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Abstract. Microbial-explicit soil organic carbon (SOC) cycling models are increasingly recognized for their advantages over

linear models in describing SOC dynamics. These models are known to exhibit oscillations, but it is not clear when they yield

stable vs. unstable equilibrium points (EPs) – i.e. EPs that exist analytically, but are not stable to small perturbations and can-

not be reached by transient simulations. Occurrence of such unstable EPs can lead to unexpected model behaviour in transient

simulations or unrealistic predictions of steady state soil organic carbon (SOC) stocks. Here we ask when and why unstable5

EPs can occur in an archetypal microbial-explicit model (representing SOC, dissolved OC [DOC], microbial biomass, and

extracellular enzymes) and some simplified versions of it. Further, if a model formulation allows for physically meaningful but

unstable EPs, can we find constraints in the model parameters (i.e. environmental conditions and microbial traits) that ensure

stability of the EPs? We use analytical, numerical and descriptive tools to answer these questions. We found that instability can

occur when the resupply of a growth substrate (DOC) is (via a positive feedback loop) dependent on its abundance. We iden-10

tified a conservative, sufficient condition on model parameters to ensure stability of EPs. Interactive effects of environmental

conditions and parameters describing microbial physiology point to the relevance of basic ecological principles for avoidance

of unrealistic (i.e. unstable) simulation outcomes. These insights can help to improve applicability of microbial-explicit mod-

els, aid our understanding of the dynamics of these models and highlight the relation between mathematical requirements and

(in silico) microbial ecology.15

1 Introduction

Current Earth system models (ESMs) have very simplified representations of soil organic carbon (SOC) dynamics (Bradford

et al., 2016; Todd-Brown et al., 2013; Varney et al., 2022). Accuracy in matching observed SOC stocks and turnover times has

not significantly improved in the latest ensemble of ESMs used in the Coupled Model Intercomparison Project (CMIP, CMIP

6) (Varney et al., 2022) – with uncertainty about SOC responses to climate change remaining high (Todd-Brown et al., 2013;20

Varney et al., 2022). Consequently, a need to improve and diversify description of SOC dynamics in ESMs has been identified

(Bradford et al., 2016; Todd-Brown et al., 2013; Varney et al., 2022; Wieder et al., 2015, 2018). Current ESMs employ linear

degradation kinetics to simulate SOC degradation (Todd-Brown et al., 2013), missing to integrate our current understanding of

major controls on SOC fate and to acknowledge the uncertainties in describing these processes (Abs et al., 2023; Bradford et al.,
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2016; Wieder et al., 2015, 2018). Non-linear, microbial-explicit SOC models can improve model-data agreement (Hararuk25

et al., 2015; Wieder et al., 2013). These models vary in number and identity of C pools and degree of non-linearity (e.g. Allison

et al., 2010; Manzoni and Porporato, 2009; Schimel and Weintraub, 2003; Wang et al., 2013, 2015; Wieder et al., 2014, 2015).

Among these models, the AWB (Allison-Wallenstein-Bradford) model (Allison et al., 2010) has emerged as an archetypal

model structure to study the influence of soil microbial processes on carbon stocks (e.g. Abs et al., 2022; Calabrese et al.,

2022; Georgiou et al., 2017; Hararuk et al., 2015; Tao et al., 2023; Wieder et al., 2015). The AWB model explicitly represents30

pools of microbial biomass, extracellular enzymes produced by microbes, polymeric SOC that is not available for microbial

uptake, and a pool of available dissolved organic carbon (DOC) produced from enzymatic depolymerization of SOC (Allison

et al., 2010, Fig. 1a). With only four C pools and commonly two non-linear terms, the AWB model retains a comparably simple

structure and remains somewhat analytically tractable.

While better at predicting modern day SOC stocks, microbial-explicit SOC models are known to exhibit oscillatory be-35

haviour (e.g. Georgiou et al., 2017; Manzoni and Porporato, 2007; Sierra and Müller, 2015; Wang et al., 2014, 2016). Such

oscillations can represent carbon-microbe dynamics observed at small spatial scales (see e.g. discussion in Manzoni and Porpo-

rato, 2007) but are unfavourable for application at larger spatial and temporal scales, where such oscillations are generally not

observed (Georgiou et al., 2017; Wang et al., 2014). A few studies have analysed the oscillatory properties of some microbial-

explicit SOC models (Georgiou et al., 2017; Manzoni and Porporato, 2007; Wang et al., 2014, 2016). These studies character-40

ized the dynamics exhibited after a perturbation around a model’s equilibrium (i.e., when all state variables are at steady state):

does a model directly converge back to its previous equilibrium or does it approach the equilibrium with dampened oscillations?

Different degrees of oscillatory behaviour have been described, but generally these models were found to be stable (that is,

they do converge back to their previous equilibrium) for given parametrizations or if they follow basic principles such as mass

conservation and dependence of fluxes on source pools (Sierra and Müller, 2015; Wang et al., 2014, 2016). Stable oscillatory45

behaviour, however, is only one of the possible dynamics such non-linear models can exhibit. In fact, these models can also

be unstable (that is after perturbation a model does not converge back to its previous equilibrium) (Abs et al., 2022; Raupach,

2007; Schimel and Weintraub, 2003; Sierra and Müller, 2015), but the occurrence of unstable equilibria in microbial-explicit

SOC models remains largely unexplored. While unstable equilibrium points exist analytically, they can never be reached by

transient simulations. Thus, model parameterizations that yield unstable equilibria can lead to unpredictable simulation out-50

comes as amplifying oscillations can occur, expected equilibrium states are not reached (because they are unstable) hindering

convergence in model spin-up, or (some) state variables might collapse (e.g. Fig. 1b, yellow line). Further, if C stocks are

predicted based on analytical steady state solutions, unstable equilibria might lead to unrealistic predictions, mismatching

outcomes from dynamic simulations. To increase reliability of model predictions and model applicability, it is important to

understand when and for what reasons microbial-explicit SOC models become unstable.55

In this contribution, we study an archetypal microbial-explicit SOC model (based on the AWB model, Allison et al., 2010,

and some simplified versions of it) to answer the questions: 1) What mechanisms in microbial-explicit SOC models (model

structures, used kinetic formulations, and parameter values) cause unstable equilibrium points to emerge? and 2) how can we

select model structures and/or constrain model parameters to ensure stability of equilibrium points?
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Figure 1. Model schematics of the archetypal microbial-explicit SOC model (a) and its relevant stability behaviours (b). Colored boxes in (a)

indicate the state variables soil organic carbon (SOC), dissolved organic carbon (DOC) microbial biomass carbon (MBC), and extracellular

enzymes (ENZ). Solid arrows indicate carbon fluxes and dashed arrows connected to valve symbols indicate controls over the non-linear

kinetic. Grey arrows indicate processes neglected in some analyses. The dotted box delineates the system’s boundary. Colored lines in (b)

illustrate the dynamics of a state variable relative to its steady state value (C∗) following a perturbation for a stable node (damping coefficient

= 1; blue line), a stable focus (0 <damping coefficient< 1; red line), and an unstable focus (−1 <damping coefficient< 0; yellow line). The

subplot axes are centered at the value of their respective damping coefficient.

2 Methods60

2.1 Archetypal microbial-explicit SOC model

We start by defining the C mass balance equations for a system encompassing SOC (S), dissolved organic C (DOC, D),

microbial biomass C (MBC, B), and extracellular enzyme C (ENZ, E) (eq. 1 - 4). The C compartments and flows are illustrated

in Fig. 1a and symbols for the variables and fluxes are defined in Table 1 and 3. The C mass balance equations are written as

a system of ordinary differential equations (ODE), where for convenience the fluxes are aligned vertically according to their65

meaning (from left to right: inputs, depolymerization, uptake and metabolism, decay, and finally abiotic losses)

dS

dt
= fII −P +fDrBDB −LS (1)

dD

dt
= (1− fI)I + P −U +(1− fD)rBDB + DE −LD (2)

dB

dt
= yBU −RE −DB (3)

dE

dt
= (ym− yB)U + RE −DE −LE . (4)70
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Organic matter enters the system with flux I that is partitioned between SOC and DOC depending on the fraction fI . SOC

is depolymerized by extracellular enzymes at rate P and transferred to the DOC pool. DOC is directly available for microbial

uptake at rate U . Both P and U are non-linear functions that can take on various forms (Table 2).

Microbes assimilate the substrate with a maximal efficiency ym ≤ 1 that is limited by physiological and/or thermodynamic

constraints (Chakrawal et al., 2022) and use the substrate either for growth (i.e. biomass production at rate yBU ) or to produce75

extracellular enzymes (at rate (ym− yB)U ). We denote this uptake-dependent pathway of extracellular enzyme production as

“inducible” ENZ production. An alternative or complementary mode of ENZ production is the biomass-dependent “constitu-

tive” ENZ production at rate RE given by

RE = mEB , (5)

where mE is the rate constant of constitutive ENZ production. In both formulations, we assumed that respiratory costs associ-80

ated with enzyme production are already included in the growth respiration (proportional to 1− ym). Two limiting cases can

be derived from this general description of extracellular enzyme production:

Only constitutive ENZ production: yB = ym (6)

Only inducible ENZ production: mE = 0 . (7)

Both MBC and ENZ are assumed to decay with a linear decay rate Di85

Di = di i ,(i = B,E), (8)

but we also consider density-dependent microbial decay as an alternative to the linear kinetic (D′
B = d′BBb with 1 < b≤ 2;

Georgiou et al., 2017). All decayed ENZ are assumed to return to the DOC pool while only a fraction rB of the decayed

microbial biomass is recycled in the system and partitioned between SOC and DOC according to the factor fD. In turn,

(1−rB)DB represents linear microbial maintenance respiration. SOC, DOC and ENZ can have abiotic losses Li (e.g. erosion,90

leaching, ...)

Li = li i ,(i = S,D,E) . (9)

The system of eq. 1 - 4 constitutes a model of SOC cycling of varying complexity depending on the chosen kinetics. We use

this system as a starting point for our analysis, but reduce it to simpler variants to derive specific analytical results (Sect. 2.2).

Commonly, depolymerization of SOC by extracellular enzymes is described by either multiplicative (m), forward Michaelis-95

Menten (f ), reverse Michaelis-Menten (r) (Schimel and Weintraub, 2003) or equilibrium chemistry approximation (ECA, e)

(Tang and Riley, 2013) kinetics. Table 2 lists the respective formulations of Pi (i = m,f,r,e), where vp
i is the maximal

depolymerization rate coefficient and Kp
i the respective half-saturation constant. The uptake of DOC by microbes can be

described with similar formulations Uj (j = m,f), simply by replacing S for D and E for B (Table 2), where vu
j is the

maximal uptake rate coefficient and Ku
f the respective half-saturation constant.100
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Table 1. Description of all state variables and fluxes.

Symbol Description Unit

State Variables

S Soil organic carbon (SOC) mg C g−1

D Dissolved organic carbon (DOC) mg C g−1

B Microbial biomass (MBC) mg C g−1

E Extracellular enzymes (ENZ) mg C g−1

Fluxes

I Organic carbon input mg C g−1 d−1

P Depolimerization of SOC mg C g−1 d−1

U Microbial uptake of DOC mg C g−1 d−1

LS Loss of SOC mg C g−1 d−1

LD Leaching of DOC mg C g−1 d−1

LE Leaching of extracellular enzymes mg C g−1 d−1

DB Decay of microbial biomass mg C g−1 d−1

DE Decay of extracellular enzymes mg C g−1 d−1

RE Constitutive production of extracellular enzymes mg C g−1 d−1

Table 2. Employed non-linear kinetics for the depolymerization rate Pi and uptake rate Uj . m: multiplicative, f : forward Michaelis-Menten,

r: reverse Michaelis-Menten (Schimel and Weintraub, 2003), e: equilibrium chemistry approximation (Tang and Riley, 2013). Ur and Ue are

not used in our analysis.

Kinetic (i|j) Pi Uj

m vp
mSE vu

mDB

f vp
f

S
Kp

f +S
E vu

f
D

Ku
f +DB

r vp
rS E

Kp
r +E

–

e vp
e

SE
Kp

e +S+E
–

Many combinations of depolymerization and uptake kinetics are possible. For model versions with both non-linear terms

we limit our analysis to only a few combinations of depolymerization and uptake kinetics (indicated by the subscript i× j for

the i-th depolymerization kinetic and j-th uptake kinetic), namely: m×m, f × f , and r× f . The first combination employing

only multiplicative kinetics facilitates analytical tractability; the second combination is commonly used in other models (e.g.

Allison et al., 2010; Georgiou et al., 2017; Tao et al., 2023); the third combination is based on conclusions of Tang and Riley105

(2019) that r× f might be an appropriate (and analytically tractable) approximation of ECA kinetics (Table 4).

Here we define the Jacobian matrix of partial derivatives for the four-pool model, which is used in the stability analyses in

later sections. To improve analytical tractability of the four-pool model we neglect abiotic losses of SOC and ENZ by setting

5
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LS = LE = 0 and limit the analytical analysis only to the case of constitutive ENZ production (yB = ym, eq. 6) (Table 4).

With these simplification, the Jacobian matrix JSDBE
i×j of the four-pool model is a 4× 4 matrix given by110

JSDBE
i×j =




∂Ṡ
∂S

∂Ṡ
∂D

∂Ṡ
∂B

∂Ṡ
∂E

∂Ḋ
∂S

∂Ḋ
∂D

∂Ḋ
∂B

∂Ḋ
∂E

∂Ḃ
∂S

∂Ḃ
∂D

∂Ḃ
∂B

∂Ḃ
∂E

∂Ė
∂S

∂Ė
∂D

∂Ė
∂B

∂Ė
∂E




=




−∂Pi

∂S 0 fDrBdB −∂Pi

∂E

∂Pi

∂S −lD − ∂Uj

∂D (1− fD)rBdB − ∂Uj

∂B dE + ∂Pi

∂E

0 ym
∂Uj

∂D ym
∂Uj

∂B − (mE + dB) 0

0 0 mE −dE




(10)

where ∂x
∂y is the partial derivative of x with respect to y and ẋ is used to denote dx

dt so that e.g. ∂Ṡ
∂S = ∂

∂S

( dS
dt

)
. Keeping general

depolymerization and uptake kinetics Pi and Uj is useful as it allows to analyse JSDBE
i×j irrespective of the specific kinetics.

2.2 Reduced models for analytical analysis

To identify which and how structural elements of the four-pool model with two non-linear kinetics affect model stability, we115

introduce two reduced model versions:

1. the SBE (SOC-MBC-ENZ) model, neglecting DOC dynamics, and

2. the SDB (SOC-DOC-MBC) model, assuming ENZ to be at quasi-steady state.

Both model versions have only three pools, but are different as in the SBE model only one non-linear term remains, while the

SDB model still has both non-linear depolymerization and uptake kinetics. We analyze the former, less non-linear model for all120

depolymerization kinetics listed in Table 2 with both constitutive and inducible ENZ production pathways and including abiotic

losses of S and E (Table 4). In contrast, we analyze the latter, more non-linear model, after applying the same simplifying

assumptions as for the four-pool model (Table 4) – that is we set LS = LE = 0, yB = ym, and only consider three combinations

of depolymerization and uptake kinetics (m×m, f × f , and r× f ).

2.2.1 SBE model125

DOC dynamics are neglected in the SBE (SOC-MBC-ENZ) model. Instead it is assumed that any organic carbon that is made

available by depolymerization of SOC is directly taken up by microbes – that is U = P . The flux of decayed extracellular

enzymes DE enters the SOC pool and the partitioning factors fI and fD are set to 1. The resulting system of equations is given

for the i-th kinetic formulation for P (Table 2) by

dS

dt
= I −Pi +rBDB + DE −LS (11)130

dB

dt
= yBPi−RE −DB (12)

dE

dt
= (ym− yB)Pi + RE −DE −LE . (13)

Note that in this formulation, unless ENZ production is purely constitutive (eq. 6), ENZ production is (partly) independent

of microbial biomass (as Pi only depends on E and not on B). Consequently, as soon as there are extracellular enzymes that

catalyze depolymerization, further enzyme production entails.135
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For this model version, the Jacobian matrix JSBE
i is given by

JSBE
i =




∂Ṡ
∂S

∂Ṡ
∂B

∂Ṡ
∂E

∂Ḃ
∂S

∂Ḃ
∂B

∂Ḃ
∂E

∂Ė
∂S

∂Ė
∂B

∂Ė
∂E


=




−ls− ∂Pi

∂S rBdB dE − ∂Pi

∂E

yB
∂Pi

∂S −(dB + mE) yB
∂Pi

∂E

(ym− yB)∂Pi

∂S mE (ym− yB)∂Pi

∂E − (dE + lE)


 . (14)

2.2.2 SDB model

In the SDB (SOC-DOC-MBC) model, the extracellular enzyme pool is assumed to be at quasi-steady state, that is dE
dt = 0.

With LE = 0 and yB = ym we obtain the quasi-steady state concentration of E from eq. 4 as140

Eqss =
mE

dE
B . (15)

The SDB model is obtained by substituting Eqss for E in eq. 1 - 3, which with LS = 0 yields

dS

dt
= fII −P qss

i +fDrBDB (16)

dD

dt
= (1− fI)I + P qss

i −Uj +(1− fD)rBDB + Dqss
E −LD (17)

dB

dt
= ymUj −RE −DB . (18)145

In this model version, two non-linearities remain. Substituting Eqss for E in DE and Pi we obtain Dqss
E = RE and P qss

i =

f(S,B), respectively. The Jacobian matrix JSDB
i×j of partial derivatives is given by

JSDB
i×j =




∂Ṡ
∂S

∂Ṡ
∂D

∂Ṡ
∂B

∂Ḋ
∂S

∂Ḋ
∂D

∂Ḋ
∂B

∂Ḃ
∂S

∂Ḃ
∂D

∂Ḃ
∂B


=




−∂P qss
i

∂S 0 −∂P qss
i

∂B + fDrBdB

∂P qss
i

∂S −∂Uj

∂D − lD
∂P qss

i

∂B − ∂Uj

∂B + (1− fD)rBdB + mE

0 ym
∂Uj

∂D ym
∂Uj

∂B −mE − dB


 . (19)

2.3 Stability analysis

Stability behaviour here refers to how a model at equilibrium (that is all state variables C are at steady state [denoted as C∗] –150

i.e. their respective ODEs are equal to zero: dC
dt = 0) behaves after a small perturbation around this equilibrium. For non-linear

systems, this behaviour is determined by the eigenvalues (λ) of the Jacobian matrix J evaluated at an equilibrium (denoted as

J
∣∣
∗; eig(J

∣∣
∗) = λ) (e.g. Argyris et al., 2015). Briefly, if the real parts of all λ are negative (Re(λ) < 0) the equilibrium is stable:

the system will converge back to this equilibrium after a perturbation. Instead, if one or more eigenvalues have positive real

parts (Re(λ) > 0) the equilibrium is unstable and the system will not return to the same state. If the eigenvalues additionally155

have non-zero imaginary parts (Im(λ) ̸= 0) oscillations around the equilibrium occur (Fig. 1b). Stability analysis is described

in more details in e.g., Argyris et al. (2015).

2.3.1 Analytical approach

Because the eigenvalues of the Jacobian matrix can be analytically cumbersome even in the comparably compact three-pool

models, we instead evaluate the Routh-Hurwitz criterion (e.g. Argyris et al., 2015; Horn and Johnson, 1991) for J
∣∣
∗. The160

Routh-Hurwitz criterion states that all Re(λ) have negative signs, if, and only if:
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1. all coefficients ai of the characteristic polynomial det(J
∣∣
∗−1λ) = 0 (where 1 is the identity matrix; eq. 20 & 21) are

positive (i.e. ai > 0), and

2. a1a2− a3 > 0 (if J
∣∣
∗ is a 3× 3 matrix) or a1a2a3− a2

3− a2
1a4 > 0 (if J

∣∣
∗ is a 4× 4 matrix).

Thus, by applying the Routh-Hurwitz criterion we can analytically evaluate the stability around the equilibrium points of165

the non-linear systems given by the three- and four-pool models without directly evaluating λ analytically. The characteristic

polynomial for a 3× 3 matrix is given by

λ3 + a1λ
2 + a2λ + a3 = 0 (20)

and for a 4× 4 matrix is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 . (21)170

In both cases, a1 is the negative trace of J
∣∣
∗ (a1 =−tr(J

∣∣
∗)).

2.3.2 Numerical simulations

We also compute λ and the steady state values of the state variables numerically. If not otherwise specified, 100 000 Monte

Carlo simulations were produced by randomly drawing parameter values from (log-)uniform distributions using a latin-

hybercube sampling algorithm (MATLAB R2022b’s lhsdesign function; The MathWorks Inc., 2022). All parameters and175

their respective ranges are listed in Table 3. Partitioning coefficients were sampled from uniform distributions while rate con-

stants were log10-transformed before sampling.

Following Georgiou et al. (2017), the stability of equilibria was evaluated using the “damping coefficient” given by

ζ = min

(
−Re(λ)√

Re(λ)2 + Im(λ)2

)
, (22)

which ranges between -1 and 1. ζ has positive values only if all Re(λ) < 0 indicating a stable equilibrium and negative values180

if any Re(λ) > 0 indicating an unstable equilibrium. For Im(λ) = 0, ζ is either 1 or -1 indicating no oscillations, while −1 <

ζ < 1 for Im(λ) ̸= 0 indicates that oscillations occur.

Numerical simulations were carried out in MATLAB 2022b (The MathWorks Inc., 2022).

2.3.3 Classification of equilibrium points

Our analyses only consider physically meaningful equilibrium points - that is, only equilibrium points for which all state vari-185

ables are simultaneously positive and real. Within the physically meaningful equilibrium points we distinguish three categories:

1. stable: all physically meaningful equilibrium points that are stable (i.e., stable node or focus points, Argyris et al., 2015),

2. stable and plausible: all physically meaningful equilibrium points that are stable and also give plausible numerical results

8
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Table 3. Description of all parameters, their units, and used ranges for Monte Carlo simulations. Where applicable, parametrizations of

limiting cases are separated by |. Parameter ranges where derived from Hararuk et al. (2015); Tao et al. (2023) and Cotrufo and Lavallee

(2022). Baseline values were based on “conventional” values defined by Tao et al. (2023). See Supplemental Information (SI) Sect. 1 for

derivation of parameter ranges for m, r, and l kinetics as well as for d′B and I .

Symbol Description Unit Baseline Range

Rate Constants

I Organic C input rate mg C g−1 d−1 varied 1.88 · 10−4− 2.43 · 10−2

vp
m Depolymerization rate coefficient (m) g mg C−1 d−1 1.99 · 10−1 9.13 · 10−3− 5.48 · 103

vp
f Depolymerization rate coefficient (f ) d−1 5.93 · 101 9.13− 2.74 · 105

vp
r Depolymerization rate coefficient (r) d−1 2.49 · 10−1 9.13 · 10−2− 2.74

Kp
f Depolymerization half-saturation constant (f ) mg C g−1 3.00 · 102 5.00 · 101− 1.00 · 103

Kp
r Depolymerization half-saturation constant (r) mg C g−1 2.00 · 10−1 2.50 · 10−2− 3.00

vu
m Uptake rate coefficient (m) g mg C−1 d−1 1.25 3.04 · 10−2− 1.10 · 102

vu
f Uptake rate coefficient (f ) d−1 2.49 · 10−1 9.13 · 10−2− 2.74

vu
l Linear uptake rate coefficient d−1 1.25 3.04 · 10−3− 1.10 · 101

Ku
f Uptake half-saturation constant (f ) mg C g−1 2.00 · 10−1 2.50 · 10−2− 3.00

lS Loss rate coefficient of SOC d−1 0 –

lD Leaching rate coefficient of DOC d−1 varied | 0 2.74 · 10−4− 2.74 · 10−1 | 0
lE Leaching rate coefficient of extracellular enzymes d−1 0 –

dB Decay rate coefficient of biomass d−1 4.81 · 10−3 1.37 · 10−3− 2.74 · 10−1

d′B Density-dependent dB g mg C−1 d−1 – 1.37 · 10−2− 2.74

dE Decay rate coefficient of extracellular enzymes d−1 2.49 · 10−2 2.74 · 10−3− 2.74

mE Constitutive enzyme production rate coefficient d−1 1.25 · 10−4 8.22 · 10−5− 1.83 · 10−4 | 0
Partitioning Coefficients

rB Recycling efficiency of decayed biomass 1 1.00 0.20− 1.00

ym Maximal yield 1 0.60 0.01− 0.80

yB Fraction of uptake going to biomass production 1 ym 0 < yB ≤ ym | ym

fI Fraction of input going to SOC 1 0.90 0.50− 1.00

fD Fraction of decayed biomass going to SOC 1 0.50 0.50− 1.00
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3. unstable: all physically meaningful equilibrium points that are not stable (i.e., unstable node or focus points, Argyris

et al., 2015).190

Based on data synthesized by Wang et al. (2013) and educated guesses we applied the following conditions for considering

results as “plausible”: tOC=SOC+DOC+MBC+ENZ ≤ 500 mgC g−1 (=50 %), DOC/tOC < 0.01, MBC/tOC < 0.05, and

ENZ/MBC < 0.1, where tOC indicates the total organic carbon content (the sum of all four carbon pools).

2.3.4 Causal loop analysis

Additionally to the mathematical analysis of equilibrium points and their stability, we present causal loop diagrams that qual-195

itatively summarize causal links in a system and the feedbacks they create (Haraldsson, 2004). This analysis can help to

understand the behaviour a system exhibits after a perturbation around an equilibrium point. In a causal loop diagram, causal

connections are depicted by arrows, tying a cause (at the tail of the arrow) to its direct effect (at the head of the arrow) (Har-

aldsson, 2004). The sign of the causal relation (+ or −) depends on whether an isolated change in one element causes another

to change in the same (+) or opposite (−) direction of the initial change (relative to the unchanged state) (Haraldsson, 2004;200

Richardson, 1986). For example, a decrease in the microbial uptake rate would lead to relatively less microbial biomass (com-

pared to the case that the uptake rate had not changed), describing a positive causal relation. Closed loops with zero or an even

number of negative interactions are denoted as positive or reinforcing feedback loops R, and closed loops with a odd number

of negative interactions as a negative or balancing feedback loops B (Haraldsson, 2004; Richardson, 1986).

3 Results205

Table 4. Summary of analysed models, respective simplifying assumptions, and type of analysis (ana. = analytical, num. = numerical).

Model # Pools Kinetics Simplifying Assumptions Analysis

SBE 3 m,f,r,e none ana.

SDB 3 m×m,f × f,r× f LS = LE = 0; yB = ym ana.

SDBE 4 m×m,f × f,r× f LS = LE = 0;

{
yB = ym ana. + num.

mE = 0 num.

We analyzed three model versions with slightly different model structures (number of state variables and/or non-linearites;

Table 4, Sect. 2.2). We first present analytical results on the simpler three-pool models with one (SBE) and two non-linear

terms (SDB), followed by analytical and numerical results on the four-pool SDBE model (Table 4). We use causal loop

diagrams to qualitatively interpret these results.
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3.1 SBE model: neglecting DOC dynamics210

3.1.1 Steady state solutions

Table 5. Summary of steady state solutions of the three-pool SBE model for different kinetics of depolymerization. The “biotic” equilibrium

solutions for microbial biomass and extracellular enzymes have the same form for any chosen kinetic.

Kinetic (i) S∗k,i B∗
k,i E∗

k,i

abiotic (k = 0) i I
lS

0 0

biotic (k = 1)

m αβ
vp

mη

∣∣ ∣∣

f αβ
vp

f η

Kp
f

1− αβ

v
p
f

η
αyB

ω lS
(
S∗0 −S∗1,i

)
η

αyB
B∗

1,i

r αβ
vp

r η
Kp

r ω+Iη

ω+lS
αβ

v
p
r

e αβ
vp

e η
Kp

e ω+Iη

ω−ω αβ

v
p
e η

+lS
αβ

v
p
e

∣∣ ∣∣

For all kinetic descriptions of the depolymerization rate (Table 2), the three-pool SBE model has two equilibrium points

(EPs). Of these, one is an “abiotic” equilibrium Q0, where only SOC exists and microbial biomass and extracellular enzymes

are zero, i.e. Q0 = (S∗0 ,0,0). Here the asterisk indicates a state variable at steady state and the subscript 0 signifies the “abiotic”

solution. In turn, for each kinetic there exists an alternative “biotic” equilibrium point with non-zero microbial biomass and215

extracellular enzymes, Q1,i = (S∗1,i,B
∗
1,i,E

∗
1,i). The steady state solutions for these equilibria depend on the i-th formulation

used to describe Pi. All solutions are reported in Table 5, where for convenience parameters have been grouped as follows:

α = dE + lE (23)

β = dB + mE (24)

η = (ym− yB)︸ ︷︷ ︸
≥0

dB + ymmE (25)220

ω = αβ−αyBrBdB − ηdE . (26)

With these definitions and recalling that 0 < yB ≤ ym < 1 and 0 < rB ≤ 1, we find that ω is always larger than zero. While

the “abiotic” equilibrium is always positive, the “biotic” one is positive (and thus physically meaningful) only if

S∗1,i < S∗0 → lSS∗1,i < I, (27)

i.e. if the linear SOC loss rate is smaller than SOC inputs. Note that for f and e kinetics it is additionally required that αβ
vp

i η
< 1225

(i = f,e).

If abiotic loss of SOC and are neglected (i.e. lS = 0), the “abiotic” equilibrium does not exist (SOC would accumulate at the

constant rate I) and by eq. 27 the “biotic” equilibrium is always physically meaningful.
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3.1.2 Stability analysis

To analyze whether a physically meaningful equilibrium point is also stable we apply the Routh-Hurwitz criterion to the230

Jacobian matrix JSBE
i (eq. 14) evaluated at the k-th equilibrium point (JSBE

i

∣∣
∗,k) – either the “abiotic” (k = 0) or the “biotic”

equilibrium (k = 1).

“Abiotic” equilibrium

First, we evaluate the parameter space in which the “abiotic” equilibrium is stable. Substituting the steady state solutions for

Q0 given in Table 5 into JSBE
i (eq. 14) yields235

JSBE
i

∣∣
∗,0 =




−ls rBdB dE − ∂Pi

∂E

∣∣
∗,0

0 −β yB
∂Pi

∂E

∣∣
∗,0

0 mE (ym− yB)∂Pi

∂E

∣∣
∗,0−α


 . (28)

For Q0 to be stable by the Routh-Hurwitz criterion, it is required that all the coefficients ai of the characteristic polynomial

of JSBE
i

∣∣
∗,0 and additionally a1a2− a3 be positive. By this we find that stability of Q0 is conditional on the sufficient and

necessary condition (SI Sect. 2.1)

∂Pi

∂E

∣∣∣∣
∗,0

<
αβ

η
. (29)240

“Biotic” equilibrium

Next, we analyze the stability of the “biotic” equilibrium, by evaluating the Jacobian matrix JSBE
i (eq. 14) around its

“biotic” steady states Q1,i (Table 5)

JSBE
i

∣∣
∗,1 =




−ls− ∂Pi

∂S

∣∣
∗,1 rBdB dE − ∂Pi

∂E

∣∣
∗,1

yB
∂Pi

∂S

∣∣
∗,1 −β yB

∂Pi

∂E

∣∣
∗,1

(ym− yB)∂Pi

∂S

∣∣
∗,1 mE (ym− yB)∂Pi

∂E

∣∣
∗,1−α


 . (30)

To evaluate the Routh-Hurwitz criterion it is convenient to re-express Pi in terms of ∂Pi

∂E as245

Pi =
∂Pi

∂E
x−1

i E , (31)

where the factor xi is introduced to maintain generality of this substitution for any Pi as defined in Table 2:

xi =





1 if (i = m,f)

1− E
Kp

r +E
if i = r

1− E
Kp

e +S+E
if i = e

. (32)

Moreover, xi has the convenient property 0 < xi ≤ 1. The ensuing derivations hold for all xi as long as 0 < xi ≤ 1 and also

for other kinetics Pj not explored here for which a 0 < xj ≤ 1 can be found that satisfies eq. 31.250
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Substituting eq. 31 and B∗
1,i = αyB

η E∗
1,i (Table 5) into eq. 13 evaluated at steady state yields

dEi

dt
= (ym− yB)

∂Pi

∂E

∣∣∣∣
∗,1

x−1
i

∣∣
∗,1E

∗
1,i + mE

αyB

η
E∗

1,i− dEE∗
1,i− lEE∗

1,i = 0 , (33)

from which, for E∗
1,i ̸= 0 we find

∂Pi

∂E

∣∣∣∣
∗,1

= αxi

∣∣
∗,1

1− mEyB

η

ym− yB
=

αβ

η
xi

∣∣
∗,1 . (34)

With this definition we obtain255

JSBE
i

∣∣
∗,1 =




−ls− ∂Pi

∂S

∣∣
∗,1 rBdB dE − αβ

η xi

∣∣
∗,1

yB
∂Pi

∂S

∣∣
∗,1 −β yB

αβ
η xi

∣∣
∗,1

(ym− yB)∂Pi

∂S

∣∣
∗,1 mE α

(
xi

∣∣
∗,1−

mEyB

η xi

∣∣
∗,1− 1

)


 . (35)

From this it can be seen that the trace of JSBE
i

∣∣
∗,1 (the sum of the diagonal entries) is always negative, since ∂Pi

∂S

∣∣
∗,1 > 0 and

xi

∣∣
∗,1 ≤ 1; and thus a1 > 0. Likewise it can be shown that all remaining coefficients of the characteristic polynomial are always

positive and that a1a2− a3 > 0 (see detailed analytical derivations in SI Sect. 2.1). Thus, all physically meaningful “biotic”

equilibrium points of the three-pool SBE model are stable.260

Fig. 2a shows a simplified causal loop diagram of the SBE model (sparing all loss and decay terms) that can help to

understand the dynamic behaviour of the model after a perturbation around an equilibrium. The reinforcing loop R1 describes

the increase in microbial biomass with increasing depolymerization rate (∝ uptake rate), leading to increased ENZ production

rate, ENZ concentration, and consequently a further increasing depolymerization rate. This reinforcing effect is dampened

by the balancing loops B1 (the depletion of SOC by depolymerization) and B2 (the carbon cost of ENZ production). The265

reinforcing loop R2 exists only if inducible ENZ production is considered (yB < ym; higher depolymerization stipulates the

production of more extracellular enzymes, which promote depolymerization). R1 and R2 are not independent of each other

and have to obey mass balance — i.e. per unit of uptake an increase in inducible ENZ production (∝ ym− yB) can only be

achieved by reducing the built-up of microbial biomass (lowering yB). An extreme case of this is yB = 0; in this case, no

microbial biomass is produced and only B1 and R2 remain. From the stability analysis, we obtained no condition on stability270

of physically meaningful equilibrium points in the SBE model. Thus, for any proportion of constitutive vs. inducible ENZ

production, all physically meaningful “biotic” equilibria are also stable. That is, the dynamic behaviour of the model after a

perturbation around its equilibrium is dominated by the balancing feedbacks, ensuring a convergence back to the equilibrium.

Exclusive stability of either “abiotic” or “biotic” equilibrium

We recall that for the “biotic” equilibrium to be physically meaningful it is required that S∗1,i < S∗0 (eq. 27); whereas for the275

“abiotic” equilibrium to be stable it is required by eq. 29 that ∂Pi

∂E

∣∣
∗,0 < αβ

η . This condition translates, e.g. for multiplicative

kinetics to:

∂Pm

∂E

∣∣∣∣
∗,0

= vp
mS∗0 <

αβ

η
→ S∗0 <

αβ

vp
mη

= S∗1,m . (36)
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This means that when the “biotic” equilibrium is physically meaningful the “abiotic” equilibrium is unstable and vice versa.

Therefore, no region in the parameter space yields a physically meaningful bi-stability in which “biotic” and “abiotic” equilibira280

are simultaneously physically meaningful and stable. This holds for all evaluated kinetics (see SI Sect. 2.1 for the remaining

analytical derivations).

3.2 SDB model: neglecting ENZ dynamics

3.2.1 Steady state solutions

Table 6. Summary of steady states for the three-pool SDB and four-pool SDBE model for different kinetics of depolymerization and

uptake. The “abiotic” steady state is only defined for lS > 0. “Biotic” steady states are given for lE = lS = 0 and yB = ym. E†
k,i×j signifies

Eqss
k,i×j or E∗

k,i×j in the SDB respectively SDBE model. The “biotic” equilibrium solutions for microbial biomass and enzymes have the

same form for any chosen kinetics.

Kinetics S∗k,i×j D∗
k,i×j B∗

k,i×j E†
k,i×j

abiotic (k = 0) i× j fI
I
lS

(1− fI) I
lD

0 0

biotic (k = 1)

m×m dE

ymvp
mmE

γm×m
β

ym vu
m

∣∣ ∣∣

f × f dE

ymvp
f mE

γf×f
Kp

f

1− dE
ymv

p
f

mE
γf×f

Ku
f

β
ym vu

f−β
ym

π

(
I − lDD∗

1,i×j

)
mE

dE
B∗

1,i×j

r× f dE

ymvp
r mE

γr×f

(
Kp

r + E†
1,r×f

)
Ku

f
β

ym vu
f−β

∣∣ ∣∣

Table 6 reports the steady state solution of the three-pool SDB model, where for convenience parameters were grouped in285

γi×j = fDrBdBym + πfI
I

I − lDD∗
1,i×j

(37)

and

π =
1

dE
ω(lE = 0,yB = ym) = (1− ym)︸ ︷︷ ︸

>0

mE + (1− ymrB)︸ ︷︷ ︸
>0

dB > 0 . (38)

Because an “abiotic” equilibrium exists only for lS > 0 (Table 6) we only evaluate the stability of the “biotic” equilibrium

and drop “1” from the subscript for conciseness. “Biotic” steady states are only physically meaningful for I > lDD∗
i×j –290

meaning the DOC leaching flux can not be larger then the total OC input flux. With f × f and r× f kinetics it is additionally

required that β < ym vu
f , implying that the maximal per-biomass assimilation rate ym vu

f must be larger than the sum of all

linear per-biomass loss terms β = mE + dB . For f × f kinetics it is additionally required that dE

ymvp
f mE

γf×f < 1 for steady

states to be positive.

In absence of DOC leaching (for lD = 0), with m×m and f × f kinetics S∗i×j becomes independent of I while B∗
i×j and295

E∗
i×j are linear functions of I . In contrast, for lD = 0, S∗r×f is linearly dependent on OC input I . For lD > 0, S∗m×m is a

function of I
I−lDD∗

m×m
causing S∗m×m to decline with increasing inputs as I

I−lDD∗
m×m

→ 1 for I >> lDD∗
m×m. Only in S∗r×f

does I still appear in a linear term also for lD > 0.
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3.2.2 Stability analysis

The Jacobian matrix around the “biotic” equilibrium JSDB
i×j

∣∣
∗ is given by eq. 19. Evaluating the coefficients of the characteristic300

polynomial and the requirement that a1a2− a3 > 0 (SI Sect. 2.2) gives the necessary condition

a1a2− a3 = Xi×j + Yi×j > 0 (39)

with

Xi×j =
∂Uj

∂D

∣∣∣∣
∗

{(
∂Uj

∂D

∣∣∣∣
∗
+

∂P qss
i

∂S

∣∣∣∣
∗

)(
∂P qss

i

∂S

∣∣∣∣
∗
+ ymfDrBdB − ym

∂P qss
i

∂B

∣∣∣∣
∗

)
+ π

∂Uj

∂D

∣∣∣∣
∗

}
(40)

and305

Yi×j =−∂Ḃ

∂B

∣∣∣∣
∗,j

{
∂P qss

i

∂S

∣∣∣∣
∗

(
∂P qss

i

∂S

∣∣∣∣
∗
− ∂Ḃ

∂B

∣∣∣∣
∗,j

)
+

∂Uj

∂D

∣∣∣∣
∗

(
2 · ∂P qss

i

∂S

∣∣∣∣
∗
+ ymfDrBdB − ym

∂P qss
i

∂B

∣∣∣∣
∗
+ π

)}
, (41)

both shown for lD = 0 for conciseness (see full expressions with lD > 0 in SI Sect. 2.2). The appearance of such a conditional

statement means that in contrast to the SBE model, the SDB model can have physically meaningful but unstable EPs (i.e. if

eq. 39-41 do not hold). A perturbation around such an unstable EP will cause the system to diverge from the EP. In this case,

the biotic pools (MBC and quasi-steady state ENZ) will collapse, while DOC will reach a steady state as D∗
0,i×j (for lD > 0),310

and SOC will accumulate indefinitely.
∂Ḃ
∂B

∣∣
∗,j in eq. 41 is the lower right entry of JSDB

i×j

∣∣
∗ (eq. 19) and is given by

∂Ḃ

∂B

∣∣∣∣
∗,j

=
∂

∂B

dB

dt

∣∣∣∣
∗,j

= ym
∂Uj

∂B

∣∣∣∣
∗
−mE − dB . (42)

For any choice of Uj that is linear in B (as is the case for Um and Uf – compare Table 2) we find from solving dB
dt (eq. 18)

at steady state that ym
∂U(m,f)

∂B

∣∣
∗ = mE + dB and thus ∂Ḃ

∂B

∣∣
∗,(m,f)

= 0, so that Yi×(m,f) = 0 (eq. 41). The only necessary and315

sufficient condition for stability of the SDB model in these cases is thus Xi×j > 0 (eq. 40) (for lD = 0, see SI Sect. 2.2 for the

corresponding necessary condition for lD > 0). However, the expression given by Xi×j does not allow for easy interpretation

or application. We thus propose a sufficient (i.e. a more conservative or strict) condition for stability that is easier to trace

analytically as

∂P qss
i

∂S

∣∣∣∣
∗
+ ymfDrBdB ≥ ym

∂P qss
i

∂B

∣∣∣∣
∗

. (43)320

This sufficient condition for stability of “biotic” equilibrium points of the SDB model further holds for any lD ≥ 0 and thus

in all cases relevant to our analysis (SI Sect. 2.2).

Described in words, this condition requires the depolymerization rate to be less sensitive to a change in microbial biomass

than to a proportional change in SOC. Fig. 2b illustrates this relation in a simplified causal loop diagram. The reinforcing loop

R1 causes the depolymerization rate (P qss
i ) to increase as the (quasi-steady state) ENZ concentration increases (quantified by325

∂P qss
i

∂B

∣∣
∗). This then increases DOC concentration, uptake, and ultimately causes a further increase in microbial biomass and
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(quasi-steady state) ENZ. This positive feedback is accelerated by an additional reinforcing feedback loop (R2) that causes

uptake to further increase as microbial biomass increases. The balancing loops B2 and B3 respectively describe the depletion

of DOC with increasing uptake and the reduction of biomass as more extracellular enzymes are being produced. Lastly, the

balancing loop B1 causes SOC to change in the opposite direction than the depolymerization rate (i.e., SOC is depleted as330

depolymerization increases and relatively more SOC remains as depolymerization decreases), counteracting the initial change

in P qss
i (quantified by ∂P qss

i

∂S

∣∣
∗). Therefore, the sufficient stability condition in eq. 43 can be interpreted in the sense that the

negative feedback B1 must be quantitatively stronger than the positive feedback R1 (by some factor ym and buffered by a

constant term; eq. 43).

In essence, the positive feedback R1 can drive the system to overshoot or collapse: e.g., if microbial biomass or (quasi-335

steady state) ENZ concentration happens to decrease due to a perturbation, this will reduce the depolymerization rate, and

following the positive feedback, result in further reduced MBC and (quasi-steady state) ENZ concentration. The biotic pools

would collapse and the system would not be able to recover to its initial equilibrium (i.e. be unstable). Only if the entailing

accumulation of SOC increases the depolymerization rate more than it is reduced by the depletion of (quasi-steady state) ENZ,

will the system be able to recover and retain the biotic components (i.e. be stable). Beyond this sufficient condition for stability,340

the additional positive term π
∂Uj

∂D

∣∣
∗ in Xi×j (eq. 40) might indicate the stabilizing influence of the balancing loop B2 (Fig. 2b)

and the recycling of ENZ and MBC to SOC (compare eq. 38).

We note that for linear uptake kinetics Ul, that is

Ul = vu
l D , (44)

Yi×l (eq. 41) does not vanish from eq. 39 since ∂Ul

∂B

∣∣
∗ = 0 and consequently from eq. 42345

−∂Ḃ

∂B

∣∣∣∣
∗,l

= mE + dB > 0 . (45)

Because of its additional positive components, Yi×j can be positive even if the sufficient condition of eq. 43 is not fulfilled.

Thus, using Ul can help to ensure positivity of the all coefficients of the characteristic polynomial and a1a2− a3 > 0. In the

causal loop diagram linear uptake kinetics remove the positive feedback between uptake rate and biomass (R2 in Fig. 2b

vanishes). Although we could not show this analytically from eq. 39-41 & 45, numerical evaluation showed that for the chosen350

parameter spaces (Table 3) with linear uptake kinetics Ul physically meaningful EPs of the SDB model were always stable

(SI Fig. S3c-d).

3.3 SDBE model: full archetypal model

The four-pool SDBE model with LS = LE = 0 and yB = ym has the same steady state solutions as the three-pool SDB

model, but now the solution for the ENZ pool is denoted as E∗
i×j because ENZ is not considered to be at quasi-steady state as355

in the SDB model (Table 6).
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(a) (b)

stable unstable

SOC

DOC

MBCB1SOC

MBC

R1

R2

B2

B1

.

.

ENZENZ

B3

B2

R1

R2

Figure 2. Simplified causal loop diagrams of the three-pool SBE (a) and four-pool SDB and SDBE models (b). Green arrows marked

with “+” indicate positive and red arrows marked with “−” negative interactions. R signifies reinforcing and B balancing loops. In (a), the

dashed green line (at R2) indicates the effect of inducible ENZ production and vanishes if only constitutive ENZ production is considered. In

(b), the dashed green line (at R2) indicates the effect of biomass-dependent non-linear uptake kinetics and vanishes for biomass-independent

uptake kinetics. In the SDB (SDBE) model P †i and ENZ† signify P qss
i (Pi) and Eqss

i×j (E∗
i×j). The seesaw in (b) illustrates the balance

between the partial derivatives in eq. 43 & 46 and how it affects stability.

3.3.1 Analytical stability analysis

In the four-pool SDBE model, the coefficients of the characteristic polynomial of JSDBE
i×j (eq. 10) remain analytically

tractable (SI Sect. 2.3). The trace of JSDBE
i×j is always negative (and thus −tr(JSDBE

i×j ) = a1 > 0) and its determinant is

always positive (det(JSDBE
i×j ) = a4 > 0). However, the additional Routh-Hurwitz criterion for the 4×4 matrix JSDBE

i×j (given360

by a1a2a3− a2
3− a2

1a4 > 0) becomes analytically intractable. Despite this additional complexity, we can still draw some con-

clusions based on similarities between the SDB and SDBE models. Considering that in the SDBE model ENZ dynamics

are explicitly represented (and thus e.g. ∂P qss
i

∂B → mE

dE

∂Pi

∂E ) similar conditions emerge for positivity of the coefficients of the

characteristic polynomial as in the SDB model (SI Sect. 2.3). Based on these similarities, we propose that the sufficient condi-

tion for stability found for the three-pool SDB model might also hold in the SDBE model. This proposed sufficient condition365

is given by

Zi×j =
∂Pi

∂S

∣∣∣∣
∗
+ ymfDrBdB − ym

mE

dE

∂Pi

∂E

∣∣∣∣
∗

; Zi×j ≥ 0 . (46)

The simplified causal loop diagram of the SDBE model in Fig. 2b gives rise to the same interpretation of this condition as in

the SDB model. In the following we confirm that this condition holds in the SDBE model via numerical analysis.
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(a)

(b)

(c)

Figure 3. Numerical evaluation of the proposed sufficient condition for stability of the SDBE model with f × f kinetics and constitutive

ENZ production. 100 000 Monte Carlo calculations of equilibrium points were produced sampling the parameter space in Table 3. (a)

illustrates the separation of all physically meaningful equilibrium points by the positive and negative terms of Zf×f (the proposed sufficient

condition for stability, eq. 46). Points on and below the black 1:1 line (indicating Zf×f = 0) fulfill the condition Zf×f ≥ 0. The color-code

indicates the value of the damping coefficient ζ. (b) and (c) show values of ζ vs. values of Zf×f (for Zf×f ≥ 0 in (b), and Zf×f < 0 in (c)).

Equilibrium points with ζ > 0 or ζ ≤ 0 are marked with blue and red points, respectively; N gives the total number of equilibrium points in

each category; rS in (b) gives the Spearman rank correlation coefficient (***: significant at p < 0.005).

3.3.2 Numerical stability analysis370

Testing the sufficient condition for stability

We produced 100 000 Monte Carlo simulations and computed the damping coefficient ζ (eq. 22) to numerically evaluate

the stability of equilibrium points in the SDBE model. Within the sampled parameter space (Table 3), physically meaningful

equilibrium points for which Zi×j ≥ 0 (eq. 46) always also had ζ > 0 and were thus stable (Fig. 3a-b, SI Fig. S1). Damping

coefficients with ζ ≤ 0 were only observed when Zi×j < 0 (that is for points above the black line in Fig. 3a or red points in375

Fig. 3c). While a total of 46 820 evaluated equilibrium points were physically meaningful and stable, less than half of these

(22 208) also fulfilled the condition Zi×j ≥ 0. In turn, the majority of these equilibrium points (24 612) were stable despite

contradicting this condition – i.e. the condition given by Zi×j ≥ 0 is very conservative. In case the condition is fulfilled, the

value of Zi×j correlates well with the value of ζ meaning that for larger Zi×j oscillations are generally more dampened (Fig.

3b).380

Changing environmental conditions, microbial physiology, and stability
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Even for the simplified sufficient condition Zi×j ≥ 0 analytical analysis is cumbersome for kinetics other than m×m (SI

Sect. 2.3). We thus varied specific parameters individually and evaluated their effect on the numerically computed damping

coefficient ζ.

Keeping all microbial and enzymatic parameters constant (set to their baseline value, that is for constitutive ENZ production,385

Table 3), stability depends on the environmental control parameters lD and I (Fig. 4a). At baseline parameter values, most

environmental conditions yield stable EPs but strong oscillations around these EPs occur (damping coefficient ζ < 1). As

conditions become less favourable and either lD increases and/ or I decreases, equilibrium points can become unstable (ζ < 0).

Next, we analysed the influence of individual microbial parameter values on the stability of EPs for a number of scenarios

defined by combinations of I and lD (Fig. 4b-d; Table 7). Generally, if DOC leaching is neglected (solid lines, Fig. 4b-d), the390

variation in just one parameter rarely leads to unstable equilibria (only at very high microbial decay rates dB). In contrast,

if DOC leaching occurs, variation in key physiological parameters can lead to a transition from stable to unstable EPs. This

happens as ym becomes too low or dB too high – i.e. for specific environmental conditions there are lower threshold values for

ym and upper thrsholds for dB beyond which equilibria become unstable (Fig. 4b-c, Table 7). With the exception of fD, the

partitioning of decayed microbial biomass between SOC and DOC, all parameters show such a threshold within the explored395

ranges (SI Fig. S2 and SI Sect. 2.3).

Using the alternative description of inducible production of extracellular enzymes, the stability behaviour with respect to

changes in yB is more varied (Fig, 4d). As for ym, there are lower yB threshold values below which steady states become

unstable. However, there can also be upper thresholds for yB above which too few enzymes are being produced to ensure

sufficient C acquisition.400

In summary, by varying only individual parameters, instabilities can arise when assimilation, depolymerization, or ENZ

production are too low; or when abiotic C losses are too high (Fig. 4b-d; Fig. S2; Table 7). These results are in line with the

analytic analysis of the sufficient condition (eq. 46) for m×m kinetics (SI Sect. 2.3).

Density-dependent mortality

Georgiou et al. (2017) proposed a density-dependent formulation of the microbial decay rate (D′
B = d′BBb with 1 < b≤405

2) as an alternative to the conventional linear decay term that yields mostly stable non-oscillatory behaviour (note that this

formulation causes both microbial mortality and maintenance respiration to be density-dependent). For our SDBE model

with DOC leaching, we could only find an analytical steady state solution for m×m kinetics and b = 2. In this case, the

density dependent formulation could vastly alleviate the previously observed instability and resulted in damping coefficients

for plausible equilibrium points close to 1 for most of the explored parameter spaces (SI Fig. S4a). However, some physically410

meaningful but unstable EPs were still observed. Only with negligible DOC leaching did physically meaningful but unstable

equilibrium points vanish completely. This was numerically tested for m×m, f × f , and r× f kinetics (SI Fig. S4b-d).

Instability and predicted organic carbon pools

Fig. 5a-b illustrates the joint distributions of physically meaningful SOC and MBC pools in the f × f model for scenarios

where DOC leaching is either considered (Fig. 5a) or neglected (Fig. 5b) (for 10 000 Monte Carlo simulations within the415

parameter ranges given in Table 3). By accounting for DOC leaching, just about half of the simulations yield physically
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Figure 4. Changes in the damping coefficient with changes in environmental controls (a) and some microbial physiology parameters (b-d)

in the SDBE model with f × f kinetics. (a) shows the dampening coefficient as a function of I and lD with all other parameters held

at their baseline values (Table 3). The black line indicates a ζ = 0 (n.s. = no physically meaningful solution). (b-d) show variation in the

damping coefficient for different combinations of I and lD values. Different line styles indicate scenarios with different DOC leaching rate

coefficients: solid lines indicate lD = 0 and dashed lines lD = 1 · 10−2 d−1. Different line colors indicate scenarios with different OC input

rates: red lines indicate I = 5 ·10−4 mg C g−1 d−1, yellow lines I = 1 ·10−3 mg C g−1 d−1, and dark blue lines I = 1 ·10−2 mg C g−1 d−1.

In (b) and (c) the baseline model with constitutive production of extracellular enzymes is used and dB and ym varied respectively. Baseline

parameter values are indicated by vertical dashed lines. In (d) instead only inducible production of extracellular enzymes is considered and

yB varied. Note the log x- and y-axis in panel (a) and the log x-axis in panel (b).
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Table 7. Indication of thresholds in parameter values for stability of the SDBE model. Analysis is based on exclusively varying one

parameter while keeping all others at their baseline value (Table 3; Fig. 4, SI Fig. S2). Analysis applies to all evaluated combinations of

kinetics (m×m, f × f , r× f ) using constitutive ENZ production; except for analysis of yB where we considered only inducible ENZ

production. (i = m,f,r), (j = m,f).

Process Parameter
Threshold

Lower Upper None

Depolymerization
vp

i X

Kp
i X

Assimilation

vu
j X

Ku
f X

ym X

ENZ production
mE X

yB X X

Decay
dB X

dE X

Mass balance losses
rB X

lD X

OC Input I X

SOC-DOC partition
fI X

fD X

meaningful EPs – of which most (4 698) were also stable, but more than 10 % (687) were unstable. Neglecting DOC leaching

increases the total number of physically meaningful results (6 896) and simultaneously reduces the relative share of physically

meaningful but unstable results to < 5 % (312). In both scenarios, most simulations yield implausible results for steady state C

stocks – e.g. MBC being larger than SOC. However, in both scenarios, unstable EPs largely overlap with stable and plausible420

outcomes in the SOC-MBC solution space. This is also evident in the empirical probability density functions of all the four

state variables (Fig. 5c-d). Especially if DOC leaching is considered (lD > 0, Fig. 5c), values of plausible and unstable steady

state SOC pools largely overlap. In contrast, the distributions of plausible and unstable steady state pool sizes of MBC, DOC,

and ENZ do not overlap as closely as those for SOC. These distinctions are amplified in the cases where DOC leaching is

neglected (lD = 0, Fig. 5d), in particular for DOC.425
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Figure 5. Physically meaningful (positive & real) steady state solutions from 10 000 Monte Carlo simulations of the SDBE model with

f×f kinetics and constitutive ENZ production. Scatter plots of MBC vs. SOC concentrations are shown for lD > 0 (a) and lD = 0 (b). Grey

points are stable steady state solutions, color-coded points are stable steady state solutions yielding plausible results, and black points are

physically meaningful but unstable steady state solutions. The color code indicates the value of the damping coefficient. Legends indicate the

numbers of physically meaningful and stable (stable + stable & plausible) or unstable EPs. Plot groups (c) and (d) show empirical probability

density functions of each state variable for stable, stable & plausible, and unstable physically meaningful steady state solutions for lD > 0

and lD = 0, respectively. Note that SOC contents > 1000 mg C g−1 are mathematically possible but unphysical model outcomes, as we

neglect soil volume changes.
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4 Discussion

4.1 Model structure matters: standard microbial-explicit SOC models can have unstable equilibria

Manzoni and Porporato (2007) and Raupach (2007) showed analytically that the non-trivial steady state of two-pool models,

consisting of a substrate pool and a microbial pool (respectively a “harvester” system in Raupach, 2007), are always stable for

multiplicative and forward Michaelis-Menten kinetics (but only under the assumption that the input to the substrate (I) is a430

constant; Raupach, 2007). We show here that the same is true for all physically meaningful, non-trivial (“biotic”) equilibrium

points also if a third pool representing extracellular enzymes is added (SBE model). This result holds irrespective of the

kinetic laws used to describe SOC depolymerization and whether ENZ production is considered to be constitutive, inducible,

or a combination of both.

Interestingly, by introducing a second non-linear term Raupach (2007) found that unstable equilibria could emerge in their435

two-pool model. In contrast, Wang et al. (2014, 2016) demonstrated for several versions of a three-pool (litter-SOC-microbes)

model with two non-linearities (microbial degradation and subsequent uptake of litter and SOC) that the equilibrium points

of these models were always stable. An underlying assumption in these models was that the available substrate pool (similar

to what we described as DOC) was at quasi-steady state. Our derivation of the SBE model follows a similar simplification –

and also does not yield unstable behaviour. By contrast, unstable equilibrium points are possible in our three- and four-pool440

model versions with two non-linearities that explicitly consider DOC (SDB and SDBE model). Whether equilibrium points

in microbial-explicit SOC models can become unstable is thus not dependent on the number of pools or the number of non-

linearities per se, but rather on the combination of non-linearities, the coupling of different pools and rates, and what feedbacks

they create.

Comparing our three- and four-pool models to the simpler two-pool model analysed by Raupach (2007) can help to under-445

stand why instability can occur in these models. Briefly, their model describes human consumption of a food resource, but is

in structure similar to our models (analogous terms in our models are given in brackets): the resource (SOC in SBE, DOC

in SDB and SDBE models), is taken up by the human consumer (microbes), and thereby depleted. The uptake process is

always described as a non-linear term, equivalent to our description of Uj . Raupach (2007) analysed two different cases with

respect to the resupply of the resource (I in SBE, (1− fI)I + P †i in SDB and SDBE): 1) resupply is independent of the450

available resource and 2) resupply is dependent on the resource itself. The first case is similar to our SBE model, where the

resource SOC is replenished only by the external input I and is thus completely independent of the SOC availability itself.

In these cases the “biotic” (respectively resource-human coexistance in Raupach, 2007) equilibrium is always stable if it is

physically meaningful. In turn, the second case can be compared to our SDB and SDBE models: unless the external input to

DOC is very high (for low fI ), the replenishment of the resource DOC is dominated by the depolyerization rate P †i – which via455

the positive feedback loop R1 is dependent on the available DOC (compare Fig. 2b). These models can have unstable “biotic”

equilibria (Raupach, 2007). Therefore, the (more or less direct) dependency of the resource resupply on the abundance of the

resource itself can be identified as the root cause that allows for instability in these models.
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We further tested this hypothesis by setting fI = 0 in the SDBE model (i.e., all external input goes into DOC directly),

bypassing the dependency of DOC replenishment on depolymerization. In line with our expectation (and the analytical solution460

of Zm×m and Zf×f for fI = 0 in SI Sect. 2.3) this effectively prevented the occurrence of unstable EPs (SI Fig. S5).

4.2 Avoiding instability

Our analysis of different model structures and their stability behaviour points to three direct approaches to avoid unstable EPs

in microbial-explicit SOC models:

1. model structure – avoid positive feedback coupling between microbial growth substrate (here DOC) available for uptake465

and its resupply

2. kinetic formulations – avoid accelerated depletion of DOC by reducing the dependency of uptake on microbial biomass

3. parameter values – choose parameter values so that the sufficient and/or necessary conditions for stability are met.

The first approach is commonly taken in models that assume DOC to be in quasi-steady state (e.g. Wang et al., 2014, 2016),

but might have shortcomings in cases where DOC dynamics become important e.g. if drying-rewetting dynamics or leach-470

ing are relevant. If DOC leaching is not considered to be a relevant process, neglecting this process but keeping a dynamic

description of DOC can already considerably reduce the likelihood of unstable EPs.

The second approach is used e.g. in models that assume DOC uptake as independent of microbial biomass, but dependent

on the availability of DOC respectively its diffusive flux to a cell (e.g. Manzoni et al., 2014). Alternatively, using for instance

reverse Michaelis-Menten kinetics to describe microbial uptake can dampen oscillations (Wang et al., 2016). Since uptake475

kinetics using reverse Michaelis-Menten or the ECA formulation become similar to linear uptake kinetics at relatively high

concentrations of microbial biomass they could also help to alleviate instability issues under these conditions.

Lastly, the third approach might seem straight forward as we could expect parameter values calibrated with measurement

data to yield both stable and plausible EPs. However, our numerical simulations indicated that especially if DOC leaching is

considered, calibrating parameter values with SOC and microbial biomass data alone could still lead to plausible yet unsta-480

ble EPs (Fig. 5). While data on carbon contents in the extracellular enzyme pool are still not available, combining microbial

biomass data with quantitative data on DOC pools (as e.g. in Wang et al., 2013) could help to avoid calibration to parameter val-

ues that lead to unstable EPs. Moreover, stability criteria can be obeyed in various other ways, e.g. by considering correlations

between parameter values or introducing additional constraints on microbial physiology.

4.2.1 Correlations between parameter values485

Correlations between parameter values could effectively alleviate the occurrence of unstable EPs by simultaneously changing

parameter values that appear on both sides of the inequality given by eq. 43 or 46, thereby ensuring that these conditions are

always fulfilled even as parameter values change. Some evidence for this to be effective is provided e.g. by Hararuk et al. (2015),

who used the four-pool AWB model (Allison et al., 2010) (similar to the SDBE model) for predictions of global carbon stocks.
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They prescribed e.g. the uptake and depolymerization rate coefficients and the respective half-saturation constants to positively490

correlate with temperature. Thus, with the same directional change in temperature, these parameter values change in opposite

directions with respect to their threshold values for stability (Table 7) – i.e., with a decrease in temperature vp
f decreases,

moving closer to its threshold, but simultaneously also Kp
f decreases, moving further away from its threshold. Consequently,

for a wide range of parameter values the conditions for stability could be fulfilled. Indeed, Hararuk et al. (2015) reported that

they did not observe any unstable equilibria with maximum-likelihood parameters in their global study.495

Beyond the qualitative assessment of parameter thresholds (Table 7), explicit analytical expressions of the necessary or suf-

ficient conditions for stability (as for Zm×m in SI Sect. 2.3) could be used to quantitatively assess what parameter correlations

are required to ensure stability of equilibria across reasonable parameter ranges. However, for other kinetic formulations than

m×m these terms might become difficult to trace analytically.

4.2.2 Constraints on microbial physiology500

The observation of stability thresholds of parameters moving as environmental conditions are changing can further be inter-

preted in the light of expected variations in microbial functional traits. While some kinetic rate parameters might be correlated

due to thermodynamics (e.g. temperature response of rate parameters), correlations among other parameters, like the invest-

ment into growth or extracellular enzyme production, might rather emerge as outcomes of eco-evolutionary processes that

select specific combination of traits in a given environment (Abs et al., 2023). These combinations of traits would manifest505

themselves as microbial life-history strategies under different environmental conditions (e.g. Malik et al., 2020). Following this

logic, changing environmental conditions could constrain the space for microbial physiological adaptation because microbial

traits would need to ensure stability. For example, very inefficient microbes (having a low ym) could not establish a stable

equilibrium under very unfavourable conditions (low OC input and/or high DOC leaching, Fig. 4c) – unless other traits change

simultaneously. This reflects a basic principle of ecology: that organisms have to be adapted to the environment they inhabit.510

Currently, this basic principle is not integrated in microbial-explicit SOC models (but see Abs et al., 2022, for a recent at-

tempt at addressing this challange), which can lead to matching specific environmental conditions with a (modelled) microbial

population that is not able to sustain itself under those conditions.

Integrating soil microbial ecological understanding into microbial-explicit SOC models could instead yield alternative math-

ematical descriptions or parameter relations that could prevent such mismatching, and ultimately improve model applicability515

(Georgiou et al., 2017). Evidence on the importance of microbial ecology and evolution for SOC cycling is accumulating (Abs

et al., 2022, 2023). For instance, microbes have been found to invest more into production of extracellular enzymes in soils

with lower SOC contents (Calabrese et al., 2022; Malik et al., 2019) and density-dependent microbial mortality, a concept

derived from ecological considerations, can effectively alleviate oscillatory behaviour (Georgiou et al., 2017).

The most noticeable difference between these approaches to avoiding instability in microbial-explicit SOC models might520

be whether they globally avoid occurrence of unstable equilibria (e.g., by not explicitly representing DOC), or whether they

constrain the available parameter spaces so that for reasonable parameter values instability is avoided (e.g. by introducing

parameter correlations or additional balancing mechanisms). As different research questions require different models, there is
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no clear answer to which of these approaches should be preferred. However, in line with Abs et al. (2022, 2023) and Georgiou

et al. (2017) we want to highlight the potential of using ecologically consistent mathematical descriptions to improve current525

model formulations. In other words, we cannot simply add a biotic component to models without acknowledging that this

component has to be “adapted” (as species and communities are in the real world) to the environmental conditions it is exposed

to.

4.3 Relevance for model applications

Our numerical analysis of the SDBE model indicates that instability of equilibrium points becomes more likely with decreas-530

ing carbon inputs, increasing DOC leaching, and low process rates (Fig. 4, Table 7). All these conditions are most likely to be

met in high altitude and/or latitude environments. This is in line with Hararuk et al. (2015), who observed strongest oscilla-

tions (longest time to dampen oscillations, indicative of diminishing real parts of the eigenvalues) of their calibrated four-pool

model in these regions. Therefore, analytical steady states of microbe-explicit SOC models applied in high altitude and/or

latitude environments could be unstable and analytical steady state solutions could thus not reliably be used for initialization535

of simulation runs or prediction of SOC stocks.

We could identify a sufficient and necessary condition for stability of the SDB model (eq. 39-41). However, the condition

we found is difficult to interpret and apply. We thus proposed a stricter but simpler sufficient condition for stability (eq. 43).

By comparing the SDB and SDBE model we proposed that a similar constraint (Zi×j ≥ 0, eq. 46) would also hold as a

sufficient condition for the SDBE model, despite the Routh-Hurwitz stability criterion being not fully tractable analytically540

for this model version. Numerical analyses confirmed that the proposed sufficient condition ensures stability of the SDBE

model within the vast parameter space we explored. However, these sufficient conditions are very conservative and can exclude

a substantial fraction of the physically meaningful and stable equilibrium points. Further, despite a clear correlation between

Zi×j and the damping coefficient ζ, the stability condition does not give direct insights into the oscillation behaviour. How

useful the stricter sufficient and necessary conditions would be in constraining model parameters – as compared to the simpler545

sufficient conditions – might depend on the specific model applications. Despite the potential challenges in evaluating these

conditions, they can still be useful to understand the processes or parameter interactions that cause unstable EPs to occur and

can guide ecology-informed model developments.

5 Conclusions

Microbial-explicit SOC models aim to improve the representation of SOC dynamics by accounting for its biotic control. By550

this, even simple archetypal models can describe a multitude of relevant processes and varied dynamics. At very small spatial

and temporal scales their oscillatory behaviour and potential for instability can reflect relevant (micro-)ecosystem processes

(Manzoni and Porporato, 2007). However, if applied at larger scales such as in Earth-system models, these properties can

result in unrealistic simulation outcomes (Georgiou et al., 2017; Wang et al., 2014). Here we analyzed what processes can

lead to instability in these models. By comparing the stability behaviour of an archetypal microbial-explicit SOC model with555
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some reduced model versions and stability analysis of similar models in the literature, we found that instability can occur in

models that assume a positive feedback between the resupply of a microbial growth substrate (i.e. DOC) and its abundance.

We found that stability is (sufficiently) conditional on the balance between the sensitivity of the depolymerization rate to

changes in extracellular enzyme vs. SOC concentration. Based on these analyses, we suggest that instability can be avoided by

selecting specific 1) model structures, 2) kinetic formulations, and/or 3) parameter relations or values. While these approaches560

can vastly differ, an emerging common theme is that acknowledging ecological principles and processes can be leveraged to

improve model applicability.
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