khurdopin surge shows that our workflow may be inefficient to preserve a surge signal, in the case of a low number
of PEMs-during-surge-events-and-strong-thinning-signals-eut-of-observations, aggravated by strong thinning outside the surge

Kyagar glacier is located in an area of poor ASTER coverage, compared to other selected glaciers (Fig. 1). During the
surge period, there are about 1-2 observations per year, which leads the-interpolation-to-smooth-to a smoothing of the surge
signal during interpolation. Thus, the onset and ending are visible around end-2012 and early-2017 on interpolated data, while
non-interpotated-time series feads-to-the more restricted-pre-processed time series lead to a more restricted estimate of mid or

end-2013 to-end-2045-estimates—(sooner observation in October after a 14-month data gap) to December 2015. Round et al.
(2017) uses satellite imagery to compute velocities and deseribe-preeisely-precisely describe the surge development. They find

a surge onset in May 2014 after a pre-surge acceleration of 2.5 years, and a surge end between July and August 2015 with
limited deceleration later. Li et al. (2023) find very similar timings, plus a continuing deceleration in 2016-2019. Gao et al.
(2024) report similar timing, although considering a re-acceleration in 2016 as part of the surge. Gao et al. (2024) estimated the
volume transported from ASTER DEMs. Over-During July 2012 to December 2017, they estimate the received volume at-to be
321 £ 12 x10% m?, agains Ng@\pvawxlm m? with our interpolated data. Their reservoir area volume change

estimate is -383 + 30 x10° m?, against -328--326 £ 96 x10° m? for our dataset over the same dates and approximative area
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(-285-283 £ 104 x10° m® with bilinear interpolation of the artefactarea-area affected by artefacts). It represents differences in

550

555 e

Bhambiri et al. (2017) date the last surge in 2006, with a gradual increase in velocities before this year. The study estimates from
1972-2016 data that the Yazghil glacier has a cycle length (surge repetition period, including quiescence and surge durations) of
about 8 years, ene-of-among the shortest surge cycles in HMA (Bhambri et al., 2017; Sun et al., 2022; Vale et al., 2021; Yao et al., 2023

. The next surge, which was expected to occur around 2014 based on the cycle length, had not started by the end of 2016, ac-
560 cording to the study. Our data suggest that it started 1-2 years later, implying a lenger-quiescence phase of 11-13 years —In

eb%efvedmhwfegie&@atﬂ—zgié}fgw

Overall, the dataset produced by our workflow compares well with the-existing observations from the literature. The surge

565 dates and the estimated volume-transferred-are-in-agreementtransferred volume agree, except for the dating-of-the date of Kyagar
surge and the transferred volume estimate-of-the-of Khurdopin surge (Table 1). The order of magnitude of the imbalances
corresponds to the order of magnitude of the measurement uncertainty. For the two critical cases (Kyagar and Khurdopin
surges), the himit-of-the-workflow-oeeurs-in-workflow shows its limitations in the case of a low number of DEMs, worsened

in the case of a strong thinning signal eut-ef-outside the surge period (Khurdopin surge). Our dataset offers new insights on

570 some undescribed processes in these studies, such as the displacement of the dynamic balance line of the-Hispar surge or the

propagation of a pre-surge-bulge-frent-of-the-surge front during the build-up phase preceding Khurdopin surge.

5.3 Elevation change comparison

We assess the-difference-differences in elevation change estimate between the processing workflow from-of Hugonnet et al.
(2021) and this workflow. Previous figures showed local differences;-; here we compare the elevation changes of pixels belong-

575 ing to eight surge events (Fig. 13, individual graphs mﬂppeﬂdﬂel:‘tg—”—)—%ebsefv&on Supplementary Fig. S9). The figure

highlights the strong smoothing of the original dataset - which tends to filter the

positive elevation changes )--that-occurring in surge receiving areas, which are better interpolated by our workflow (Fig. 13 zone
A). There-is-no-symmetrie-pattern-No symmetric pattern is visible for negative changes in reservoir areas, probably beeatise

of-due to the smaller rates of elevation changes. tt-is-meostly-representative-of-This erroneous filtering is mostly occurring for
580 surges with important and rapid elevation changes: surges of the Hispar, Braldu, and Kunyang glaciers (Fig—2?Supplementary

Fig. S9), and to a lesser extent of the Khurdopin glacier surge. For such glaciers, major differences in total volume change

are expected. This is clear in the volumes-transferred-transferred volume estimates from the original dataset of Hugonnet et al.
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(2021) on Hispar and Khurdopin glacier surges (Fig—22Supplementary Table S1). Other glaciers also have smaller estimated
volumes than with our method, but with smaller discrepancies. Compared with Hugonnet et al. (2021), our method finds larger
absolute rates of elevations—elevation changes (pattern B on Figure 13), probably due to the stronger smoothing of Hugonnet
et al. (2021) (e.g., Fig. 6.al or FigSupplementary Fig. S2.22-d). Our-On the other hand, our method creates some artefacts,
especially in the accumulation area-areas where elevation changes are close to zero (zone C on figure 13). This is the case for

Kyagar and Braldu glacier surges (Fig—2>2Supplementary Fig. S9).
This figure also illustrates nen-tuniform-elevation-change-patterns

e-the unequal distribution of

elevation changes between the reservoir and receiving areas, which is observed for all analyzed surges (Fig. 13). Theelevation
changes-are-Elevation changes are consistently much larger in the receiving areaareas, whether the glacier front is advancing

or not. This is balanced by the extent of the reservoir areas which are larger than those of the receiving areaareas.

AtOn a larger scale, we compare the individual glacier average elevation change between Hugonnet et al. (2021) and this
workflow for the period 2005-2015 (Figure-2?Supplementary Figure S10). The mean elevation changes are more negative with
our workflow (by about 0.44 m for the median value). The discrepancy is larger for surge-type glaciers-thanfornon-surge-type
ores—compared to non surge-type glaciers (0.57 and 0.31 m with standard deviations of 1.1 and 1.02 m, respectively). Consid-
ering the better retrieval of positive elevation changes of our workflow for surges, we would expect a positive discrepancy for
surge-type glaciers. A number of glaciers have artefacts in our dataset, especially negative elevation changes in accumulation
areas. At large-seale-and-regional scale and possibly glacier scale, the neiseimpactmay-exceedsimpact of noise may exceed the
impact of the betterretrieval-improved estimate in areas of positive changesef-the-few-, due to the small number of surge events
happening during this period. For calculating geodetic glacier mass balance, the Hugonnet et al. (2021) dataset is therefore the
preferred choice for non-surge-type glaciers or quiescent periods, and a validation of the elevation interpolated by our method

is recommended.

5.4 Methodelogicallnsights-and-MoedificationsApplicability for other datasets

Finally;—we-We discuss here the feasibility te-medify-of modifying the proposed workflow to be used en-with different

datasets, possibly including several data sources to increase temporal resolution (i.e., from DEMs from different sensors).
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Figure 13. Histogram of interpolated elevation change comparison over 8 surges between the original processing from Hugonnet et al. (2021)
and this workflow. The superimposed histograms of the 8 surge events are represented individually in appendixFig. 2259 of the Supplement.
The elevation changes are retrieved over the surge-affected areas and the surge period estimated from the HovméHer-diagrams-interpolated
large surge smoothing or removal (zone A) or overall smoothing of elevation changes (trend B) by the original method (Hugonnet et al.,

Even in the case of a similar ASTER DEM dataset processed differently, with lower noise/higher precision, several changes

may be done-made to adapt the filtering. A diminution of the span parameter along with a a-diminution of the filter threshold

in the LOWESS workflow should be tested. Abandoning morphological erosion should also be considered;-as-it-answers—to

netghbeuring pixels;regarding-the-, It addresses an issue specific to the photogrammetric processing which tend to affect pixels
neighbouring outliers. Deleting this step would be beneficial given the large number of pixels it removes. The use of weighting

could also be abandoned in the case of more precise DEMs, as the uncertainty values are not completely representative of
the confidence in the measurement. The ALPS-REML prediction parameters could remain as-it-is;-although-ethervalues-of
unchanged, although the hyperparameters degree of the basis functions p and the order of penalty g can be modified to adjust
the smoothing and border effects. More complex considerations would be required in the case of several data sources. More

particularly, the weighting may be defined differently to ensure a-consistency between the datasetdatasets.
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6 Conclusions

We present a new workflow te-preeess-for processing DEM time series of high temporal resolution that is specifically designed
to preserve the elevation signal of glacier surge events. We applied the workflow to a dataset from the ASTER sensor over
2000-2019. We filter the data with a LOWESS algorithm, which preserves the surge signal. Some filter issues can appear
in difficult areas, which are often not located in surge-affected areas (e.g. textureless accumulation areas, steep slopes). The
elevation interpolation (B-spline method ALPS-REML) allows for the observation of surge dynamics, and the estimate of mass

ar-monthly interval. Surge

events with too few DEM observations tend to be smoothed, resulting in an underestimation of the surface elevation change

transfers at a few

and surge duration. Over-In our study area in the Karakoram range (HMA), our method provides interpolated time series for

80% of the-pixels-belongingto-glacier-areaglacier pixels. Our workflow is-able-to-preserve-surge-events-in-a-better-way-than
the-original-non-speeifie better preserves surge events compared to the original non surge-specific workflow. The resulting data
compares-fairky-well-with-data obtained are fairly comparable to those from independent studies on several events, except in
a few cases. We have-diserepanciesin-estimated-volume-transferred-find discrepancies in the estimated transferred volumes
compared to previous studies ranging from 2% to 19% on two surge events and four volumes transferred, and 64% on the
Khurdopin surge. It-ereates-aunique-dataset The workflow, applied to the ASTER dataset, can generate a unique elevation
time series able to represent thickness changes of surge events at-a-menths-on a monthly scale over a regional extent. It opens
new possibilities for the combined analysis of surges-with-elevation and velocity datasets;-or-to-folow-the-evolution-of change

during surge events, or more complex derivatives such as surface slope and mere-complex—variablesdriving stress.

Code and data availability. Although the study of Shekhar et al. (2021) only describes the ALPS-GCV implementation, the code provided
with that study in the repository Shekhar (2020) also contains the implementation of ALPS-REML, which was used without changes in our
study. The code of our workflow can be found at the following repository: https://doi.org/10.5281/zenodo.14045604 (Beraud et al., 2024).

Sample data of elevation change and surge-affected areas for the four selected glaciers are also available in that repository.
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