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S1 WRF-Chem model and configuration 1 

S1.1 WRF-Chem model general description 2 

In this study, a specific version of the WRF-Chem model (Grell et al., 2005) with modified by Li et 3 

al. (2010; 2011a; 2011b; 2012) is used to quantitatively estimate the radiative effect of brown carbon in 4 

the NCP. The model was run at a horizontal resolution of 6km with 35 vertical levels, and configured 5 

with a single domain (no nesting) of 300×300 grid cells centered at grid point at latitude of 38.0 N and 6 

longitude of 116.0 W as shown in Table S1. The model contains a new flexible gas phase chemical 7 

module which utilized with SAPRC chemistry mechanism based on the available emission inventory in 8 

the present study. The gas-phase chemistry is solved by an Eulerian backward Gauss-Seidel iterative 9 

technique with a number of iterations, inherited from NCAR-HANK (Hess et al., 2000).  10 

For the aerosol simulations, the CMAQ/models3 aerosol module (AERO5) developed by US EPA 11 

has incorporated into the model (Binkowski and Roselle, 2003). The particle size distribution is 12 

represented as the superposition of three lognormal modes. The processes of coagulation, particles 13 

growth by the addition of mass, and new particle formation are included. The wet deposition follows the 14 

method in the CMAQ module and the dry deposition of chemical species is parameterized following 15 

Wesely  (1989). The photolysis rates are calculated using the Fast Tropospheric Ultraviolet and Visible 16 

(FTUV) Radiation Model ((Tie, 2003; Li et al., 2005) , with the aerosol and cloud effects on the 17 

photochemistry (Li et al., 2011a). The inorganic aerosols is predicted with ISORROPIA (version 1.7) 18 

(Nenes et al., 1998) which calculates the thermodynamic equilibrium between the ammonia-sulfate-19 

nitrate-chloride-water aerosols and their gas phase precursors of H2SO4-HNO3-NH3-HCl-water vapor.  20 

The organic aerosol (OA) module is based on the volatility basis-set (VBS) approach with aging 21 

(Li et al., 2011b). The primary organic aerosol (POA) are assumed semi-volatile and photochemically 22 

reactive (Robinson et al., 2007) and distributed in logarithmically spaced volatility bins. , 2008). Nine 23 

surrogate species are used for POA components followed by Shrivastava et al. (2008) with saturation 24 

concentrations (C*) ranging from 10-2 to 106 μg m-3 at room temperature. The secondary organic aerosol 25 

(SOA) formation from each anthropogenic or biogenic precursor is calculated using four semi-volatile 26 

VOCs with effective saturation concentrations of 1, 10, 100, and 1000 µg m-3 at 298 K. The SOA 27 

formation via the heterogeneous reaction of glyoxal and methylglyoxal is parameterized as a first-order 28 
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irreversible uptake by aerosol particles with an uptake coefficient of 3.7×10-3 (Liggio, 2005; Zhao et al., 29 

2006; Volkamer et al., 2007). The OA module has reasonably reproduced the POA and SOA 30 

concentration against measurements, and detailed model performance can be found in Li et al. (2011b), 31 

Feng et al. (2016), and Xing et al. (2019).  32 

Table S1 WRF-Chem model configurations. 33 

Parameter Configuration 

Regions The North China Plain (NCP) 

Simulation period January 1 to 30, 2014 

Domain size 300 × 300 

Domain center 38.0°N, 116.0°E 

Horizontal resolution 6km × 6km 

Vertical resolution 

35 vertical levels with a stretched vertical grid with spacing 

ranging from 30m near the surface, to 500m at 2.5km and 

1km above 14km 

Microphysics scheme WSM 6-class graupel scheme (Hong and Lim, 2006) 

Boundary layer scheme MYJ TKE scheme (Janjić, 2002) 

Surface layer scheme MYJ surface scheme (Janjić, 2002) 

Land-surface scheme Unified Noah land-surface model (Chen and Dudhia, 2001) 

Long-wave radiation scheme Goddard longwave scheme (Chou et al., 2001) 

Short-wave radiation scheme Goddard shortwave scheme (Chou and Suarez, 1999) 

Meteorological boundary and initial 

conditions 
NCEP 1°×1° reanalysis data 

Chemical initial and boundary 

conditions 
MOZART 6-hour output (Horowitz et al., 2003) 

Anthropogenic emission inventory 
SAPRC-99 chemical mechanism emissions developed by 

Zhang et al. (2009)and Li et al.(2017) 

Biogenic emission inventory MEGAN model developed by Guenther et al. (2006) 

Four-dimension data assimilation NCEP ADP Global Air Observational Weather Data 

Model spin-up time 24 hours 

 34 

S1.2 Aerosol radiative module 35 

Aerosols in the model are represented by a three-moment approach with lognormal size distribution. 36 

The spectrum of aerosol size is divided into 48 bins from 0.002 μm to 10 μm followed by Li et al., 37 

(2011a). The aerosols are categorized into four types and are assumed to be mixed externally. For 38 

internally mixed aerosols, the complex refractive index at a specific wavelength (λ) is derived from the 39 

volume-weighted average of each component's refractive index. Optical properties such as extinction 40 

efficiency, single scattering albedo (SSA), and asymmetry factor are then computed using Mie theory for 41 

the specified wavelength, utilizing look-up tables that correlate particle sizes and refractive indices to 42 

linearly calculations and avoid repetitive Mie scattering computations.  43 
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The aerosol optical depth (AOD or 𝜏𝑎), single scattering albedo (SSA or 𝜔𝑎), and the asymmetry 44 

factor (𝑔𝑎) at a given wavelength λ in a given atmospheric layer 𝑘 is calculated by the summation 45 

over all types of aerosols and all bins (Li et al., 2011a) as below: 46 
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where 𝑛(𝑟𝑖 , 𝑗, 𝑘) is the number concentration of 𝑗-th kind of aerosols in 𝑖-th bin. ∆𝑍𝑘 is the depth of 50 

an atmospheric layer. 51 

S2 Data and methodology 52 

S2.1 Observation data description 53 

The hourly near-surface measurements of O3, NO2, SO2, CO and PM2.5 concentrations have been 54 

released in public by the Ministry of Ecology and Environment of China since 2013. The submicron 55 

sulfate, nitrate, ammonium, elemental carbon and organic aerosols obtained in two cities including 56 

Beijing, Tianjin and the hourly observation of primary OA from, BB, RCC and motor vehicles emissions 57 

and SOA in Beijing in January, 2014 are provided by Institute of Earth Environment, Chinese Academy 58 

of Sciences. The organic carbon and elemental carbon concentrations are measured using a 59 

thermal/optical reflectance carbon analyzer (Model 2001, DRI, USA) (Chow et al., 2004) and water-60 

soluble ions are measured using a DX600 ion chromatograph (Dionex Inc., Sunnyvale, CA, USA) 61 

(Zhang et al., 2011). The SWDOWN is measured by CM-11 pyranometers at five sites from Chinese 62 

Ecosystem Research Network (CERN) in the NCP, including Beijing, Tianjin, Zhengzhou, Hefei, and 63 

Ji’nan. The hourly measurement of OA in Beijing is measured by the Aerodyne high-resolution time-of-64 

flight aerosol mass spectrometer (HR-ToF-AMS) with a PM2.5 lens from 9 to 25 January, 2014 at the 65 

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (Li et al., 2018). The 66 

positive matrix factorization (PMF) method is used to distinguish the sources of OA as hydrocarbon-like 67 

OA, biomass burning OA, coal combustion OA (Elser et al., 2016), which are interpreted for surrogates 68 

of primary OA (POA)-TRA, POA-BB, POA-COAL, and oxygenated OA is the surrogate of SOA in this 69 

paper.  70 
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S2.2 Statistical metrics for simulation comparisons 71 

 In this study, the mean bias (MB), root mean square error (RMSE) and the index of agreement 72 

(IOA) are used to evaluate the model performance in simulating air pollutants. 73 

MB =
1

N
∑ (Pi − Oi)

N
i=1                                                               (4) 74 
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1

N
∑ (Pi − Oi)

2N
i=1 ]

1

2
                                                         (5) 75 

IOA = 1 −
∑ (Pi−Oi)2N

i=1

∑ (|Pi−O̅|+|Oi−O̅|)2N
i=1
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Where 𝑃𝑖  and 𝑂𝑖  are the simulated and observed variables, respectively. N is the total number of the 77 

simulations for comparisons, and 𝑂̅ donates the average of the observations. The IOA ranges from 0 to 78 

1, with 1 showing a perfect agreement of the simulations with the observations. 79 

S3 Model performance 80 

S3.1 Air pollutants simulations in the NCP 81 

Comparison of observed (black dots) and simulated (solid blue lines) near-surface hourly mass 82 

concentrations of (a) PM2.5, (b) O3, (c) NO2, (d) SO2, and (d) CO averaged at available monitoring sites 83 

in the NCP from January 1 to January 30, 2014 is shown in Fig. S1. The model successfully reproduces 84 

the diurnal variation of near-surface PM2.5 concentrations in the NCP with an IOA of 0.91 and a slightly 85 

overestimation with a MB of 2.8 µg m-3. The model generally captures well the temporal variations of 86 

near-surface O3 concentrations compared to observations in the NCP with an IOA of 0.93 while a 87 

generally overestimates the O3 concentrations a MB of 0.5 µg m-3. The model also reasonably well yields 88 

the temporal variation of NO2, SO2 and CO compared with observation, with IOA and MB of 0.83 and -89 

3.7 µg m-3, 0.75 and -13.0 µg m-3, 0.86 and 0.0 µg m-3, respectively. 90 

The spatial pattern of calculated and observed average near-surface concentrations of PM2.5, SO2, 91 

NO2 and O3 along with simulated winds in January 2014 in the NCP is shown in Fig. S2. The simulations 92 

of four air pollutants distributions are general in good agreement with the observations in the NCP, while 93 

partly biases of modeling still exist. It shows that the air in the NCP in January 2014 is much polluted 94 

with the monthly near-surface PM2.5 concentrations over 150 μg m-3. The observed and simulated 95 

highest average near-surface PM2.5 concentrations are found in Beijing, Hebei, Henan, Shandong, north 96 

Anhui and north Jiangsu. Highest observed and simulated near-surface SO2 and NO2 concentrations 97 

almost occurs in same areas in the NCP. But simulated highest SO2 concentrations are mainly 98 
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concentrated around cities, while the distribution of NO2 shows more area uniformly which likely due to 99 

their sources are different, the former mainly emits from point sources and the latter mainly comes from 100 

more area sources. The simulated O3 concentrations are rather low in the NCP which is consistent with 101 

measurements.  102 

 103 

Figure S1. Comparison of observed (black dots) and simulated (blue lines) diurnal profiles of near-surface 104 

hourly mass concentrations of (a) PM2.5, (b) O3, (c) NO2, (d) SO2, and (d) CO averaged at monitoring sites in 105 

the NCP from January 1 to January 30, 2014. 106 

 107 
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 108 
Figure S2. Pattern comparisons of simulated (color counters) vs. observed (colored circles) near-surface mass 109 

concentrations of (a) PM2.5, (b) SO2, (c) NO2, and (d) O3 averaged in January 2014. The black arrows indicate 110 

simulated surface winds. 111 

Figure S3 provides the time series variations of simulated and observed aerosol species including 112 

OA (1.6 times of measurement OC), EC, ammonium, sulfate, and nitrate at Beijing and Tianjin city from 113 

January 1 to January 30, 2014. It shows that the WRF-Chem model generally predicts the temporal 114 

variations of the aerosol species against the field measurements reasonably with relatively high IOA 115 

value. The model yields the main peaks of aerosol species but with some frequently underestimates or 116 

overestimates which is mostly linked to the uncertainty of emission inventory and meteorological 117 

variations.  118 

 119 

 120 

 121 
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 122 

Figure S3. Comparison of measured (black dots) and simulated (blue lines) daily profiles of submicron aerosol 123 

species of (a) OA, (b) EC, (c) ammonium, (d) sulfate, and (e) nitrate at two sites (Beijing and Tianjin) in the 124 

NCP from January 1 to January 30, 2014. 125 

S3.2 Downward shortwave flux comparison 126 

Figure S4 shows the comparison of measured (black dots) and simulated (blue lines) diurnal profiles 127 

of the SWDOWN reaching the ground surface in (a) Beijing, (b) Tianjin, (c) Zhengzhou, (d) Hefei, and 128 

(e) Ji’nan from 01 January 2014 to 30 January 2014. Although the MB and RMSE values suggest bias in 129 

the model performance, but in overall, the model generally captures the diurnal patterns quite well, as 130 

reflected by the average IOA values up to 0.95 across all five cities. The biases of SWDOWN between 131 

model and field study may be caused by the cloud cover and optical thickness calculation in the model, 132 

which is due to the horizontal resolution of the model is insufficient to resolve the cumulus clouds.   133 

 134 

 135 

 136 

 137 

 138 
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 139 

Figure S4. Comparison of measured (black dots) and simulated (blue lines) diurnal profiles 140 

of the SWDOWN reaching the ground surface in (a) Beijing, (b) Tianjin, (c) Zhengzhou, (d) 141 

Hefei, and (e) Ji’nan from January 1 to January 30, 2014. 142 

S3.3 OA from different sources comparison in Beijing 143 

Figure S5 presents a comparative analysis of temporal profiles of measured and simulated OA, POA 144 

from coal combustion (POA-COAL), biomass burning combustion (POA-BB), POA from vehicle 145 

exhaust (POA-TRA) and SOA in Beijing from January9 to 25, 2014. The model shows a good fit with 146 
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observed data with an IOA of 0.85, suggesting a reasonably accurate representation of OA variations, 147 

despite some discrepancies in peak values and slightly overestimates as indicated by an RMSE of 33.1 148 

µg/m³ and an MB of 5.0 µg/m³, respectively. The model also generally tracks the measured diurnal 149 

variations in POA-COAL mass concentrations, with an IOA of 0.81. The model frequently 150 

underestimates or overestimates the POA-COAL mass concentrations and is also subject to missing the 151 

observed POA-COAL peaks. The POA-COAL is mainly emitted from industries and residential coal 152 

combustion. In general, the POA-COAL emissions from industries have clear diurnal variations but are 153 

opposite for those from residential coal combustion, causing large model biases for the POA-COAL 154 

simulation. The model performs well in capturing the general trend of POA-BB with an IOA of 0.86 and 155 

a lower RMSE of 4.0 µg/m³, while POA-Tra has a lower IOA of 0.56. Although the model captured the 156 

major vehicle pollution events, some smaller peaks were not well reflected in the model. Modeled SOA 157 

shows a fair correlation with observed data (IOA of 0.73) but also exhibits some of the higher variance 158 

in peak concentrations, reflected in an RMSE of 11.3 µg/m³. In general, the IOA values of all types of 159 

OA suggest a reasonable model performance, particularly in capturing the temporal dynamics with some 160 

quantitative in accuracies which largely associated with the influence of meteorological conditions and 161 

emission sources uncertainties.  162 

 163 

 164 

 165 
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 166 

Figure S5. Temporal profiles of measured (black dots) and simulated (blue lines) OA (a), POA-Coal (b), POA-167 

BB (c), POA-Tra (d) and SOA (e) in Beijing from January 9 to 25,  2014. 168 

  169 
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