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Reviewer Comment 3
Dear Reviewer,

We thank you for your time and effort reviewing the submitted manuscript, and are pleased that
you appreciated our results. We have incorporated your suggestions into the revised manuscript,
as detailed in the following pages. Please note that to facilitate the evaluation of our revision, the
page and line numbers of the reviewers’ comments refer to the originally submitted manuscript
while page and line numbers of our responses refer to our revised manuscript.

Kindest regards,
Akshay Kamath, Samuel Thiele, Moritz Kirsch and Richard Gloaguen

Q) Does the paper address relevant scientific questions within the scope of SE?

Yes, the research aligns well with the scope of SE, especially in the areas of geophysics,
spectroscopy and applications of machine learning techniques in geosciences.

Q) Does the paper present novel concepts, ideas, tools, or data?

Yes. The idea of using deep learning to predict the petrophysical properties from high resolution
hyperspectral data can be considered as a novel approach in upscaling workflows. Also,
application of the Shapely method for analysing the impact of different spectral bands on the
model’s predictions is an innovative addition.

Q) Are substantial conclusions reached?

Largely, yes. Conclusions are well supported by the key results, however some additional work on
uncertainty quantification would be very beneficial.

Could the authors quantify the uncertainty of predictions using techniques such as Monte Carlo
dropout, Bayesian inference or confidence intervals?

We agree that uncertainty predictions would be an interesting next step (e.g., using an ensemble
model), but we consider this to be beyond the scope of the current work and suggest that this
would be better addressed as a follow-up publication rather than adding extra complexity to our
current manuscript. While feasible, this would require to develop an entire framework and would
not add value to this submission. We argue that the XAl analysis demonstrates the robustness of
the methods and that a qualitative assessment is sufficient at this stage.



Q) Are the scientific methods and assumptions valid and clearly outlined?

Authors have outlined each step of data processing in detail; however, inclusion of a workflow
flowchart would greatly enhance clarity. A visual representation of the step-by-step process,
including data acquisition, data preprocessing, clustering, deep learning, evaluation, Shapely
analysis, and final outputs would be very helpful for readers.

We agree with the reviewer in that a flowchart would be helpful. Due to the high number of
figures already present in the manuscript, we have added the following flowchart as a
supplementary figure, as referred to on L3.14:

“Hyperspectral data were acquired and coregistered with downhole petrophysical logging
data, and then used to train machine learning regression models. The various steps needed to
preprocess our training data and build the deep-learning models (see Supplementary Figure for an
overview) are described in detail below.”
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Q) Are the results sufficient to support the interpretations and conclusions?

The performance metrics used (R? and RMSE) support the claim that hyperspectral data can
predict the petrophysical properties accurately.

Nevertheless, the model struggles with unseen lithologies, more cross validation on other datasets



can help generalise the conclusions.

We agree with the reviewer on the conditions for generalisability, and have highlighted them in
the Discussion, at L10.15 (after including the additions suggested by RC1):

“A common challenge for deep learning models based on CNNs is whether or not they can
be generalised. In this study, training and applying the model to three drill cores from the same
geological sequence does not mean that similar results could be attained in different geological
sequences. However, given the results from our Shapley value analysis, we suggest that it is
unlikely that the model is “just” learning to distinguish different lithologies and returning
appropriate (average) predictions. Instead, it appears to generate predictions based on the
mineralogical and textural information captured by the spectra. This is key to its demonstrated
ability to identify intra-lithology variations in each of the petrophysical properties (Fig. 7), and
possibly explains why it produced broadly reasonable predictions for the unseen basement
lithology. The model appears to be sensitive to the fundamental mechanical and petrophysical
properties of the rock, which suggests that it could be generalised on more diverse data.”

We also agree that testing on unseen lithologies would be helpful, which is why the high R? scores
in density and gamma-ray predictions for the argillaceous basement (which has not been seen by
the model) has been highlighted in L8.13:

“R? scores for this test hole were 0.86 and 0.9 for the density and gamma-ray logs,
respectively, indicating very reasonable accuracy on unseen data, which even included a basement
lithology that was not sampled by the other training drill cores (highlighted by the grey box
labelled Tonschiefer i.e., argillaceous basement). The slowness prediction in KSL136 showed a
relatively lower R? score of 0.7, with most of the erroneous predictions lying within the unseen
lithology. The measured sonic log here shows significant fluctuations, whereas our model
prediction remains steady (suggesting the lithology is spectrally quite uniform).”

As for the reviewer's comment on external validation, we agree that validation on different
datasets would make the model more robust. However, we do not (currently) have access to
additional datasets with hyperspectral and petrophysical data. This could thus represent an
interesting follow-up work.

Q) Is the description of experiments and calculations sufficiently complete and precise to allow
their reproduction by fellow scientists (traceability of results)?

Mostly, yes. As mentioned before, all processing steps have been well documented. However,
model hyperparameters could be better detailed for traceability of the results.

We have now included the jupyter notebook used to train our models, as now mentioned in the



Data and Code Auvailability section (can be found here). These document the model
hyperparameters we have used and ensure reproducibility.

Q) Do the authors give proper credit to related work and clearly indicate their own new/original
contribution?

Yes.

Q) Does the title clearly reflect the contents of the paper?

Yes.

Q) Does the abstract provide a concise and complete summary?

Partially. Authors need to clearly state the problem and motivation upfront. They should start the
abstract by emphasising why upscaling petrophysical measurements using hyperspectral data is
important. This would draw the attention of the readers. Since automating petrophysical property
predictions could lead to major cost and efficiency benefits, this should be explicitly stated in the
abstract.

We agree with the reviewer and have highlighted the possibility of speeding up petrophysical data
acquisition by changing the abstract as follows:

“Hyperspectral data provides rich guantitative information on both the mineralogical and
fine-scale textural properties of rocks which also —r—tura—targely control their petrophysical
characteristics. We propose that some physical rock properties can be predicted directly from
hyperspectral data, improving petrophysical characterisation and reducing the need for often
laborious measurements. In this contribution we explore correlations between hyperspectral and

petrophy5|cal data usmg a deep convolutlonal neural network. We—t-he1=e=Fe1=e—devekaped—a—deep

model Iearns relevant features from hlgh dlmen5|onal hyperspectral dataa-nd—ee—Feg-rs-tefed-seﬁ-le

samma-gamma—density—and-gamma-ray—tegs to predict inrfer slowness, density, and gamma-ray
values using training and testing data from .We-demenstrated-theperformance-ef-this-appreach

en-data—acquiredn-the Spremberg region-of; Germany. Our results show demenstrate that, with
careful metietteus pre-processing steps and thorough data cleaning, ene—ean—everceme—the

differences in capturing resetatien can be overcome to and learn the relationship between
hyperspectral data and petrophysics. Using a test dataset from a spatially independent borehole,
we generated generate a pixel-resolution (= 1 mm?) model of the petrophysical properties and
resampled resampte it to match the measured logs. This test indicated ineieates substantial
accuracy, with R? scores and root-mean-squared errors (RMSE) of 0.7 and 16.55 pus.m™?, 0.86 and
0.06 g.cm™ and 0.90 and 15.29 API for the slowness, density and gamma-ray predictions readings



https://vector-raw-materials.github.io/vector-geology/examples/03_forward_engines/04_VectorGeology_HyTorch.html#sphx-glr-examples-03-forward-engines-04-vectorgeology-hytorch-py

respectively. We also analysed the Shapley values of our model to gain deeper insights into its
predictions. These ©veral; our findings lay the groundwork for building deep learning models that
can learn to predict physical and mechanical rock properties from hyperspectral data. Such models
could provide the high-resolution but large-extent data needed to bridge the different scales of
mechanical and petrophysical characterisation.”

Q) Is the overall presentation well structured and clear?

Yes.

Q) Is the language fluent and precise?

Yes.

Q) Are mathematical formulae, symbols, abbreviations, and units correctly defined and used?
Yes.

Q) Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, combined,
or eliminated?

The legend of Figure 7 contains German geological terms for lithologies (e.g., Salzton, Werra
Anhydrit, Kupferschiefer). Authors should translate such terms into English (e.g., Salt Clay, Werra
Anhydrite, Copper Shale).

Other figures are well presented.

We have translated lithological descriptions to English (e.g., Karbonat to Carbonate), as suggested
by the reviewer in Figure 7. However, we have refrained from changing commonly used
stratigraphic terms (e.g., Kupferschiefer). We have, however, added the translation for
Kupferschiefer in Section 2, at L2.27:

“«

...(“Copper-Shale”)..”

The corresponding occurrences for the other german terms within the text (entirely within section
4) have been changed to match the legend.
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Q) Are the number and quality of references appropriate?
Yes.

Q) Is the amount and quality of supplementary material appropriate?

Yes.



