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Abstract. Particulate organic carbon (POC) serves as the main carrier of the biological pump and
determines its transmission efficiency, yet the transformation processes of POC remain incompletely
understood. This study reports the vertical distribution of POC, dissolved inorganic carbon (DIC), §'3C-
POC, and §'3C-DIC in the tropical Northwestern Pacific Ocean (TNPO). The research identified three
distinct biogeochemical layers governing POC transformation: the POC rapid synthesis-degradation
layer (RSDL, 0-300 m), the net degradation layer (NDL, 300-1,000 m), and the stable layer (SL, 1,000-
2,000 m). From the top to the bottom of the RSDL, 8'3C-POC values decreased by an average of 2.23%o,
while the carbon-to-nitrogen ratios (C:N) increased by an average of 2.3:1, indicating the selective
degradation of POC. In the NDL, §'3C-POC and §'*C-DIC exhibited a significant negative correlation (r
=0.43, p <0.05), indicating a net transformation of POC to DIC. In the SL, POC proved to be resistant
to degradation, with POC exhibiting the highest C:N (15:1 on average) and the lowest §'*C-POC values
(average -27.71%o).

1 Introduction

As the most significant carbon reservoir on the earth's surface, the ocean absorbs about 2.6 billion tons
of carbon dioxide (CO,) from the atmosphere each year, accounting for 25% of global anthropogenic
CO; emissions (Friedlingstein et al., 2023). After entering the ocean, CO; initially dissolves in seawater,
forming dissolved inorganic carbon (DIC). Subsequently, phytoplankton and photosynthetic bacteria at
the ocean surface convert it into organic carbon through photosynthesis. The majority of carbon in the

ocean is in the form of DIC, constituting over 98% of the total carbon content, with the remaining 2%
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existing as POC and dissolved organic carbon (DOC). Despite being in minimal quantities, POC can be
transported to the deep ocean through the biological pump and buried for thousands of years. This process
of carbon sequestration aids in the absorption of CO» by the ocean, contributing to the regulation of
atmospheric CO; levels (Longhurst and Glen Harrison, 1989; Turner, 2015). Organic matter produced
from the euphotic layer is the primary food source for heterotrophic communities in the dark ocean
(Smith et al., 2008); once POC is exported from the euphotic layer, microorganisms rapidly utilize it,
releasing DIC (Song, 2010).

Some studies have shown that unstable components such as proteins and carbohydrates in POC are
preferentially degraded by microorganisms (Eadie and Jeffrey, 1973). However, conducting detailed
quantitative analyses of each POC component in actual investigations is challenging, necessitating the
use of alternative indicators to demonstrate selective degradation. The-One generally accepted indicator
is the carbon-to-nitrogen ratios (C:N) due to inherent differences in the C:N of various compounds in
POC (Morales et al., 2021). Thus, changes in the C:N during degradation can signify the selective
degradation of POC. Nevertheless, the composition of POC is highly complex, and the C:N of its
different components are not absolute. For example, lipids typically have a higher C:N than proteins, but
the opposite can also occur (Sannigrahi et al., 2005; Hernes and Benner, 2002). Therefore, relying solely
on the C:N to reflect the selective degradation process of POC has significant limitations. Although the
vital activities of the microbial community in the dark ocean are predominantly driven by heterotrophic
respiration (Herndl et al., 2023), many autotrophic organisms use chemical energy to synthesize POC.
Compelling evidence indicates that chemoautotrophy plays a substantial role in the fixation of DIC in
the minimum oxygen zone (OMZ) (Reinthaler et al., 2010) and the deeper ocean (Passos et al., 2022;
Walsh et al., 2009). Consequently, there is a continuous conversion of POC and DIC throughout the
ocean water column. Exploring the degradation and synthesis of POC in the ocean is imperative to
enhance our comprehension of the biological pump processes.

The DIC in seawater primarily occurs in four chemical forms: H,CO;, HCO5, CO3*, and COs». In
comparison, the composition of POC is more complex. POC comprises various organic compounds
originating from living organisms such as phytoplankton, zooplankton, and microorganisms. It also
encompasses fecal particles, cell fragments, and diverse organic substances from external sources. Only
a small fraction of the POC has been accurately identified in terms of molecular structures (Kharbush et

al., 2020). As the depth increases, the readily degradable components in POC are used up, leading to a
2
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more intricate structure of the remaining POC through the transformation process. The remaining
refractory POC is even more difficult to identify (Lee et al., 2000). Therefore, it becomes challenging to
study the chemical characteristics of POC and its transformation process from itself. The 8'3C is a crucial
indicator that can reveal the origin, migration, and transformation of POC, making it significantly
important in the investigation of the marine carbon cycle (Ding et al., 2020; Jeffrey et al., 1983).
Compared with POC concentrationmeleenles, 8'3C-POC provides a more accurate reflection of the
chemical properties of the POC pool and the migration and transformation processes of POC (Close and
Henderson, 2020). Similarly, 5'*C-DIC can offer insights into important processes within the ocean
carbon cycle. As POC settles, it undergoes a series of biogeochemical processes, including synthesis,
degradation, and adsorption. Therefore, the isotope fractionation effect in POC is strong, resulting in
significant differences in 8'3C-POC values at different depths. In contrast, the fractionation of §'*C-DIC
is subject to fewer influencing factors, and the DIC concentration in the ocean is notably high, thereby
engendering minimal variability in §'3C-DIC values across the ocean water column (Jeffrey et al., 1983).
Therefore, §'*C-DIC is more sensitive to the fractionation effect in the ocean carbon cycle. Even slight
variations in the 8'3C-DIC values can reflect significant processes involved in the migration and
transformation of POC (Quay and Stutsman, 2003). Through the analysis of §'*C-POC and 3'*C-DIC
values, we can enhance our comprehension of the intricate composition, transport, and alteration
mechanism of POC, providing us with a more profound insight into the dynamic transformations within
the ocean biological pump.

The tropical Northwestern Pacific Ocean (TNPO) is characterized by intricate current patterns and
water mass distributions (Hu et al., 2015; Schonau et al., 2022), and it is also known for the highest
surface seawater temperatures globally (Jia et al., 2018). High temperatures facilitate the respiration ef
by heterotrophic organisms, promoting the formation of biological hotspots and ultimately enhancing
material circulation and energy flow in the upper ocean (Guo et al., 2023a; Iversen and Ploug, 2013).
The air-sea interaction within the TNPO is highly dynamic, exhibiting a shift from being a carbon sink
to a carbon source as it extends from higher to lower latitudes (Takahashi et al., 2009; Wu et al., 2005).
The complex hydrological characteristics, rapid elemental cycle, and frequent air-sea exchange render
the TNPO an ideal laboratory for exploring the ocean carbon cycle. In this research, we collected

seawater and particulate matter samples at six stations in the core and boundary regions of the TNPO,
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and the relationship between DIC, POC, and their stable carbon isotopes was comprehensively analyzed

to enhance our understanding of the POC transformation process and the ocean carbon cycle process.

2 Sampling and Methods

The samples were collected in the TNPO during an expedition on R/V Kexue from March to April 2022.
A total of 6 stations were set up: EQ-6 (150.99° E, 0.00° N, 1944 m), E142-3 (140.99° E, 12.01° N, 4091
m), E142-7 (140.99° E, 15.99° N, 4725 m), E142-11 (140.99° E, 20.00° N, 462 4m), E142-13 (142.04°
E, 0.00° N, 3382 m) and E142-19 (141.99° E, 6.01° N, 2580 m) (Fig. 1). The 12-L Niskin bottles (KC-
Denmark, Denmark) mounted on a Conductivity-Temperature-Depth (CTD, Sea-bird SBE911, United
States) rosette was-were used to obtain water samples from the vertical profile of 0-2,000 m at each
station for analysis of temperature, salinity, dissolved oxygen (DO), POC, §'3C-POC, particulate nitrogen
(PN), DIC, 8"*C-DIC, and chlorophyll a (Chl-a). The specific sampling and analysis methods are as
follows.

Temperature and salinity: The temperature and salinity were measured by CTD (Sea-bird SBE911,
United States) in situ during sampling.

DO: DO was determined in situ using the Winkler method with a measurement precision of 2.2 x 1073

umol/L. At each depth, we collected samples in 50 mL brown bottles, added manganese sulfate and

alkaline potassium iodide to fix the oxygen, then titrated the released iodine with sodium thiosulfate to

calculate DO concentrationsWatersamples—were-colectedfixed,andtitrated-aceording to-theelassie

Winkler-method;-the-preeision-of which-was 2.2>10% umel/L— (Bryan et al., 1976; Zuo et al., 2018).

The discrete DO samples were used to calibrate the DO concentration data obtained by the CTD sensor.

POC, 6*C-POC, and PN: Particle samples were obtained by filtering 2-5 L of seawater onto a GF/F
glass filter (0.7 um, Whatman) that had been combusted in a muffle furnace (450°C, 4 h) and acid-soaked
(0.5 M hydrochloric acid (HCI), 24 h). The filter was treated with HCI to remove inorganic carbonates

and oven-dried at 60°C. After collection, samples were stored below -20 ‘C until laboratory analysis.

Afterward, POC, PN concentration, and 8'3C-POC values were analyzed using an elemental analyzer

and an isotope mass spectrometer (Thermo Fisher Scientific Flash EA 1112 HT-Delta V Advantages,

United States) with an accuracy of + 0.8%. and + 0.2%o, respectively. Standard reference materials

were used to calibrate §'°C and POC, PN measurements, including USGS64 (5'3C = -40.8 + 0.04%0, C%
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=31.97%. N% = 18.65%, Indiana University), USGS40 (§'*C = -26.39 + 0.04%o, C% = 40.8%, N% =

9.52%. Geological Survey, United States), and Urea #2a (5°C = -9.14 + 0.02%0, C% = 20%., N% =

46.67%. Indiana University). We implemented a quality control protocol by randomly inserting a

certified reference material after every 10 samples. The measured values of these reference materials

were subsequently plotted against the calibration curve to monitor and verify instrument stability

throughout the analytical process (Ma et al., 2021).

DIC_and $"3C-DIC: Sampling was performed using a 50 ml glass bottle. After the water sample
overflowed, 1 ml of the sample was taken out with a pipette and then fixed with saturated mercuric

chloride solution to remove the influence of biological activity. After collection, samples were stored in

refrigerator at 4°C for later laboratory measurement of DIC concentration using a total DIC analyzerThe

DlC-coneentration-was-measured-usinga-DIC-analyzer (Apollo SciTech AS-C3, United States) with an

accuracy of £ 0.1% (Ma et al., 2020). For calibration, certified reference material (Batch 144, 2031.53

+ 0.62 umol/kg) provided by the Scripps Institution of Oceanography (University of California, San

Diego) was used. 3'*C-DIC values automatic:+-Autematie analysis was performed using a Thermo Delta-
V isotope ratio mass spectrometer (ThermoFisher Scientific MAT 253Plus, United States). For

calibration, certified reference materials for 8'3C-DIC were used. including GBW04498 (8'3C = -27.28

£ 0.10%0), GBW04499 (8'3C = -19.58 + 0.10%o0), and GBW04500 (3"*C = -4.58 + 0.12%o), all provided

by the Institute of Geophysical and Geochemical Exploration (Chinese Academy of Geological Sciences).

We inserted a reference standard every 10 samples, using its measured values to verify instrument

stability via the calibration curve.

Chl -a: 2 L of water sample after zooplankton removal was filtered onto pre-combusted (450°C for 5 hr)

GF/F filters (0.7 um, Whatman); and placed in the refrigerator at —20°C before measurement. In the

laboratory, the filters were extracted with 90% propanol for 12-24 h, and the concentration was measured

using a fluorescence photometer (Turner Designs, United States) For calibration, Chlorophyll a analytical

standard (purity > 95.0%) provided by Sigma-Aldrich (SIAL, St. Louis, MO, United States) were used.

(Ma et al., 2020).



149 Figure 1. TPWO sampling stations (red dots in the figure) and ocean current distribution. In the figure, blue

150 represents the ocean currents from the surface to the bottom of the thermocline, mainly STCC, NEC, NECC,
151 and SEC; green represents the ocean currents in the subthermocline, mainly NEUC; purple represents the

152 ocean currents from the bottom of the thermocline to the subthermocline, mainly EUC.
153 3 Results and Discussion

154 3.1 Hydrological Characteristics

155  Except for station E142-11, the remaining five stations are all located at the Western Pacific Warm Pool
156 (WPWP). The SST of the five stations in the warm pool areca was higher, averaging 29.01 £ 0.67 °C,

157  while station E142-11 had a lower SST of 25.02 °C. The strong seawater stratification in the study area
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restricted the movement of nutrient-rich water from the deep to the upper ocean, resulting in the region
showing oligotrophic characteristics (Radenac et al., 2013). Therefore, the Chl-a concentration iz-at the

deep chlorophyll maximum layer depth (DCMD) was netably-low, with an average of only 0.24 £+ 0.04

pg/L. Based on the fluorescence intensity measured by the CTD in-situ fluorescence sensor, we

calculated the Primary Production Zone Depth (PPZD), which is the depth where the fluorescence

intensity drops to 10% of its maximum value above this depth (Owens et al., 2015). Additionally, the

Mixed Layer Depth (MLD) at each station was determined using the temperature threshold method

(Table 1) (Thompson, 1976). The results indicate that the PPZD at each station is deeper than the MLD,

suggesting that the POC generated at these stations does not undergo particularly complex physical

mixing after its formation (Buesseler et al., 2020).

Table 1. The water depth (WD), the PPZD, the MLD, the deep chlorophyll maximum layver depth

(DCMD) and the Chl-a at DCMD for each station.

Longitude Latitude Wb PPZD MLD DCMD Chl-a

Station
°E N m m m m ng/L

EQ-6 155.99 0.00 1944 129 65 50 031
E142-3 141.00 12.01 4091 216 102 140 0.19
E142-7 141.00 16.00 4725 204 68 150 0.25
E142-11 140.99 20.00 4624 203 42 90 0.21
E142-13 142.04 0.00 3382 165 45 90 0.25
E142-19 142.00 6.01 2580 170 109 100 021

Based on the relationship between potential temperature and salinity (6-S) (Fig. 2), eight water masses
in the study area were identified: North Pacific Tropical Surface Water (NPTSW), North Pacific
Subsurface Water (NPSSW), North Pacific Subtropical Mode Water (NPSTMW), North Pacific
Intermediate Water (NPIW), North Pacific Deep Water (NPDW), as well as Equatorial Surface Water
(ESW), South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW). In the
upper ocean (0-300 m), we found that both NPTSSW and SPSSW exhibited high salinity characteristics.
The salinity of NPTSSW was distributed between 34.66 and 35.01, while the salinity of SPSSW was
distributed between 35.15 and 35.65. In addition, as the water depth increased, the temperature of
NPTSSW and SPSSW decreased significantly, with NPTSSW dropping from 27.18°C to 16.21°C and

SPSSW dropping from 29.23°C to 14.81°C. The representative water mass in the middle ocean (300-
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1000 m) is NPIW, which is characterized by a rapid decrease in temperature (11.44-5.57°C) and a slight
increase in salinity (~0.3) with increasing water depth. The representative water mass in the deep ocean
(1000-2000 m) is NPDW, which has stable properties and slight changes in salinity and temperature.
Notably, the water mass distribution at station E142-19 is quite special. Ranging from the subsurface to
the deep layer, the water mass properties of this station are relatively stable, showing low-salinity and
low-temperature characteristics. This is attributed to the intrusion of both North Pacific Intermediate
Water (NPIW) and South Pacific Intermediate Water (SPIW) into the station in the mid-ocean region.
Additionally, the station is situated within the MD upwelling area, where strong upwelling transports
low-temperature, low-salinity North Pacific Deep Water (NPDW) from the bottom to the upper layer,
enhancing seawater exchange. Consequently, the water at station E142-19 comprises a mixture of diverse

water masses (MW).
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The study area is traversed by six major ocean currents: the South Equatorial Current (SEC), the North
Equatorial Current (NEC), the North Equatorial Undercurrent (NEUC), the Subtropical Countercurrent
(STCC), the Equatorial Undercurrent (EUC) and the North Equatorial Countercurrent (NECC). Among
them, the SEC flows from east to west along the equator and is characterized by high temperature and
low salinity, notably impacting station EQ-6. The NEC is a major westward current in the study area,
accompanied by a series of eastward undercurrents of NEUC in its lower part; stations E142-3 and E142-
7 are mainly affected by them. The STCC is characterized by a multi-eddy structure that flows eastward
in the subtropical region of the North Pacific and notably impacts station E142-11. The EUC is a strong
eastward current rich in oxygen and nutrients, which are present in the subsurface layer of the equatorial
Pacific, forming the main body of the thermocline of this area; station E142-13 is deeply affected by it.
The NECC is an important current in the tropical Pacific equatorial current system, transporting warm
pool water from the western Pacific to the eastern Pacific; Station E142-19 is mainly affected by it.
Furthermore, the area features a substantial upwelling system known as the Mindanao Dome (MD),

greatly impacting Station E142-19, situated southeast of the MD.

3.2 Vertical distribution characteristics of POC and 6'*C-POC

The average POC concentration from the surface to the deep chlorophyll maximum layer (DCM, 0-150
m) of the six stations was: E142-19 (34.12 + 3.53 pg/L) > E142-13 (31.90 + 3.19 pg/L) > EQ-6 (31.32
+5.27 ug/L)>E142-3 (27.77+ 4.78 ug/L) > E142-7 (27.43 + 1.35 pg/L) > E142-11 (26.81 + 2.25 pg/L).

Since the nutrient concentration in ESW and SPSSW is higher than that in NPTSW and NPTSSW., Thethe

surface POC concentrations at stations E142-13 and EQ-6 were slightly higher than those at other stations.
However, the surface POC concentration at station E142-19 was the highest among the six stations
because the robust upwelling of MD brought rich nutrients to the surface seawater, alleviating the
nitrogen nutrient limitation of the surface water at this station (Gao et al., 2021).

The POC concentration of each station demonstrated a decreasing trend with increasing water depth and
tended to remain stable in the deep ocean (> 1,000 m) (Eie—2). The most significant drop in POC
concentration occurred between the DCM and 600 m (Fig. 3). The seawater within this depth range was
abundant in POC and also exhibited relatively high temperature and DO concentration, which likely
enhanced the metabolic activities of heterotrophic organisms, thereby accelerating their utilization of

POC (Iversen and Ploug, 2013; Sun et al., 2021). The aerobic degradation of POC led to a significant

9
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consumption of DO. Therefore, the change in DO in this water layer was consistent with the change of
POC concentration (Fig—2Fig. 3). It could be inferred that the rapid degradation of POC contributes to
the accelerated formation of the oxygen cline. Since the microbial life activities below the oxygen cline
were still active, leading to the continued consumption of DO through POC degradation, the DO could
not be replenished in time. As a result, the low oxygen zone (where DO < 100 pmol/L) emerged in the
middle ocean at all stations (Fig-2Fig. 3). However, the hypoxic conditions observed at station E142-13
were comparatively less pronounced than those observed at other stations (Eig—2Fig. 3). This can be
attributed to the consistent transport of oxygen and nutrient-rich seawater by the EUC to this station,

facilitating oxygen replenishment and mitigating deoxygenation (Brandt et al., 2021).
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Figure 2Figure 3. Vertical distribution of DO_concentration, 8*C-POC _values, and POC concentration at

each sampling station. The gray areadetted-line marks the hypoxic zone with DO = 100 pmol/L as the
boundary. The green line represents the DCM depth.

The vertical distribution of §'*C-POC values closely resembles that of POC concentration (Figs. 2, 3a).

This similarity suggests that specific '*C-enriched components may be preferentially degraded during
POC degradation. Although the molecular composition of oceanic POC cannot be fully identified, it is
generally understood to primarily consist of lipids, amino acids, carbohydrates, nucleic acids, and a small
number of heterogeneous components (Kharbush et al., 2020). The metabolic activity of amino acids and
carbohydrates is higher than lipids, leading microorganisms to preferentially use these compounds as

energy sources, enriching lipids in POC (Hwang et al., 2006; Jeffrey et al., 1983). Previous studies have

reported that during the degradation of POC, the carbon isotope fractionation characteristics of amino

sugar monomers closely align with changes in §'3C-POC values (Guo et al., 2023b). Moreover, several

studies have highlighted that the carbon isotopic composition of lipid monomers does not exhibit

significant depletion during POC degradation; in fact, it may even show a trend of enrichment (Close et

al., 2014; Héggi et al., 2021). These observations further indicates the preferential degradation of amino

acids and carbohydrates in POC. On the other hand, compared with lipids, amino acids and carbohydrates

exhibit higher 8'3C values (Hayes, 1993; Hwang and Druffel, 2003; Schouten et al., 1998). When large
quantities of amino acids and carbohydrates undergo selective degradation, the residual POC will show
low 8'3C value characteristics. Therefore, as POC is continuously consumed in the water column, the

3!3C-POC values will gradually decrease. In addition, lipids have a low nitrogen content in comparison

to amino acids and carbohydrates, leading to a relatively high C:N (Morales et al., 2021). Our findings

demonstrated a strong negative correlation between §'3C-POC values and C:N (Fig—2Fig. 4b), which

implied that as the water depth increases, §'3C-POC _values decreases while the C:N in the remaining
POC increases. This suggests that selective degradation of POC occurs-in-eurstady, during which amino
acids and carbohydrates in the POC were preferentially removed, resulting in a relative increase in the

proportion of lipids in the remaining POC (Druffel et al., 2003; Guo et al., 2023a). However, it is

noteworthy that in the upper ocean (0-300 m), although there is a significant negative correlation between

6 BC-POC values and C:N ratios (p<0.05), no significant correlation is observed between & 3C-POC

values and POC concentration (p>0.05) (Fig. 4a). This suggests that the fractionation of 8 *C-POC at

this depth layer is not entirely controlled by selective degradation. Photosynthesis exerts a certain

12
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influence on the fractionation of 6 3C-POC within this depth range, primarily manifested as an increase

in photosynthetic carbon isotope fractionation with depth, leading to a decrease in 8 '*C-POC values.

In a study conducted in the subtropical North Atlantic, the photosynthetic carbon isotope fractionation

increased by 5.6 %0 from the upper to the lower euphotic zone, while the & 3C values of the

photosynthetic product, phytol, decreased by 6.3%. (Henderson et al., 2024). Therefore, although the

process of selective degradation significantly affects the fractionation of 6 3C-POC., it is still necessary

to consider the regulatory effects of other processes in certain unique marine environments.
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3.3 Vertical distribution characteristics of DIC and 6'*C-DIC

Among the six stations, only the equatorial stations E143-13 and EQ-6 exhibited average upper DIC

concentrations _exceeding 2000 umol/kg, with values of 2036 and 2054 umol/kg, respectively. This

phenomenon can be attributed to the fact that the surface water masses at these stations are composed of

high-temperature and high-salinity ESW (Fig. 2). Although high temperatures generally hinder the

dissolution of CO», they can accelerate the rate of CO, release by heterotrophic organisms. Meanwhile,

high salinity increases the ionic strength and buffering capacity of seawater, promoting DIC

accumulation (Zeebe and Wolf-Gladrow, 2001). These factors collectively contribute to the high DIC

concentrations observed in the surface layers of these two stations. The average upper DIC concentration

at station E142-19 was the next highest, reaching 1992 umol/kg. This is due to upwelling at this station

which transports deep, high-DIC seawater to the middle ocean. Consequently, this station also recorded

the highest average mid-layer DIC concentration among the six stations, at 2184 umol/kg. Furthermore,

since stations E142-3. E142-7, and E142-11 are predominantly influenced by the same water mass across

all depths, their DIC concentrations are relatively similar at each depth (Fig. 5). The average DIC

concentrations of all six stations in the upper ocean, middle ocean, and deep ocean were 2004 £ 65, 2147
+ 35, and 2234 + 26 pumol/kg, respectively. There was a significant increase in DIC concentration from
the upper to the deep ocean (Fig—4Fig. 5). Affected by photosynthesis, DIC increases gradually in the
upper ocean. In contrast, in the middle ocean, the rapid decomposition of POC released a large amount
of inorganic carbon, causing a rapid increase in DIC throughout the water column. Then, in the deep

ocean, a small amount of POC continues to degrade, while the release of DIC due to decreasing carbonate

saturation with depth contributes to a gradual increase in DIC concentration within this layer.in-deeper

Moreover, we observed surface 8'3C-DIC values ranging from -0.55 to 0.45%o (average 0.12%o) in the

research region, which is significantly lower than those reported in studies conducted in the Pacific region
in the 1990s (Quay et al., 2017; Quay and Stutsman, 2003). This suggests that the ocean has absorbed
more anthropogenic CO; as atmospheric CO» concentrations have increased over the years. The surface
3!3C-DIC value of station E142-11 was the lowest among the six stations, only -0.55%o, while the surface

313C-DIC value of station EQ-6 was the highest among the six stations, reaching 0.45%o. This is because

14



305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

station E142-11 was located at the strongest atmospheric CO» net sink area, while station EQ-6 was
located at the atmospheric CO; net source area (Zhong et al., 2022). The sea-air exchange at station
E142-11 was sufficient, leading to a lower 6'*C-DIC value in its surface water, as it was more likely to
reach isotopic equilibrium with atmospheric CO,. In contrast, the surface water of station EQ-6 was more
susceptible to seawater mixing and biological primary production influences. The higher §'3C-DIC
values observed in the surface water of station EQ-6 can be attributed to the isotope fractionation caused
by the consumption of a substantial amount of CO, by biological primary production (Quay et al., 2003).
In analyzing the vertical distribution of §'3C-DIC, the findings revealed a rapid decrease in §'*C-DIC
values at each station, mirroring the decline seen in 8'*C-POC values in the upper ocean (0-300 m) (Figs.

4, 5d). Within this depth range, the average decrease in §'*C-POC values was 2.23%o, while the average

decrease of 3'*C-DIC values was 0.30%o, with 8'3C-DIC reaching its minimum value in the subsurface.

However, in the middle ocean layer (300-1,000 m), unlike §'3C-POC, §'*C-DIC values increased first
and then stabilized (Eig—4Fig. 5). Therefore, distinct differences exist in the overall change trends of

31BC-DIC values and 83 C-POC values in the ocean water column. Since the mutual conversion between

POC and DIC was ongoing, this conversion process will inevitably cause changes in §'*C-POC and §'*C-
DIC. Generally, the variation range of §'*C-POC _values was more significant than that of §'3C-DIC,
indicating the more complex biogeochemical processes experienced by POC (Meyer et al., 2016;

Schmittner et al., 2013)._This difference is also partly due to the much larger size of the DIC pool

compared to the POC pool (Jeffrey et al., 1983). The high DIC concentration in the ocean buffers its

isotopic variability, resulting in minimal changes in §'3C-DIC values across the water column, whereas

the smaller POC pool is more sensitive to localized biogeochemical processes, leading to greater

variability in 8'3C-POC values.

15



327

328

329
330

DIC (pmol/kg)

2000 2200 2000 2200 2000 2200 2000 2200 2000 2200 2000 2200
0 l“ l/-. \"s ' — L 4 1 AL — vl 3 A 7 ' e L V \
A A 4 a v A Vo oA
w. A v, Ay 2 v,
700, § . | A)TA o A 357 | )V.-—-—-“
Ll K\ l\ a \?
4001 7 1 4 4 A
R BC | ey n I
6001 L\ a ‘ ] . | TL T
~ 8001 j l 1 1
= | 1 X
> 10001 -2 o r AR - 2 R a
£ \ \ | T
(=5
D 12001 1 4 1
2 \ e [
140091 & v T - \‘
16001 \ / ‘\ l T . l 1
1800 v T £ Z I 4 l T
20001 X A - \ v - X
EQ 6 El42 3 El42 7 E142 ll E142~13 E142 ]9
-0.2 0 0 0.2 04 (l 0 0 2 0 4 -0 2 () 0 0.2 -1 0 -() (l 0 -l) 5 0 0 05 0 0 (l 2 (l 4
313 C-DIC (%o)
DIC (pmol/kg)
2000 2200 2000 2200 2000 2200 2000 2200 2000 2200 2000 2200
0 1 1 1 — = | — 1
ESW v 1:315 A I:\l: J‘ vvv 2\}‘:’. /AA ]vas AA LS“/A l\l"l SW
§ v s —V’/A
200'}-_2:’\5 = K\‘ NPST, ]IAQTA 54 spss
A Js MW SW N|»§-|-{ e 7 ASW
400_ vrl ue \A X MW . MW J A
s — NPIW A\7 K \ \ [ Q:'i":w ‘T l
600 - X\ 6 . | | .|
1 &l & ‘ NPIW b 1 1
~ 800+ . 1 b 1
=il gl X
v -,
= 1000 1 1 1 k a 1 a
)
= | = el
D 1200' 1 - v E .
A e/ \ / | i | l
1400 A & (- J v 4 L oo oA - \PD\\ i \PD\\
- e
16001 1 1 7 T 1 I
1800 v 1 Y- 7 Z \I 1 l T
2000 1 1- A L] v 1 \ v 1 & v
EQ-6 E142-3 E142-7 El42-| 1 E142-13 E142-19
-0.2 0.0 0.2 04 0.0 0 2 0 4 -0 2 0.0 0.2 -l 0 -0 5 0 0 -0.5 0.0 05 0.0 0.2 0.4

3"3C-DIC (%o)

Figure4Figure 5. Vertical distribution of DIC concentration and 8'*C-DIC values at each sampling station.

The black line represents DIC, and the red line represents $'3C-DIC values.
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3.4 Transformation characteristics of POC in different water layers

According to the distribution characteristics of 8'*C-POC and §'3C-DIC_values, we divided the ocean
water column into three biogeochemical layers: the POC rapid synthesis-degradation layer (RSDL, 0-
300 m), the net degradation layer (NDL, 300-1,000 m) and the stable layer (SL, 1,000-2,000 m). Within

the RSDL, POC was rapidly degraded while being synthesized. The synthesis of POC likely exceeded

its degradation from the surface to the DCM layer, while the degradation of POC appeared to dominate

below the DCM. The

deereaseinphotosyntheticrate-with-depth—In this layer.Ja-addition; the §'*C-POC values and C:N in-this

layer-exhibited a pronounced negative correlation-, while no significant correlation is observed between

3"*C-POC values and POC concentration (p > 0.05) (Fig-5Figs. 4a, 6a). Therefore, the rapid decrease of

33C-POC values in this layer was dominated by the selective degradation of POC and

photosynthesisamine—acids—and—ecarbohydrates. Both §"*C-POC and 3"3C-DIC values decrease with

increasing depth in the RSDL (Figs. 3, 5), and they exhibit a significant positive correlation within this

layer (Fig. 6d). Although the degradation of POC typically lowers the 83C value of DIC, as the §'3C

value of POC is lower than that of DIC, the significant decline in §'*C-DIC values observed in the RSDL,

when considering the substantial difference in magnitude between the POC pool and the DIC pool,

suggests the influence of additional processes. However—at-the-sametime8°C-POC-and- 8" C-DIC

attributed-to-twe-primary-reasens—Specifically, On-the-one-hand; the ; phytoplankton and photosynthetic

bacteria in the upper ocean tended to use the light '>CO, in the seawater for photosynthesis; thus the

3'3C-DIC _values of the surface ocean at all stations was relatively high. However, light intensity

diminishes with increasing depth, which is unfavorable for photosynthesis. This leads to the

accumulation of 'CO, produced by the respiration of heterotrophic communities. Hewever—light

*2C0.: Consequently, the §'3C-DIC values in this layer steadily declined (Ge et al., 2022). In the NDL
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sunlight was extremely weak, and photosynthesis was nearly absent. Heterotrophic communities

dominate, leading to a continuous decrease in POC concentration and a corresponding increase in DIC

concentration (Figs. 3, 5). Generally, the degradation of POC would be expected to lower the §'3C value

of DIC. However, in this layer, 8'3C-POC values showed a significant negative correlation with both

C:N and 83C-DIC values (Fig. 6b, e), indicating the influence of additional processes on §'*C-DIC

fractionation. The NDL often encompasses low-oxygen zones (Fig. 3), which are known to favor the

activity of chemoautotrophic microorganisms. Compared to aerobic environments, the energy required

for microorganisms to fix inorganic carbon into organic carbon is lower under low-oxygen condition

(Hugler and Sievert, 2011; Mccollom and Amend, 2005). During this process, chemoautotrophic

microorganisms_preferentially utilize lighter '>C isotopes, leading to the enrichment of *C in the

remaining DIC pool. This microbial activity explains the observed increase in §'*C-DIC values in the

eaused-the §°C-DIC in this layer to-continueto-inerease: In the SL, the POC concentration remained

consistently low. §'3C-POC values did not correlate significantly with either C:N or §!*C-DIC (Fig-5Fig.

6c, f). This was because the easily degradable components in POC had been completely consumed in the
RSDL and NDL, and the remaining components were relatively refractory. As a result, the conversion

of POC to DIC was rare in SL, leading to an absence of a clear link between §'*C-POC and §'*C-DIC.
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FigureSFigure 6. Relationships between 8*C-POC and C:N at different depths: (a) 0-300 m, (b) 300-1,000 m,
(¢) 1,000-2,000 m, and between 5'*C-POC and '3 C-DIC at different depths: (d) 0-300 m, (e) 300-1,000 m, ()
1,000-2,000 m.

4 Conclusions

In general, this study investigated the transformation characteristics of POC in the tropical northwest
Pacific Ocean based on the 3'3C perspective. Our findings revealed three distinct stages of POC behavior

in the ocean: rapid synthesis-degradation, net degradation, and stable existence. Below the RSDL, theFhe

selective degradation of POC dominated the changes in §'3C-POC. The C:N ratio data in RSDL and NDL

indicate an increase in the proportion of refractory lipids in POC, relative to more labile components
such as amino acids and carbohydrates. FeHewingvigorousselective- degradationinthe RSPLand NDL;
an-inerease-in-the-propertion-of refractory lipidsin POC-was-observed—Consequently, in the SL, POC

was found to be stable with a slow degradation rate. The fractionation of §'3C-DIC in the ocean is

influenced by both the production and degradation processes of POC. Within the RSDL, §'*C-DIC
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fractionation is predominantly governed by primary production, whereas within the NDL and SL, it is
primarily influenced by the degradation process of POC.

Although we utilized §'*C-POC and 3"*C-DIC to assess the overall transformation characteristics of POC,
the specific synthesis and decomposition ratios of POC are still challenging to determine. Further
research is needed on the monomer carbon isotopic composition of POC (lipids, amino acids, etc.) to

enhance our understanding of the transformation process of POC.
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