
S1. Formaldehyde nitrogen ratio (FNR) 

For discussion of ozone (O3) sensitivity to its precursors, the formaldehyde nitrogen ratio (FNR) 

(Jin and Holloway, 2015) is used to feature the O3 formation regime, with FNR<1.0 representing VOC-

limited regimes, FNR> 2.0 representing NOx-limited regime, and FNR between 1.0 and 2.0 representing 

transitional regime. For model evaluation, monthly mean Aqua OMI tropospheric columns of nitrogen 

dioxide (NO2) (Boersma et al., 2018) and formaldehyde (HCHO) (De Smedt et al., 2015) products in 

2015 are obtained from https://www.temis.nl/airpollution/, with resolutions of 0.125° × 0.125° and 0.25° 

× 0.25°, respectively. The satellite observations are interpolated into 2° × 2.5° resolution to be consistent 

with that of model outputs. Figure S7 evaluates the simulated present-day tropospheric columns of NO2 

and HCHO in CpdEpd simulation by comparing with Aqua OMI satellite observations. The tropospheric 

columns of NO2 and HCHO levels are overestimated by 4.4 and 1.1 1015 molec cm-2 in EC and by 1.8 

and 0.7 1015 molec cm-2 nationwide, respectively. We also compared the simulated surface NO2 

concentrations with observations from CNEMC in Fig. S8. The model generally captured the observed 

monthly variation in surface NO2 concentrations in EC, NCP, and YRD, with R values of 0.44-0.70. The 

systematic low biases of surface NO2 concentrations in the GEOS-Chem model (NMBs ranging from -

51.7% to -19.2% in this work) were also reported in previous studies (Qu et al., 2020; Qu et al., 2022; 

Fang et al., 2024), because of the lack of representation of the spatial gradients in NO2 observations 

within the coarse GEOS-Chem grid cells (Qu et al., 2022). 

  

https://www.temis.nl/airpollution/


Table S1. Information of climate models in CMIP6 used in this study. 

Model N Member_id (Historical/SSP1-1.9) 

CanESM5 2 r1i1p1f1, r1i1p2f1 

GFDL-ESM4 1 r1i1p1f1 

GISS-E2-1-Ga 3 r1i1p1f2, r1i1p3f1, r1i1p5f1 

GISS-E2-1-Hb 2 r1i1p1f2, r1i1p3f1 

MIROC-ES2H 1 r1i1p4f2 

MIROC-ES2L 1 r1i1p1f2 

Total 10 
 

a, b GISS-E2.1-G and GISS-E2.1-H are coupled models of the GISS-E2.1 atmospheric model with the GISS and 

HYCOM ocean models, respectively. 

 

  



 

Figure S1. (a)-(c) Monthly variations in simulated and observed MDA8 O3 concentrations (ppbv) over (a) EC 

(with a total of 68 grids), (b) NCP (with a total of 6 grids), and (c) YRD (with a total of 4 grids) regions. Bars 

represent the range from first to third quartiles of all grid samples in this region. (d)-(f) The scatterplot of 

simulated versus observed monthly mean MDA8 O3 concentrations for grids in EC, NCP, and YRD. The 

linear fit (black solid line and equation), correlation coefficient (R), and normalized mean biases (NMB) that 

calculated for grids in these three regions are also shown when all of the year 2015 data are considered.   



 

Figure S2. Vertical profile of seasonal mean O3 concentrations (ppbv) over EC in CpdEpd and CfutEpd 

simulations. 

  



 

Figure S3. Seasonal mean changes in biogenic emission rates of VOCs (10-11 kg m-2 s-1) due to climate change 

over 2010-2045. The black rectangle indicates the domain of EC, and the top right number of each panel is 

the regional mean value for EC. 

  



 

Figure S4. Comparisons of the spatial distributions of climate-induced seasonal mean MDA8 O3 changes 

simulated by (a) GCAP 2.0 (Dev_GCAP2_MDA8) with those predicted by (b) stepwise MLR model 

(Dev_MLR_MDA8). 

 



 

Figure S5. The spatial distributions of climate-driven changes in annual mean MDA8 O3 concentrations 

(ppbv) in EC projected by MLR model using the climate outputs from GCAP 2.0 and the other six CMIP6 

models under SSP1-1.9 scenario. The multi-model mean (MMM) is calculated from the average of the six 

CMIP6 models. 

 

  



 

Figure S6. Percentage changes (%) in anthropogenic emission rates of (a) NMVOCs and (b) NOx in 2050 

relative to 2015 under SSP1-1.9 scenario. The black rectangle indicates the domain of EC, and the top right 

number of each panel is the regional mean value for EC. 

  



 

Figure S7. (a) Simulated and (b) OMI retrieved annual mean tropospheric columns of nitrogen dioxide (NO2) 

and formaldehyde (HCHO) (1015 molec cm-2) in 2015 in China, and (c) their difference. The black rectangle 

indicates the domain of EC, and the regional mean values for EC and the whole country are shown in the 

bottom left corner of each panel. 

  



 

Figure S8. (a)-(c) Monthly variations in simulated and observed surface NO2 concentrations (ppbv) over (a) 

EC (with a total of 68 grids), (b) NCP (with a total of 6 grids), and (c) YRD (with a total of 4 grids) regions. 

Bars represent the range from first to third quartiles of all grid samples in this region. (d)-(f) The scatterplot 

of simulated versus observed monthly mean surface NO2 concentrations for grids in EC, NCP, and YRD. The 

linear fit (black solid line and equation), correlation coefficient (R), and normalized mean biases (NMB) that 

calculated for grids in these three regions are also shown when all of the year 2015 data are considered. 
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Abstract. We examined the effects of 2010-2045 climate change on ozone (O3) levels in China under carbon neutrality 13 

scenario using the Global Change and Air Pollution version 2.0 (GCAP 2.0). In eastern China (EC), GCAP 2.0 and other six 14 

models from Coupled Model Intercomparison Projection Phase 6 (CMIP6) all projected increases in daily maximum 2-m 15 

temperature (T2max), surface incoming shortwave radiation (SW), and planet boundary layer height, and decreases in relative 16 

humidity (RH) and sea level pressure. Future climate change is simulated by GCAP 2.0 to have large effects on O3 even under 17 

carbon neutrality pathway, with summertime regional and seasonal mean MDA8 O3 concentrations increased by 2.3 ppbv 18 

(3.9%) over EC, 4.7 ppbv (7.3%) over North China Plain, and 3.0 ppbv (5.1%) over Yangtze River Delta. Changes in key 19 

meteorological parameters were found to explain 58-76% of the climate-driven MDA8 O3 changes over EC. The most 20 

important meteorological parameters in summer are T2max and SW in northern and central EC and RH in southern EC. 21 

Analysis showed net chemical production was the most important process that increases O3, accounting for 34.0-62.5% of the 22 

sum of all processes within the boundary layer. We also quantified the uncertainties in climate-induced MDA8 O3 changes by 23 

using CMIP6 multi-model projections of climate and a stepwise multiple linear regression model. GCAP 2.0 results are in the 24 

lower-end of the climate-induced increases in MDA8 O3 from the multi-models. These results have important implications for 25 

policy-making regarding emission controls under the background of climate warming. 26 

1 Introduction 27 

Tropospheric ozone (O3) is a major secondary gas pollutant produced by the complicated photochemical reactions of 28 

methane (CH4), carbon monoxide (CO), volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the presence of 29 

sunlight. It has adverse effects on human health (Lu et al., 2020; Li et al., 2021; Hong et al., 2019; Dang and Liao, 2019a), 30 

ecosystem (Yue et al., 2017; Grulke and Heath, 2020; Ainsworth et al., 2020), and climate (Checa‐Garcia et al., 2018; Dang 31 

mailto:hongliao@nuist.edu.cn


2 

 

and Liao, 2019a). Chinese government has implemented the Air Pollution Prevention and Control Action Plan since 2013, 32 

leading to large decline in NOx emissions and PM2.5 concentrations (Zheng et al., 2018; Zhai et al., 2019), but O3 pollution in 33 

eastern China (EC) became worse over the same time period (Tang et al., 2022; Li et al., 2020; Gong et al., 2020; Dang et al., 34 

2021). Ozone pollution was particularly severe in the North China Plain (NCP), and observed summer mean maximum daily 35 

8-h average (MDA8) O3 concentrations increased at a rate of 3.3 ppb yr1 in NCP from 2013 to 2019, and reached 83 ppb by 36 

2019 (Li et al., 2020). Therefore, it is worth paying attention to the mid-to-long-term changes in O3 concentrations in China in 37 

the future. 38 

The projections of future climate or air quality rely on the future emission pathways under different socioeconomic 39 

scenario assumptions. Shared Socioeconomic Pathways (SSPs) are the state-of-the-art global emission scenarios, which 40 

combines socioeconomic and technological development with future climate radiative forcing outcomes  into a scenario matrix 41 

architecture (Gidden et al., 2019). Gidden et al. (2019) constructed nine scenarios of future emissions trajectories, including 42 

SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP3-LowNTCF, SSP4-3.4, SSP4-6.0, SSP5-3.4-Overshoot (OS), and SSP5-8.5. 43 

Among all scenarios, only the SSP1-1.9 scenario achieves net negative emissions of carbon dioxide (CO2) for China and the 44 

world by 2060 (Wang et al., 2023), and thus we defined it as the carbon neutrality scenario and applied in this work. The SSPs 45 

scenarios are used in Scenario Model Intercomparison Project (ScenarioMIP) in Coupled Model Intercomparison Projection 46 

Phase 6 (CMIP6) to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation 47 

(Gidden et al., 2019; Riahi et al., 2017). 48 

Future O3 concentrations depend on the future emissions. Shi et al. (2021) projected the O3 concentration changes in 49 

China over 2020-2060 with no changes in meteorological conditions based on the Chinese Academy of Environmental 50 

Planning Carbon and Air Quality Pathways (CAEP-CAP) for pursuing the carbon neutrality. The 90th percentile of daily 51 

maximum 8-h average (MDA8) O3 (90th MDA8 O3) in China reduced from 138 μg m-3
 in 2020 to 93 μg m-3 in 2060 (a 33% 52 

reduction in 90th MDA8 O3). Based on Ambitious-pollution-Neutral-goals scenario from the Dynamic Projection model for 53 

Emissions in China (DPEC), Xu et al. (2022) used a regional climate-chemistry-ecology model to assess the impacts of regional 54 

emission reductions in China with the goal of achieving carbon neutrality by 2060, and found that the national average annual 55 

O3 concentrations would decline by 35.6 μg m-3 over 2015-2060. Wang et al. (2023) reported by using the GEOS-Chem model 56 

that the O3 levels in Beijing-Tianjin-Hebei Region (BTH), Yangtze River Delta Region (YRD), Pearl River Delta Region 57 

(PRD), Sichuan Basin Region (SCB), and Fenwei Plain (FWP) under SSP1-1.9 scenario could meet the air quality standard 58 

by 2030, while those under SSP5-8.5 could not meet even by 2060. The 90th MDA8 O3 in BTH, YRD, PRD, SCB, and FWP 59 

during 2015-2060 would change by -27.3%, -27.6%, -33.1%, -33.1%, and -31.8% under SSP1-1.9 scenario, and by +8.6%, 60 

+7.6%, +5.2%, -0.5%, and +2.9% under SSP5-8.5 scenario (Wang et al., 2023), respectively. However, these studies did not 61 

examine the effects of future climate change on O3 concentrations.  62 

Future O3 concentrations also depend on future climate. Using the Weather Research and Forecasting Model with 63 

Chemistry (WRF-Chem) driven by Community Climate System Model version 3 (CCSM3), Liu et al. (2013) predicted that 64 

climate change caused a 1.6 ppb increase in surface O3 over South China in October 2000-2050 under the IPCC A1B scenario. 65 
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They showed that future elevated near-surface temperature (1.6 °C) and increased emissions of isoprene (5-55%) and 66 

monoterpenes (5-40%) would lead to increases in chemical production of O3. By using GEOS-Chem model driven by NASA 67 

Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the A1B scenario, Wang et al. (2013) 68 

reported that climate change would cause a 0.55 ppbv increase in annual mean surface O3 in EC over 2000-2050, in which 69 

more than 40% could be attributed to climate-induced increases in biogenic VOCs (BVOCs) emissions. Climate-induced 70 

increases in O3 levels over EC were most pronounced and spatially extensive in summer, with a summer-average of 1.7 ppbv 71 

and a maximum of 10 ppbv. By employing a combination of models, Hong et al. (2019) projected that warm-season (April-72 

September) averages of daily 1-h maximum O3 levels would increase by 2-8 ppb in most of EC from 2006-2010 to 2046-2050 73 

under the Representative Concentration Pathway 4.5 (RCP4.5), in which 14% could be attributable to increased future heat 74 

wave days. Based on sensitivity simulations from five CMIP6 models by fixing sea surface temperatures (SSTs) at present-75 

day or future conditions in the SSP3-7.0 scenario, Zanis et al. (2022) reported that the sensitivity of O3 to temperature would 76 

enhance in regions close to anthropogenic sources or BVOCs emission sources (e.g., southern EC), with the values ranging 77 

from 0.2 to 2 ppbv °C−1. However, the scenarios utilized in these studies were not the representative scenarios in China in the 78 

context of carbon neutrality. 79 

Few studies have examined the impacts of climate change under low-carbon or carbon-neutrality scenario. Li et al. (2023) 80 

showed that the annual mean surface O3 during 2025-2095 increased by 0-2 ppb over EC under the SSP1-2.6 scenario by using 81 

a machine learning (ML) model along with multi-source data, with reduced relative humidity and enhanced downward solar 82 

radiation in the future favouring photochemical formation of surface O3. Zhu et al. (2024) investigated the effects of global 83 

and regional SSTs changes on surface O3 levels in China during the warm season in 2050 (averaged over 2045-2054) based 84 

on global chemistry model simulations. They found that, compared with SSP5-8.5 scenario, future cooling of global ocean, 85 

North Pacific Oceans, and Southern Hemisphere oceans in SSP1-1.9 scenario would contribute to 0.79, 0.48, and 0.58 ppbv 86 

decreases in surface O3 concentrations over EC, respectively, as a result of the weakened chemical production and anomalous 87 

upward airflow. However, these studies did not quantify the impacts of the dominant meteorological parameters and processes. 88 

Climate change can influence tropospheric O3 through altering meteorological fields and meteorology-sensitive physical 89 

and chemical processes. Integrated process rate (IPR) analysis, multiple linear regression (MLR) model and Lindeman, 90 

Merenda, and Gold (LMG) method are widely used to examine the contributions of main processes and key meteorological 91 

parameters to O3 changes in China (Gong et al., 2022; Dang et al., 2021; Li et al., 2019). Liu et al. (2013) found that climate-92 

induced changes in boundary layer O3 budget were dominated by chemical processes, with gas-phase chemical reaction yield 93 

increasing by 3ppb h-1 in PRD over 2000-2050. The maximum increases in O3 by chemical process were located in areas with 94 

significant warming as well as high anthropogenic and biogenic emissions of precursors. By combining MLR model and LMG 95 

method, Dang et al. (2021) showed that higher temperature and anomalous southerlies were key meteorological contributors 96 

to summer O3 increases in NCP in 2017 relative to 2012, while weaker wind speeds and lower relative humidity were the key 97 

contributors in YRD. Gong et al. (2022) found by using the IPR analysis that net chemical production, diffusion, dry deposition, 98 
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horizontal advection and vertical advection during O3 pollution events in 2014-2017 changed by 3.3, -1.1, -0.4, -9.1 and 8.1 99 

Gg O3 d-1 in North China relative to the seasonal mean values. The positive effects of net chemical production and vertical 100 

advection were associated with a typical weather pattern characterized by high daily maximum temperatures, low relative 101 

humidity, anomalous southerlies and divergence in the low troposphere, and anomalous downward airflow from 500 hPa to 102 

the surface. However, to our knowledge, no study has combined these approaches to quantify the roles of key meteorological 103 

parameters and associated processes in climate-induced changes in tropospheric O3 levels in China under the carbon neutrality 104 

scenario. 105 

In this study, based on the version 2.0 of the Global Change and Air Pollution (GCAP 2.0) model framework, we examine 106 

the effects of 2010-2045 climate change on O3 levels in China under carbon neutrality scenario, focusing on the key 107 

meteorological parameters and processes for climate-induced O3 changes by using the stepwise MLR model, LMG method 108 

and IPR analysis. The observations and CMIP6 data, numerical models and experiments, and statistical analysis methods are 109 

given in Sect. 2. Section 3.1 shows GCAP 2.0 projected climate change over 2010-2045 and the comparisons with other six 110 

CMIP6 model projections. Simulated present-day O3 concentrations and model evaluation, and future tropospheric O3 changes 111 

driven by 2010-2045 climate change are presented in Sect. 3.2. Section 3.3 quantifies the key meteorological parameters and 112 

processes for climate-induced O3 changes. The climate-driven MDA8 O3 changes predicted by stepwise MLR model using 113 

climate outputs from CMIP6 models are shown in Sect. 3.4. Section 3.5 examines briefly the effects of emission change alone 114 

on O3 levels. The conclusions are presented in Sect. 4. 115 

2 Data and methods 116 

2.1 Observations 117 

The real-time monitoring air quality data released by the China National Environmental Monitoring Center (CNEMC) 118 

became operational in 2013. O3 concentrations are measured by the ultraviolet spectrophotometry method, following the China 119 

Environmental Protection Standards ‘HJ 654-2013’ 120 

(https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201308/W020130802491142354730.pdf). We used hourly O3 121 

concentrations at 1479 sites nationwide in 2015 and converted the data unit from micrograms per cubic meter (μg m-3) to parts 122 

per billion per volume (ppbv). Data quality control went through the following steps: (1) negative or missing values were 123 

removed; (2) MDA8 O3 concentration was calculated if there were at least 6 hours of valid data in each 8-hour period; (3) a 124 

site with more than 95% valid data in 2015 was retained (1047 sites after data quality control). For model evaluation, observed 125 

MDA8 O3 concentrations were averaged over sites within each of the 2° latitude by 2.5° longitude model grid cell (with a total 126 

of 118 grids). 127 

https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201308/W020130802491142354730.pdf
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2.2 Numerical models and experiments 128 

2.2.1 GCAP 2.0 model framework 129 

GCAP 2.0 model framework is a one-way offline coupling between the version E2.1 of the NASA Goddard Institute for 130 

Space Studies (GISS-E2.1) GCM and the global 3-D chemical transport model GEOS-Chem (Murray et al., 2021). Both the 131 

GISS-E2.1 GCM and the GEOS-Chem models have a horizontal resolution of 2° latitude by 2.5° longitude with 40 vertical 132 

layers extending from the surface to 0.1 hPa. 133 

GISS-E2.1 GCM participated in CMIP6 experiments was described in detail by Kelley et al. (2020) and Miller et al. 134 

(2021). GISS-E2.1 contributed several configurations to CMIP6, and Murray et al. (2021) used the atmosphere-only 135 

configuration with the prescribed sea surface temperatures to re-perform the simulation of “r1i1p1f2” variant label and 136 

archived the subdaily meteorological diagnostics necessary for driving GEOS-Chem, namely GCAP 2.0 meteorology. The 137 

GCAP 2.0 meteorology (http://atmos.earth.rochester.edu/input/gc/ExtData/GCAP2/CMIP6/) for driving GEOS-Chem model 138 

(version 13.2.1, http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_13.2.1) only covered the periods of the pre-139 

industrial era (1851-1860), the recent past (2001-2014), the near-future (2040-2049), and the end-of-the-century (2090-2099) 140 

for seven future scenarios. 141 

Version 13.2.1 of the GEOS-Chem model has Ox-NOx-hydrocarbon-aerosol tropospheric chemistry mechanism (Bey et 142 

al., 2001; Pye et al., 2009) with the updated stratospheric chemistry mechanism from NASA’s Global Modeling Initiative 143 

(GMI). Photolysis rates are calculated based on Fast-JX v7.0 scheme (Eastham et al., 2014). Aerosols influence tropospheric 144 

O3 through heterogeneous reactions and the changes in photolysis rates (Lou et al., 2014; Li et al., 2019). Dry deposition is 145 

computed using a resistance-in-series model (Wesely, 1989) with a number of modifications (Wang et al., 1998). Vertical 146 

mixing in planetary boundary layer (PBL) is calculated by a nonlocal scheme (Lin and Mcelroy, 2010). Cloud convection is 147 

parameterized as a single plume acting under the mean upward convective, entrainment, and detrainment mass for each level 148 

of a model column as archived from the GCM (Murray et al., 2021). 149 

2.2.2 Emissions 150 

Global anthropogenic and biomass burning emissions of pollutants are from the SSP1-1.9 inventory, which has a monthly 151 

temporal resolution and a 0.5° spatial resolution. The anthropogenic emissions in SSPs are from nine sectors (including 152 

agricultural, energy, industry, transportation, residential and commercial, solvents production and application, waste, 153 

international shipping, and aircraft), and the biomass burning emissions are from four sectors (including agricultural waste 154 

burning, forest burning, grassland burning, and peat burning) (Gidden et al., 2019). Future anthropogenic and biomass burning 155 

emission are obtained from the integrated assessment model (IAMs) results for each SSPs scenario after harmonization 156 

(enabling consistent transitions from the historical data used in CMIP6 to future trajectories) and downscaling (improving the 157 

spatial resolution of emissions) (Gidden et al., 2019). The impacts of future climate change on biomass burning emissions 158 

(including wild fire emissions) are not considered.  159 

http://atmos.earth.rochester.edu/input/gc/ExtData/GCAP2/CMIP6/
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_13.2.1
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The available emission years of SSPs inventory are 2015, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, and 2100. 160 

Therefore, corresponding to the mid-term climate change, we chose 2015 and 2050 emissions to represent the present-day and 161 

future emissions, respectively. Present-day (year 2015) and future (year 2050) anthropogenic and biomass burning emissions 162 

are given in Table 1. Year 2050 anthropogenic and biomass burning emissions are based on the SSP1-1.9 scenario of CMIP6 163 

experiments. The anthropogenic and biomass burning emissions of NOx, CO, and NMVOCs are 27.2, 161.8, and 24.8 Tg yr-1 164 

in EC in 2015, respectively, and are projected to decrease by 80.0%, 63.2%, and 70.0% in 2050 relative to 2015, respectively. 165 

These changes are larger than the decreases in global total emissions (64.1%, 52.3%, and 31.6%, respectively). The 166 

anthropogenic emissions of sulfur dioxide (SO2), organic carbon (OC), and black carbon (BC) are projected to decrease by 167 

95.3%, 67.1%, and 84.8% in EC, and by 79.9%, 69.1%, and 82.6% globally, respectively, while ammonia (NH3) emission 168 

remains stable. 169 

Table 1 also lists the climate-sensitive natural emissions, including lightning and soil emissions of NOx and biogenic 170 

emissions of VOCs which are calculated online based on the GCAP 2.0 meteorology. Lightning and soil emissions of NOx are 171 

calculated using the cloud-top height scheme of Price and Rind (1992) and the Berkeley-Dalhousie Soil NOx Parameterization 172 

(BDSNP) scheme developed by Hudman et al. (2012), respectively. Biogenic VOCs (BVOCs) emissions are computed using 173 

the Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN v2.1) (Guenther et al., 2012). In present-174 

day, the lightning and soil emissions of NOx and biogenic emissions of VOCs are 0.6, 1.1, and 16.0 Tg yr-1 in EC, respectively. 175 

Note that VOCs from the biogenic sources (16.0 Tg yr-1) are comparable to those from the anthropogenic emissions (24.4 Tg 176 

yr-1) in EC. Compared to 2015, lightning and soil emissions of NOx and the BVOCs emissions are predicted to increase by 177 

8.8%, 5.6 %, and 15.5% in EC, respectively. Changes in all natural emissions are calculated by using projected climate change, 178 

which are considered as the effects of climate change. 179 

Table 1. The annual anthropogenic, biomass burning, and natural emissions (Tg yr-1) for the present-day (year 2015) and the future 180 

(year 2050) under SSP1-1.9 scenario. The domain of eastern China (EC) is 21.00°-45.00° N, 106.25°-123.75° E. 181 

 
Global Eastern China 

2015 2050 Change (%) 2015 2050 Change (%) 

NOx Anthropogenic 119.82  36.27  -69.73  27.14  5.38  -80.18  

Biomass burning 13.74  11.72  -14.70  0.07  0.06  -14.29  

Lightning 20.25  21.13  4.35  0.57  0.62  8.77  

Soil 35.64  36.98  3.76  1.08  1.14  5.56  

CO Anthropogenic 608.00  188.74  -68.96  159.61  57.69  -63.86  

Biomass burning 328.44  258.18  -21.39  2.19  1.81  -17.35  

NMVOCs Anthropogenic 284.21  189.46  -33.34  24.41  7.14  -70.75  

Biomass burning 49.11  38.35  -21.91  0.34  0.28  -17.65  

Biogenic VOCs 941.17  1029.46  9.38  15.95  18.42  15.49  

SO2 Anthropogenic 98.63  19.87  -79.85  20.67  0.98  -95.26  
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Biomass burning 2.16  1.75  -18.98  0.02  0.01  -50.00  

NH3 Anthropogenic 61.34  61.73  0.64  7.65  7.71  0.78  

Biomass burning 3.91  2.97  -24.04  0.03  0.03  0.00  

OC Anthropogenic 19.59  6.05  -69.12  4.26  1.40  -67.14  

Biomass burning 15.23  11.34  -25.54  0.12  0.09  -25.00  

BC Anthropogenic 7.99  1.39  -82.60  2.10  0.32  -84.76  

Biomass burning 1.75  1.41  -19.43  0.01  0.01  0.00  

2.2.3 Numerical experiments 182 

The GCAP 2.0 meteorology are available for four time slices: pre-industrial era (1851-1860), recent past (2001-2014), 183 

near-future (2040-2049), and end-of-the-century (2090-2099). Considering the available GCAP 2.0 meteorology, 2005-2014 184 

meteorology is used to represent the present-day climate (2010), and 2040-2049 meteorology under SSP1-1.9 scenario is used 185 

to represent the future climate (2045). To examine the respective and combined effects of future changes in climate and 186 

emissions on surface O3 levels, four numerical experiments are set up (Table 2). The simulations of CpdEpd, CpdEfut, CfutEpd, 187 

and CfutEfut represent, respectively, O3 levels under present-day climate and emissions, present-day climate and future 188 

emissions, future climate and present-day emissions, and future climate and emissions. Therefore, (CfutEpd minus CpdEpd) 189 

or (CpdEfut minus CpdEpd) indicates the individual effect of climate change or emission change on O3 concentrations, and 190 

(CfutEfut minus CpdEpd) indicates the combined effect of climate and emission changes. To smooth out the noise of natural 191 

climate variabilities, each simulation is conducted for 10 years after a 1-year spin-up. Unless otherwise noted, all the results 192 

presented in this study are 10 yr averages of 2005-2014 or 2040-2049. 193 

Table 2. Experiment design. 194 

Description Meteorological fields Natural emissions Anthropogenic 

emissions 

Biomass burning 

emissions 

CpdEpd 2005-2014 2005-2014 2015 2015 

CpdEfut 2005-2014 2005-2014 2050 2050 

CfutEpd 2040-2049 2040-2049 2015 2015 

CfutEfut 2040-2049 2040-2049 2050 2050 

2.3 Statistical analysis methods 195 

2.3.1 Stepwise MLR model and LMG method 196 

To identify meteorological variables that have a significant effect on climate-induced MDA8 O3 changes, we applied 197 

stepwise multiple linear regression (MLR) model to relate 10 yr daily MDA8 O3 anomalies to 10 yr daily meteorological 198 



8 

 

parameter anomalies in the target region or each grid cell. The time series of 10 yr daily MDA8 O3 anomalies are obtained by 199 

(CfutEpd minus CpdEpd), and 10 yr daily meteorological parameter anomalies are obtained by subtracting 2005-2014 from 200 

2040-2049. Nine meteorological variables are considered in the MLR analysis (Table 3), including daily maximum 2-m 201 

temperature (T2max), relative humidity (RH), surface incoming shortwave radiation (SW), planet boundary layer height 202 

(PBLH), precipitation (PREC), sea level pressure (SLP), and 850 hPa wind fields (U850, V850, and WS850). We first 203 

correlated 10 yr daily MDA8 O3 anomalies with 10 yr daily meteorological parameter anomalies, and excluded meteorological 204 

variables that are not significantly correlated with MDA8 O3 at the 95% confidence level. We then performed collinearity 205 

statistics on the retained meteorological variables based on the variance inflation factor (VIF): the meteorological variable with 206 

the largest VIF was sequentially excluded until the VIFs of all meteorological variables were less than 10. After these steps, 207 

the reserved meteorological variables were read into the stepwise MLR model, which is in the following form (Li et al., 2019): 208 

𝑦 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑘
𝑁
𝑘=1 + 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 ,         (1) 209 

where 𝑦 is the daily MDA8 O3 anomalies, (𝑥1, …, 𝑥𝑁) are the 𝑁 meteorological variable screened by stepwise MLR model, 210 

and 𝛽𝑘 is the regression coefficient for the 𝑘-th meteorological variable. The adjusted coefficient of determination (R2_adj) of 211 

MLR equation represents the proportion of climate-induced MDA8 O3 changes that can be explained by the changes in key 212 

meteorological variables. 213 

We then used the Lindeman, Merenda, and Gold (LMG) method (Grömping, 2006) to quantify the relative contribution 214 

of each meteorological variable reserved in MLR equation. The LMG method decomposes the MLR model-explained total 215 

R2_adj into non-negative individual R2_adj contribution from each correlative regressor. 216 

Table 3. Meteorological variables considered in the statistical analysis. 217 

Abbreviation Description 

T2max Daily maximum 2-m temperature (K) a 

RH Relative humidity (%) b 

SW Surface incoming shortwave radiation (W m-2) a 

PBLH Planet boundary layer height (m) a 

PREC Precipitation (mm d-1) a 

SLP Sea level pressure (hPa) a 

U850 850 hPa zonal wind (m s-1) b 

V850 850 hPa meridional wind (m s-1) b 

WS850 850 hPa wind speed (m s-1) c 

a Temporal resolution is 1-hour 218 

b Temporal resolution is 3-hour 219 

c Calculated from the horizontal wind vectors (U850, V850) 220 
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2.3.2 IPR analysis 221 

Integrated process rate (IPR) analysis is used to quantify the contributions of climate-driven change in physical and 222 

chemical processes to O3 mass changes in different seasons in EC (21.00-45.00°N, 106.25-123.75°E). Five processes that 223 

influence O3 levels are investigated, including net chemical production, PBL mixing, dry deposition, cloud convection, and 224 

horizontal and vertical advection transport, which jointly determine the O3 mass balance. All of the processes are diagnosed at 225 

every timestep and then summed over each day. The contribution of each process was calculated following Eqs. (2) and (3) 226 

(Dang and Liao, 2019b): 227 

𝑃𝐶𝐷𝐼𝐹𝐹_𝑖 = 𝑃𝐶CfutEpd_𝑖 − 𝑃𝐶CpdEpd_𝑖 ,          (2) 228 

%𝑃𝐶𝐷𝐼𝐹𝐹_𝑖 =
𝑃𝐶𝐷𝐼𝐹𝐹_𝑖

∑ 𝑎𝑏𝑠(𝑃𝐶𝐷𝐼𝐹𝐹_𝑖)𝑛
𝑖

× 100% ,         (3) 229 

where 𝑛 is the number of processes (𝑛 = 5), 𝑃𝐶CpdEpd_𝑖 and 𝑃𝐶CfutEpd_𝑖 are the seasonal mean O3 mass by process 𝑖 from the 230 

CpdEpd and CfutEpd simulations, respectively, and 𝑃𝐶𝐷𝐼𝐹𝐹_𝑖  is the climate-driven change in O3 mass by process 𝑖. %𝑃𝐶𝐷𝐼𝐹𝐹_𝑖  231 

is the proportion of process 𝑖 in the total O3 mass change caused by all processes. Note that the sum of absolute values of 232 

%𝑃𝐶𝐷𝐼𝐹𝐹_𝑖 for all processes equals 100%. The IPR analysis method has been widely used in previous studies to identify the 233 

key processes that contribute to air pollution episodes (Gong and Liao, 2019; Dai et al., 2023; Dang and Liao, 2019b) or drive 234 

the interannual and decadal variations in air pollutants (Yang et al., 2022; Mu and Liao, 2014). 235 

2.4 CMIP6 data 236 

The projected climate change by GCAP 2.0 may have uncertainties. To identify the range of uncertainties of the effects 237 

of climate change on MDA8 O3, we downloaded multi-model results of monthly means of the meteorological variables 238 

consistent with those in Table 3 in present-day (2005-2014) and future (2040-2049) under SSP1-1.9 scenario from the CMIP6 239 

data repository (https://esgf-node.llnl.gov/search/cmip6/). Since only six climate models in CMIP6 can provide PBLH, we 240 

selected outputs with the “r1” variant label from these models (Table S1). Note that GISS-E2.1-G and GISS-E2.1-H are 241 

coupled models of the GISS-E2.1 atmospheric model with the GISS and HYCOM ocean models, respectively, while the GCAP 242 

2.0 (or GISS-E2.1) is the atmosphere-only model with the prescribed sea surface temperatures. We extracted the monthly 243 

values for 2005-2014 and 2040-2049 from the raw data and interpolated them into GCAP 2.0 resolution (2° × 2.5°) by bilinear 244 

interpolation. 245 

https://esgf-node.llnl.gov/search/cmip6/
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3 Results  246 

3.1 Projected future climate change over China 247 

3.1.1 Projected climate change over 2010-2045 by GCAP 2.0 248 

Figure 1 shows the projected 2010-2045 changes in seasonal mean T2max, RH, SW, PBLH, PREC, U850 and V850, and 249 

SLP in winter (December-January-February, DJF), spring (March-April-May, MAM), summer (June-July-August, JJA), and 250 

autumn (September-October-November, SON) over China by GCAP 2.0 (or GISS-E2.1 GCM) under SSP1-1.9 scenario. The 251 

projected T2max, SW, and PBLH generally increase over EC while RH generally decreases. Regionally, the maximum 252 

increases in T2max occur in the northeastern China in DJF (2.0-2.5 K). The NCP (green rectangle in Fig. 1) has the largest 253 

temperature increases in other seasons, with values of 2.0-2.5 K in MAM, 1.5-2.0 K in JJA, and 1.0-1.5 K in SON. RH has a 254 

decrease of 2-6% over northern China in MAM and JJA, and of 2-4% over southern China in SON. Changes in SW and PBLH 255 

have similar spatial distributions, both of which increase largely over northern China in MAM and JJA. Precipitation generally 256 

increases over southeastern China in DJF and SON, and decreases in northern China in MAM. With respect to atmospheric 257 

circulations, over the Northwestern Pacific Ocean, there is an anomalous high-pressure in DJF and an anomalous low-pressure 258 

in other seasons. As a result, over EC, anomalous southerlies prevail in DJF and anomalous northwesterlies/northerlies prevail 259 

in other seasons. 260 
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 261 

Figure 1. Projected 2010-2045 changes in seasonal mean (a) daily maximum 2-m air temperature (T2max, K), (b) surface relative 262 

humidity (RH, %), (c) surface incoming shortwave radiation (SW, W m-2), (d) planet boundary layer height (PBLH, m), (e) 263 

precipitation (PREC, mm d-1), and (f) wind fields at 850 hPa (arrows, m s-1) and sea level pressure (SLP, shades, hPa) by GCAP 2.0 264 

under SSP1-1.9 scenario. The dotted areas and red arrows represent a statistically significant difference at 95% confidence 265 

according to Student’s two sample t test. The black, green and blue rectangles in (a) indicate the domain of eastern China (EC, 21.00-266 

45.00°N, 106.25-123.75°E), North China Plain (NCP, 35.00-41.00°N, 113.75-118.75°E), and Yangtze River Delta (YRD, 29.00-33.00°N, 267 

118.75-123.75°E), respectively. 268 

3.1.2 Comparisons with projected climate change from other CMIP6 models 269 

The projected 2010-2045 changes in meteorological parameters (Table 3) under SSP1-1.9 scenario over EC by GCAP 270 

2.0 are compared with those from six other CMIP6 models in Fig. 2. Increases in T2max, SW, and PBLH throughout the year 271 

are robust features among all CMIP6 models. Most models projected reductions in RH and SLP and increases in PREC. 272 
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However, there are large model differences in winds at 850 hPa with inconsistent sign of changes. On a multi-model mean 273 

(MMM) basis, projected annual mean changes over EC in T2max, SW, PBLH, PREC, RH, and SLP are 1.4 K, 11.8 W m-2, 274 

30.6 m, 0.3 mm day-1, -0.7%, and -0.3 hPa, respectively. Consistent with the MMM, the GCAP 2.0 projections show overall 275 

increases in T2max, SW, PBLH, and PREC and decreases in RH and SLP, with the annual mean changes of 1.1 K, 7.3 W m-276 

2, 23.7 m, 0.03 mm day-1, -1.3%, and -0.3 hPa, respectively. Therefore, relative to the MMM, GCAP 2.0 underestimates the 277 

increases in T2max, SW, PBLH, and PREC and overestimates the decreases in RH. The uncertainties in simulated future O3 278 

caused by the uncertainties in future climate change will be quantified in Sect. 3.4. 279 

 280 

Figure 2. Comparisons of simulated 2010-2045 changes in seasonal and annual mean meteorological parameters over EC by GCAP 281 

2.0 with those by other six CMIP6 models under SSP1-1.9 scenario. Note that GISS-E2.1-G and GISS-E2.1-H are coupled models of 282 

the GISS-E2.1 atmospheric model with the GISS and HYCOM ocean models, respectively, while the GCAP 2.0 (or GISS-E2.1) is 283 

the atmosphere-only model with the prescribed sea surface temperatures. The multi-model mean (MMM) is calculated from the 284 

average of the six CMIP6 models. Different markers represent different models, black lines represent MMM, and red stars represent 285 

GCAP 2.0 results. 286 

3.2 Simulated present-day and future tropospheric O3 287 

3.2.1 Present-day tropospheric O3 and model evaluation 288 

Figure 3 shows simulated present-day MDA8 O3 concentrations from CpdEpd simulation and the observations in 2015 289 

from CNEMC. We use 2015 observations to evaluate the simulated present-day MDA8 O3 concentrations because emissions 290 

of year 2015 are used for present-day. Simulated MDA8 O3 concentrations in EC are highest in JJA (50-70 ppbv), followed 291 
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by MAM (35-55 ppbv), SON (30-50 ppbv), and DJF (10-45 ppbv). The model generally captures the spatial distributions of 292 

the observed seasonal mean MDA8 O3 levels over China, with spatial correlation coefficients (R) of 0.63, 0.12, 0.54, and 0.33 293 

in DJF, MAM, JJA, and SON, respectively. Dang and Liao (2019a) also reported a low spatial correlation coefficient (R of 294 

0.08) between observed and simulated seasonal mean O3 in China in MAM of 2014-2017, which was attributed to the negative 295 

biases in NCP and YRD whereas the positive biases outside these two regions. The model overestimates MDA8 O3 296 

concentrations in China, with normalized mean biases (NMBs) of 7.1-18.6% in different seasons. Figure S1 shows monthly 297 

variations in simulated and observed MDA8 O3 levels over EC, NCP, and YRD. Both observed and simulated monthly mean 298 

MDA8 O3 concentrations are high during warm months (April-September) in these three regions. The NMBs in EC, NCP, and 299 

YRD are 11.1%, -12.8% and -0.9%, respectively, which is consistent with results of Dang and Liao (2019a). The scattering 300 

plots of model results vs. observations for grids in these three regions show correlation coefficients (R) of 0.76 to 0.94 when 301 

all of the year 2015 data are considered. 302 

 303 

Figure 3. Spatial distributions of observed (CNEMC, circles) and simulated (CpdEpd, shades) seasonal mean MDA8 O3 304 

concentrations (ppbv) in 2015. Observed (OBS) and simulated (MOD) values that averaged over 118 grids, and their spatial 305 

correlation coefficients (R) and normalized mean biases (NMB) are also shown at the bottom right corner of each panel. 306 

3.2.2 Future changes in tropospheric O3 driven by climate change 307 

Figure 4a shows future changes in seasonal mean MDA8 O3 concentrations due to climate change (CfutEpd minus 308 

CpdEpd). Climate change alone causes large increases in MDA8 O3 values over EC in MAM and JJA, and the maximum value 309 
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reaching 7.6 ppbv in NCP in JJA. In DJF, MAM, JJA, and SON, the regional and seasonal mean MDA8 O3 values increase by 310 

0.5 (1.5%), 1.3 (2.7%), 2.3 (3.9%), and 0.4 ppbv (1.0%) in EC, by 0.4 (2.0%), 2.8 (6.7%), 4.7 (7.3%), and 1.5 ppbv (4.6%) in 311 

NCP, and by 1.1 (3.5%), 1.7 (3.3%), 3.0 (5.1%), and 0.3 ppbv (0.6%) in YRD, respectively. Our results are lower than the 312 

recent study by Bhattarai et al. (2024), who reported that climate change alone could lead to an increase of 5-15 ppbv in JJA 313 

MDA8 O3 levels in EC over 2010-2050 under SSP1-2.6 scenario by using Community Earth System Model (CESM) and 314 

Community Atmospheric Model version 4 with chemistry (CAM4-chem). 315 

 316 

Figure 4. Predicted future changes in seasonal mean MDA8 O3 concentrations (ppbv) due to (a) climate change alone (CfutEpd 317 

minus CpdEpd), (b) emission change alone (CpdEfut minus CpdEpd), and (c) combined climate and emission changes (CfutEfut 318 

minus CpdEpd) under SSP1-1.9 scenario. The black, green and blue rectangles indicate the domain of EC, NCP, and YRD, 319 

respectively. The dotted areas represent a statistically significant difference at the 95% level according to Student’s two sample t 320 

test. The values at the top right of each panel are the regional mean values of EC, NCP, and YRD, respectively. 321 

The pressure-latitude cross sections of climate-driven seasonal mean O3 changes from the surface to 500 hPa for EC, 322 

NCP, and YRD are shown in Fig. 5. Vertically, O3 increases of exceeding 1 ppbv extend from the surface to 500 hPa altitude 323 
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over the three regions in JJA. The maximum O3 increases of 4-5 ppbv in NCP occur both at the surface and around 850 hPa, 324 

and those of 3-5 ppbv in the YRD occur between 930 and 736 hPa. The O3 increases over EC is large below 700 hPa over 25-325 

41°N, and the location of high values shifts from north to south with altitude, which is dominated by the pattern of NCP. In 326 

other seasons, the O3 increases of 1-3 ppbv are generally near the surface. 327 

 328 

Figure 5. The pressure-latitude cross sections of climate-driven seasonal mean O3 changes (ppbv) averaged over the longitudes of (a) 329 

106.25-123.75°E for EC, (b) 113.75-118.75°E for NCP, and (c) 118.75-123.75°E for YRD. 330 

3.3 Key meteorological parameters and processes for climate-induced O3 changes 331 

3.3.1 Key meteorological parameters for climate-induced MDA8 O3 changes 332 

For climate-induced changes in MDA8 O3, the stepwise MLR model is used to identify key meteorological variables that 333 

have statistically significant effect on MDA8 O3, and the obtained R2_adj represents the proportion of climate-induced MDA8 334 

O3 changes that can be explained by the changes in these key meteorological variables retained in MLR equation. Then, the 335 

LMG method decomposes the MLR model-explained total R2_adj and get the relative contribution of each meteorological 336 

variable. 337 
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Table 4 shows the MLR equations between the daily anomalies of MDA8 O3 and daily anomalies of meteorological 338 

variables over EC for each season. The daily anomalies of both MDA8 O3 and meteorological variables are 10 yr daily values, 339 

which were derived from (CfutEpd minus CpdEpd) and ((2040-2049) minus (2005-2014)), respectively. For each key 340 

meteorological variable, the positive or negative regression coefficient represents statistically significant positive or negative 341 

effect of this variable on MDA8 O3 concentrations. The R2_adj of the MLR equations are 0.76, 0.74, 0.58, and 0.76 in DJF, 342 

MAM, JJA, and SON, respectively, indicating 76%, 74%, 58%, and 76% of the climate-induced changes in MDA8 O3 can be 343 

explained by the changes in the key meteorological variables retained in MLR equations. Figure 6 shows LMG decomposed 344 

contribution of each key meteorological variable in fitting climate-driven MDA8 O3 changes over EC. The top three important 345 

meteorological variables are T2max, SW, and RH, with the total contributions of 71.2% (T2max + SW + RH) in DJF, 78.2% 346 

(T2max + SW + RH) in MAM, 70.1% (SW + RH + T2max) in JJA, and 49.9% (T2max + RH) in SON. PBLH is also a major 347 

meteorological variable with the contributions of 9.6-24.5% in different seasons. The total contributions of the circulation 348 

changes are 13.4% (SLP + WS850 + V850), 9.8% (V850 + U850), 11.4% (WS850 + V850 + SLP), and 9.5% (SLP + V850 + 349 

WS850) in DJF, MAM, JJA, and SON, respectively. 350 

Table 4. Stepwise multiple linear regression (MLR) equations between the daily anomalies of MDA8 O3 (CfutEpd minus CpdEpd) 351 

and daily anomalies of meteorological parameters ((2040-2049) minus (2005-2014)) in EC. All the regression coefficients shown in 352 

the equations passed the t-test of significance at 0.05 level.  353 

Season  Stepwise MLR equation Adjusted coefficients of 

determination (R2_adj) 

DJF MDA8 O3 = -0.807 + 0.050*SW + 0.596*T2max + 0.016*PBLH + 0.247*PREC 

+ 0.111*V850 + 0.066*SLP + 0.124*WS850 – 0.058*RH  

0.76 

MAM MDA8 O3 = -0.599 + 0.034*SW + 0.845*T2max + 0.324*V850 + 0.011*PBLH 

– 0.111*RH – 0.138*U850 

0.74 

JJA MDA8 O3 = 0.451 + 0.067*SW + 0.530*T2max + 0.552*V850 – 0.219*RH – 

0.739*WS850 + 0.012*PBLH – 0.122*SLP  

0.58 

SON MDA8 O3 = -1.183 – 0.076*RH + 1.303*T2max + 0.035*PBLH – 0.370*WS850 

+ 0.151*V850 – 0.134*PREC + 0.066*SLP  

0.76 
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 354 

Figure 6. The LMG decomposed contribution (%) of each meteorological variable screened by stepwise MLR model in fitting 355 

climate-driven MDA8 O3 changes over EC. See Table 3 for the meanings of the abbreviations of meteorological variables.  356 

Large-scale regional average could obscure local characteristics, so we further conducted MLR and LMG analysis on 357 

each grid cell to identify the first and second most important meteorological parameters (hereafter called “1st MET” and “2nd 358 

MET”) in China as shown in Fig. 7. In DJF, the 1st MET is T2max in southern EC and is SW or PBLH in northern EC, which 359 

has the relative contributions of 30-70% from LMG analyses. In JJA, the 1st MET is T2max in most parts of northern EC (north 360 

of 36N), SW in most parts of central EC (26-36N), Beijing, and Tianjin, and RH and WS850 in southern EC (south of 26N). 361 

In the corresponding areas, T2max and SW have relative contributions of 30-70% and RH has relative contributions of 10-362 

30%. The regional heterogeneity of the 2nd MET increases compared to the 1st MET. In DJF, the 2nd MET is RH in northern 363 

EC and SW in southern EC, with relative contributions of 10-30%. In JJA, the 2nd MET is mainly SW or T2max in northern 364 

EC and RH or WS850 in southern EC. The relative contribution of 2nd MET (SW or T2max) in central EC can have relative 365 

contributions of 30-50% in JJA. In summary, the key meteorological parameters for climate-induced MDA8 O3 changes are 366 

not only temperature, but also SW, RH, and PBLH, depending on locations and seasons. 367 
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 368 

Figure 7. The (a) 1st and (b) 2nd important meteorological parameters (1st MET and 2nd MET, respectively) for climate-induced 369 

MDA8 O3 changes in China and their relative contributions in DJF and JJA., All 1st MET and 2nd MET in each 2° × 2.5° grid cell 370 

are statistically significantly correlated with MDA8 O3
 (p < 0.05). The overlaid fill patterns represent the relative contribution of the 371 

meteorological variable at this grid. 372 

3.3.2 Key processes for climate-induced O3 changes 373 

We performed IPR analysis to understand the intrinsic mechanism of the impact of climate change on O3 in EC. Figure 8 374 

show the vertical profiles of present-day seasonal mean O3 mass and climate-driven O3 mass changes of five processes (net 375 

chemical production, PBL mixing, dry deposition, cloud convection, and horizontal and vertical advection transport) in EC. 376 

Since surface O3 concentrations are determined by the processes within the boundary layer (Gong and Liao, 2019), we also 377 

listed in Table 5 the present-day O3 budget of five processes in EC within the boundary layer and the climate-driven O3 budget 378 

changes by each process. 379 

In present-day (Fig. 8a), net chemical production is negative at the surface due to the O3 titration effect by abundant NOx 380 

and is positive in the upper levels due to the decreases in NOx concentrations and the strong solar radiation (Gong and Liao, 381 

2019). PBL mixing refers to O3 mass fluxes by turbulence within the boundary layer, which transports O3 based on the 382 

concentration gradient. Since O3 concentrations are higher in the upper boundary layers than at the surface (Fig. S2), PBL 383 

mixing leads to the decreases in O3 in upper layers (950 to 800 hPa) and increases in surface-layer O3 levels. Dry deposition 384 

occurs only at the surface, with the values of -122.1 to -37.5 Gg d-1 in different seasons. Cloud convection process in GEOS-385 
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Chem model describes the redistribution of species concentrations due to upward convection inside the cumulus and 386 

subsidence outside the cumulus. Cloud convection has a large positive value below 950 hPa in all seasons due to the frequent 387 

non-precipitation shallow convection in GISS-E2.1 (Wu et al., 2007; Miller et al., 2021) and higher O3 concentrations above 388 

950 hPa. Horizontal and vertical advection below 850 hPa is positive in DJF and negative in other seasons. For the present-389 

day O3 budget within the boundary layer (Table 5, 𝑃𝐶𝐶𝑝𝑑𝐸𝑝𝑑), net chemical production is the dominant process that contributes 390 

to O3 budget in JJA, MAM, and SON, with the values of 136.3, 56.5, 37.6 Gg d-1, respectively. Cloud convection has 391 

contributions of 11.0-34.4 Gg d-1 to O3 budget. The horizontal and vertical advection is 0.4 Gg d-1 in DJF and -23.8 to -2.7 Gg 392 

d-1 in other seasons. 393 

Under the impact of climate change (Fig. 8b), net chemical production exhibits distinct increases below 850 hPa in all 394 

seasons, especially in MAM and JJA. Increases in T2max and SW (Figs. 1a and c) result in increases in BVOC emission rates 395 

by 0.4-2.9 10-11 kg m-2 s-1 (Fig. S3) and in photochemical reaction rates, while decreases in RH (Fig. 1b) result in decreases in 396 

O3 destruction (Gong and Liao, 2019), which together promote the net chemical production of O3. Increase in surface O3 mass 397 

by PBL mixing indicates that more O3 enters the boundary layer and mixes to the surface as a result of increased PBLH (Fig. 398 

1d). The importance of chemical process and PBL mixing corresponds well with the 1st and 2nd MET shown in Fig. 7. Dry 399 

deposition removes more O3 due to the increases in net chemical production of O3. Cloud convection increases near-surface 400 

O3 mass in DJF and MAM but decreases those in JJA. Changes in horizontal and vertical advection reduce O3 mass in EC at 401 

layers below 850 hPa. Anomalous low pressure over EC in DJF indicates the presence of anomalous upward advection (Fig. 402 

1f). Anomalous northwesterlies over northern China in other seasons obstruct the northward transport of BVOCs from southern 403 

China and promote the outflow of O3 and its precursors from EC. Circulation changes have an important effect on JJA O3 404 

concentrations, which are also confirmed by the 1st and 2nd MET (RH or WS850) in southern EC (Fig. 7). 405 

 406 

Figure 8. (a) Vertical profile of seasonal mean O3 mass (Gg d-1) by five processes (bottom axis: net chemical production (Chem), 407 

PBL mixing (PBL), dry deposition (Ddep), cloud convection (Cloud_conv), and horizontal and vertical advection (Trans_adv)) over 408 
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EC in present-day (CpdEpd), and (b) the climate-driven changes in seasonal mean O3 mass of each process (CfutEpd minus CpdEpd). 409 

All the panels have the same vertical axis in hPa. 410 

The sums of the climate-driven O3 mass changes by all processes in EC are 0.6, 2.5, 6.5, and 1.7 Gg d-1 in DJF, MAM, 411 

JJA, and SON, respectively (Table 5, 𝑃𝐶𝐷𝐼𝐹𝐹), which are consistent with the seasonal variations in climate-induced MDA8 O3 412 

(Fig. 4). The net chemical production, dry deposition, and horizontal and vertical advection change by 3.3 to 16.4, -9.3 to -1.0, 413 

and -4.3 to -0.8 Gg d-1 in different seasons, respectively. The cloud convection increases by 1.5 Gg d-1 in DJF and MAM and 414 

decrease by 1.0 Gg d-1 in JJA. Considering the relative contributions of individual processes (Table5, %𝑃𝐶𝐷𝐼𝐹𝐹), net chemical 415 

production is the most important process contributing to the increases of O3 mass in all seasons, with the relative contribution 416 

of 34.0-62.5%. Horizontal and vertical advection in JJA (-16.6%) or dry deposition in other seasons (-37.9% to -13.7%) is the 417 

major process that reduces O3 mass as the O3 mass increases from chemical reactions. 418 

Table 5. Seasonal mean O3 budgets (Gg d-1) within the boundary layer over EC in CpdEpd (𝑷𝑪𝑪𝒑𝒅𝑬𝒑𝒅) and CfutEpd (𝑷𝑪𝑪𝒇𝒖𝒕𝑬𝒑𝒅). 419 

The climate-driven O3 budget changes of five process (𝑷𝑪𝑫𝑰𝑭𝑭), and the relative contribution of each process to the total O3 mass 420 

changes (%𝑷𝑪𝑫𝑰𝑭𝑭, %) are also listed, following Eqs. (2) and (3) described in Sect. 2.3.2. 421 

Season 
 

Chemistry PBL 

mixing 

Dry 

deposition 

Cloud 

convection 

Advection 

transport 

Total 

DJF  𝑃𝐶𝐶𝑝𝑑𝐸𝑝𝑑  -12.02  47.58  -37.46  11.01  0.39  9.50  

𝑃𝐶𝐶𝑓𝑢𝑡𝐸𝑝𝑑 -8.74  47.93  -41.11  12.52  -0.46  10.13  

𝑃𝐶𝐷𝐼𝐹𝐹 3.28  0.34  -3.65  1.51  -0.85  0.64  

%𝑃𝐶𝐷𝐼𝐹𝐹 34.04  3.56  -37.88  15.71  -8.80  / 

MAM 𝑃𝐶𝐶𝑝𝑑𝐸𝑝𝑑 56.48  50.39  -80.71  25.83  -11.43  40.56  

𝑃𝐶𝐶𝑓𝑢𝑡𝐸𝑝𝑑 68.13  50.84  -89.96  27.37  -13.35  43.03  

𝑃𝐶𝐷𝐼𝐹𝐹 11.65  0.45  -9.25  1.54  -1.92  2.47  

%𝑃𝐶𝐷𝐼𝐹𝐹 46.95  1.81  -37.28  6.21  -7.75  / 

JJA 𝑃𝐶𝐶𝑝𝑑𝐸𝑝𝑑 136.26  35.23  -122.07  34.37  -23.78  60.01  

𝑃𝐶𝐶𝑓𝑢𝑡𝐸𝑝𝑑 152.61  34.75  -126.09  33.41  -28.13  66.55  

𝑃𝐶𝐷𝐼𝐹𝐹 16.35  -0.48  -4.03  -0.96  -4.34  6.54  

%𝑃𝐶𝐷𝐼𝐹𝐹 62.49  -1.84  -15.39  -3.67  -16.59  / 

SON 𝑃𝐶𝐶𝑝𝑑𝐸𝑝𝑑 37.58  41.58  -73.96  22.75  -2.71  25.23  

𝑃𝐶𝐶𝑓𝑢𝑡𝐸𝑝𝑑 41.99  40.61  -74.95  22.82  -3.50  26.97  

𝑃𝐶𝐷𝐼𝐹𝐹 4.42  -0.97  -0.99  0.07  -0.79  1.74  

%𝑃𝐶𝐷𝐼𝐹𝐹 61.02  -13.45  -13.65  0.97  -10.90  /  
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3.4 Projections of climate-driven MDA8 O3 changes from the CMIP6 models 422 

In Sect. 3.3.1, we applied the stepwise MLR model to relate 10 yr daily MDA8 O3 anomalies to 10 yr daily meteorological 423 

parameter anomalies at each grid cell and obtained the corresponding MLR equation. The climate-driven seasonal mean MDA8 424 

O3 concentration changes projected by stepwise MLR model at each grid cell can be obtained by substituting the corresponding 425 

seasonal mean meteorological parameter anomalies of GCAP 2.0 into the regression equations obtained by daily anomalies 426 

above, which will be referred to as Dev_MLR_MDA8 hereafter. The Dev_MLR_MDA8 values for a target region are then 427 

obtained by averaging over all the grid cells in the region. We selected EC, NCP, and YRD as the target regions in this study. 428 

Figures 9a-c evaluate the seasonal and annual mean Dev_MLR_MDA8 values averaged over EC, NCP, and YRD by 429 

comparing them with the simulated values by GCAP 2.0 (hereafter called Dev_GCAP2_MDA8). The seasonal and annual 430 

mean values of Dev_MLR_MDA8 and Dev_GCAP2_MDA8 are exactly the same, with the R value of 1.0 and the NMB value 431 

of 0.0% in all three regions. In China, the spatial distributions and magnitudes of the seasonal mean Dev_MLR_MDA8 values 432 

are consistent with the seasonal mean Dev_GCAP2_MDA8 values (Fig. S4), with high pattern correlation coefficients of 1.0 433 

in four seasons, indicating that it is feasible to predict climate-driven MDA8 O3 concentration changes by stepwise MLR model. 434 

Therefore, we input the corresponding seasonal mean meteorological parameter anomalies from the six CMIP6 models into 435 

the regression equations to obtain multi-model projections of climate-induced MDA8 O3 changes under carbon neutrality 436 

scenario. 437 

Figures 9d-f shows the climate-driven seasonal and annual mean MDA8 O3 changes averaged over EC, NCP, and YRD 438 

regions predicted by stepwise MLR model using meteorology anomalies from the GCAP 2.0 and other six CMIP6 models 439 

under SSP1-1.9 scenario. The Dev_MLR_MDA8 values of GCAP 2.0 and all six CMIP6 models are positive throughout the 440 

year in all three regions, indicating that climate change will increase MDA8 O3 concentrations over polluted regions in China 441 

even under carbon neutrality scenario. Similar to the GCAP 2.0 results, the Dev_MLR_MDA8 values of all six CMIP6 models 442 

in the three regions are much larger in JJA than in other seasons, with the values in the range of 2.9-4.2, 6.5-9.4, and 3.3-8.5 443 

ppbv in EC, NCP, and YRD, respectively. In JJA, the Dev_MLR_MDA8 values of MMM (average of six CMIP6 models) are 444 

3.5, 7.5, and 5.1 ppbv in EC, NCP, and YRD, respectively, higher than the Dev_MLR_MDA8 values of GCAP 2.0 of 2.3, 4.7, 445 

and 3.0 pbbv, respectively. In other seasons, the Dev_MLR_MDA8 values of MMM are in the range of 0.9-1.4, 1.2-2.3, and 446 

1.2-2.2 ppbv in EC, NCP, and YRD, respectively, and the Dev_MLR_MDA8 values of GCAP 2.0 are in the range of 0.4-1.3, 447 

0.4-2.8, and 0.3-1.7 pbbv, respectively. Overall, the Dev_MLR_MDA8 values of GCAP 2.0 tend to be in the lower end of the 448 

multi-model projection results, especially in JJA. The spatial distributions of climate-driven changes in annual mean MDA8 449 

O3 concentrations from GCAP 2.0 and the other six CMIP6 models are shown in Fig. S5. The climate-induced increases in 450 

annual mean MDA8 O3 predicted by all models are mainly concentrated in central and northern EC. In NCP and its surrounding 451 

areas, while the maximum increases in annual mean MDA8 O3 concentrations were simulated to be 2-4 ppbv from GCAP 2.0, 452 

the values were 4-8 ppbv from four of the six CMIP6 models. 453 



22 

 

 454 

Figure 9. (a)-(c) The scatterplot of climate-induced MDA8 O3 changes (ppbv) simulated by GCAP 2.0 (Dev_GCAP2_MDA8) versus 455 

those projected by MLR model (Dev_MLR_MDA8) in EC, NCP, and YRD regions. The correlation coefficient (R), normalized mean 456 

biases (NMB), and linear fit (grey solid line and equation) are also shown. (d)-(f) The climate-driven seasonal and annual mean 457 

MDA8 O3 concentration changes (ppbv) projected by MLR model using the climate outputs from GCAP 2.0 and six CMIP6 models 458 

under SSP1-1.9 scenario. The multi-model mean (MMM) is calculated from the average of the six CMIP6 models. Different markers 459 

represent different models, black lines represent MMM, and red stars represent GCAP 2.0 results. 460 

3.5 Future changes in tropospheric O3 driven by changes in anthropogenic emissions 461 

We show large impact of climate change on tropospheric O3 in previous sections, so it is of interest to examine briefly the 462 

effects of emission changes on surface O3 levels (CpdEfut minus CpdEpd) under carbon neutrality scenario as shown in Fig. 463 

4b. Emission change alone leads to decreases in MDA8 O3 concentrations of 0.5 (1.6%), 8.0 (16.7%), 15.8 (27.1%), and 7.0 464 

ppbv (16.5%) over EC in DJF, MAM, JJA, and SON, respectively. Although the regional mean MDA8 O3 concentrations in 465 

EC decrease in all seasons, the nationwide decreases in MDA8 O3 concentration occur only in JJA. In other seasons, MDA8 466 

O3 concentrations in northern China increase owing to changes in anthropogenic emissions, with the maximum increases of 8-467 

12 ppbv in DJF. The regional mean MDA8 O3 concentrations in NCP increase by 6.7 (34.3%) in DJF and 2.2 ppbv (6.7%) in 468 

SON, and those in YRD increase by 3.0 ppbv (9.5%) in DJF. 469 

The increases in MDA8 O3 concentrations by changes in anthropogenic emissions under carbon neutrality scenario can 470 

be explained by O3 formation regime. Figure 10 shows the present-day seasonal mean formaldehyde nitrogen ratio (FNR), 471 

which was introduced by Jin and Holloway (2015) to show O3 sensitivity to its precursors (see S1 in Supplementary Material). 472 

In DJF, FNR values in eastern China are lower than 1, indicating a general VOC-limited regime. In MAM and SON, the VOC-473 

limited regime shrinks toward the North China, and South China is in the NOx-limited (FNR values exceeding 2) or transitional 474 

(FNR values between 1 and 2) regime. In JJA, most of China is in the NOx-limited regime, while the NCP region is still in the 475 

VOC-limited or transitional regime. Although the anthropogenic emissions of VOCs and NOx in NCP decrease largely (70-476 
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90%) under SSP1-1.9 scenario (Fig. S6), MDA8 O3 concentrations in this region increase in the future in DJF, MAM, and 477 

SON because NCP is in the VOC-limited regime. 478 

Overall, considering the combined effects of climate change and emission change (CfutEfut minus CpdEpd) (Fig. 4c), 479 

the spatial distributions and magnitudes of MDA8 O3 changes are similar to those considering the emission changes alone (Fig. 480 

4b), indicating that future MDA8 O3 concentrations are dominated by emission changes. However, the effects of climate 481 

penalty (0.5-2.3, 0.4-4.7, and 0.3-3.0 ppbv in EC, NCP, and YRD, respectively) cannot be ignored. Note that the sum of the 482 

individual effects of climate (Fig. 4a) and emissions (Fig. 4b) is not equal to the combined effects (Fig. 4c) due to the nonlinear 483 

relationship between the simulations (Dang et al., 2021). Additionally, it is worth noting that changes in both climate and 484 

emissions lead to increases in MDA8 O3 in DJF and SON over NCP and in DJF over YRD, calling for more attention to these 485 

regions in future O3 pollution control strategies. 486 

 487 

Figure 10. Distributions of seasonal mean tropospheric columns of (a) nitrogen dioxide (NO2) and (b) formaldehyde (HCHO) (1015 488 

molec cm-2), and (c) formaldehyde nitrogen ratio (FNR) in present-day. 489 

4 Conclusions 490 

In this study, we quantify the effects of climate changes over 2010-2045 on O3 levels in China under carbon neutrality 491 

scenario (SSP1-1.9 scenario), focusing on the key meteorological parameters and processes for understanding the climate-492 

induced O3 changes by using the GCAP 2.0, stepwise MLR model, LMG method, and IPR analysis. The uncertainties in future 493 

O3 levels resulted from the uncertainties in simulated future climate are also quantified by using outputs of climate from CMIP6 494 

models. 495 
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Under carbon neutrality scenario, over EC, GCAP 2.0 and all six CMIP6 models project the increases in T2max, SW, 496 

and PBLH in all seasons, and most models project reductions in RH and SLP and increases in PREC. Projected annual mean 497 

changes over EC in T2max, SW, PBLH, PREC, RH, and SLP are, respectively, 1.4 K, 11.8 W m-2, 30.6 m, 0.3 mm day-1, -498 

0.7%, and -0.3 hPa on a multi-model mean (MMM) basis and 1.1 K, 7.3 W m-2, 23.7 m, 0.03 mm day-1, -1.3%, and -0.3 hPa 499 

from GCAP 2.0. Relative to the MMM, GCAP 2.0 underestimates the increases in T2max, SW, PBLH, and PREC and 500 

overestimates the decreases in RH. 501 

The GCAP 2.0 model generally reproduces the spatial distribution and magnitude of observed seasonal mean MDA8 O3 502 

concentrations, with R values of 0.12-0.63 and NMB values of 7.1-18.6% in different seasons. Climate change over 2010-503 

2045 under the carbon neutrality scenario is simulated by GCAP 2.0 to increase the regional mean MDA8 O3 concentrations 504 

by 0.4-2.3 ppbv (1.0-3.9%) over EC, 0.4-4.7 ppbv (2.0-7.3%) over NCP, and 0.3-3.0 ppbv (0.6-5.1%) over YRD in different 505 

seasons, with the maximum increases in JJA. By using the stepwise MLR model, we find that changes in the key meteorological 506 

variables retained in MLR equations can explain 58-76% of the climate-driven MDA8 O3 concentration changes over EC. By 507 

using the LMG method, we find that the most important meteorological parameters for climate-induced MDA8 O3 changes 508 

are not only temperature, but also SW, RH, and PBLH, depending on locations and seasons. Corresponding to these changes 509 

in meteorological parameters, IPR analysis shows that net chemical production (accounting for 34.0-62.5% of total O3 mass 510 

change caused by all processes within the boundary layer) is the most important process contributing to the climate-induced 511 

increases of O3 mass in all seasons. Horizontal and vertical advection in JJA (-16.6%) or dry deposition in other seasons (-512 

37.9% to -13.7%) is the major process that reduces O3 mass. 513 

Under carbon neutrality scenario, future MDA8 O3 concentration changes in EC are dominated by changes in 514 

anthropogenic emissions (decrease by 0.5-15.8 ppbv), however, the effects of climate penalty (increase by 0.5-2.3 ppbv from 515 

GCAP 2.0) cannot be ignored. Both climate changes and emission changes increase MDA8 O3 values in DJF and SON over 516 

NCP and in DJF over YRD, indicating that these regions require more attention in future O3 pollution control. 517 

The estimate of the effect of climate change on O3 pollution by using a single model GCAP 2.0 may have uncertainties. 518 

Therefore, we also obtain the multi-model projection results of future MDA8 O3 changes driven by 2010-2045 climate change 519 

under carbon neutrality scenario by using stepwise MLR model. In JJA, six CMIP6 models project increases in MDA8 O3 520 

ranging from 2.9-4.2, 6.5-9.4, and 3.3-8.5 ppbv in EC, NCP, and YRD, respectively, indicating that GCAP 2.0 results (2.3, 521 

4.7, and 3.0 pbbv) are in the lower end of the multi-model projections. Additionally, MDA8 O3 concentrations increase by 522 

changes in anthropogenic emissions in the future in DJF, MAM, and SON despite the large reductions in NOx and VOCs (70-523 

90%) in North China (Fig. S6) under SSP1-1.9 scenario, indicating an urgent need to find appropriate emission reduction ratios 524 

of VOCs and NOx based on O3 sensitivity to precursors and to climate for effective future O3 pollution control in China. 525 
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