Supplementary materials to "The importance of an informed choice of CO₂-equivalence metrics for contrail avoidance" (Borella et al., 2024)

Illustrative case studies of contrail avoidance

5 This section uses illustrative case studies to clarify Figure 4 and explain the behaviour of CO_2 equivalence metrics for different magnitudes of $EF_{contrail}$. The median flight of Section 3 (2450 km, 53 tons of CO_2) is again considered, and we again assume that it is possible to reroute the flight to avoid forming the persistent contrail with a 1% increase in the CO_2 emissions of the original flight.

Figure S1 illustrates the change in climate impact caused by such a rerouting for two different contrails. In both cases, the

- 10 climate impact is quantified by combining AGWP, AGTP, or ATR with time horizons ranging from 1 to 100 years. Rerouting is assumed to have been successful with persistent contrail formation being completely avoided, although it should be noted that this assumption is overly optimistic and cannot be currently guaranteed in any realistic setting. The change in climate impact is quantified as the relative difference between the value of the metric for the rerouted flight and that of the original, contrail-forming flight. A negative relative difference indicates that rerouting provides a net climate
- 15 benefit for the considered metric: the rerouted flight exerts a weaker radiative forcing (for AGWP) or a smaller temperature change (for AGTP and ATR) than the original flight. Conversely, a positive relative difference indicates that rerouting has made the net climate impact of the flight worse.

The first case, shown in Figure S1(a), corresponds to the formation of a high-energy contrail, with an energy input to the climate system of 2.8×10^{11} J km⁻¹ applied to the 2450 km of the flight. That is ten times the energy of the median contrail

- 20 energy forcing in the dataset, and only 10% of North Atlantic flights input more average contrail energy per kilometre. The decision making in this situation is easy: rerouting would yield a climate benefit, which would persist even with much larger additional CO₂ emissions. With a 20-year time horizon, rerouting decreases the climate impact by 93% if AGWP and ATR are used, and by about 70% if AGTP is used. With a 100-year time horizon, the reduction of climate impact exceeds 50% for all metrics.
- 25 The second case, shown in Figure S1(b), corresponds to the formation of a low-energy contrail with energy of 2.9×10^{10} J km ⁻¹, which is the energy of the median contrail energy forcing in the dataset. In this case again, rerouting to avoid the contrail leads to a climate benefit. But the quantification of that climate benefit strongly depends on the choice of CO₂-equivalence metric. According to AGTP, the climate benefit associated with rerouting is less than 20% for time horizons longer than 20 years, falling to 8% at 100 years. AGWP and ATR are more permissive and indicate a reduction of about 60% of the climate
- 30 impact at 20 years, decreasing to 30% at 100 years.

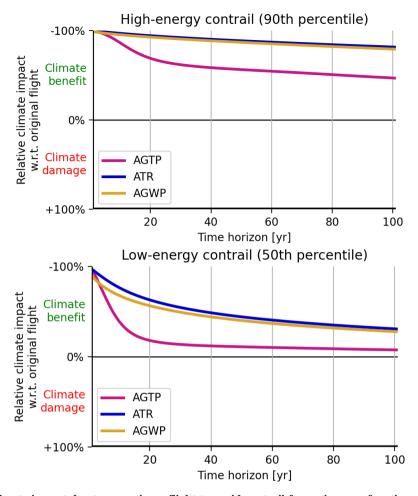


Figure S1: Change in climate impact due to rerouting a flight to avoid contrail formation as a function of time horizon, in years, according to different CO₂-equivalence metrics. The original flight emits 53 tonnes of CO₂ and is assumed to be successfully
rerouted to avoid the formation of a persistent contrail of energy (a) 2.8×10¹¹ J km⁻¹ or (b) 2.9×10¹⁰ J km⁻¹, assuming a contrail efficacy of 0.35. Contrail energy forcing is applied over the whole 2450-km flight. The climate outcome of rerouting is shown as the relative difference between the rerouted flight climate impact and the original flight one for three metric definitions, AGTP (purple), ATR (blue), and AGWP (orange).

- 40 In addition to these two cases of contrail avoidance, it is informative to consider a different situation. As stated above, 20% of the persistent contrails formed in the North Atlantic have a negative energy forcing, thereby cooling the climate. Contrail radiative forcing uncertainties are such that we cannot yet confidently predict that a particular ISSR would lead to the formation of strongly warming or cooling persistent contrails. This is illustrated in Table 2 of Teoh et al. (2020), whereby the 2.5 to 97.5% confidence interval of the energy of a "big hit" contrail of energy 4.33 10¹⁵ J spans a range from -1×10^{13} to
- 45 17.1×10^{15} J, so includes a low probability that the contrail is in fact cooling. Figure S2 illustrates the case where the original flight would have formed a contrail with an energy of -6.0×10^9 J km⁻¹, which is about a fifth of the median contrail in the dataset, with a negative sign. 10% of contrails from transatlantic flights cool more than this value. As before, rerouting the

aircraft would avoid the formation of that contrail. As expected, rerouting that flight damages the climate, for all metrics and time horizon considered. The increase in climate impact exceeds 35% and 55% for time horizons shorter than 20 years when

50 using AGWP and ATR, respectively, with an increase of about 10% at a time horizon of 100 years. Climate damage is less according to AGTP, at 6% at 20 years and about 3% at 100 years.

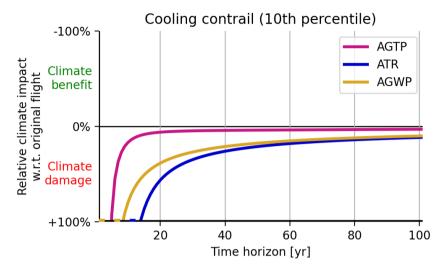


Figure S2: As for Figure S1, but for a change in climate impact due to rerouting a flight that would have formed a cooling contrail of energy -6.0×10⁹ J km⁻¹.

Those idealised cases suggest that the three CO_2 -equivalence metrics give similar information for the decision to reroute or not but lead to very different quantifications of the climate outcome. AGTP_H generally leads to a smaller estimate of the climate benefit or damage than the time-integrated metrics AGWP_H and ATR_H. Short time horizons yield to larger climate outcomes than long time horizons, with differences being especially large when contrail energy is low. There is a range of contrail EF where at least one CO₂-equivalence metric leads to a different rerouting decision than the others. For our typical flight and our nine CO₂-equivalence metrics, that range spans the 24th to the 31st percentiles, i.e. 7% of the contrail-forming flights. This range represents very low-energy contrails, with EF per flown kilometre from 1.7×10^8 to 3.1×10^9 J km⁻¹. This second value is about a tenth of the median contrail energy forcing in the dataset.

Table S1: Summary of the OSCAR calculation of AGWP, in mW m⁻² yr, AGTP, in μ K, and ATR, in $\langle \mu K \rangle$, due to CO₂ emissions and warming and cooling contrail formation for the flights that crossed the North Atlantic sector in 2019 (Teoh et al., 2022). Calculations are given for three time horizons: 20, 50, and 100 years. Percentages in brackets are relative to the first column "All glights". For ATP, the unit is denoted $\langle \nu K \rangle$ to distinguish an average over the time horizon from en endpoint temperature shores.

70

flights". For ATR, the unit is denoted $\langle \mu K \rangle$ to distinguish an average over the time horizon from an endpoint temperature change. RF or warming All climate CO₂ emissions Warming contrails Cooling contrails caused by forcers $(EF_{contrail} > 0 J km^{-1})$ $(EF_{contrail} < 0 J km^{-1})$ specific climate forcer 3.85 mW m⁻² yr $2.32 \text{ mW m}^{-2} \text{ yr} (60\%)$ $-0.07 \text{ mW m}^{-2} \text{ yr} (-2\%)$ AGWP100 $1.61 \text{ mW m}^{-2} \text{ yr} (42\%)$

AGWP50	$2.82 \text{ mW} \text{ m}^{-2} \text{ yr}$	1.32 mW m ⁻² yr (47%)	1.57 mW m ⁻² yr (56%)	-0.07 mW m ⁻² yr (-2%)
AGWP20	$2.14 \text{ mW m}^{-2} \text{ yr}$	0.67 mW m ⁻² yr (31%)	1.53 mW m ⁻² yr (72%)	-0.07 mW m ⁻² yr (-3%)
AGTP100	14.0 μΚ	12.1 µK (87%)	1.95 µK (14%)	-0.08 μK (-1%)
AGTP50	13.5 μΚ	11.0 µK (82%)	2.58 µK (19%)	-0.11 μK (-1%)
AGTP20	16.9 µK	12.2 μK (72%)	4.89 μK (29%)	-0.21 μK (-1%)
ATR100	20.4 <µK>	11.5 <µK> (57%)	9.23 <µK> (45%)	$-0.40 < \mu K > (-2\%)$
ATR50	27.1 <µK>	11.6 <µK> (43%)	16.2 <µK> (60%)	-0.70 <µK> (-3%)
ATR20	46.2 <µK>	12.0 <µK> (26%)	35.8 <µK> (77%)	-1.54 <µK> (-3%)

Table S2: As Table S1, but now separating flights into categories depending on their overall climate impact. The number of flights for the last two categories depends on the metric.

Flight subset	All flights	Contrail-forming flights	Flights forming warming contrails	Flights forming cooling contrails that cool less than CO ₂ warming	Flights forming cooling contrails that cool more than CO ₂ warming
Number of flights	477,923	260,854 (55%)	208,965 (44%)		
AGWP100	3.85 mW m ⁻² yr	2.90 mW m ⁻² yr (75%)	2.69 mW m ⁻² yr (70%)	0.21 mW m ⁻² yr (5%) 47,628 flights	-0.013 mW m ⁻² yr 4,261 flights
AGWP50	2.82 mW m ⁻² yr	2.30 mW m ⁻² yr (82%)	2.19 mW m ⁻² yr (78%)	0.11 mW m ⁻² yr (4%) 43,860 flights	-0.023 mW m ⁻² yr 8,029 flights
AGWP20	2.14 mW m ⁻² yr	1.89 mW m ⁻² yr (88%)	1.84 mW m ⁻² yr (86%)	0.05 mW m ⁻² yr (2%) 38,198 flights	-0.035 mW m ⁻² yr 13,691 flights
AGTP100	14.0 µK	8.90 µK (64%)	7.59 µK (54%)	1.30 μK (9%) 51,677 flights	-0.000 μK 212 flights
AGTP50	13.5 μK	8.90 µK (66%)	7.74 µK (57%)	1.16 μK (9%) 51,348 flights	-0.003 μK 541 flights
AGTP20	16.9 μK	11.8 µK (70%)	10.59 µK (63%)	1.21 μK (7%) 50,135 flights	-0.017 μK 1,754 flights
ATR100	20.4 <µK>	15.8 <μK> (77%)	14.6 <µK> (72%)	1.21 <µK> (6%) 46,732 flights	-0.09 <µK> 5,157 flights
ATR50	27.1 <µK>	22.5 <μK> (83%)	21.6 <µK> (80%)	0.90 <µK> (3%) 42,521 flights	-0.27 <μK> 9,368 flights
ATR20	46.2 <µK>	42.2 <μK> (91%)	41.4 <µK> (90%)	0.76 <µK> (2%) 35,743 flights	−0.93 <µK> 16,146 flights

Table S3: Number of flights flown over the North Atlantic in 2019, out of a total of 260,854 contrail-forming flights, for different categories of climate outcomes of rerouting, depending on the CO_2 equivalence metric (given as a combination of metric definition and time horizon) and the additional CO_2 emitted to reroute. Rerouting is assumed to be successful, so the rerouted flight does not form a contrail and a contrail would have formed, as predicted, on the original route. Climate benefit happens when the CO_2 -

90

and time horizon) and the additional CO₂ emitted to reroute. Rerouting is assumed to be successful, so the rerouted hight does not form a contrail and a contrail would have formed, as predicted, on the original route. Climate benefit happens when the CO₂equivalence metric is lower for the rerouted flight than for original flight. Percentages in brackets are calculated with respect to the 1% additional CO₂ scenario in each case. Column 5 gives the absolute climate benefit of all reroutings, with a unit that depends on the CO₂ equivalence metric. For ATR, the unit is denoted $\langle \mu K \rangle$ to distinguish an average over the time horizon from an endpoint temperature change. The potential "lower risk" rerouting category in the second to last column refers to flights with an energy forcing larger than 10¹¹ J km⁻¹ and whose climate benefit from contrail avoidance is 100 times larger than the climate damage from emitting 1% more CO₂. The absolute climate benefit from rerouting these flights is indicated in the last column.

0	5
9	2

CO ₂ -	Additional	Number of	Number of	Climate benefit	Potential	Climate benefit
equivalence	CO_2	reroutings that	reroutings that	(unit is metric-	"lower risk"	of potential
metric used	emitted	lead to climate	lead to climate	dependent)	rerouting	"lower risk"
		damage	benefit			rerouting
AGWP100	0%	51,889 (-26%)	208,965 (+9%)	1.54 mW m ⁻² yr	143,369	1.57 mW m ⁻² yr
	+1%	69,735	191,119	$1.52 \text{ mW m}^{-2} \text{ yr}$	86,438	$1.40 \text{ mW m}^{-2} \text{ yr}$
	+2%	74,558 (+7%)	186,296 (-3%)	$1.51 \text{ mW m}^{-2} \text{ yr}$	52,951	1.15 mW m ⁻² yr
	+5%	84,274 (+21%)	176,580 (-8%)	$1.47 \text{ mW m}^{-2} \text{ yr}$	17,663	$0.61 \text{ mW m}^{-2} \text{ yr}$
AGWP50	0%	51,889 (-22%)	208,965 (+8%)	$1.50 \text{ mW m}^{-2} \text{ yr}$	143,369	$1.53 \text{ mW m}^{-2} \text{ yr}$
	+1%	66,865	193,989	$1.49 \text{ mW m}^{-2} \text{ yr}$	109,441	$1.47 \text{ mW m}^{-2} \text{ yr}$
	+2%	70,663 (+6%)	190,191 (-2%)	1.49 mW m ⁻² yr	79,079	1.33 mW m ⁻² yr
	+5%	77,916 (+17%)	182,938 (-6%)	$1.46 \text{ mW m}^{-2} \text{ yr}$	36,281	$0.93 \text{ mW} \text{ m}^{-2} \text{ yr}$
AGWP20	0%	51,889 (-19%)	208,965 (+6%)	$1.46 \text{ mW m}^{-2} \text{ yr}$	143,369	$1.49 \text{ mW m}^{-2} \text{ yr}$
	+1%	64,151	196,703	$1.46 \text{ mW m}^{-2} \text{ yr}$	128,558	$1.48 \text{ mW} \text{ m}^{-2} \text{ yr}$
	+2%	67,048 (+5%)	193,806 (-1%)	1.46 mW m ⁻² yr	107,936	1.42 mW m ⁻² yr
	+5%	72,450 (+13%)	188,404 (-4%)	$1.45 \text{ mW m}^{-2} \text{ yr}$	66,179	1.21 mW m ⁻² yr
AGTP100	0%	51,889 (-37%)	208,965 (+17%)	1.86 μK	143,369	1.90 µK
	+1%	82,352	178,502	1.79 μK	22,052	0.86 µK
	+2%	92,577 (+12%)	168,277 (-6%)	1.72 μΚ	6,582	0.37 μΚ
	+5%	112,900 (+37%)	147,954 (-17%)	1.51 μΚ	773	0.06 μΚ
AGTP50	0%	51,889 (-34%)	208,965 (+14%)	2.47 μΚ	143,369	2.52 μΚ
	+1%	78,099	182,755	2.41 μK	35,606	1.51 μK
	+2%	86,617 (+11%)	174,237 (-5%)	2.34 μΚ	13,324	0.82 μK

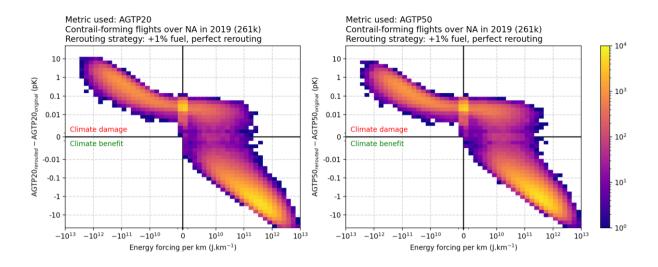

	+5%	103,399 (+32%)	157,455 (-14%)	2.15 μK	1,982	0.18 µK
AGTP20	0%	51,889 (-29%)	208,965 (+11%)	4.68 μΚ	143,369	4.78 μΚ
	+1%	73,409	187,445	4.61 μK	59,971	3.70 µK
	+2%	79,758 (+9%)	181,096 (-3%)	4.54 μΚ	29,621	2.58 µK
	+5%	92,641 (+26%)	168,213 (-10%)	4.33 μK	6,537	0.93 µK
ATR100	0%	51,889 (-25%)	208,965 (+9%)	8.83 <µK>	143,369	9.00 <µK>
	+1%	68,918	191,936	8.76 <µK>	92,975	8.23 <µK>
	+2%	73,423 (+7%)	187,431 (-2%)	8.70 <µK>	59,817	6.97 <µK>
	+5%	82,426 (+20%)	178,428 (-7%)	8.49 <µK>	21,824	4.04 <µK>
ATR50	0%	51,889 (-21%)	208,965 (+7%)	15.5 <µK>	143,369	15.8 <µK>
	+1%	66,074	194,780	15.5 <µK>	115,282	15.3 <µK>
	+2%	69,674 (+5%)	191,180 (-2%)	15.4 <µK>	86,954	14.2 <µK>
	+5%	76,413 (+16%)	184,441 (-5%)	15.2 <µK>	43,306	10.5 <µK>
ATR20	0%	51,889 (-18%)	208,965 (+6%)	34.2 <µK>	143,369	34.9 <µK>
	+1%	63,160	197,694	34.2 <µK>	133,263	34.7 <µK>
	+2%	65,772 (+4%)	195,082 (-1%)	34.1 <µK>	117,298	33.9 <µK>
	+5%	70,643 (+12%)	190,211 (-4%)	33.9 <µK>	79,266	30.3 <µK>

Figure 4 shows the climate outcome of rerouting in terms of the AGTP100. The Figures below show the climate outcome expressed in terms of the other eight CO₂ equivalence metrics: AGWP20, AGWP50, AGWP100, ATR20, ATR50, ATR50, ATR100, AGTP20, and AGTP50.

Metric used: AGWP20 Metric used: AGWP50 Contrail-forming flights over NA in 2019 (261k) Contrail-forming flights over NA in 2019 (261k) Rerouting strategy: +1% fuel, perfect rerouting Rerouting strategy: +1% fuel, perfect rerouting 104 1000 1000 AGWP20_{rerouted} – AGWP20_{original} (pW.m⁻².yr) (pW.m⁻².yr) 100 100 10³ 10 10 1 1 AGWP50, Climate damage Climate damage 0 10² 0 Climate benefit Climate benefit -1 -1 -10 -10 10¹ AGWP50, -100 -100 -1000 -1000 10⁰ -1013 -1012 -10^{11} -10^{10} 1010 1011 1012 1013 -10^{11} -10^{10} 1010 1011 1012 1013 -1013 -1012 0 Λ Energy forcing per km (J.km⁻¹) Energy forcing per km (J.km⁻¹) Metric used: AGWP100 Metric used: ATR20 Contrail-forming flights over NA in 2019 (261k) Contrail-forming flights over NA in 2019 (261k) Rerouting strategy: +1% fuel, perfect rerouting Rerouting strategy: +1% fuel, perfect rerouting 104 1000 100 AGWP100_{rerouted} – AGWP100_{oriainal} (pW.m⁻².yr) 100 10 (<pk>) 10³ 10 1 1 0.1 ATR20 Climate damage Climate damage 0 10² 0 Climate benefit Climate benefit -1 -0.1 -10 ATR20 -1 10¹ -100 -10 -1000 -100 10⁰ -1012 -1012 -1013 -10^{11} -1010 1010 1011 1012 -1013 -10^{11} -1010 1010 1011 1013 0 1013 1012 0 Energy forcing per km (J.km⁻¹) Energy forcing per km (J.km⁻¹) Metric used: ATR50 Metric used: ATR100 Contrail-forming flights over NA in 2019 (261k) Contrail-forming flights over NA in 2019 (261k) Rerouting strategy: +1% fuel, perfect rerouting Rerouting strategy: +1% fuel, perfect rerouting 104 100 100 (<bc)
(

(

(

(

(

(
>br))
(
(
(
>br))
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
())))))
(
()))
())
())
()) 10 10 (<pk>) linal (<pk>) 10³ 1 1 0.1 0.1 ATR100 - ATR50 Climate damage Climate dama 10² 0 0 Climate benefit Climate benefit -0.1 -0.1 ATR50_n -1 -1 ATR100 10¹ -10 -10 -100 -100 100 -10^{13} -10^{12} -10^{11} -10^{10} 0 1010 1011 1012 1013 -1013 -10^{12} -10^{11} -10^{10} 0 1010 1011 1012 10¹³

Energy forcing per km (J.km⁻¹)

Energy forcing per km (J.km⁻¹)

