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Abstract. Woody plant encroachment (WPE refers to the increase in density, cover, and biomass of trees and shrubs, 

affecting both the environment and economy. Many regions lack quantification of WPE, and its driving factors remain 

unclear. Shrub encroachment, involving woody plants up to 1.5 meters tall, is particularly challenging to quantify due to the 

lower height and coverage of shrubs. Remote sensing can address this by leveraging spectral and structural properties to 

improve shrub detection. Integrating accurate quantifications of shrub encroachment over time in models with a variety of 10 

potential driving factors can shed light on primary encroachment patterns and mechanisms, aiding local management efforts. 

We present a case study in the Cypress Upland ecoregion of Canada, where we examine the relationship between 22 

different topo-edaphic, anthropogenic, and climatic factors, and shrub cover changes from 2011 to 2018. 

1 Summary 

Grasslands are rapidly disappearing and degrading worldwide (Bardgett et al., 2021). The spread of unwanted herbaceous 15 

and woody plants poses a significant threat to natural grasslands globally. Woody plant encroachment (WPE) involves the 

increase in density, cover, and biomass of trees and shrubs, whether native or non-native, beyond their historical or 

geographical ranges (S. R. Archer et al., 2017; Van Auken, 2000). WPE impacts the environment, food industry, and 

economy. During WPE, grassland insects and animals experience habitat shrinkage; which impacts pollination, breeding 

areas (Gray & Bond, 2013), and food resources, due to the decline in herbaceous biomass. This, in turn, affects higher food 20 

chains, such as carnivores in grasslands (Briske editor, 2017, Chapter 2). Additionally, WPE areas are estimated to support 

only about 25% of the cattle capacity compared to open grasslands, drastically reducing forage availability (Moss et al., 

2008). Over the past 30 years, the U.S. Great Plains lost production value between $4.1-5.6 billion due to WPE (Morford et 

al., 2022). While grassland conversion to crops is evident, WPE is subtle, and challenging to reverse even with timely 

management. Despite the risks to ranchers, it is not clear how much grassland is impacted by WPE. Shrub encroachment, 25 

involving small woody plants up to 1.5 meters tall, is particularly difficult to quantify due to lower height and coverage. 

Remote sensing (RS) data offer several advantages for monitoring shrub encroachment, including large-scale coverage, near-

real-time monitoring, cost-efficiency and consistency. Remote sensing data can assist in delineating management priority 

areas, identifying stages of encroachment, and assessing grassland conditions (e.g., good, fair, poor). Optical RS can detect 
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shrubs with distinct spectral signatures from surrounding land cover types (Soubry & Guo, 2021). These signatures are 30 

influenced by the phenological, biochemical, and structural properties of encroaching shrubs (Skowronek et al., 2017). 

Depending on the season, vegetation indices related to increasing dry-matter non-photosynthetic materials (e.g. twigs, 

branches, and dry leaves) perform higher during senescence (e.g., CARI, NDLI, NDNI), while vegetation indices related to 

higher greenness (i.e. DGVI) perform better during active woody plant growth (Oldeland et al., 2010). Therefore, cloud-free 

images are crucial when considering phenological stages for shrub mapping. However, when spectral differences between 35 

shrub and their background are subtle, there may not be enough variance, leading to mixed classifications and inaccurate 

results (Royimani et al., 2019). This issue also arises with coarse spatial resolution imagery (Soubry & Guo, 2022).  

Nonetheless, shrubs with distinct morphologies and structures might be detectable using object-based image classification 

approaches (Soubry et al., 2022). Additionally, height information from digital elevation models or LiDAR datasets can 

enhance shrub detection (Zlinszky et al., 2014), as can multi-angular RS data (Millan & Sanchez-Azofeifa, 2018). 40 

Incorporating textural measures from radar data could also improve shrub detection. However, recent studies show that 

Sentinel-1 SAR data might not yield optimal results for vegetation detection due to its low frequency, which cannot 

penetrate thick vegetation layers, resulting in backscatter of decreased biomass (Rajah et al., 2019; Smith & Buckley, 2011). 

The large incident angle of Sentinel-1 might also hinder the detection of vegetation physiology (Ghulam et al., 2011). The 

upcoming NISAR satellite mission, equipped with L-band and S-band SAR, could offer a solution. Overall, combining 45 

spectral, textural, and structural properties, that align with the target plant properties, improves shrub detection (Kopeć et al., 

2019). 

One of the most pertinent issues in RS quantification of shrub encroachment is early detection. Most multispectral satellite 

sensors have medium spatial resolution, and are therefore unable to detect early encroachment stages (Lass et al., 2005; 

Royimani et al., 2019), unless the phenomenon is the same size as the pixel (i.e. for homogeneous and large spread 50 

encroachment) (Royimani et al., 2019). The type of RS data used also influences its appropriateness for shrub detection apart 

from spatial resolution. For instance, in the case of homogenous shrub stands, lower spatial resolution multispectral data may 

be sufficient, whereas both high spectral and spatial resolution are recommended for species with limited representation in 

the study area (He et al., 2011). Overall, higher resolution allows for the identification of earlier shrub encroachment stages 

than does coarser resolution. 55 

2 Anthropogenic, topo-edaphic and climatic drivers of shrub cover change 

Shrub encroachment is a global issue, but the factors driving it on grasslands are not fully understood. There is ongoing 

debate, from which a multitude of local and global drivers has emerged (e.g., climate change, fire regime changes, soil and 

topography differences, etc.). Global drivers are connected to changes in the Earth atmosphere together with changes in the 

land use of grasslands, since these happen at a very large scale (Wilsey, 2018, Chapter 7). Environmental drivers are divided 60 
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into climatic (regional) and topo-edaphic (local) categories. Climatic drivers include air temperature increases, changes in 

rainfall intensity, and CO2 levels (Bond & Midgley, 2012), while topo-edaphic factors involve hydrology, soil, and 

topography (S. R. Archer et al., 2017). Anthropogenic drivers relate to land use and vegetation management changes. These 

changes can be related to land conversions to agriculture, and growth of population centers, leading to infrastructure (e.g., 

power lines, roads, fences), which provide for woody propagules. Worldwide, between 1992 and 2015 alone, 25% of all land 65 

conversions came from grasslands (Strassburg et al., 2020). 

2.1 Climatic 

Global warming may lead to declines in grass cover due to drought, allowing woody species to thrive by accessing moisture 

with their deeper roots (Polley et al., 2013). Research indicates that WPE is promoted by increased precipitation intensity up 

to a certain limit (Scholtz, Fuhlendorf, et al., 2018). A review of 29 studies across 13 different grassland and savanna areas 70 

found that plant species declined by an average of 45% following woody encroachment, with areas of high precipitation 

being more affected (Wilsey, 2018, Chapter 8). Additionally, CO2 concentrations have risen from about 270 ppm in the mid-

1800s to approximately 400 ppm in 2017, and are projected to reach 550 to 700 by the end of the 21 st century (Wilsey, 2018, 

Chapter 7). Previous studies have yielded mixed results when attempting to link increased CO2 levels with WPE. Global 

vegetation models suggest that higher CO2 levels strengthen woody plants (Bond & Midgley, 2012). Specifically, the rise in 75 

CO2 facilitates photosynthesis for C3 species (e.g. small shrubs) more than for C4 species (e.g. warm-season grasses) (Polley 

et al., 2013). However, Archer et al. (2017) found WPE often progresses faster than CO2 increases, indicating that while CO2 

may play a role, it is not the primary driver of WPE. Körner et al. (2006) suggest that the change in woody plant cover 

should be significant enough to compare with CO2 enrichment values necessary for substantial growth changes, which is a 

difference of more than 160 ppm over the years. 80 

2.2 Topo-edaphic 

Hydrology, topography, and soil properties are local factors that influence the development of woody plants in grasslands. 

Grasslands and woodlands differ structurally in these aspects. Woody plants, with their larger and deeper roots, thrive in 

deeper soils and can reduce competition with grasses for soil moisture. While grasslands remain dormant for part of the year, 

and transpiration and rainwater interception occur over a shorter timeframe. Specific soil properties, such as texture and 85 

depth, can prevent shrub encroachment (Briske editor, 2017, Chapter 2). For instance, shallow and dry soils can limit woody 

plant encroachment (Bragg & Hulbert, 1976; Pracilio et al., 2006). Drought generally reduces woody cover in grasslands and 

savannas, particularly affecting species with low growth rates before drought or those dependent on deeper soil moisture. 

Shrub encroachment can also impact hydrological cycles in areas with shallow aquifers, as woody plants can trap more 

moisture in the air, leading to increased cloud formation and rainfall (S. Archer et al., 2001). Lastly, variations in woody 90 

plant distribution based on topography can be explained by differences in solar radiation, precipitation, and slope aspects 

(Kennedy, 1976). 
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2.3 Anthropogenic 

Anthropogenic drivers of shrub encroachment, such as land abandonment and protection, land fragmentation, changes in 

grazing regimes, and alterations in fire frequency, intensity, and cover, play a significant role in transforming grassland 95 

ecosystems. In mountainous grassland areas, the highest encroachment rates were observed in regions with significant land 

abandonment (Gartzia et al., 2014). Similar trends were noted in ungrazed grasslands (Bogunovic et al., 2019), and in the 

desert grasslands of southeastern Arizona, which were protected for a 74-year period (Browning et al., 2014). Specifically, 

high-density shrub patches increased over time by forming clusters at small distances, which eventually filled in. The 

fragmentation in grasslands due to human infrastructure, such as tree plantations, cities, or homesteads, further increases 100 

woody propagule pressure (Briggs et al., 2005). Overgrazing is a major cause of grassland degradation due to higher forage 

demands, leading to the clearing of grass biomass, reduced grass recovery, and the dispersal of shrub seeds through livestock 

movement (Eldridge et al., 2013; Kwon et al., 2016; Wang et al., 2019). Nevertheless, the relationship between grazing and 

WPE remains debated, as a meta-analysis found no consistent link between grazing and shrub cover changes (Briske editor, 

2017, Chapter 2). Remote sensing studies suggest a connection, but ground-based studies do not, possibly due to lower 105 

spatio-temporal resolution (Ma et al., 2019).  

Changes in fire frequency, intensity, and cover are key drivers of shrub encroachment (Bailey et al., 2010; Twidwell et al., 

2013). Historically, woody plants were confined to areas with infrequent fires, but it is argued that overgrazing has reduced 

fine fuels necessary for natural grassland fires (Kwon et al., 2016). Without fire, woody plants grow taller and become fire-

resistant, making subsequent fires less effective (Bond & Midgley, 2000). Studies show that areas not treated by fire or 110 

herbicide saw significant increases in woody plant encroachment (Bragg & Hulbert, 1976; Scholtz, Polo, et al., 2018). Public 

policies often limit the use of prescribed fires, reducing their effectiveness (Twidwell et al., 2013). While burning can reduce 

woody plant establishment, it can also create conditions for woody seedlings to thrive (Mazía et al., 2019). Combining 

prescribed fires with moderate to heavy grazing has been suggested to conserve species diversity and promote native plants 

(Beck et al., 2015; Briske editor, 2017, Chapter 2; Hendrickson et al., 2019; O’Connor, 2019; Twidwell et al., 2013; Wang et 115 

al., 2019). Thus, the effects of fire and grazing on shrub encroachment depend on the context and remain an open question. 

Overall, the potential driving mechanisms of shrub encroachment belong to a complex web of local and global factors. As of 

today, the debate regarding these drivers is still ongoing.  

3 Case study in Cypress Upland 

Despite the potential of RS to address many ecological limitations in WPE studies, its usage has been limited. This is 120 

particularly unexpected given that WPE occurs over large areas with specific spatial patterns and over extended timespans 

(Buenemann, 2007). Οur research over the past five years reviewed 405 WPE-related studies, revealing that 67% focused on 

WPE ecology, 24% utilized remote sensing, and less than 10% involved modeling. Similarly, a systematic review in 2007 

found that only 4.9% of WPE studies were published in geographical journals (Buenemann, 2007). This underrepresentation 
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of RS and modeling studies partially explains the lack of comprehensive landscape to global-level understandings of WPE 125 

cover and processes. To achieve a broader and global understanding of WPE, more transnational, multi-departmental 

collaborations are needed. 

Even though there are challenges in understanding the ecology and applying RS approaches for quantifying WPE, 

integrating these fields with modeling could help address gaps in the literature (Soubry & Guo, 2022). Effective management 

of WPE requires considering both local and global driving factors (Stevens et al., 2017). Models can identify these factors by 130 

using predictor variables to determine which contribute more to woody plant presence on the landscape. Since WPE is 

dynamic and progresses over time, time series mapping can reveal long-term patterns and trends, as well as their connections 

to local and global drivers (Gavier-Pizarro et al., 2012). For instance continuous changes in woody cover from 1986 to 2016 

have been correlated with temperature and rainfall patterns to understand the climatic factors driving WPE (Venter et al., 

2018). Image change detection analysis is particularly useful for quantifying shrub overlap (stable cover), shrub expansion 135 

and reduction. Examples of change detection methods include post-classification change detection, change classification, 

band difference, band ratio, Euclidean distance, and change vectors (Jensen, 2008; Parelius, 2023). 

We use Cypress Hills Interprovincial Park (CHIPP) (49° 40’ N, 110° 15’ W) (Fig. 1) as a case study area, where shrub cover 

using an object-based image classification approach (overall accuracy >92%) was estimated from an aerial image obtained in 

2018 (see Soubry et al. (2022)). We obtained an additional set of RGB aerial imagery for 2011 (27 June & 3 July, 40cm 140 

spatial resolution) from the Ministry of Parks, Culture and Sports through the FlySask program (https://www.flysask2.ca/) to 

obtain shrub cover for 2011. Then we conducted change detection analysis to connect changes in shrub cover with potential 

drivers. A total of 22 topo-edaphic, anthropogenic, and climatic variables were selected for analysis and modelling against 

shrub cover changes in the park between 2011 and 2018 (Table 1). 
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Figure 1: a) West Block of Cypress Hills Interprovincial Park (CHIPP) in Saskatchewan (SK), Canada, b) West Block of CHIPP 

overlaid on the 8-bit mosaicked 40 cm aerial image of June 27th and July 3rd 2011, c)  West Block of CHIPP overlaid on the 8-bit 

mosaicked 30 cm aerial image of  17 October 2018. Sources: Canadian Provincial Boundaries - Statistics Canada (Open-

Government License—Canada) (Statistics Canada, 2020), Aerial image & CHIPP boundary layer: Ministry of Parks, Culture, and 

Sports, Government of SK. 150 

Table 1 Topo-edaphic, anthropogenic and climatic data layers (for topo-edaphic variables see Soubry et al. (2022), for 

anthropogenic variables see Soubry et al. (2024)) 

Category Variable Details Data type Source 

Topo-edaphic 

(fixed) 

 

 

 

Landscape Unit Combination of Rangeland Ecosite & 

Topography class 

Categorical 

2018 CHIPP Forest 

Inventory Rangeland 

Ecosite 

Defined from topography, soil texture, 

moisture regime, salinity 

Categorical 

Elevation Upland & Lowland (above and below 

average elevation) 

Categorical Saskatchewan Geospatial 

Imagery Collaborative 

(SGIC) 15 m resolution Continuous 

Aspect 4 compass directions Categorical Derived from SGIC 

Digital Elevation Model 

(DEM) 

Slope Classes of 10% slope rise Categorical 

 Continuous 

Topography Depressional, Flat, Gully, Hilly, Steep, Categorical 2018 CHIPP Forest 
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Category Variable Details Data type Source 

and Undulating Inventory 

Soil Moisture 

Regime (SMR) 

Based on moisture availability for 

vegetation 

Categorical 

Distance from 

watercourse 

lines 

Euclidean distance, 15 m spatial 

resolution (Part of the “Lakes, Rivers 

and Glaciers in Canada-CanVec Series-

Hydrographic Features”) 

Continuous Government of Canada 

Distance from 

wetlands 

Euclidean distance, 15 m spatial 

resolution (Digitized by Geomatics 

Canada) 

Continuous National Topographic 

Data Base 

Distance from 

waterbodies 

Euclidean distance (15 m spatial 

resolution) 

Continuous Ministry of Parks, 

Culture and Sport 

(Saskatchewan, Canada) 

Anthropogenic 

Grazing 

Park Managers’ perception on grazing 

intensity (Low, Low-Medium, Medium, 

Medium-High, High) 

Categorical Spatial layer by Ms. 

Larissa Robinov from 

interview with Mrs. 

Melody Nagel-Hisey and 

Mr. Kevin Redden (Park 

Managers) 

Distance from 

roads 

Total road network  Continuous 
Ministry of Parks, 

Culture & Sports – 

reviewed by Mrs. 

Melody Nagel-Hisey 

Haying impact Haying frequency Categorical 

Years since last hay Continuous 

Hayed vs. Non hayed areas Categorical 

Climatic 

Daily Total 

Precipitation 

Sum of all forms converted to water-

equivalent (“prcp”) 

Continuous DayMet v4.4 (Thornton 

et al., 2022) 

Min & Max 

daily 

Temperature 

Daily 2-m air temperature (“tmin”, 

“tmax”) 

Continuous 

Annual Heat 

Moisture Index 

Combined effects between precipitation 

and evaporation/transpiration 

Continuous (Hewins et al., 2018) 

Spectral Normalized Atmospherically corrected surface Continuous Landsat 5,7,8,9 
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Category Variable Details Data type Source 

Difference 

Vegetation 

Index 

reflectance between 1990 and 2022 

 

Shrub cover 

Shrub presence in 2018 at 30 cm spatial 

resolution 

Continuous Soubry et al. (2022) and 

Ministry of Parks, 

Culture & Sports 

3.1 Methods 

3.1.1 Image classification 

We applied the same processing steps as in Soubry et al. (2022) to derive shrub cover for the grassland areas of CHIPP in 155 

2011. We calculated statistical, geometrical, spectral, and textural attributes (Table 3), and we collected 1200 training 

objects and 800 validation objects for each class (i.e., ‘Shrub’ and ‘No Shrub’).  

Table 2 Attributes used for 2011 shrub cover classification using an object-based SVM method (SVM: 

Support Vector Machine, R: Red, G: Green, B: Blue, GRVI: Green/Red Vegetation Index, GI: Greenness 

Index) 160 

Attribute Category Attributes Channels Used 

Statistical Min, Max, Mean, Standard Deviation R, G, B 

Geometrical Circularity, Compactness, Solidity / 

Spectral GRVI, GI* R, G 

Textural** Mean, Standard Deviation, Entropy, Angular second moment R, G, B 

* All other indices required the presence of a NIR band 

**For a 5x5 pixel window 

During post-classification editing we dissolved the shapes for each “shrub” and “no shrub” object and calculated the average 

shrub cover over the total grassland area in the park (i.e., 49.6%). Our estimate was very high and potentially over-estimating 

shrub cover. Therefore, we applied a rule-based classification. From the shrub class, we removed the objects that had 165 

negative values and low values up to 0.04 for the GRVI index. Negative values correspond to bare ground and soil. 

Moreover, values between 0 and 0.04 are most likely grasses. This decision was based on three separate observations of 

datasets: 

i) GRVI ((Green - Red) ÷ (Green + Red)) for summer reflectance of shrub and grass cover obtained with a 

field spectroradiometer in 2020 in Kernen Prairie, SK, Canada (Soubry & Guo (2021)). We used the mean simulated 170 
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reflectance value (%) from the Green and Red bands of Landsat-8 and Sentinel-2A of 0% shrub cover in the summer. That 

gave us a GRVI-Landsat-8=0.05 and a GRVI-Sentinel-2A=0.07. 

ii) GRVI for field obtained endmembers of shrubby cinquefoil (one of the dominant shrubs in of CHIPP 

West Block) and quadrat spectra of different shrub cover percentages in the West Block of CHIPP from 

the summer of 2021. We used the mean simulated reflectance value (%) from the Green and Red bands of Landsat-8 and 175 

Sentinel-2A. For 0% shrub cover GRVI-Landsat-8=0.03, and GRVI-Sentinel-2A=0.05. 

iii) based on the attribute visualization in PCI Geomatics.  

We considered that the spectral data from CHIPP West Block quadrats is more appropriate as it corresponds to the same 

study area. Therefore, we selected a GRVI threshold value between 0.03 and 0.05, which is 0.04. In the end, the average 

shrub cover in 2011 was re-calculated. 180 

Lastly, the annual rate of shrub cover change between 2011 and 2018 was calculated using equations: 

𝑞 = ((
𝐴2

𝐴1
)

1
(𝑡2−𝑡1) − 1) 𝑥 100 (FAO (1995)) (1) 

1

𝑡2−𝑡1
ln (

𝐴2

𝐴1
) 𝑥 100 (Puyravaud (2003))     (2) 

Where, 

• t2-t1 is the total time of the change detection 185 

• A2 is the total shrub cover in time t2, A1 is the total shrub cover in time t1. 

3.1.2 Change detection analysis 

The 2018 shrub cover classification (30 cm) was resampled to the spatial resolution of the 2011 classified image (40 cm). 

Both images were georegistered to eliminate spatial error during change detection (PCI Geomatics Banff 2018 Focus). 

Image differencing was used for change detection (ArcMap version 10.8.2). Percent cover for each shrub cover class (stable, 190 

expansion, reduction) over the total grassland area in the park was calculated. The shrub reduction layer was excluded in the 

driving factor analysis due to lower confidence. 

3.1.3 Driving factor analysis 

Topo-edaphic, anthropogenic and climate factors that contribute to expansion of shrub cover, and conditions that contribute 

to stable cover between years are explored. Growing season trends and long-term climate trends of the study area are also 195 

analyzed. The layers of shrub expansion and stable shrub cover were compared with each variable of Table 1 to determine 
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the percent change in shrub cover (similar to the approach in Soubry et al. (2024). The topo-edaphic variables remained 

constant between the two years. However, changes between 2011 and 2018 were considered for the anthropogenic variables. 

Climate data analysis 

Most time-series that use climate data to compare with WPE require continuous woody cover (e.g., Venter et al. (2018)). 200 

However, Skowno et al. (2017) examined changes in woody cover between 1990 and 2013 to create a change map, which 

they compared with binned mean annual precipitation. Given that we have two dates for shrub cover, we adopted Skowno et 

al.'s (2017) approach. Between the CHIRPS, WordClim, ERA5, and DayMet v4.4 datasets, we selected the DayMet dataset 

due to its spatial resolution (1x1 km), its availability in North America, the long-term available timespan 

for the study area (1981-2022), the fact that data is extrapolated and interpolated from weather stations, and 205 

because of daily temperature and precipitation variables. DayMet data for our study stems from two nearby 

weather stations located in the East Block of the park. 

All DayMet data was processed in Google Earth Engine (GEE). Mean daily temperatures were calculated by adding “tmin” 

and “tmax” and dividing by two. Total annual precipitation, mean annual temperature and their standard deviations were 

calculated for each year from 2011 to 2018 for each 1x1 km pixel using their daily values inside the CHIPP park boundaries. 210 

Then, the mean values across years for each pixel were calculated. The total mean annual precipitation (MAP) and mean 

annual temperature (MAT) were exported from GEE and used to generate gridded precipitation and temperature maps. The 

average of three rules defined the number of bins for the precipitation data: 

i) The square root rule: Number of Bins= sqrt(Number of Data Points)=sqrt(266)=16  

ii) Sturges’ rule: Number of Bins=1+log2(Number of Data Points)=1+log2(266)=3.42=3 (Sturges, 1926) 215 

iii) Rice Rule: Number of Bins=2×(Number of Data Points)1/3=2x(266)1/3=12 (Lane, 2008) 

The average was 10 bins, with a 9 mm range for each if we assume equal interval, similarly to Skowno et al. (2017). For 

better interpretation, we used 9 bins of 10 mm. We used the same approach for temperature data, resulting in 8 bins of 0.15 

degrees Celsius. 

Strong altitudinal differences in the park highly affect temperature and plant moisture requirements. To understand the 220 

combined effects between precipitation and evaporation/transpiration (which is a function of temperature) on shrub cover, 

we calculated the gridded Annual Heat Moisture Index (AHM) = (MAT + 10) / (MAP/1000) and their standard deviations as 

described in Hewins et al. (2018). Lower values represent colder and wetter climate, while higher values warmer and drier 

climate. Gridded AHM data was separated into 7 bins of 1 AHM unit. To find the tipping point for net shrub cover increase 

depending on the AHM value, we used continuous data. 225 

We further examined long-term climate trends from 1981 to 2022 to better understand the climate effects in the study area. 

We calculated the MAP, MAT, and AHM for each year within this period and plotted trendlines. To test for statistical 
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significance, we used the Mann-Kendall test. Seasonality was not removed since annual data averages out seasonal 

fluctuations. Lastly, we did not include CO2 concentrations in our analysis because the increase of 100 ppm between 1860 

and 2013 in Canada found by Cheng et al. (2022) is below the 160 ppm threshold needed to induce woody plant growth, as 230 

per Körner et al. (2006). 

Growing season analysis 

To assess the impact of climate change on the grassland ecosystem within CHIPP, we calculated Normalized Difference 

Vegetation Index (NDVI) time series using atmospherically corrected surface reflectance from Landsat 5, 7, 8, and 9 images 

between 1990 and 2023. Through GEE processing, we selected images with <30% cloud cover and applied a cloud mask, 235 

resulting in 480 images. A 15-day moving average smoothed the NDVI time-series chart. We then analyzed seasonal trends 

over the years by selecting three months to represent the start, peak, and end of the growing season. May, having the lowest 

NDVI value for most years, was chosen as start of season. July, with the highest NDVI value, was selected as peak, and 

September, showing declining NDVI values between 0.15 and 0.05 for most years from 1990 to 2023, was chosen as end of 

season. Then, the monthly averages of all available NDVI values for each month were plotted as seasonal time-series. 240 

Finally, the annual average NDVI was computed to compare with trends in MAP, MAT, and AHM. 

Modeling 

To analyze the combined relationship between all variables in Table 1 and annual percent shrub cover change in the park, 

multiple models were developed (Table 3). Climatic variables were excluded due to their coarser resolution (1x1 km). The 

dependent variable in each model is net shrub cover change between 2011 and 2018 for each 15x15m grid cell. This spatial 245 

resolution was chosen because of the available DEM. First total percent change between 2011 and 2018 (ranging from -100 

to +100) was calculated, then annual percent change. Due to varying data coverage and missing values, independent 

variables for nine models were selected based on spatial co-occurrence, resulting in different sample sizes. We used a 

generalized least squares (GLS) regression and checked for multicollinearity among continuous variables, 

finding no significant correlations. Variables were standardized before running the models to rank the model 250 

coefficients by importance. Scripts were developed in RStudio (RStudio Team, 2021) using the “nlme” 

package with the gls() function (Jose Pinheiro et al., 2013). After running the models, we accounted for 

spatial autocorrelation in the residuals as in Soubry et al. (2024). Due to high hardware requirements, model processing was 

transferred to the High-Performance Computing (HPC) cluster at the University of Saskatchewan. For some models (1a, 1b, 

1c, 1d, 3b1, and 3b2), the sample size was reduced to a random subset to ensure timely processing. 255 
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Table 3 Models used to examine the combined relationship between topo-edaphic and anthropogenic variables and shrub cover 

changes between 2011 and 2018 in the park 260 

Model Type Independent variables Selected 

spatial 

structure 

accounting 

for RSA 

Sample 

size 

1a 

Topo-edaphic 

Elevation, Slope Rise, Topography, Range Ecosite, Aspect, 

Landscape Unit, Soil Moisture Regime, Distance from 

watercourse lines, Distance from waterbodies 

Rational 

Quadratic  

100,000 

1b Elevation Categorical, Slope Rise Categorical, Topography, 

Range Ecosite, Aspect, Landscape Unit, Soil Moisture Regime, 

Distance from watercourse lines, Distance from waterbodies 

Rational 

Quadratic  

100,000 

1c Elevation, Slope Rise, Topography, Range Ecosite, Aspect, 

Landscape Unit, Soil Moisture Regime, Distance from 

watercourse lines, Distance from waterbodies, Distance from 

wetlands 

Rational 

Quadratic  

40,000 

1d  Elevation Categorical, Slope Rise Categorical, Topography, 

Range Ecosite, Aspect, Landscape Unit, Soil Moisture Regime, 

Distance from watercourse lines, Distance from waterbodies, 

Distance from wetlands 

Rational 

Quadratic  

40,000 

2a 
Anthropogenic 

Road Distance, Grazing Intensity, Haying Frequency, Years 

Since Last Hay,  

Exponential 7,566 

3a1 

Mixed 

Elevation, Slope Rise, Road Distance, Topography, Range 

Ecosite, Aspect, Grazing Intensity, Landscape Unit, Haying 

Frequency, Years Since Last Hay, Distance from watercourse 

lines, Distance from waterbodies 

Rational 

Quadratic  

7,158 

3a2 Elevation, Slope Rise, Road Distance, Range Ecosite, Aspect, 

Landscape Unit, Haying Frequency, Years Since Last Hay, 

Distance from watercourse lines, Distance from waterbodies, 

Distance from wetlands 

Exponential 888 

3b1 Elevation, Slope Rise, Road Distance, Topography, Range 

Ecosite, Aspect, Grazing Intensity, Landscape Unit, Hayed, 

Rational 

Quadratic 

30,000 
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Model Type Independent variables Selected 

spatial 

structure 

accounting 

for RSA 

Sample 

size 

Soil Moisture Regime, Distance from watercourse lines, 

Distance from waterbodies 

3b2 Elevation, Slope Rise, Road Distance, Topography, Range 

Ecosite, Aspect, Landscape Unit, Hayed, Soil Moisture 

Regime, Distance from watercourse lines, Distance from 

waterbodies, Distance from wetlands 

Rational 

Quadratic 

10,000 

3.2 Results 

3.2.1 Image Classification and Change detection 

The classification of the 2011 orthomosaic resulted in an overall accuracy of 91.3% based on visual photointerpretation 

(95% Confidence Interval between 89.7% and 92.9%). The producer’s and user’s accuracy for each class were above 88.0%. 

The average shrub cover in the grassland areas of the West Block in CHIPP was 27.13% for 2011, with a 1.95% increase in 265 

shrub cover % between 2011 and 2018. The annual rate of shrub cover change between 2011 and 2018 is 0.995%/year 

according to Equation 1, and 0.990%/year according to Equation 2. Figure 2 shows annual percent shrub cover change in 

the West Block of CHIPP. Between 2011 and 2018, 10.6% of the shrub cover in the grassland area of the park remained 

stable, 16.2% expanded, and 16.5% reduced, while 56.7% of the grassland area of the park had no shrub cover. 
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 270 

Figure 2 Annual percent shrub cover change in the grasslands of CHIPP’s West Block between 2011 and 2018. 

3.2.2 Driving factors 

Topo-edaphic 

Flat areas had the highest total shrub expansion and stable shrub cover relative to their total area (20.4% and 13.0%, 

respectively). Specifically, 49.1% of total shrub expansion and 48.0% of stable shrub cover occurred on Flat topography, 275 

with 38.5% and 36.6% on Loam-Flat landscape units. Loam ecosites accounted for 68.2% of shrub expansion and 63.9% of 

stable cover. 

Steep slopes (220-230% rise) had the highest shrub expansion (27.3%), while shallower slopes (10-20% rise) had the highest 

stable cover (12.2%) compared to their total area. Most shrub expansion (74.4%) and stable cover (68.2%) occurred on 

slopes between 0% and 10% rise. Upland grasslands had more shrub expansion (19.0%) compared to lowland grasslands 280 

(13.3%), while stable cover was similar (10.4% and 10.8%). 
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Very Fresh soil moisture regimes (SMR) had the highest shrub expansion and stable cover (19.1% and 20.1%). Moderately 

Fresh soils saw 69.1% of shrub expansion and 58.9% of stable cover, while Very Moist SMR sites had the lowest (0.02% 

and 0.04% respectively). This could explain why shrub expansion increased with distance from waterbodies and wetlands 

(peaking around 2 km from the waterbodies with significant correlations; r² = 0.19 and 0.08, p < 0.001). Stable cover 285 

decreased with distance from waterbodies. No clear relationship was found between distance from watercourses and shrub 

expansion. 

Anthropogenic 

Medium-High grazing intensity areas experienced the most significant shrub expansion relative to their total area (33.3%), 

whereas Low-Medium grazing intensity areas saw the least (12.3%). High intensity grazing areas maintained the highest 290 

stable shrub cover (18.4%), while Low-Medium grazing areas had the lowest (4.4%) relative to their total area. Additionally, 

Medium grazing intensity areas accounted for 50.1% of the total shrub expansion, followed by High grazing intensity areas 

(36.3%). Low grazing intensity areas contributed the least to total shrub expansion (2.7%). Moreover, shrub expansion was 

higher closer to roads (r2=0.32, p < 0.001). Conversely, stable shrub cover appeared consistent across various distances from 

the road network. 295 

Overall, in the hayed areas of the park, a lower percent of its area was undergoing any type of change related to shrub cover 

compared to the non-hayed areas. 12.4% of the hayed areas of the park had shrub expansion, and 2.5% had stable shrub 

cover, while 16.5% of the non-hayed areas in the park underwent shrub expansion and 11.2% had stable shrub cover 

between 2011 and 2018. Areas hayed before 2011 experienced the highest shrub expansion, with an increase of 15.7% 

relative to their total area. In contrast, areas hayed only once or twice between 2011 and 2018 saw slightly lower shrub 300 

expansion rates of 9.8% and 10%, respectively. Stable shrub cover exhibited a similar trend but at much lower levels. 

Notably, areas hayed twice between 2011 and 2018 had the lowest shrub expansion at 3.2%, while the majority of shrub 

expansion (52.2%) occurred in areas hayed before 2011. Stable shrub cover followed a comparable pattern. 

Climatic 

Net shrub cover increases are observed in the wettest areas of the park, with precipitation ranging from 536 mm to 556 mm. 305 

The second wettest area shows the highest annual shrub cover increase at 0.006%. Shrub cover remains stable in regions 

with precipitation between 505 mm and 515 mm. Over a 40-year period (1981-2022), there is a slightly positive linear trend 

in precipitation (p <0.05). The mean annual precipitation (MAP) increased at an average rate of 155 mm/year, with the mean 

total annual precipitation for this period being 506 mm. Shrub cover increased in the second coldest area of the park (3.2 to 

3.3°C) and decreased in all other temperature ranges, suggesting a preference for colder conditions. Over the 40-year period 310 

from 1981 to 2022, there is a significant positive linear trend in temperature (p <0.05). During this time, the annual mean 

temperature increased by an average of 0.97°C per year, with the mean annual temperature being 2.75°C. This trend is 

further highlighted in the AHM index, which shows the highest shrub expansion in the coldest and wettest areas of the park, 
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while warmer and drier areas experienced a net decline in shrub cover (Fig. 3, Fig. 4). The tipping point for net shrub cover 

increase occurs at AHM values below 25.5 (95% confidence interval 24.9 - 26.1 AHM units). 315 

 

Figure 2 Annual Heat Moisture index bins versus annual shrub cover change percent from 2011 to 2018 in Cypress Hills 

Interprovincial Park, West Block, Saskatchewan, Canada (the error bars represent standard error with a scaling factor of 0.0005). 
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Figure 3 Map of the Mean Annual Heat Moisture Index between 2011 and 2018 in increment bins of 1 in Cypress Hills 320 
Interprovincial Park, West Block, Canada. 

Growing season analysis 

The 15-day average NDVI time-series (1990-2023) show a relatively stable pattern across years, with high interannual 

variation (Fig. 5). Significant dips in NDVI peak values correspond to very hot and dry years (red arrows) or wet and cold 

years (blue arrows). The mean annual NDVI time-series exhibits a slight positive trend (r²=0.05), indicating increased 325 

vegetation growth and greenness over time (Fig. 6). There is considerable variation across years, with fewer extreme low 

NDVI values from 2005 and onwards. Confidence in the time-series improves over time as the number of available Landsat 

images increases. For the peak of the season (July), there is a slight positive trend (r²=0.07), suggesting more green 

vegetation over the years. Similarly, for the end of the season (September), there is a slightly stronger positive trend 

(r²=0.13) with high interannual variation, indicating a later end of the season and a longer growing season. 330 
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Figure 4 Smoothed out (15-day average) mean cloud masked NDVI time-series between 1990 and 2023 in the West Block of 

Cypress Hills Interprovincial Park, Saskatchewan, Canada 

When comparing the mean annual NDVI trend with MAP and MAT, years with lower MAP and higher MAT, such as 2001, 

2012, and 2021, correspond to lower mean annual NDVI values. Additionally, years with higher precipitation often result in 335 

increased NDVI in the following year (e.g., 1993, 1998, 2002, 2010, 2016, and 2019) (Fig. 6). This trend is more 

pronounced in the AHM index, where high AHM values during hot and dry years lead to lower NDVI values (Fig. 7). 
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Figure 5 Mean annual NDVI versus mean annual precipitation (MAP) and mean annual temperature (MAT) between 1990 and 

2023 in Cypress Hills Interprovincial Park, West Block (error bars depict the standard error). 340 
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Figure 6 Mean annual NDVI versus the annual heat moisture index (AHM) between 1990 and 2023 in Cypress Hills 

Interprovincial Park, West Block (red circles indicate a combination of AHM peaks and NDVI lows, error bars depict the 

standard error). 

Modeling 345 

The statistically significant results of each GLS model run are summarized in Table 4. 

Topo-edaphic Models (Model 1a, b, c, d): 1a and 1b indicate that Loam Flat landscapes experienced a significant decrease in 

shrub cover change compared to Gravelly Flat landscapes. Additionally, 1c and 1d show that landscapes facing North, 

South, West, and East had a significant decrease in shrub cover change compared to Flat landscapes. 

Anthropogenic Models (Model 2): Areas with low to medium grazing intensity saw an increase in shrub cover change 350 

between 2011 and 2018 compared to areas with high grazing intensity. Furthermore, areas hayed once between 2011 and 

2018 exhibited a decrease in shrub cover change compared to areas that were not hayed at all. 

Mixed Models (Model 3a1, a2, b1, b2): Shrub cover changes increased with rising slope percentages and proximity to roads. 

Additionally, 3a1 and 3b1 show that areas with low to medium grazing intensity experienced increases in shrub cover 
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compared to areas with high grazing intensity (similar to Model 2). There was also a decrease in shrub cover changes as the 355 

distance from watercourses and waterbodies in the park increased. 

Table 4 GLS Model results (RSE=Residual Standard Error, AIC=Akaike Information Criterion, GLS=Generalized Least Squares 

(+) =statistically significant increase in shrub cover change (2011-2018), (-) =statistically significant decrease in shrub cover change 

(2011-2018) 

Type Model Statistically important variables (p-value < 0.05) RSE AIC Prediction 

error rate 

Topo-edaphic 

 
 

1a 
Loam Flat (-) landscape unit compared to Gravelly Flat 

3.94 98598.04 22.71 

1b 3.94 98595.90 22.71 

1c 1)1 West (-) aspect compared to Flat, 2) South (-) aspect 

compared to Flat, 3) North (-) aspect compared to Flat, 4) 

East (-) aspect compared to Flat 

4.05 15188.50 9.02 

1d 4.05 15183.50 9.02 

Anthropogenic 
2 1) Low-Medium grazing (+) compared to High grazing 

intensity, 2) Hayed one time (-) compared to no haying 

4.10 40413.43 132.23 

Mixed 

3a1 1) Slope rise (+), 2) Low-Medium grazing (+) compared 

to High grazing intensity 

3.91 39648.86 174.46 

3a2 Distance from watercourses (-) 4.30 4906.37 4.23 

3b1 1) Road distance (-), 2) Low-Medium grazing (+) 

compared to High grazing intensity, Medium-High 

grazing (+) compared to High grazing intensity 

3.82 164699.6 22.66 

3b2 Distance from waterbodies (-) 3.91 55391.87 NA 

1order of relative importance 360 

3.3 Discussion 

We found an annual percent shrub cover change in the grassland areas of the park close to 1% per year between 2011 and 

2018. This estimate aligns with Barger et al. (2011) who reported that WPE increases by about 0.1-2.3% annually in North 

America. Higher estimates are observed in grasslands with greater rainfall, such as in Delgado’s (2017) study, which found 

an annual increase of 1.96% in shrub cover in the tropical grasslands of Venezuela. Conversely, the annual percent shrub 365 

cover increase is lower in drier regions, as demonstrated by Marston & Aplin (2017), who found a 0.6% annual increase in 

the Southern African savanna. 
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Flat Loam ecosites show the highest shrub expansion, while Overflow ecosites maintain the most stable shrub cover due to 

their moisture-rich topographic position (Thorpe, 2007). Areas with a Very Fresh soil moisture regime and those near 

waterbodies also exhibit significant shrub expansion. This suggests that shrub expansion starts from stable patches in an 370 

appropriate micro-environment for establishment (S. R. Archer et al., 2017). Net shrub cover increases are observed in the 

park’s wettest areas, and in the colder Uplands. The combined preference of shrubs for wetter and colder environments, as 

justified by the literature (Gxasheka et al., 2023), is evident in the AHM index patterns across the park. Higher shrub 

expansion as slope % rises can be supported by the notion that mean and steep slope levels have reduced cattle grazing 

(Bragg & Hulbert, 1976; Twidwell et al., 2013). Further, mid-slope soils could be closer to woody plant seeds, and woody 375 

plants can be more abundant on rock outcrops due to their protection from fire and grazing (Bragg & Hulbert, 1976). 

From the anthropogenic factors, the road network contributes to shrub cover expansion, potentially facilitating shrub seed 

dispersal (Soubry et al., 2024). The highest shrub expansion rate was observed in Medium-High intensity grazed sites, while 

the lowest was in Low intensity grazed sites, likely due to cattle grazing patterns (Soubry et al., 2024). Haying practices also 

played a crucial role in reducing shrub cover changes, regardless of the year of haying. More recent and frequent haying 380 

practices within hayed areas significantly reduced shrub cover expansion. 

Over the past 40 years, temperature, precipitation, and NDVI trends show significant interannual variation, primarily driven 

by drought and precipitation (Jiao et al., 2021). Our results indicate a later end of growing season, likely due to rising mean 

air temperatures (Linderholm, 2006). There is a clear link between precipitation and NDVI, a proxy for vegetation 

productivity, with a one-year lag observed between them. Indeed, vegetation productivity is limited by soil moisture, with a 385 

delayed response to precipitation noted in temperate forest-grassland ecotones (Liu et al., 2022). We found that low NDVI 

values often coincide with temperature peaks, similar to Yang et al. (2023), reflecting vegetation’s vulnerability to drought. 

However, these NDVI patterns may be more influenced by grasses than shrubs (Browning et al., 2017). 

3.3.1 Limitations 

We used a post-classification change detection method, which propagates the errors of each image classification into the 390 

final change detection layer. A change classification approach, where all bands are stacked into a single image and then 

classified, could be more effective. Additionally, there were limitations in the aerial images. The years and seasons of the 

image acquisitions did not match the field data collections, potentially leading to misclassifications from seasonal 

differences. Moreover, the driving factor analysis did not include the “No shrub cover” class. Future work could incorporate 

this class to better understand areas not preferred by shrubs. Lastly, without long-term fire history for the park due to fire 395 

suppression we could not investigate fire impact on shrub cover. 
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