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Reviewer Comment 3 
 
Dear Reviewer, 
 
We thank you for your time and effort reviewing the submitted manuscript, and are pleased that 
you appreciated our results. We have incorporated your suggestions into the revised manuscript, 
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the 
page and line numbers of the reviewers’ comments refer to the originally submitted manuscript 
while page and line numbers of our responses refer to our revised manuscript. 
 
Kindest regards, 
Akshay Kamath, Samuel Thiele, Moritz Kirsch and Richard Gloaguen 
 
Q) Does the paper address relevant scientific questions within the scope of SE? 

Yes, the research aligns well with the scope of SE, especially in the areas of geophysics, 
spectroscopy and applications of machine learning techniques in geosciences. 

Q) Does the paper present novel concepts, ideas, tools, or data? 

Yes. The idea of using deep learning to predict the petrophysical properties from high resolution 
hyperspectral data can be considered as a novel approach in upscaling workflows. Also, 
application of the Shapely method for analysing the impact of different spectral bands on the 
model’s predictions is an innovative addition. 

Q) Are substantial conclusions reached? 

Largely, yes. Conclusions are well supported by the key results, however some additional work on 
uncertainty quantification would be very beneficial. 

Could the authors quantify the uncertainty of predictions using techniques such as Monte Carlo 
dropout, Bayesian inference or confidence intervals? 

We agree that uncertainty predictions would be an interesting next step (e.g., using an ensemble 
model), but we consider this to be beyond the scope of the current work and suggest that this 
would be better addressed as a follow-up publication rather than adding extra complexity to our 
current manuscript. While feasible, this would require to develop an entire framework and would 
not add value to this submission. We argue that the XAI analysis demonstrates the robustness of 
the methods and that a qualitative assessment is sufficient at this stage.  

 

 



Q) Are the scientific methods and assumptions valid and clearly outlined? 

Authors have outlined each step of data processing in detail; however, inclusion of a workflow 
flowchart would greatly enhance clarity. A visual representation of the step-by-step process, 
including data acquisition, data preprocessing, clustering, deep learning, evaluation, Shapely 
analysis, and final outputs would be very helpful for readers. 

We agree with the reviewer in that a flowchart would be helpful. Due to the high number of 
figures already present in the manuscript, we have added the following flowchart as a 
supplementary figure, as referred to on L3.14: 

“Hyperspectral data were acquired and coregistered with downhole petrophysical logging 
data, and then used to train machine learning regression models. The various steps needed to 
preprocess our training data and build the deep-learning models (see Supplementary Figure for an 
overview) are described in detail below.” 

 

Q) Are the results sufficient to support the interpretations and conclusions? 

The performance metrics used (R2 and RMSE) support the claim that hyperspectral data can 
predict the petrophysical properties accurately. 

Nevertheless, the model struggles with unseen lithologies, more cross validation on other datasets 

 



can help generalise the conclusions. 

We agree with the reviewer on the conditions for generalisability, and have highlighted them in 
the Discussion, at L10.15 (after including the additions suggested by RC1): 

“A common challenge for deep learning models based on CNNs is whether or not they can 
be generalised. In this study, training and applying the model to three drill cores from the same 
geological sequence does not mean that similar results could be attained in different geological 
sequences. However, given the results from our Shapley value analysis, we suggest that it is 
unlikely that the model is “just” learning to distinguish different lithologies and returning 
appropriate (average) predictions. Instead, it appears to generate predictions based on the 
mineralogical and textural information captured by the spectra. This is key to its demonstrated 
ability to identify intra-lithology variations in each of the petrophysical properties (Fig. 7), and 
possibly explains why it produced broadly reasonable predictions for the unseen basement 
lithology. The model appears to be sensitive to the fundamental mechanical and petrophysical 
properties of the rock, which suggests that it could be generalised on more diverse data.” 

We also agree that testing on unseen lithologies would be helpful, which is why the high R2 scores 
in density and gamma-ray predictions for the argillaceous basement (which has not been seen by 
the model) has been highlighted in L8.13: 

“R2 scores for this test hole were 0.86 and 0.9 for the density and gamma-ray logs, 
respectively, indicating very reasonable accuracy on unseen data, which even included a basement 
lithology that was not sampled by the other training drill cores (highlighted by the grey box 
labelled Tonschiefer i.e., argillaceous basement). The slowness prediction in KSL136 showed a 
relatively lower R2 score of 0.7, with most of the erroneous predictions lying within the unseen 
lithology. The measured sonic log here shows significant fluctuations, whereas our model 
prediction remains steady (suggesting the lithology is spectrally quite uniform).” 

As for the reviewer’s comment on external validation, we agree that validation on different 
datasets would make the model more robust. However, we do not (currently) have access to 
additional datasets with hyperspectral and petrophysical data. This could thus represent an 
interesting follow-up work. 

Q) Is the description of experiments and calculations sufficiently complete and precise to allow 
their reproduction by fellow scientists (traceability of results)? 

Mostly, yes. As mentioned before, all processing steps have been well documented. However, 
model hyperparameters could be better detailed for traceability of the results. 

We have now included the jupyter notebook used to train our models, as now mentioned in the 

 



Data and Code Availability section (can be found here). These document the model 
hyperparameters we have used and ensure reproducibility.  

Q) Do the authors give proper credit to related work and clearly indicate their own new/original 
contribution? 

Yes. 

Q) Does the title clearly reflect the contents of the paper? 

Yes. 

Q) Does the abstract provide a concise and complete summary? 

Partially. Authors need to clearly state the problem and motivation upfront. They should start the 
abstract by emphasising why upscaling petrophysical measurements using hyperspectral data is 
important. This would draw the attention of the readers. Since automating petrophysical property 
predictions could lead to major cost and efficiency benefits, this should be explicitly stated in the 
abstract. 

We agree with the reviewer and have highlighted the possibility of speeding up petrophysical data 
acquisition by changing the abstract as follows: 

“Hyperspectral data provides rich quantitative information on both the mineralogical and 
fine-scale textural properties of rocks which also , in turn, largely control their petrophysical 
characteristics. We propose that some physical rock properties can be predicted directly from 
hyperspectral data, improving petrophysical characterisation and reducing the need for often 
laborious measurements. In this contribution we explore correlations between hyperspectral and 
petrophysical data using a deep convolutional neural network. We therefore developed a deep 
learning model to predict petrophysical properties directly from hyperspectral drill core data. Our 
model learns relevant features from high-dimensional hyperspectral data and co-registered sonic, 
gamma-gamma density and gamma-ray logs to predict infer slowness, density, and gamma-ray 
values using training and testing data from . We demonstrated the performance of this approach 
on data acquired in the Spremberg region of, Germany. Our results show demonstrate that, with 
careful meticulous pre-processing steps and thorough data cleaning, one can overcome the 
differences in capturing resolution can be overcome to and learn the relationship between 
hyperspectral data and petrophysics. Using a test dataset from a spatially independent borehole, 
we generated generate a pixel-resolution (≈ 1 mm2) model of the petrophysical properties and 
resampled resample it to match the measured logs. This test indicated indicates substantial 
accuracy, with R2 scores and root-mean-squared errors (RMSE) of 0.7 and 16.55 μs.m−1, 0.86 and 
0.06 g.cm−3 and 0.90 and 15.29 API for the slowness, density and gamma-ray predictions readings 

 

https://vector-raw-materials.github.io/vector-geology/examples/03_forward_engines/04_VectorGeology_HyTorch.html#sphx-glr-examples-03-forward-engines-04-vectorgeology-hytorch-py


respectively. We also analysed the Shapley values of our model to gain deeper insights into its 
predictions. These Overall, our findings lay the groundwork for building deep learning models that 
can learn to predict physical and mechanical rock properties from hyperspectral data. Such models 
could provide the high-resolution but large-extent data needed to bridge the different scales of 
mechanical and petrophysical characterisation.” 

Q) Is the overall presentation well structured and clear? 

Yes. 

Q) Is the language fluent and precise? 

Yes. 

Q) Are mathematical formulae, symbols, abbreviations, and units correctly defined and used? 

Yes. 

Q) Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, combined, 
or eliminated? 

The legend of Figure 7 contains German geological terms for lithologies (e.g., Salzton, Werra 
Anhydrit, Kupferschiefer). Authors should translate such terms into English (e.g., Salt Clay, Werra 
Anhydrite, Copper Shale). 

Other figures are well presented. 

We have translated lithological descriptions to  English (e.g., Karbonat to Carbonate), as suggested 
by the reviewer in Figure 7. However, we have refrained from changing commonly used 
stratigraphic terms (e.g., Kupferschiefer). We have, however, added the translation for 
Kupferschiefer in Section 2, at L2.27: 

“...(“Copper-Shale”)...” 

The corresponding occurrences for the other german terms within the text (entirely within section 
4) have been changed to match the legend. 

 



 

Q) Are the number and quality of references appropriate? 

Yes. 

Q) Is the amount and quality of supplementary material appropriate? 

Yes. 

 

 


