Authors’ response to reviewers report

Response to Reviewer 1

This paper models the opening of hydraulic fractures below supraglacial lakes, and the subsequent spreading of the
basal fracture, uplifting the overlying ice. The aim of the paper is to investigate the role that different rheological
models for the ice have on the system. Results are compared with field data from Das et al. 2018 for a lake drainage
event. The study finds that the inclusion of viscous creep in the ice is important to accurately capture something
close to the observed behaviour: an elastic ice model does a bad job, even though the dynamics occur over a short
timescale (a few hours) - presumably because of the large stresses involved.

This is an interesting study and I think the conclusions are useful for the community. However, there are quite

a few points that I think could be explored in more detail, and the model results need a bit more exploration to be
entirely convincing. I think it could use some fairly significant revisions, as outlined below, to increase its impact,
and also to alleviate various issues of unclarity or inaccuracy.
We thank the reviewer for their detailed comments and assessment of the manuscript. Below we address the
main concerns of the reviewer on a point-by-point basis, with changes highlighted in blue within the manuscript.
However, we would like to directly address a reviewer comment raised in several points, regarding more and extensive
simulations using different assumptions needed for the results of this modelling study to be convincing.

The key suggestions of the reviewer are to perform simulations with a purely viscous rheology (using a different
set of governing equations than described in this manuscript to model ice as a fluid, instead of as a visco-elastic
solid), considering axisymmetry (i.e., round conduits) instead of 2D planar fractures for the vertical crevasse,
and considering different descriptions of the fluid flow within crevasses (ranging from laminar flow, to different
approximations for turbulent flow). While these suggestions would indeed provide relevant and interesting results,
they would not add to the main message of the article, that viscous deformations in addition to elastic deformations
are important to consider within the context of rapid lake drainage due turbulent hydrofracture.

Currently, the revised article is 30 pages (+10 pages of supplementary materials), well exceeding the recom-
mended length for The Cryosphere articles of 12 pages. Although changing the turbulent flow model (or tuning
its parameters) potentially result in a better fit to observed events, investigating this would require an extensive
description of the comparison between different flow models. It would, however, not add arguments to the find-
ing that viscous deformations are relevant, even on short time-scales, but instead add a new set of findings that
could be a research article on its own (potentially, that the fracture flow model provides the dominant time-scale
in the crack propagation process). Similarly, to consider a purely viscous rheology and describe the results in a
transparent, reproducible and understandable manner would require a second section for the governing equations,
constitutive relations for ice as a non-Newtonian fluid, and extensive results and comparisons. As such, our view is
that the extensions suggested by the reviewer would be better included in a separate stand-alone research paper.
Nevertheless, we greatly appreciate the reviewer for their excellent insights and expertise on this topic.

Comment # 1
1) The problem is studied in two dimensions, and the authors go to some effort throughout to argue that this is a
reasonable limit to consider. The other simple ‘end-member’ option would be a radial (i.e. axisymmetric) profile,
as mentioned around line 75. I don’t fully follow the reasoning in the paper here: there are statements that don’t
make sense, like “While our 2D model for the horizontal basal crack propagation and the basal uplift is valid for
the axisymmetric assumption. ..” Presumably this should mean something like “The 2D planar model construction
could be straightforwardly adapted to describe instead an axisymmetric spreading”. The point is, the construction
is not complicated, but there are different- and non-trivial - geometric factors which change some details.
Fundamentally, it seems to me that it should be straightforward to do the whole problem in an axisymmetric
geometry as well as the 2D planar geometry - because it uses the same ideas and is still mathematically 2D. And
this would be very valuable, because ‘reality’ is somewhere between the two (planar and axisymmetric; although
arguably it is closer to axisymmetric than planar) and so comparing solutions for each would greatly help the impact
of this work.

It is not straight-forward to conduct the full study as an axisymmetric geometry. For the sideways basal crack
propagation and uplifting and the description of the viscoelastic ice, the proposed model can easily be adapted
(as suggested by the reviewer) to axisymmetric cracks, instead of considering planar cracks; this will only require
changes within the finite element implementation to consider radial symmetry (updating the definitions of the
displacement-to-strain mapping operator, and integration weights to take into account the axisymmetry), while



the majority of the constitutive choices within the model remains unchanged. We have clarified when it would
be appropriate to use axisymmetry in the paper by adding this sentence: “using an azxisymmetric representation
would be appropriate for crevasses with surface lengths (i.e., the out-of-plane direction from Fig. 1b) much shorter
compared to the length of the horizontal/radial basal crack, such that the vertical crevasse can be considered as
a conduit propagating downwards. In contrast, the plane-strain representation used here is suitable for when the
surface crevasse spans longer distances, such that the crack is considered as a plane propagating downwards.”

However, for the vertical crevasse the physical considerations are considerably different: Under a plane-strain
assumption, the vertical crevasse is a crack with its propagation governed through the balance of elastic stresses and
fracture toughness, dissipating energy due to the creation of fracture surfaces (with the amount of elastic energy
dissipated scaling with G.A, where G, is the fracture release energy and A the total surface area of the crevasse).
In contrast, if we assume axisymmetry, the downwards crevasse is now a cylindrical conduit, where it is no longer
clear as to what fracture surface area is in the undeformed state and the corresponding the energy dissipation are.
As these two processes are fundamentally different, no straightforward comparison of simulations can be preformed.

We have added the following clarification to the paper: “This is an important distinction because of the as-
sociated processes governing fracture propagation. For a typical planar or “vertical” crevasse formed under plane
strain, mechanical stresses drive crevasse propagation. In contrast, under axisymmetric conditions, the cylindrical
conduit would propagate downwards due to fracture, melting and erosion processes. While it is possible to model
it as a cylindrical moulin evolution (Trunz et al., 2022), it is difficult to describe the fracture mechanics using
the existing framework. Of course a 3D model able to capture both these phenomena would be ideal, but it would
be computationally too expensive, so we utilize the 2D plane strain approximation, focusing on the propagation of
fractures driven by stresses and only consider the lateral melting of the fracture faces to ultimately align with the
observed morphology of crevasses.”

Comment # 2

2) The results in figure 7 are concerning as it stands. The curves - particularly the black curve - are curiously
non-smooth, and the mechanisms / reasons for this are not at all clear. There is some discussion around line 388
about this, but the explanation is not very convincing, and much more evidence needs to be presented to convince
the reader this is not some funny numerical artefact. I can’t see which aspect of the mathematical formulation is
giving rise to this behaviour - for example, the black line goes flat for a period, and then increases suddenly. Is this
robust to numerical resolution? What aspect of the model allows the crack to halt propagation for a period and
then restart motion? What physics is controlling the length of time the crack is stationary for, and indeed, the time
at which it decides to become stationary? Much more convincing analysis is needed of this behaviour. The point is
discussed again around line 450, but again I don’t see how the model is giving this ‘episodic’, almost stick-slip-like
behaviour. Perhaps a plot of something like the pressure at the tip of the spreading crack would help to explain
this phenomenon.

This step-wise propagation is a well-reported phenomena for fluid-pressure driven fracture [1-7]. As the crack
propagates, the fluid inside of the crack is “redistributed” based on the new crack length, moving the fluid from
the base of the vertical crevasse towards the horizontal crack tip. This causes the pressure surrounding the crack
tips to change from negative (due to the newly created empty volume), to positive so that the crack can propagate
again. As this redistribution is fairly fast, the crack continues to propagate smoothly as long as the pressure in
the remainder of the crack does not get reduced too much. Re-pressuring the crack through the vertical crevasse is
much slower (especially when new volume is created due to viscous deformation) causing the pauses in propagation.

This is shown in Fig. [I} showing the pressure oscillations at the crack tip and the pressure at the base of the
vertical crevasse. The pressure at the crack tip (black line) shows oscillations due to the choice of element size in
our discretisation, depending whether the crack propagated within that time increment or in earlier time increment,
but this does not affect crack propagation results. In contrast, the pressure at the base of the vertical crevasse
(red line) is fairly steady and does not directly show such oscillations. It also shows that as the crack propagates
(the non-shaded regions) the pressure at the base decreases, indicating that the volume created by the propagation
does not directly get filled by water from the surface, but rather with water stored elsewhere in the basal crack.
Therefore, the pressure at crack tip (black line) during propagation is generally lower compared to the pressure at
the base of the vertical crevasse (red line) due to the additional volume created during the crack opening needing
to be water-filled. As the overall water pressure decreases, a pressure distribution is reached where the crack can
no longer propagate, and the propagation halts (with a slight delay due to inertial effects).

Even when the crack is halted, the crack volume continues to increase due to viscous deformations. This causes
the very slow re-pressurisation of the crack observed in Fig. [I where the main increase in pressure is a result of
increased water inflow rates due to the vertical crack width also increasing through viscous deformations. Eventually,
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Figure 1: Pressure at the crack tip (black), and at the base of the horizontal crack (red) using a viscoelastic rheology.
Shaded regions indicate that the crack propagation is paused at these moments.

this inflow increases sufficiently to increase the pressure throughout the basal crack, and propagation is resumed. it
should be noted that this effect becomes stronger for longer cracks, as the uplift allowed due to viscous deformations
enhances the crack volume more compared to for shorter cracks, hence the rate of pressure change (i.e., the slope
of the red line) decreases at longer times in the simulations.

To convey this reason for the pauses in fracture propagation, we've added Fig. [1| and the above explanation (in
a concise form) to the paper: “As the horizontal basal crack continues to propagate, the rate at which additional
crack volume is created due to viscous deformations continues to increase while the rate of water inflow through the
vertical crevasse increases relatively slowly. This causes the pressure at the base of the vertical crevasse to decrease,
as shown in Fig. 9. Eventually, this pressure becomes sufficiently low such that further crack propagation is paused,
coinciding with a stress state where the viscous deformations allow for a crack volume enhancement equal to the
water inflow. As the opening height of the vertical crevasse continues to increase due to viscous deformations, even
when the horizontal crack is halted, the rate of water inflow slowly starts to exceed the rate of volume increase,
allowing the pressure within the horizontal crack to slowly recover. Once this pressure is sufficiently high, the hori-
zontal crack resumes propagation. This alternation in pressure at the crack tip leads to episodic propagation. ”
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Comment # 3

3) The comparison with data from Das et al. is interesting, and a bit more could be made of this. The main
disagreement seem to be that the water-level change (i.e. the flux into the conduit) goes quite wrong in the model:
much more water gets into the crack system than the model predicts. Interestingly, given the model is predicting
the wrong amount of water in the system, the uplift prediction is quite good initially (although it also goes wrong
at later times). The explanation about a pre-existing damage network seems plausible. I was surprised not to
see more discussion about the possibility that the bedrock is not frozen to the ice: if the basal ‘crack’ or conduit
can spread without cracking (a zero-fracture-toughness limit) then presumably the crack would spread further and
allow more water in, without necessarily increasing the localised uplift (because the water has spread laterally
further). It would, presumably, be straightforward to consider simulations with different fracture toughnesses for
the ice-bedrock interface - and this seems valuable anyway, because we don’t really know what that value should
be. It also seems likely that the 2D planar assumption has quite significant errors as the spreading at the base
continues, compared with an axisymmetric model, which is perhaps behind the later-time disagreement in the uplift
(the geometric constraints are rather different for spreading as a circle compared to spreading as a line)? Again it
would be useful to be able to compare the model predictions.

Indeed, the agreement between the performed simulations and the observations from Das et al. (2008) match
quite well for the uplift, whereas the change in lake water-level has a larger mismatch. As pointed out by the
reviewer, a potential source of mismatch could be the frozen base assumption, which is mentioned in the article
at line 471: “Additional assumptions for the numerical model are that the ice sheet is pristine (i.e. undamaged)
and the ice-rock boundary is initially frozen, neither of which is strictly correct. Within the ice, pre-existing cracks,
crevasses, and defects can link to the newly developed hydrofractures, which could significantly enhance the water
inflow. Furthermore, fluid flow and movement at the ice-bed interface as it drains downglacier could influence the
modelled fluid inflow and ice sheet uplift.”.

A major reason that this mismatch in drainage is observed is the conversion between observational and simulation
data. Our 2D plane-strain simulations provide inflow rates per unit out-of-plane-width, whereas the observations
report only the change in lake waterlevel, not inflow rates. To convert between these quantities, we have had
to assume a crack length (dictating the conversion between 2D and 3D water inflow rates) and lake surface area
(converting from 3D water inflow rate to changes in lake waterlevel). Both of these are taken from Das et al.
(2008) and are assumed constant as only a single value is reported for these quantities. However, especially the
lake surface area should change drastically over time, going from the reported surface area of 5.6 km? to zero when
the lake is fully drained. Moreover, the results from Das et al. report that the height buoys used to record the
lake height do not lower any further after 1.5 and 2.5 hours, indicating that the full lake is drained within this
time-span. We do not have the relation between lake waterlevel and surface area, but if we were to include this, it
would result in faster lake drainage rates over time (as the surface area decreases), making it feasible that a similar
acceleration of drainage could be attained as was seen in the data from Das et. al. (2008). This is discussed from
line 476 onwards: “One final point of potential mismatch is the conversion between water volumes resulting from
our simulations to the lake drainage height reported by Das et al. (2008) and conversely, from lake water level to
volumes. We assume a simplified lake geometry with a constant area as water height decreases thus ignoring the
effect of lake bathymetry. This simplification is therefore likely responsible for the model’s underestimation of lake
water level change particularly during the later stages of the lake drainage”. Given the limitations with observations,
it would be practically impossible to obtain inflow rates by measuring lake waterlevel.

Regarding whether using an axisymmetric assumption would be more appropriate for the side-ways spreading,
we would like to note that Das et al. reported a 3.2 km long fracture, from which the fluid was likely spreading
outwards at the base of the ice sheet. For axisymmetry to be valid, this 3.2 km length would need to be negligible
compared to the region over which spreading occurs, such that it can be considered as a single point of inflow. After
the 2 hours of our simulation, we only obtain a spreading of 1.6 km in each direction (or 600 m for a linear-elastic
rheology), which indicates that considering the vertical crevasse as a single point source is definitely not a valid
approximation. Of course a three-dimensional model would be most appropriate, capturing the uni-directional
spreading near the centre of the crack while capturing the radial expansion near the edges, but unfortunately this
is not feasible due to computational costs associated with this type of highly detailed simulations with our Matlab
code. In ongoing work, we are developing a 3D parallel code and will likely revisit this. We have added the following
statement to the paper, motivating our choice to use a plane-strain model: “As our model predicts horizontal cracks
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of 1.6 km in each direction, compared to the out-of-plane width of Woop = 3.2 km, assuming plane-strain conditions
1s reasonable for this case.”

Comment # 4

4) One of the aims of this work, as I understand it, is to highlight the role of the viscous rheology, and the fact that
the interplay between viscous creep and elastic deformation can be very important in these processes. I think this
point would be aided by a bit more analysis of the relative importance of the two modes of deformation. Specifically,
the work compares the ‘linearly elastic’ model (just elasticity) with the ‘viscoplastic model’ (elasticity and viscous
creep), but we don’t really learn about how important viscous creep is relative to elasticity in the latter. i.e., one
might be tempted to conclude that the role of viscous creep is dominant here, and that a third model of pure viscous
creep (no elastic deformation at all) would do fine. It would be interesting to look at how much of a role elasticity is
playing in the model, to be able to draw a clearer conclusion about how much the interplay of elasticity and creep
is important here. That would be a helpful qualitative conclusion to draw from the work.

One of the main aims is indeed to highlight the importance of including viscous deformations. Historically, glaciology
researchers used linear elastic fracture mechanics when considering whether cracks propagate through ice-sheets [1-
3], and this has also been the assumption for published lake drainage hydro-fracture studies [4-5]. The standard
argument is that fracture propagation occurs rapidly on timescales smaller than the Maxwell relaxation time, so
it is reasonable to ignore viscous effects. While this is somewhat valid for vertical crevasse propagation, we find
that the viscous deformations allow for a great uplift that enables transition from vertical crevasse propagation
to horizontal basal crack propagation and sustains the flow of meltwater. Ignoring viscous deformations, leads to
crack closure at the base of the vertical crevasse and shuts off any water flow into the horizontal crack. Thus,
our work highlights that including viscous deformations in addition to elastic deformations significantly alters the
propagation of the basal crack and lake drainage, even for the relatively short time-scales (minutes to hours) over
which the crevasse propagation occurs.

Even though the viscous deformations provide a larger contribution to the total strain, the elastic processes
still play an important role within our cohesive fracture model. Particularly, the elastic stresses are used to define
the fracture propagation criterion and drive the dissipation through viscous deformations. As a result, we can-
not simply “disable” elasticity in our model to see what would happen in a purely viscous setting, as this would
require switching from a solid-mechanics-based framework (described through displacements and strains) to a fluid-
mechanics-based framework (described through velocities, pressure and strain rates), where cracks nucleate based
on the pressure or strain rates instead of considering the normal stress components.
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Comment # TC1

TC1) Throughout: the non-linear visco-elastic formation is throughout referred to as a ‘viscoplastic’ law. I know
this terminology is sometimes used to describe Glen’s flow law, but it isn’t strictly correct, and anyone from a
non-Newtonian fluids / rheology background would be confused by its usage here. They would traditionally Glen’s
flow law as a shear thinning viscous rheology - and the model used here would be a viscoelastic model: the ice
comprises elastic deformation (recoverable) and non-linear viscous deformation (non-recoverable, and given by a
shear-thinning model). A ‘viscoplastic’ model would typically be taken to indicate that there is a plastic ‘yield’
stress, below which there is no non-recoverable deformation; at which the material deforms plastically; and above
which the material flows viscously (see e.g. much literature on visco-elasto-plastic models). I would favour not
describing the formulation here as ‘viscoplastic’.
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Indeed, as pointed out by the reviewer, both “viscoplastic” and “viscoelastic” are used within literature to de-
note the combined viscous Glen’s law and linear-elastic deformation model. The definitions are different based on
the community - solid versus fluid mechanics or experiment versus theoretical mechanics. For example in com-
putational solid mechanics, a viscoplastic rheology describes a behaviour where deformations are irreversible and
time-dependent, with the prefix visco- used to indicate its time-dependence). For example, some models are de-
scribed as viscoelastic-viscoplastic, meaning that both reversible and irreversible deformations exhibit time or rate
dependence. In contrast, in experimental solid mechanics, a 1D viscoelastic model is simply a viscous dashpot
combined (either in series or parallel) with an elastic spring. Although the computational solid mechanics definition
which we used is more robust for defining material behaviour in 3D, we are sympathetic to the reviewer’s concern
that this will confuse the non-Newtonian fluid mechanics community. We have now updated the usage of viscoplas-
tic throughout our manuscript to now read “viscoelastic”, in response to both reviewers’ comments. This is anyway
mostly semantics at this point. We have also added a footnote to clarify this usage for the broader mechanics
community: “The term “viscoelastic” is used to refer to the combination of reversible elastic deformations and ir-
reversible viscous/plastic deformations resulting from the use of Hooke’s and Glen’s laws. While this terminology is
more common in the non-Newtonian fluids/rheology and glaciology community, in the solid mechanics community
these models are referred to as viscoplastic models, namely the Norton-Hoff and Bingham-Mazwell models.”

Comment # TC2
TC2) p.6 Figure 3: needs to say this is the range of Maxwell times - the caption just says ‘range of time-scales’
which could mean anything.

Added Maxwell into the captions of Figures 3 and 4 to indicate that Eq. 4 indeed gives the Maxwell time scale:
“Range of Mazwell time-scales following from Eq. 4.

Comment # TC3
TC3) p.6 equation (3) has some weird typesetting on the third line (missing equals?)

This equation (and all others) have been type-set with the line endings compatible with a two-column paper, such
that the final version does not exceed the allowed line length. It is correct that this matrix multiplication spans
two lines.

Comment # TC4

TC4) p.9 The authors choose a Manning-Strickler turbulent flow law following Tsai and Rice and others. Do any
of the results have any appreciable dependence on this choice as opposed to other turbulent laws? (e.g. see opening
of Dontsov 2016 J. Fluid Mech. ‘Tip region of a hydraulic fracture driven by laminar-to-turbulent fluid flow’ or
final section of Hewitt et al. 2018 J. Fluid Mech. ‘The influence of a poroelastic till on rapid subglacial flooding
and cavity formation’). Those studies also give details of how to map to a laminar regime if the fluid velocity /
crack dimensions become too small: could this be important at later times? (Particularly in the case where the

linear-elastic model shuts off the water supply to the basal crack, which then slowly continues to spread - see point
below.)

Indeed, the results do depend on the used flow law within the fracture. The rate of the water flowing downwards
through the crevasse is one of the main factors describing the rate of crevasse propagation. The pressure inside
the crevasse can only build up as long as fluid is transported towards the crack tip, and while part of this fluid
is absorbed by the opening induced by viscous deformation (hence the crack propagates slower for the viscoelastic
model compared to the linear-elastic), the dominant time-scale of the problem is dictated by the fluid flow. In the
case of a linear-elastic material, the fluid flow provides the only time-dependent terms (except for the inertia term,
which operates on much smaller time-scales), thus directly it controls the rate of fracture propagation.

If a laminar flow model is used, the water flows much faster through the crevasse, its propagation would be
faster compared to turbulent flow model. To provide an example of the impact of flow model, the results from
Figs. 2| and [3| use a laminar fluid flow model, with the fluid flux given by the cubic law as ¢ = —h®/12u dpa/O¢ (a
standard model for simulating hydro-fracture, based on the analytic solution for pressure-driven flow between two
flat plates). The main difference is indeed the much higher flow rates under the laminar flow model, causing the
crevasse to reach the base within minutes, and propagate side-ways rapidly. As this flow rate greatly exceeds the
volume created due to viscous deformations, no breaks in propagation (where the viscous opening rate perfectly
balances the fluid inflow rate) are observed, and the sole “pause” in the crack propagation is observed due to
the crevasse approaching the end of the domain. We have checked that, based on the flow rates observed in our
simulations, the fluid flow is definitely in the turbulent regime with a Reynolds number of Re ~ 3 - 10° (see text
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Figure 2: Fluid flow rate and lake drainage when a laminar fluid flow model is used. Please note that the results
shown are from preliminary results, and not as well-verified as the results from the main paper. Fluid flow rate is
reduced after ~ 20 minutes as the horizontal crack approaches the domain boundaries.
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Figure 3: rate of crack propagation when a laminar fluid flow model is used. Please note that the results shown are
from preliminary results, and not as well-verified as the results from the main paper. Results after ~ 20 minutes
are heavily influenced by the domain boundaries.



below Eq. 7 in the paper, lines 231-235), and thus the results presented in the above discussion using a laminar
flow model are definitely unrealistic.

We have not performed sensitivity studies using different fracture flow models, and the parameters used for
the friction factor and wall roughness are directly taken from Tsai and Rice [1,2] without altering these values to
better fit the observed lake drainage. Our view is that it is beyond the scope of the presented paper to alter every
possible modelling parameter and assumption to obtain the best possible match to observed results, and as such
we only present results using a single flow model leading to the conclusion that viscous deformations are important
when considering hydro-fracture. However, all codes used are provided via the data availability statement (and
the laminar flow model is already implemented), such that others can build upon this work and investigate the
importance of parameters aligning with their interests.
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Comment # TC5H

TC5) p.10 Equation (12) does not make sense. The condition is supposed to be a fixed pressure (i.e. at the base of
the lake), so what is this ‘penalty’ term added to (12), and how is the parameter chosen (the text says it is chosen
‘to be large enough to enforce this inflow condition’, which isn’t clear: it is part of the inflow condition, so the value
you pick for it will change that condition.) In addition, if the problem is being driven by a fixed pressure condition
at the start of the fracture, than I don’t see what the variable p is chosen to be at that location - it should surely
be p = pext, but that seems inconsistent with equation (12). This means I don’t really know what is being imposed
on the pressure in the model, which is awkward when trying to interpret the results of the model.

Indeed, the boundary condition at this inlet is p = pexs. Mathematically, there are two manners in which this
boundary condition can be included within a finite element scheme: It can either be directly substituted within
the system of equations being solved (eliminating a single pressure degree of freedom to be solved for, and moving
related terms to the external force vector), or an additional equation enforcing pexy — p = 0 can be used (keeping
the inlet pressure as degree of freedom to solve for, but prescribing what its value should be). The penalty method
is a commonly used to add constraints following this second method, with its main advantage being that it allows
constraints to be imposed, while also allowing the forces (or in the case of pressures, fluid fluxes) that are resultant
of this constraint to be evaluated. Within this method, a forcing term ¢ = kp(pext — p) is added, with k, being
much larger than any other term for this degree of freedom within the system of equations. As a result, it effectively
substitutes the mass balance that describes the pressure at the inlet with k,(pext — p) ~ 0, such that pex; =~ p.
Indeed, as pointed out by the reviewer, this does not enforce the pressure to be exactly the boundary pressure, but
with the high value used for k, this is extremely close to the pressure. For our values used, |p/pext — 1| < 1075,
producing a negligible difference.

To clarify that this boundary condition is equivalent, and the way it is imposed is a purely numerical consider-
ation, we have added the following to the paper: “We elect to enforce this pressure boundary condition in a weak
sense through a penalty approach, such that the fluid influx at the inlet can be easily recorded. It should be nmoted,
however, that using Eq. (12) with a high value for ky, is equivalent to directly enforcing this pressure, and we have
verified that the pressure at the inlet is approximately equal to the applied peyi.”

Comment # TC6
TC6) p.11 equation (15) seems to have the wrong units for a heat flux (is there a missing ¢,?)

The units for Eq. (15) are correct. This equation provides the frictional heating, and is thus dependent on the
energy dissipated at the walls, not on the heat capacity of the ice or the water. The units used in this equation are:

q (fluid ﬂux,/v dh) : m?s™!

1

» _ B (1)
o€ (pressure gradient) : Pam

Thus giving the thermal flux as energy per unit area per second:

j (thermal influx) : m?s™! - Pam™' =Pams™! = Jm %! (2)


https://doi.org/10.1029/2009JF001474
https://doi.org/10.1029/2009JF001474
https://doi.org/10.1115/1.4005879
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Figure 4: Comparison between Figure 6 from the paper (left), showing the pressure as a single line, and the crack-
filled version (right), showing the water pressure filling the complete crack opening.

using the definition of the energy J = N m = kg m? s~2 = Pa m?

Comment # TC7

TC7) Equation (16-18) I don’t think eta is defined here. More importantly, the expression in (18) is obviously
wrong and seems to have been lifted from elsewhere - the factors of pi and the power of (3/2) rather than (1/2) on
the (t-t_0) indicate this is the corresponding expression for an axisymmetric fracture, not a plane fracture. Equation
(19) has the same issue - and so this error will propagate into all of the numerical results.

The symbol 7 is defined as the normal coordinate in the fracture-local coordinate system, see Figure 2 and the first
paragraph of Section 2.2.1. A clarification has been added to the paper regarding this below Eq. 16: ¢ and using
the surface-normal coordinate n.”

Regarding the occurrence of 7 within Eq. (18), this is not related to the axisymmetric assumption. Instead,
it comes from the analytic solution for the temperature profile containing the complementary error function erfc,
as its derivative contains 1/4/7 term. The provided solution is valid for flat walls of planar fracture (following
the well-known Stokes’ first problem/Rayleigh’s problem), and follows the derivation given in [1], see also [2-4], all
of which consider flat plates and obtain this factor 7—'/2 upon calculating the wall shear stress (mathematically

equivalent to the thermal flux).

[1] White, F. M.: Viscous Fluid Flow, McGraw-Hill, New-York, 3 edn., 2006. Specifically: Section 3-5: Unsteady
flows with moving boundaries, pages 129-130

[2] Kharchandy, S., (2018). Exact Solution for Unsteady Flow of Viscous Incompressible Fluid Over a Suddenly
Accelerated Flat Plate (Stokes’ First Problem) Using Laplace Transforms. International Journal of Engineering &
Technology, 7(3.6), 267-269. https://doi.org/10.14419/ijet.v713.6.15000

[3] Hu SP, Fan CM, Chen CW, Young DL. Method of Fundamental Solutions for Stokes’ First and Second Problems.
Journal of Mechanics. 2005;21(1):25-31. https://doi.org/10.1017/81727719100000514

[4] Wikipedia: Rayleigh problem https://en.wikipedia.org/wiki/Rayleigh_problem

Comment # TC8
TC8) p.15 Figure 6 looks a bit odd: it would be much more clear if the colours filled the gaps, rather than being
a line in the centre of the gap.

We are unsure why representing the pressure along the cracked interface as a coloured line is not clear. From the
viewpoint of representing how this pressure is captured within simulations, it is more accurate to represent the
pressure as a one-dimensional line overlaid on the 2D ice-sheet (as within simulations the crack is considered a
single line interface along which the pressures are defined and across which displacement are discontinuous). If we
were to show the fluid pressure to fill the complete interior of the crack, it might create the impression that the
water pressure is solved in two-dimensions (e.g. by solving Navier-Stokes equations). Additionally, if we were to
only show the fluid pressure when the crack has opened, the horizontal crack length for the linear-elastic case would
no longer be visible (see Fig. E[) Therefore, we feel that the original Figure 6 is clearer.


https://doi.org/10.14419/ijet.v7i3.6.15000
https://doi.org/10.1017/S1727719100000514
https://en.wikipedia.org/wiki/Rayleigh_problem

Comment # TC9

TC9) p.16 Line 370. The statement that the crevasse closure stops the propagation of the horizontal crack is
inconsistent with figure 7, where the crack continues to spread slowly after the closure (i.e. the blue line keeps
rising after about t=45min, when the gap closes). It is unclear to me why the lateral fracture continues to spread,
even though the entry has closed over: if it has enough pressure to keep spreading at the tip, why does it not have
enough to force the original opening back open?

Because water expands upon freezing to ice, there is a very slight increase in pressure, which continues to pres-
surise the crack (see Figure 10 in the revised manuscript, showing the continuing freezing). We have updated the
statement that the crack propagation stops as the fluid inflow stops to clarify that it becomes negligible instead of
fully stops, with the only increase in crack length due to freezing. “This prevents any further fluid from entering
the crevasse, causing the only slight increases in pressure due to the freezing of fracture walls, and thus eventually
stopping the propagation of the horizontal crack at the ice-bedrock interface.”
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