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Abstract. This study presents a statistical time-domain approach for identifying transitions between climate states, referred

to as breakpoints, using well-established econometric tools. Our approach offers the advantage of constructing time-domain

confidence intervals for the breakpoints, and it includes procedures to determine how many breakpoints are present in the time

series. We apply these tools to a 67.1 million-year-long compilation of benthic foraminiferal oxygen isotopes (δ18O), which

signify global temperature and ice volume throughout the Cenozoic. This foundational dataset is presented in Westerhold et al.5

(2020), where the authors use recurrence analysis to identify five breakpoints that define six climate states. Fixing the number

of breakpoints to five, our procedure results in breakpoint estimates that closely align with those identified by Westerhold et al.

(2020). By allowing the number of breakpoints to vary, we provide statistical justification for more than five breakpoints in the

time series. Our method adds to our understanding of Cenozoic climate history in terms of the timing and rate of transitions

between climate states and provides a tool for robustly assessing breakpoints in many other paleoclimate time series.10

1 Introduction

Understanding the transitions between climate states in Earth’s past is crucial for constraining nonlinear and feedback dynamics

of our climate system, and anticipating potential climate system responses to anthropogenic warming. The Cenozoic Era,

spanning from 66 million years ago (Ma) to today, is particularly informative in this regard, as it is well studied and includes

major shifts from hothouse climates with temperatures 10◦C warmer than today to the onset of permanent glaciations at15

both poles (Zachos et al., 2001; Hansen et al., 2013). These transitions, or breakpoints, reflect large-scale changes in the

climate system, involving shifts in the carbon cycle, ocean circulation, ice volume, and more (Zachos et al., 2008; Mudelsee

et al., 2014). As emphasized by Tierney et al. (2020), paleoclimate records are essential for assessing climate sensitivity and

evaluating climate models under warmer-than-present conditions. Evidence suggests that the sensitivity of the climate system

to external forcings may depend on the climate state (Caballero and Huber, 2013), and that projected future climates may20

increasingly resemble early Cenozoic conditions under continued emissions (Burke et al., 2018; Steffen et al., 2018). These
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insights underscore the importance of identifying when past climate state transitions occurred, how many there were, and how

certain we are about their timing. Addressing these questions is crucial for understanding the dynamics of long-term climate

variability, and recent work has increasingly emphasized transition detection as a key task in climate data analysis (e.g., Marwan

et al., 2021; Trauth, 2025).25

A widely used approach to identify breakpoints in paleoclimate records is recurrence analysis, which identifies when a sys-

tem returns to similar states over time, helping to detect changes in the underlying dynamics of time series (Marwan et al.,

2007; Marwan, 2023; see also Fischer et al., 2024; Liang et al., 2025 for recent applications in paleoclimate research). West-

erhold et al. (2020) apply this technique to a stacked record of δ18O from benthic foraminifera spanning from 67.1 Ma to the

present, covering the Cenozoic Era. Based on the recurrence structure of the record, the authors identify four major climate30

states − Hothouse, Warmhouse, Coolhouse, and Icehouse − which are further divided into six states through time. To con-

duct this analysis, they resampled the data at an interval of 5 thousand years (kyr) and used both raw and detrended versions.

Recurrence analysis provides valuable insights into the recurrence structure and shifts in a time series, and recurrence quantifi-

cation analysis offers complementary summary measures, such as recurrence rate and determinism. However, the identification

of transitions remains largely based on visual interpretation of recurrence plots, and the method lacks formal procedures for35

determining the number and statistical certainty of the transitions.

Several methodological extensions have sought to address these limitations. For instance, Goswami et al. (2018) propose a

breakpoint detection method using a probability density function sequence representation of the time series, which accounts

for timestamping uncertainty. Bagniewski et al. (2021) combine recurrence analysis with Kolmogorov–Smirnov tests to statis-

tically assess abrupt shifts in recurrence distributions. Rousseau et al. (2023) apply this method to the Westerhold et al. (2020)40

data, identifying a similar set of transitions along with several additional ones. As discussed by Marwan et al. (2021), there

are several other approaches to identify transitions in paleoclimate time series. Among these, Livina et al. (2010) developed

a statistical method of potential analysis and applied it to detect the number of states in an ice core record. In a Bayesian

framework, Schütz and Holschneider (2011) develop a method for detecting changes in trend, and Ruggieri (2013) introduce a

Bayesian algorithm for identifying multiple breakpoints. Reviews of breakpoint detection techniques in more general climate45

time series are provided by Reeves et al. (2007) and Lund and Shi (2023).

Recently, Trauth et al. (2024) explored a suite of methods, including recurrence analysis, changepoint detection, and non-

linear curve fitting (e.g., sigmoid and ramp functions), to identify climate transitions in a paleoclimate record. They apply a

changepoint detection algorithm by Killick et al. (2012), which efficiently detects multiple changepoints in the mean, variance,

and trend by minimizing a cost function that balances goodness-of-fit with a penalty for additional changes. The sigmoid func-50

tions are characterized by their S-shaped curves and allow for modeling gradual transitions (Crowley and Hyde, 2008; Trauth

et al., 2021). In contrast, the ramp functions consist of two horizontal segments connected by a linear trend and represent grad-

ual transitions bounded by abrupt changes in slope, which can be fitted using regression techniques. This method was proposed

by Mudelsee (2000) and has been applied to various paleoclimate records (e.g., Fleitmann et al., 2003; Mudelsee and Raymo,

2005). Furthermore, Mudelsee et al. (2014) apply this ramp-function method, among others, to detect major climate transitions55

in the Cenozoic. For further details, we refer to the textbook treatments in Mudelsee (2014) and Trauth (2025). While these
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approaches are widely used, they do not typically include tools for selecting the number of transitions or for assessing the

uncertainty in their timing. In this study, we apply an alternative method that addresses both aspects.

Specifically, we employ a statistical approach based on least-squares to estimate breakpoints, and showcase its use with the

benthic δ18O record from Westerhold et al. (2020). The approach is an econometric time-domain method by Bai and Perron60

(1998, 2003), which was originally applied to detect shifts in real interest rates data in economics (Garcia and Perron, 1996).

We henceforth refer to this as the Bai-Perron framework. While well-established in the econometrics literature, this framework

has not been applied to paleoclimate data, where it has a great potential for providing a rigorous statistical foundation for

the estimation of breakpoints. In particular, it offers the advantages of constructing confidence intervals for the timestamps of

the breakpoints, providing a measure of estimation uncertainty, as well as procedures for selecting the number of breakpoints65

in the time series. These additional measures are crucial for understanding the certainty, significance, and timing of climate

transition periods in the past. The Bai-Perron framework offers flexibility in modeling both abrupt and gradual transitions.

We demonstrate its application and benefits by using the data from Westerhold et al. (2020), though the framework is broadly

applicable to a wide range of paleoclimate time series.

2 Methodology70

2.1 Data

We use the dataset provided by Westerhold et al. (2020), which compiles measurements of oxygen isotope ratios from benthic

foraminifera across 34 different studies and 14 ocean drilling locations into a single stack covering the Cenozoic. Our study

focuses on the benthic δ18O record, specifically the correlation-corrected values of benthic δ18O.1

Benthic δ18O measures the deviations in the ratio of the stable oxygen isotopes 18O to 16O in the shells of benthic75

foraminifera relative to the Vienna Pee Dee Belemnite (VPDB) standard. The ratio of heavy to light stable oxygen isotopes is a

function of deep ocean temperatures (Epstein et al., 1951; Shackleton, 1967; Lisiecki and Raymo, 2005) and of the δ18O of the

seawater in which the foraminifera grow their shells, which in turn is a function of ice volume and salinity (e.g., Waelbroeck

et al., 2002; Oerlemans, 2004). Thus, the benthic stack is an important reference record for global climate history across the

Cenozoic. Hereafter, we refer to benthic δ18O simply as δ18O.80

The δ18O compilation by Westerhold et al. (2020) spans 67.10113 Ma to 564 years before present (Fig. 1). Using recurrence

analysis, Westerhold et al. (2020) identify six climate states, and we refer to these as Warmhouse I (66-56 Ma), Hothouse (56-

47 Ma), Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma), Coolhouse II (13.9-3.3 Ma), and Icehouse (3.3 Ma-present).

Summary statistics for the full record and for each climate state identified by Westerhold et al. (2020) are reported in Appendix

B1.85

The dataset contains 24,333 entries, of which 74 are missing in the published version. After excluding these, we retain 24,259

data points, ordered from oldest to most recent. The δ18O record is irregularly spaced in time, as is typical for paleoclimate

1These are the values in column “benthic d18O VPDB Corr”, found in Sheet 33 of the file aba6853_tables_s8_s34.xlsx provided in the Supple-

mentary Materials of Westerhold et al. (2020).
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proxy data. Its average resolution is 2.77 kyr, ranging from 7.28 kyr during Warmhouse II, which has the lowest resolution, to

0.88 kyr during the Icehouse, which has the highest. The longest gap in the data spans about 115.4 kyr and 533 gaps exceed

10 kyr. Additionally, 591 time stamps contain multiple δ18O values, with up to four observations recorded at the same time.90

The δ18O stack includes an estimated age uncertainty of ±100 kyr in the early Cenozoic and ±10 kyr in more recent periods,

primarily due to uncertainties in orbital tuning and sedimentation rates (Westerhold et al., 2020). We do not explicitly account

for age uncertainty in this study, as it is small relative to the duration of the states we estimate. We therefore expect our main

findings to be robust and we will return to this issue in the results section.
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Figure 1. δ18O data from Westerhold et al. (2020). The vertical axis is reversed, following standard practice. The vertical dashed lines show

transitions between the climate states by Westerhold et al. (2020). The horizontal axis represents time, measured in millions of years before

present. Epoch abbreviations: Cret., Cretaceous; Plio., Pliocene; Pleist., Pleistocene.

2.2 The Bai-Perron framework95

The Bai-Perron framework is based on minimizing the sum of squared residuals while treating the breakpoints as unknown

parameters to be estimated (Bai and Perron, 1998, 2003). Consider a linear regression framework for the dependent variable

yt, for t= 1, . . . ,T , and with m breakpoints, corresponding to m+1 distinct states in the sample. The general model equation

is

yt = x′
tβ+ z′tδj +ut, t= Tj−1 +1, . . . ,Tj , (1)100

with j = 1, . . . ,m+1. The m break dates are denoted by (T1, . . . ,Tm), with the convention that T0 = 0 and Tm+1 = T , and

ut is a disturbance term with mean zero and variance σ2
j . The (p× 1)-vector xt and the (q× 1)-vector zt comprise two sets of

covariate vectors, for which β is the state-independent vector of coefficients and δj is the state-dependent vector of coefficients.
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Since only specific coefficients are subject to structural breaks, this model is referred to as a partial structural change model.

Moreover, we consider breaks in the variance of ut at the break dates T1, . . . ,Tm, such that σ2
i ̸= σ2

j for i ̸= j. The parameters105

β and δj are estimated alongside the breakpoints but are not of primary interest here.

We initially treat the number of breakpoints, m, as known and estimate the coefficients and the breakpoints using a sample

of T observations of {yt,xt,zt}. The estimation method is based on least squares for both the coefficients and the breakpoints.

For each possible set of m breakpoints (T1, . . . ,Tm) denoted as {Ti}mi=1, we obtain estimates of β and δj by minimizing the

sum of squared residuals (SSR), that is,110

SSR=

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt −x′
tβ− z′tδj)

2
, (2)

where β is common to all states, while δj is specific for the state j, which is the period between Tj−1+1 and Tj . The resulting

estimated coefficients are denoted as β̂ ({Ti}mi=1) and δ̂j ({Ti}mi=1). These coefficients are then used to determine the SSR

associated with each set of breakpoints,

SSRT ({Ti}mi=1)≡
m+1∑
j=1

Tj∑
t=Tj−1+1

(
yt −x′

tβ̂ ({Ti}mi=1)− z′tδ̂j ({Ti}mi=1)
)2

. (3)

The estimated breakpoints are then given by(
T̂1, . . . , T̂m

)
= argmin

T1,...,Tm

SSRT ({Ti}mi=1) . (4)115

The minimization is conducted over all partitions (T1, . . . ,Tm) such that Tj −Tj−1 ≥ dim(zt) to ensure that there are enough

data points to estimate the parameters δj in each partition. This procedure leads to estimated parameters for the m breakpoints,

i.e., {T̂i}mi=1, β̂ = β̂
(
{T̂i}mi=1

)
, and δ̂j = δ̂j

(
{T̂i}mi=1

)
. Since the possible combinations of the placement of the breakpoints

is finite, this optimization can be conducted using a grid search, which can be computationally heavy, especially for many

breakpoints. Bai and Perron (2003) introduce an efficient method for determining the global minimizers.120

An essential advantage of the Bai-Perron framework is that it allows for constructing confidence intervals for the timing of

the breakpoints, something that is not available for the recurrence analysis approach implemented in Westerhold et al. (2020).

The construction of confidence intervals is based on the asymptotic distribution of the estimated break dates. The convergence

results for the construction of confidence intervals rely on a number of assumptions (see Bai and Perron, 2003).

2.3 Model specifications125

Three distinct specifications are considered within the Bai-Perron framework, referred to as the “Mean”, “Fixed AR”, and “AR”

models, where AR refers to the autoregressive model of order one with intercept. These are all special cases of the framework

outlined in Eq. (1). The simplest among them, the Mean model, is specified as follows,

yt = cj +ut, t= Tj−1 +1, . . . ,Tj , (5)
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for j = 1, . . . ,m+1, where cj is the state-dependent intercept and ut is an error term. This model is equivalent to setting xt = 0,130

zt = 1, and δj = cj in Eq. (1). A breakpoint in this model specification leads to an abrupt change in the mean of the dependent

variable yt.

The Fixed AR model extends the Mean model by incorporating an autoregressive term. We obtain the model

yt = cj +φyt−1 +ut, t= Tj−1 +1, . . . ,Tj , (6)

for j = 1, . . . ,m+1, where yt−1 is the dependent variable lagged by one period, and φ is the autoregressive coefficient that135

is constant over the whole sample. In this model, the effect of a change in the coefficient cj is more gradual, since it depends

on the autoregressive dynamics. The Fixed AR model is obtained from Eq. (1) by specifying xt = yt−1, β = φ, zt = 1, and

δj = cj .

The general AR specification also allows the autoregressive term to be state-dependent, resulting in the AR model,

yt = cj +φjyt−1 +ut, t= Tj−1 +1, . . . ,Tj , (7)140

for j = 1, . . . ,m+1, where the autoregressive coefficient φ in Eq. (6) is now state-dependent and is denoted by φj . This model

is obtained from Eq. (1) by setting xt = 0, zt = (1,yt−1), and δj = (cj ,φj). Here, both the intercept and the autoregressive

coefficient are state-dependent. Thus, the three specifications are nested: The AR model is the most general, the Fixed AR

model is nested in the AR model by setting φ1 = φ2 = . . .= φm+1 = φ, and the Mean model is nested in the Fixed AR model

by setting φ= 0.145

Figure 2 illustrates how the models capture breakpoints. The Mean model is designed to detect abrupt breaks in the mean of

a time series, while the Fixed AR model is for smoother breaks. The AR model is more flexible, allowing for both relatively

gradual (e.g., T1) and abrupt (e.g., T2) breakpoints compared to the Fixed AR model.

2.4 Implementation

The Bai-Perron framework is implemented using mbreaks, an R package specifically designed for this purpose (Nguyen150

et al., 2023). For all model specifications, we set the minimum length of a state, h, to 2.5 million years (Myr), facilitating the

estimation of shorter climate states. Also, we let the variance of the error term, denoted as σ2
j , be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation is permitted in the regression residuals. However, the time series

of δ18O is likely subject to both autocorrelation and heteroscedasticity, as documented in ice core records (Davidson et al.,

2015; Keyes et al., 2023). Autocorrelation occurs when current values correlate with past values, which in paleoclimate data155

arises from both long-term persistence in climate dynamics (Mudelsee et al., 2014) and taphonomic processes such as bioturba-

tion (Kunz et al., 2020). Since only up to one lag is included in the covariates in the model specifications in this paper, residual

serial correlation is likely to remain. Heteroscedasticity, or time-varying error variance, is already partially addressed in the

model specifications through state-dependent variance. However, additional heteroscedasticity may arise within the estimated

states due to factors such as orbital forcing and changes in ice sheet extent. Addressing both autocorrelation and heteroscedas-160

ticity is essential to ensure unbiased parameter estimates and valid confidence intervals for the estimated breakpoints.
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Figure 2. Simulated time series using the three model specifications, each with breakpoints T1 = 25 and T2 = 75, and total sample size

T = 100. For the Mean model, we set c1 = 1.0, c2 = 1.2, and c3 = 0.8. In the Fixed AR model, the parameters are φ= 0.7, c1 = 0.30,

c2 = 0.36, and c3 = 0.24, chosen to yield comparable state-wise means. Likewise in the AR model, we set φ1 = 0.7, φ2 = 0.9, φ3 = 0.4,

c1 = 0.30, c2 = 0.12, and c3 = 0.48. In all specifications, we set ut = 0 for all t.

To account for these issues, we use the autocorrelation and heteroscedasticity consistent (HAC) covariance matrix estimator

with prewhitening in the Bai-Perron framework. The prewhitening procedure, proposed by Andrews and Monahan (1992),

entails applying an autoregressive model with one lag to ztût, where ût denotes the residuals. The HAC covariance matrix

estimator by Andrews (1991) is then constructed based on the filtered series using the quadratic spectral kernel with bandwidth165

selected by an AR of order one approximation. This approach is used for all model specifications and is straightforward to

implement using the R package (Nguyen et al., 2023).

2.5 Constant data frequency

To conduct breakpoint estimation using the Bai-Perron framework, we need a regularly sampled time series. We use a binning

approach to construct a dataset with evenly spaced observations, which is common practice in the analysis of paleoclimate170

data; see for instance Boettner et al. (2021). We divide the dataset into bins of fixed time intervals and compute the mean of the

observations within each bin. In the case of gaps in the binned data, we use the values immediately preceding and succeeding

the section with missing data to perform linear interpolation. We consider six different bin sizes, namely 5, 10, 25, 50, 75, and

100 kyr (Fig. 3). Summary statistics for the full sample length and for each climate state identified by Westerhold et al. (2020)

for all binning frequencies are provided in Appendix B1.175

Data binned at higher frequencies follow the variations in the dataset more closely, whereas data binned at lower frequencies

tend to be smoother (Fig. 3). In case of large gaps, a high binning frequency results in linear interpolation between observations

(Fig. 3 bottom left). This effect does not occur for periods with many observations, where low binning frequencies capture only

a small part of the variation in the original data (Fig. 3 bottom right). Binning offers a simple approach to handle the uneven
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frequency of the dataset. However, it leads to data loss at lower binning frequencies and to the introduction of artificial data180

points resulting from linear interpolation at higher binning frequencies. The selection of binning frequencies can therefore alter

the properties of the time series, potentially misrepresenting the dynamics of the original data.

Figure 3. Top panel: Benthic foraminiferal δ18O data from Westerhold et al. (2020), along with 5 and 100 kyr-binned versions. The record

spans 67.10–0.0006 Ma and is based on cores from 14 ocean drilling sites. The vertical dashed lines show transitions between the climate

states by Westerhold et al. (2020). Bottom left: 36–35 Ma with an average resolution of approximately 17.2 kyr. Bottom right: 3–2 Ma with

an average resolution of approximately 0.9 kyr. Epoch abbreviations: Cret., Cretaceous; Plio., Pliocene; Pleist., Pleistocene.
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The Bai-Perron framework is developed for estimating and testing for multiple breakpoints in linear regression models

where the regressors are non-trending or state-wise stationary (Bai and Perron, 2003). A time series is considered stationary

if its statistical properties, such as mean and variance, do not change over time. The δ18O data appears non-stationary over185

most of the record, even within climate states found by Westerhold et al. (2020). As pointed out by Kejriwal et al. (2013), if

the time series maintains its stationarity properties over the respective states, the methods developed for stationary data are

still applicable for these cases. However, if the process alternates between stationary and non-stationary states, the theoretical

properties of the methodology are unknown.

To investigate whether the time series is non-stationary, we apply the Augmented Dickey-Fuller (ADF) test (Dickey and190

Fuller, 1979), with the null hypothesis of non-stationarity. For the entire 25 kyr-binned data sample, the ADF test does not

reject the null hypothesis at the 1% significance level, indicating non-stationarity. However, when examining the binned data

for each climate state identified by Westerhold et al. (2020) separately, the ADF test rejects the null hypothesis at the 1%

significance level for the Warmhouse II, Coolhouse I, and Icehouse states. These tests indicate the presence of state-wise non-

stationarity, and we therefore need to examine whether the Bai-Perron framework is applicable to data-generating processes195

that are state-wise non-stationary or alternating between stationary and non-stationary states. For this purpose, we conduct a

large simulation study to verify that the Bai-Perron framework works as intended when applied to these types of data-generating

processes using the three model specifications. The study is conducted for both independent and identically distributed (i.i.d.)

error terms and serially correlated error terms (App. C1 and C2, respectively). The results show that the procedure works

well with non-stationarity and is robust to processes with one stationary and one non-stationary state for Fixed AR and AR200

models. However, the Mean model performs poorly when the data-generating process exhibits high persistence. In the case of

serial correlation, the results are less conclusive, but if the states are sufficiently different, the methodology appears effective.

The study reveals that the coverage rates for confidence intervals are generally adequate for the Fixed AR model, while the

confidence intervals of the AR model are too narrow in many cases. Overall, the Fixed AR model performs best across the

data-generating processes considered.205

3 Results

3.1 Fixed number of breakpoints

As an initial step, we fix the number of breakpoints to 5, which is the number used in the recurrence analysis presented in

Westerhold et al. (2020). We estimate the breakpoints and corresponding 95% confidence intervals for each of the binning

frequencies, 5, 10, 25, 50, 75, and 100 kyr, using Mean, Fixed AR, and AR models for each (App. B2 and Fig. 4). The210

estimated confidence intervals around the breakpoints are often asymmetrical. Bai and Perron (2003) advocate the use of

asymmetric confidence intervals, as these provide better coverage rates when the data are non-stationary.

For the Mean model, the estimated breakpoints generally remain at the same dates throughout as the binned data frequency

decreases step-by-step from 5 kyr to 100 kyr (Fig. 4.a). The width of the 95% confidence intervals increases as the frequency

decreases, which can be attributed to the resultant decrease in the number of binned observations available for estimation at the215
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lower frequencies. All the breakpoints align with those identified by recurrence analysis in Westerhold et al. (2020). A similar

pattern of alignment is observed in the Fixed AR model, albeit with tighter confidence intervals (Fig. 4.b). The AR model

exhibits more sensitivity to the frequency of the binned data (Fig. 4.c). At higher frequencies, the breakpoints tend to appear

in the more recent parts of the sample. However, as the frequency decreases further, the breakpoints are estimated to be in the

older parts of the sample period.220

For the results using 25 kyr, we find that the estimated breakpoints from the three model specifications align closely with each

other and nearly perfectly with those identified by Westerhold et al. (2020). The three model specifications estimated using

the 25 kyr-binned data yield parameter estimates that differ across states, reflecting differences in mean and autoregressive

dynamics (App. B3).

As a robustness check, we re-estimate the model specifications for 5 breakpoints using the 25 kyr-binned data reversed with225

respect to the time dimension, so that the time series is ordered from present to past rather than past to present (App. A1).

We find that the results of the Mean and Fixed AR models are robust to the ordering of the time axis, with almost unchanged

estimated breakpoints. Conversely, the AR model leads to estimated breakpoints in the more recent part of the sample, resulting

in breakpoints at 16.9 Ma and 9.7 Ma, which differ from those estimated using the same model and binning frequency with

time running forward (Fig. 4).230

In summary, changing the binning frequency mainly affects the width of the confidence intervals, while the estimated break-

point timing remains largely unchanged for both the Mean and Fixed AR models. In contrast, the AR model is more sensitive

to resolution and the direction of the time frame. As detailed in the simulation study (App. C), the Mean model fails to accu-

rately detect breakpoints in highly persistent data-generating processes. Consequently, in what follows, we focus on the Fixed

AR model for the estimation of breakpoints in the δ18O time series. Among the binning frequencies, we proceed with 10 kyr235

and 25 kyr, as these yield the most consistent results across model specifications and strike a good balance between temporal

resolution and signal quality. For the 25 kyr bin width, the mean number of observations per bin is approximately 9, and 3.6 for

10 kyr. However, these numbers vary across the sample, being only 3.5 and 1.4, respectively, in the Warmhouse II and increas-

ing to 28.3 and 11.3, respectively, in the Icehouse period. This highlights the importance of accounting for varying sampling

resolution when selecting bin widths. For applications of this framework to other paleoclimate records, we recommend seeking240

a similar balance.

3.2 Flexible number of breakpoints

We now relax the assumption of a pre-specified number of breakpoints and use information criteria to guide the choice of the

number of breakpoints. These criteria are model selection tools that balance goodness of fit with model complexity, helping

to avoid overfitting. We initially consider the following three criteria: the Bayesian Information Criterion (BIC) by BIC, the245

modified Schwarz Information Criterion (LWZ) by Liu et al. (1997), and the modified BIC (KT) by Kurozumi and Tuvaandorj

(2011). For all criteria, the preferred number of breakpoints is determined as the number of breakpoints that minimizes the

information criterion in question.
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(a) Mean model
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(b) Fixed AR model
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(c) AR model

Figure 4. A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100 kyr from top to bottom,

fixing the number of breakpoints to 5 for each model specification. The black dots represent estimated breakpoints, while colored shaded

rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020) (blue dots) and their transitions

(vertical dashed lines).
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Bai and Perron (2006) note that the BIC and LWZ criteria perform well in the absence of serial correlation, but both lead to

overestimation of the number of breakpoints in case of serial correlation in the error term. In simulation studies, we find that250

the KT information criterion performs poorly, and hence, we exclude it from the subsequent analysis (App. C1 and C2). We

also find that the number of breakpoints determined using the Mean model specification is generally too large when employing

the information criteria. For the Fixed AR and AR models, the BIC and LWZ criteria typically perform well, especially in data-

generating processes with a large break. With serial correlation in the error term, the BIC criterion tends to slightly overestimate

the number of breakpoints, whereas the LWZ criterion generally performs well in the Fixed AR and AR model specifications.255

We use the BIC and LWZ information criteria for each model specification and binning frequency to determine the number

of breakpoints, and set the minimum state length to h= 2.5 Myr (App. B4). For our preferred specification, the Fixed AR

model with 25 kyr binning frequency, the LWZ and BIC criteria suggests 6 and 12 breakpoints, respectively. For a 10 kyr

binning frequency, the estimated number of breakpoints are 7 and 14, respectively. Thus, the information criteria indicate that

the number of distinct climate states in the δ18O record is larger than the 5 suggested in Westerhold et al. (2020).260
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Figure 5. A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 25 kyr-binned data. The minimum

state length is set to h= 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95% confidence

intervals. The results overlay the δ18O data from Westerhold et al. (2020) and their transitions.

To further investigate the potential for a higher number of breakpoints, we consider the estimation of up to 15 breakpoints

with the minimum length of a state set of h= 1 Myr. This analysis is conducted with the Fixed AR model and 25 kyr-binned

data (Fig. 5). These findings show that the breakpoints identified by Westerhold et al. (2020) are preserved in estimations which

include 5 or more breakpoints. Furthermore, the additional breakpoints are, in most cases, also very stable and consistently

reappear across specifications with a higher number of breakpoints. The same analysis using 10 kyr-binned data led to nearly265

identical breakpoint estimates, while the Mean and AR models with 25 kyr-binned data yielded estimates that align in certain

cases (App. A2, A3, and A4).
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Figure 6. A comparison of estimated breakpoints using the Fixed AR model for one and two breakpoints on 5 kyr-binned data for the

Icehouse period. The minimum state length is set to h= 250 kyr. The black dots represent estimated breakpoints, while colored shaded

rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020).

The final estimated breakpoint is placed at 1.425 Ma for the Fixed AR model, just below the upper boundary of the detection

window at 1 Ma, imposed by the minimum state length of 1 Myr. Additionally, the estimated breakpoint is located near the

midpoint of a linear trend in the time series from approximately 3.3 Ma to the present, suggesting it may be driven by the trend270

rather than representing a break in the time series (cf. Fig. 5). To investigate this further, we re-estimate the breakpoints for the

Fixed AR model, focusing solely on the Icehouse period, with the minimum length of a state set to 250 kyr and 5 kyr binning,

leveraging the denser sampling in this part of the record. For the Fixed AR model, the LWZ criterion suggests one breakpoint,

while the BIC indicates two. With one breakpoint, the estimate is 1.355 Ma, and with two, the estimated breakpoints are 2.54

Ma and 0.95 Ma (Fig. 6). Estimating more than two breakpoints leads to overlap between the estimated confidence intervals,275

reducing the interpretability, and these models are therefore excluded. The results are comparable for the Mean and AR models

(App. A5 and A6).

3.3 Limitations of the Bai–Perron framework

Although the Bai–Perron framework provides a flexible and well-established method for detecting breaks, it has some lim-

itations. First, the approach assumes piecewise linearity and white noise residuals (Bai and Perron, 2003). However, in the280

estimations conducted in this study, the residuals are not white noise, indicating that some dynamics are left unexplained.

The simulation results show that the Bai-Perron framework nevertheless performs well even when residuals exhibit complex

dynamics (App. C). Confidence intervals should still be interpreted with caution. Second, the method is also computationally

demanding for high-resolution data, although it remains possible to run on personal computers.

Thirdly, the method does not account for age model uncertainty, which is important for interpreting the timing and signif-285

icance of time series analytical output (Marwan et al., 2021). In the Westerhold et al. (2020) data, dating uncertainty ranges

from about ±10 kyr in the younger parts to ±100 kyr in the older parts. This can affect the timing of breakpoints and lead
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to differences when comparing across records (Franke and Donner, 2019). Previous work has shown that age-depth models

often underestimate the true uncertainty in the chronology, which would amplify these effects (Telford et al., 2004). While

some progress has been made in including age uncertainty into recurrence analyses (Goswami et al., 2018), incorporating it290

into the Bai-Perron framework remains a challenge. One could however consider the use of age ensembles which are multiple

plausible realizations of the time axis to assess robustness of the estimated breakpoints. Fully integrating age uncertainty into

the estimation process, for example by modeling timestamps as random variables, would require further methodological devel-

opment. However, since the age model uncertainties reported by Westerhold et al. (2020) are small compared to the duration

of the estimated climate states, we expect our main findings to be robust.295

In addition to age uncertainty, another direction for methodological advancement is developing a breakpoint detection frame-

work for irregularly spaced time series. This would obviate the need for aggregating the data to fixed time intervals, preserving

more of the original record. Steps in this direction have already been made in concurrent research (Bennedsen et al., 2024),

where the full δ18O and δ13C stacks (Westerhold et al., 2020) are analyzed while taking the climate state transitions as given

and addressing measurement errors.300

4 Discussion

Our results demonstrate that the Bai-Perron time-domain framework is a flexible and effective tool for detecting breakpoints

in paleoclimate time series. When fixing the number of breakpoints to 5, all model specifications lead to breakpoint estimates

that closely match those identified by Westerhold et al. (2020), providing strong statistical support for their climate-state

classification. The results of this work are also consistent with the findings by Rousseau et al. (2023).305

Information criteria point to a higher number of transitions than previously reported (Westerhold et al., 2020), suggesting

the potential for a more detailed classification of Cenozoic climate variability. To explore this, we estimate between 1 and 15

breakpoints using the Fixed AR model (Fig. 5). Using the BIC, we find statistical justification for 12 breakpoints in the time

series (Tab. 1). Some of the 12 estimated breakpoints align with major transitions in benthic δ13C (Westerhold et al., 2020),

atmospheric CO2 concentration estimates (Hönisch et al., 2023), and global sea level estimates (Miller et al., 2020) (Fig. 7).310

This alignment may reflect episodes of large-scale reorganization in the Earth system, potentially involving coupled changes

in the carbon cycle, temperature, and ice volume.

Five of these breakpoints (BP3, BP5, BP7, BP9, and BP11) closely match the five major transitions identified by Westerhold

et al. (2020), each corresponding to a well-known climatic event. Specifically, BP3 aligns with the Paleocene–Eocene Thermal

Maximum (PETM, 56 Ma), a short-lived but intense global warming event (McInerney and Wing, 2011). BP5 marks the end of315

the Early Eocene Climate Optimum (EECO, 47 Ma), a peak in long-term warmth during the early Cenozoic (Westerhold et al.,

2018). BP7 captures the Eocene–Oligocene Transition (EOT, 34 Ma), when Antarctic glaciation began and global temperatures

declined sharply (Coxall et al., 2005; Spray et al., 2019). BP9 corresponds to the Middle Miocene Climate Transition (MMCT,

13.9 Ma), which is associated with expansion of the Antarctic ice sheets (Flower and Kennett, 1994). Finally, BP11 is close
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Breakpoint name Estimate 95% CI

BP1 61.250 (61.375, 60.525)

BP2 58.200 (58.275, 57.825)

BP3 55.975 (56.275, 55.700)

BP4 48.825 (49.000, 47.675)

BP5 46.725 (46.800, 46.475)

BP6 39.650 (39.750, 39.375)

BP7 34.025 (34.050, 33.850)

BP8 16.950 (18.175, 16.225)

BP9 13.875 (13.900, 13.675)

BP10 9.975 (10.075, 9.700)

BP11 3.400 (3.625, 3.325)

BP12 1.425 (1.850, 1.225)

Table 1. Estimated breakpoints and 95% confidence intervals (CI) in Ma for the Fixed AR model with 12 breakpoints determined using the

BIC.

to the M2 glaciation event (3.3 Ma), which preceded the onset of sustained Northern Hemisphere glaciation in the Pleistocene320

(Lisiecki and Raymo, 2005).

Several of the remaining seven estimated breakpoints also coincide with known climate events. For instance, BP6 aligns with

the cooling following the Middle Eocene Climatic Optimum (MECO), originally described by Bohaty and Zachos (2003), and

occurs after a peak in atmospheric CO2 concentrations inferred from boron isotope records (Henehan et al., 2020) (Fig. 8).

Another breakpoint, BP10, is estimated at 9.975 Ma and broadly coincides with the expansion of C4 grasslands (Fig. 9), which325

altered the global carbon cycle and land surface with potential downstream effects on climate (Polissar et al., 2019; Strömberg,

2011). Notably, both of these breakpoints are also identified by Rousseau et al. (2023), who applied recurrence analysis and a

Kolmogorov–Smirnov test to the same δ18O dataset. BP8 matches the onset of the Mid-Miocene Climatic Optimum (MMCO),

estimated at 16.95 Ma (Flower and Kennett, 1994; Zachos et al., 2001). BP2 aligns with the maximum in both the δ13C and

sea level records at 58.03 Ma and 58.21 Ma, respectively (Fig. 7). This period has also been described by Harper et al. (2024)330

as the peak of the Paleocene Carbon Isotope Maximum (PCIM).

Particularly noteworthy is the lack of breakpoints, even with 15 detections, between the EOT at 34 Ma and the onset of the

MMCO around 17 Ma. This is consistent with the idea that this interval is especially stable in the Cenozoic Era, following the

establishment of the Antarctic ice sheet (Zachos et al., 2001; Mudelsee et al., 2014).

We now focus on the breakpoints estimated within the Icehouse period, which has an average resolution of 0.88 kyr com-335

pared to 2.77 kyr for the full record (Fig. 6). The estimation yields a single breakpoint at 1.355 Ma, which may reflect a

midpoint in the record rather than a distinct climatic shift. When allowing for two breakpoints, as suggested by the BIC, they

are estimated at 2.54 Ma and 0.95 Ma, coinciding well with the intensification of Northern Hemisphere Glaciation (iNHG)
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Figure 7. Overview of key paleoclimate proxies across the Cenozoic Era. From top to bottom: Benthic foraminiferal δ18O (Westerhold et al.,

2020), δ13C (Westerhold et al., 2020), atmospheric CO2 concentration estimates from multiple proxy records (Hönisch et al., 2023), and

global sea-level estimates relative to present (Miller et al., 2020). Breakpoints (black dots) and confidence intervals (light green bars) are

estimated using the preferred 12-breakpoint model on the δ18O record. The vertical dashed lines show the transitions found by Westerhold

et al. (2020). Notable alignments of features in the records with estimated breakpoints include the PETM (56 Ma), EOT (34 Ma), and MMCO

(17 Ma), supporting the interpretation of the breakpoints as indicators of major climate transitions.

(Lisiecki and Raymo, 2005) and the Mid-Pleistocene Transition (MPT) (Pisias and Moore, 1981), respectively. The iNHG

marks the initiation of sustained, large-scale glaciation in the Northern Hemisphere, beginning around 2.6 Ma, as evidenced by340

increasing ice-rafted debris (IRD) and declining sea level (McClymont et al., 2023). The MPT marks a change in the period-

icity and amplitude of glacial–interglacial cycles, which Clark et al. (2006) describe as a gradual transition occurring between

1.25 and 0.7 Ma. James et al. (2024) provide a dynamical argument supporting this view, while others identify a more abrupt

increase in ice volume and deep-ocean cooling centered around 0.9 Ma (Elderfield et al., 2012). Both the iNHG and the MPT

are thought to be relatively gradual and complex events, which is supported by the long, asymmetrical confidence intervals,345

ranging from 2.92 to 2.41 Ma for the first breakpoint and from 1.545 to 0.66 Ma for the second.

These results underscore the capability of the Bai-Perron framework to detect key transitions in Earth’s climate history but

also emphasize the importance of prior understanding of the climate system when interpreting breakpoint estimates.
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Figure 8. Boron isotope measurements (δ11B) from multiple ocean

drilling sites compiled by Henehan et al. (2020), shown alongside

δ18O values. The estimated breakpoint, BP6 (black dot), and its con-

fidence interval (light green bar), align with the post-MECO cooling.
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Figure 9. C4 grassland expansion, inferred from plant wax carbon

isotopes in marine sediments (Polissar et al., 2019), shown alongside

δ18O values. The estimated breakpoint, BP10 (black dot), and its con-

fidence interval (light green bar), align with this ecological transition.

5 Conclusion

This study presents a statistical time-domain approach to estimate breakpoints in the Cenozoic Era using the econometric tools350

developed by Bai and Perron (1998, 2003). We analyze the time series of benthic δ18O compiled by Westerhold et al. (2020),

which is a widely cited foundational record particularly for the field of paleoclimatology. Westerhold et al. (2020) identified

5 breakpoints using recurrence analysis, and our analysis strongly corroborates the placement of these breakpoints across

various model specifications and binning frequencies. Our approach offers the advantage of constructing confidence intervals

for the ages of the breakpoints, providing a measure of estimation uncertainty. Based on the results of our simulation study, we355

advocate using the model specification with a state-independent autoregressive term and state-dependent intercept.

By selecting the number of breakpoints using information criteria, we provide statistical justification for more than 5 break-

points in the time series. For instance, the BIC suggests 12 breakpoints. For these, the 5 transitions identified by Westerhold

et al. (2020) are preserved, while the additional breakpoints suggest further divisions of the climate states they found. This

points to the potential for a more detailed classification of Cenozoic climate states, adding to our understanding of Earth360

system dynamics.

Although we focus on the benthic δ18O stack (Westerhold et al., 2020) in this study, the Bai–Perron framework is broadly

applicable across paleoclimate research and related disciplines. To guide its use in other contexts, we offer several general rec-

ommendations based on our findings: 1. Careful consideration should be given to the choice of binning frequency. While finer

binning enhances temporal resolution, it may also preserve measurement errors and introduce artifacts by linear interpolations,365

particularly in unevenly sampled records. Conversely, coarser binning can lead to loss of information. In our application, we
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find that the bin width 10 and 25 kyr provide a good balance between detail and signal quality. For other records, we recom-

mend seeking a similar balance. 2. The model specification should reflect the statistical features of the data, such as trends and

autocorrelation. Although the Fixed AR model has performed well in our study, the flexibility of the Bai–Perron framework

allows users to adapt the model specification to suit different datasets. 3. The number of breakpoints should be selected based370

on information criteria, such as the BIC or LWZ, which may yield different outcomes depending on model complexity. In our

analysis, the BIC tends to favor more breakpoints than the LWZ. We recommend complementing statistical selection with a

careful assessment of the climatic relevance of the estimated breakpoints.

These recommendations support the broader application of the framework to other paleoclimate records, like the Cenozoic-

spanning reconstructions of δ13C or paleo-CO2. The method is suitable for detecting both gradual and abrupt transitions,375

including climatic events such as Dansgaard-Oeschger events (Dansgaard et al., 1993; Livina et al., 2010). In addition to

its versatility in application, the framework allows for the inclusion of covariates, opening up many possibilities for future

applications. As such, incorporating orbital parameters (e.g., eccentricity, obliquity, and precession; Laskar et al., 2004) could

create the potential for detecting transitions while controlling for these external drivers. Additionally, one could investigate

breaks in the relationship between orbital forcings and paleoclimate variables, reflecting changes in how strongly these external380

factors influence climate dynamics. A key example is the MPT, marked by a shift in the dominant glacial cycle from 41 kyr to

100 kyr (Berends et al., 2021; Barker et al., 2025), the timing of which could be estimated using the Bai–Perron framework.

These examples highlight the broader potential of the framework as a flexible tool for paleoclimate data analysis. Under-

standing when and how breakpoints in the climate system occurred is essential for interpreting past climate variability, events,

and shifts, and ultimately for informing projections of future climate change. The Bai–Perron framework provides a statis-385

tically rigorous way of estimating these breakpoints, offering new opportunities to deepen our understanding of long-term

climate dynamics.
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Appendix A: Graphs

A1 Reversed time400
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Figure A.1. A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five breakpoints on 25 kyr
binned data where the time frame is reversed. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95%
confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020) and their transitions.

A2 One to 15 breakpoints: Fixed AR model 10 kyr
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Figure A.2. A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 10 kyr binned data. The minimum
state length is set to h= 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95% confidence
intervals. The results overlay the δ18O data from Westerhold et al. (2020) and their transitions.
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A3 One to 15 breakpoints: Mean model
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Figure A.3. A comparison of estimated breakpoints using the Mean model for one to 15 breakpoints on 25 kyr binned data. The minimum
state length is set to h= 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95% confidence
intervals. The results overlay the δ18O data from Westerhold et al. (2020) and their transitions.

A4 One to 15 breakpoints: AR model
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Figure A.4. A comparison of estimated breakpoints using the AR model for one to 15 breakpoints on 25 kyr binned data. The minimum
state length is set to h= 1 Myr. The black dots represent estimated breakpoints, while colored shaded rectangles indicate 95% confidence
intervals. The results overlay the δ18O data from Westerhold et al. (2020) and their transitions.
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A5 One and two breakpoints in the Icehouse: Mean model 5 kyr
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Figure A.5. A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr binned data for the Icehouse
period. The minimum state length is set to h= 250 kyr. The black dots represent estimated breakpoints, while colored shaded rectangles
indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020).

A6 One and two breakpoints in the Icehouse: AR model 5 kyr405
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Figure A.6. A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr binned data for the Icehouse
period. The minimum state length is set to h= 250 kyr. The black dots represent estimated breakpoints, while colored shaded rectangles
indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020).
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Appendix B: Tables

B1 Summary statistics: State-wise and full sample

Bin size State Mean Sd. Max. Min. Data points
5 Warmhouse I 0.417 0.249 1.07 -0.215 2221
5 Hothouse -0.269 0.261 0.391 -2.014 1800
5 Warmhouse II 0.897 0.366 1.894 -0.254 2600
5 Coolhouse I 2.239 0.233 2.991 1.266 4020
5 Coolhouse II 3.072 0.237 4.172 1.885 2120
5 Icehouse 4.037 0.463 5.405 3.05 660
5 Full sample period 1.561 1.277 5.405 -2.014 13421

10 Warmhouse I 0.417 0.245 0.977 -0.12 1111
10 Hothouse -0.269 0.256 0.308 -2.014 900
10 Warmhouse II 0.897 0.366 1.777 -0.254 1300
10 Coolhouse I 2.239 0.221 2.877 1.324 2010
10 Coolhouse II 3.072 0.228 4.122 1.975 1060
10 Icehouse 4.034 0.447 5.33 3.181 330
10 Full sample period 1.561 1.276 5.33 -2.014 6711
25 Warmhouse I 0.418 0.237 0.912 -0.065 445
25 Hothouse -0.269 0.245 0.218 -1.871 360
25 Warmhouse II 0.898 0.358 1.688 0.01 520
25 Coolhouse I 2.239 0.202 2.749 1.391 804
25 Coolhouse II 3.073 0.213 3.793 2.087 424
25 Icehouse 4.033 0.401 5.158 3.258 132
25 Full sample period 1.561 1.273 5.158 -1.871 2685
50 Warmhouse I 0.419 0.233 0.867 -0.042 223
50 Hothouse -0.268 0.233 0.197 -1.871 180
50 Warmhouse II 0.898 0.354 1.656 0.182 260
50 Coolhouse I 2.24 0.188 2.713 1.567 402
50 Coolhouse II 3.072 0.206 3.72 2.156 212
50 Icehouse 4.042 0.359 4.757 3.264 66
50 Full sample period 1.562 1.271 4.757 -1.871 1343
75 Warmhouse I 0.42 0.229 0.837 0.006 148
75 Hothouse -0.26 0.203 0.167 -0.985 120
75 Warmhouse II 0.894 0.351 1.553 0.156 173
75 Coolhouse I 2.239 0.181 2.717 1.691 268
75 Coolhouse II 3.068 0.214 3.652 2.072 142
75 Icehouse 4.041 0.351 4.753 3.283 44
75 Full sample period 1.563 1.268 4.753 -0.985 895
100 Warmhouse I 0.42 0.229 0.832 0.007 112
100 Hothouse -0.263 0.203 0.155 -0.985 90
100 Warmhouse II 0.898 0.349 1.601 0.228 130
100 Coolhouse I 2.241 0.175 2.685 1.739 201
100 Coolhouse II 3.073 0.201 3.625 2.353 106
100 Icehouse 4.047 0.344 4.673 3.4 33
100 Full sample period 1.562 1.269 4.673 -0.985 672

Without binning Warmhouse I 0.428 0.25 1.07 -0.215 2761
Without binning Hothouse -0.279 0.255 0.391 -2.46 3030
Without binning Warmhouse II 0.916 0.357 1.894 -0.254 1786
Without binning Coolhouse I 2.251 0.242 3.263 1.026 6669
Without binning Coolhouse II 3.102 0.254 4.49 1.84 6282
Without binning Icehouse 4.064 0.533 5.53 2.66 3731
Without binning Full sample period 2.128 1.445 5.53 -2.46 24259

Table B.1. Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100 kyr) and the δ18O data without binning for each

of the states identified by Westerhold et al. (2020) and the full sample period.
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B2 Estimated breakpoints: 5 breakpoints

Bin size BP index Mean Fixed AR AR
Estimate 95% CI Estimate 95% CI Estimate 95% CI

5 1 55.965 (56.085, 55.885) 55.995 (56.085, 55.92) 33.745 (33.745, 33.72)
5 2 46.725 (46.845, 46.675) 46.73 (46.76, 46.68) 16.96 (17.365, 16.78)
5 3 34.02 (34.025, 33.915) 34.05 (34.075, 34.015) 13.825 (13.84, 13.775)
5 4 13.36 (13.395, 13.325) 13.41 (13.465, 13.34) 9.555 (9.585, 9.505)
5 5 2.735 (2.845, 2.715) 2.74 (3.1, 2.715) 3.36 (3.815, 3.355)
10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)
10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)
10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)
10 4 13.36 (13.4, 13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)
10 5 2.73 (2.81, 2.7) 2.74 (3.18, 2.71) 2.74 (2.88, 2.72)
25 1 55.975 (56.3, 55.1) 56.025 (56.575, 55.7) 55.825 (55.85, 55.675)
25 2 46.725 (47.3, 46.55) 46.725 (46.825, 46.45) 48.35 (48.625, 47.85)
25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)
25 4 13.4 (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)
25 5 2.725 (2.8, 2.625) 2.775 (3.075, 2.7) 2.575 (2.6, 2.55)
50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)
50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)
50 3 34.05 (34.05, 32.8) 34.2 (34.3, 33.9) 33.75 (33.75, 33.6)
50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)
50 5 2.75 (2.9, 2.5) 3.15 (3.4, 3.0) 14.3 (14.55, 12.8)
75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)
75 2 46.725 (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)
75 3 34.05 (34.05, 30.9) 34.2 (34.425, 33.675) 34.05 (34.05, 33.825)
75 4 13.35 (13.8, 12.975) 13.875 (14.1, 13.125) 16.95 (17.325, 16.5)
75 5 2.775 (3.375, 2.4) 3.15 (3.525, 2.925) 14.475 (15.075, 14.25)

100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)
100 2 46.7 (52.5, 46.3) 47.1 (47.7, 46.3) 53.4 (53.8, 52.1)
100 3 34.1 (34.1, 29.4) 34.2 (34.5, 33.4) 49.1 (50.8, 48.8)
100 4 13.8 (14.7, 13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)
100 5 2.9 (4.2, 2.3) 3.4 (3.8, 3.2) 13.8 (15.7, 12.9)

Table B.2. Estimated breakpoints and their 95% confidence intervals (in Ma) where the number of breakpoints is fixed to 5, and all values

are rounded to three decimals. The table shows estimates for each method across bin sizes 5, 10, 25, 50, 75, and 100 kyr.
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B3 Estimated parameters: 5 breakpoints and 25 kyr binned data

Mean Fixed AR AR
Parameter Estimate SE Estimate SE Estimate SE
c1 0.418 0.051 0.069 0.008 -0.001 0.026
c2 -0.256 0.040 -0.043 0.007 -0.108 0.015
c3 0.911 0.072 0.153 0.013 0.028 0.007
c4 2.247 0.017 0.373 0.031 0.660 0.061
c5 3.119 0.027 0.519 0.043 0.421 0.073
c6 4.140 0.051 0.698 0.057 2.423 0.326
φ × × 0.833 0.014 × ×
φ1 × × × × 0.990 0.054
φ2 × × × × 0.631 0.037
φ3 × × × × 0.970 0.008
φ4 × × × × 0.706 0.027
φ5 × × × × 0.865 0.024
φ6 × × × × 0.419 0.081
σ2
1 0.237 × 0.095 × 0.106 ×
σ2
2 0.255 × 0.154 × 0.140 ×
σ2
3 0.347 × 0.112 × 0.107 ×
σ2
4 0.210 × 0.141 × 0.140 ×
σ2
5 0.208 × 0.111 × 0.116 ×
σ2
6 0.351 × 0.340 × 0.315 ×

Table B.3. Estimated parameters and their corresponding standard errors (SE) for each model specification. Parameters absent in a given

model specification are denoted by ×. The number of breakpoints is set to 5, and the parameters are estimated with a binning frequency of

25 kyr and h= 2.5 Myr. All values are rounded to three decimals.

B4 The number of breakpoints selected by information criteria410

Bin size Mean Fixed AR AR

BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5

10 17 17 14 7 14 3

25 17 14 12 6 8 3

50 17 14 10 0 7 0

75 17 14 6 0 5 0

100 17 12 6 0 5 0
Table B.4. The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies considered. The

minimum state length is set to h= 2.5 Myr and the maximum number of breakpoints is 26.
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Appendix C: Simulation study

C1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by Bai and Perron (1998, 2003) can be used to accurately estimate the number and

timing of breakpoints in a state-wise non-stationary time series. We conduct 1000 simulations for each data-generating process (DGP) with

a sample size of 500. All the DGPs considered have the following form,415

yt = c1 +φ1yt−1 + εt, εt
i.i.d.∼ N

(
0,σ2) for t≤ T/2

yt = c2 +φ2yt−1 + εt, εt
i.i.d.∼ N

(
0,σ2) for t > T/2. (C1)

Hence, we consider a single breakpoint in the middle of the sample interval, namely at t= 250. We examine eight DGPs, each specified and

described in Table C.1.

DGP σ c1 c2 φ1 φ2 Description
1 1 0.1 0.2 1 1 Small break in the drift term of a RW
2 1 0.1 1 1 1 Large break in the drift term of a RW
3 1 0.1 1 0.95 0.95 Large break in the intercept and a fixed AR-coefficient
4 1 0.1 1 0.95 1 Break in the intercept and small break in the AR-coefficient
5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient
6 1 1 1 1 1 RW with a drift without a breakpoint
7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance
8 1 0.1 1 0.5 0.5 Large break in the intercept and a low fixed AR-coefficient

Table C.1. Data-generating processes for the simulation study and short descriptions. RW: random walk.

The DGPs range from random walk models with a break in the drift term to models with breaks in both the intercept and the AR420

coefficient. For comparison, we include a random walk without breakpoints as the sixth model. For each of the DGPs, we are interested

in the performance of the methodology by Bai and Perron (1998, 2003) in estimating the breakpoint and confidence intervals. The model

specifications from Section 2.3 are estimated on the data generated by the DGPs, and we use the implementation outlined in Section 2.4.

We use the R-package mbreaks by Nguyen et al. (2023), and we impose a single breakpoint in the estimation. The left and right panels of

Figs. ?? through C.8 display realizations of the DGP and density plots of the estimated breakpoints for each of the models, respectively. The425

results are summarized in Table C.2, which provides the mean of the estimated breakpoints, and medians of the lower and upper boundaries

of the estimated 95% CIs are tabulated along with their coverage rates for each model and DGP.

In the first DGP, a random walk with a small drift term break, we observe that the mean of the estimated breakpoints is later than the true

breakpoint in all model specifications. Additionally, the density plots exhibit asymmetry around the true breakpoint. This is expected due to

the low magnitude of the break in the drift term, which creates a subtle change in the overall stochastic trend, making accurate breakpoint430

detection difficult. In the second DGP with a larger drift term break, the estimated breakpoints exhibit a narrower and more bell-shaped

density. The mean estimated breakpoints for the Fixed AR and AR models slightly precede the true breakpoint. However, the Mean model

performs poorly, with the mean of the estimated breakpoints far from the true breakpoint.

In the third DGP, both the Fixed AR and AR models produce mean estimated breakpoints slightly later than the true breakpoint. The Mean

model exhibits better performance in this DGP than in the second DGP. The fourth DGP has a break in the intercept and the AR-coefficient435
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DGP Mean Fixed AR AR
BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

1 301 174 655 57.1% 251 216 336 43.4% 290 240 316 22.7%
2 333 -386 332 95.4% 249 237 262 93% 249 236 256 77.2%
3 263 253 284 41.4% 256 239 260 89.9% 251 241 260 85.9%
4 340 -190 340 97.5% 249 239 260 95.8% 249 238 250 65.8%
5 340 -114 340 97.1% 250 239 258 97% 250 241 250 72.9%
6 249 -3325 3976 × 253 142 371 × 254 202 312 ×
7 333 -282 330 92% 249 246 253 97.8% 249 246 253 96%
8 249 237 264 95.1% 248 236 263 95.2% 248 236 263 94.5%

Table C.2. Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence intervals, along

with the coverage rates for each model specification and DGP. DGP 6 is simulated without a breakpoint, so the coverage rate is irrelevant

and indicated by ×.

from 0.95 to 1, resulting in a state-wise non-stationary model. This change leads to breakpoint estimates very close to the true breakpoint,

except in the Mean model. A similar outcome is observed in the fifth DGP, which features a larger increase in the AR-coefficient. In the

sixth DGP, which is defined without any breakpoints, the Mean model estimates breakpoints near the midpoint of the sample period, while

the other two specifications yield inconclusive results. In the seventh DGP, the AR and Fixed AR models produce estimates close to the true

breakpoint. However, the Mean model continues to produce breakpoint estimates far from the true value. Examining the eighth DGP, the440

three models perform almost equally well.

Overall, the Fixed AR and AR models tend to perform well in non-stationary scenarios, estimating breakpoints close to the true break-

points. The methodology, however, appears to struggle with accurately estimating the true breakpoint in cases of minor changes between

states and large error term variance. In contrast, the Mean model does not perform well in DGPs featuring gradual changes, aligning with

theoretical expectations as detailed in Bai and Perron (2003).445

The coverage rate of a CI is the proportion of times the CI covers the true breakpoint, here at t= 250. We find that the CIs of the Mean

model are generally very wide and have varying coverage. In the Fixed AR and AR models, the CIs are typically narrower. The coverage

rates are best in the DGPs with large differences between the states as seen in DGPs 4, 5, 7 and 8 using the Fixed AR model specification,

which is in line with the findings of Bai and Perron (2003). For the AR model, the coverage rates are only close to the desired 95% in the

seventh and eighth DGP, indicating that the CIs are inadequate in most of the DGPs considered.450

Table C.3 shows the mean number of breakpoints estimated for each DGP and method, along with the proportion of correctly estimated

breakpoints. The difficulty in accurately estimating gradual changes using the Mean model is also evident when estimating the number of

breakpoints. This model specification leads to overestimating the number of breakpoints in all DGPs considered except DGP 8, where it

performs well. The BIC criterion in the Fixed AR specification performs very well, with an estimated number of breakpoints equal to the true

number in most simulations in DGP 2-8. The LWZ criterion performs almost equally well except in the third DGP, while the KT criterion455

vastly overestimates the number of breakpoints in DGP 1-7. In the AR model, the information criteria all perform well in DGPs 2-8 except

for the third DGP where the LWZ criterion underestimates the number of breakpoints.
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DGP Mean Fixed AR AR
BIC LWZ KT BIC LWZ KT BIC LWZ KT

1 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.2 (15%) 0.0 (0%) 3.0 (0%) 0.1 (6%) 0.0 (0%) 0.0 (3%)
2 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (97%) 0.8 (82%) 3.0 (0%) 1.0 (94%) 0.5 (46%) 1.0 (93%)
3 2.9 (0%) 2.7 (4%) 3.0 (0%) 1.0 (94%) 0.2 (16%) 2.9 (0%) 0.9 (85%) 0.0 (0%) 0.7 (70%)
4 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (98%) 1.0 (98%) 2.8 (0%) 1.0 (99%) 0.9 (92%) 1.0 (99%)
5 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (97%) 2.7 (0%) 1.0 (99%) 1.0 (100%) 1.0 (99%)
6 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.0 (98%) 0.0 (100%) 3.0 (0%) 0.0 (100%) 0.0 (100%) 0.0 (100%)
7 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (100%) 3.0 (0%) 1.0 (98%) 1.0 (100%) 1.0 (98%)
8 1.5 (63%) 1.0 (98%) 1.3 (72%) 1.0 (99%) 1.0 (100%) 1.3 (73%) 1.0 (100%) 1.0 (98%) 1.0 (100%)

Table C.3. Means of the estimated number of breakpoints for each model specification across different DGPs, rounded to one decimal.

Percentages indicate the proportion of estimates equal to the true number of breakpoints.
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Figure C.1. DGP 1: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.2. DGP 2: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.

27



0 100 200 300 400 500
t

−10

0

10

20

y t
Example 1

Example 2

Example 3

Example 4

Example 5

Breakpoint

100 200 300 400
t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

fo
r

B
P

Mean

Fixed AR

AR

Breakpoint

Figure C.3. DGP 3: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.4. DGP 4: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.5. DGP 5: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.6. DGP 6: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.7. DGP 7: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.8. DGP 8: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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C2 Serially correlated error term

A possible extension of the simulation study outlined in Eq. (C1) is allowing the error term to exhibit serial correlation. We use the same

DGPs as before, but generate {εt}Tt=1 as follows,460

εt = ψεt−1 + θηt−1 + ηt, ηt
i.i.d.∼ N (0,σ2

η) ∀t. (C2)

We conduct 1000 simulations for each, with a sample size of 500. Here, we consider DGPs 2, 3, 4, 5, 7, and 8 as outlined in Table C.1 and

refer to these DGPs in the serially correlated cases as models 2s, 3s, 4s, 5s, 7s, and 8s. We set ψ = θ = 0.5 and the standard deviation ση ,

such that the standard deviation of εt corresponds to the σ in Table C.1. This is accomplished as follows,

Var(εt) = Var(ψεt−1 + θηt−1 + ηt)465

= ψ2Var(εt−1)+ θ2Var(ηt−1)+ 2ψθCov(εt−1,ηt−1)+Var(ηt) .

= ψ2Var(εt−1)+ θ2σ2
η +2ψθσ2

η +σ2
η,

since εt−1 and ηt−1 have zero means and E [εtηt] = ϕE [εt−1ηt] + θE [ηtηt−1] +E
[
η2t

]
= σ2

η . Given stationarity of the process, which

implies σ2 =Var(εt) for all t, we derive,

σ2
η = σ2 1−ψ2

1+ θ2 +2ψθ
.

This adjustment ensures the comparability of the results between the two error term types.470

In Figs. C.9 through C.14, we plot examples of realizations and frequency plots of the estimated breakpoints using each of the models

while imposing a single breakpoint in the estimation. The results are summarized in Table C.4, which provides means of the estimated

breakpoints and medians of the lower and upper boundary of the estimated confidence intervals, along with the coverage rates for each model

specification and DGP. Generally speaking, the mean of the estimated breakpoints are further from the true breakpoint and the CIs become

wider compared to the results from the corresponding DGPs without serial correlation. It is evident that serial correlation in the error term475

makes it more difficult to estimate the dating of breaks. We find that the Fixed AR and AR models perform well for DGP 7s, which has a

large difference between the states and low variance. This is in line with the theoretical framework by Bai and Perron (2003), who note that

the estimated break dates are consistent even in the presence of serial correlation. The Fixed AR model performs well in DGPs 2s, 4s and

5s where the mean of the estimated breakpoints is close to the true breakpoint, and confidence intervals are reasonably wide with acceptable

coverage rates. The results of the AR model are less conclusive.480

For the Mean and Fixed AR models, the coverage rates are generally close to the desired 95% and even higher in some DGPs. However,

the CIs are also extremely wide, reaching outside the sample window in many DGPs. The CIs seem reasonable in the Fixed AR model for

DGPs 2s, 4s, 5s, and 7s, where the coverage rates are close to 95% and the medians of the lower and upper bounds of the CIs are not too

extreme. The CIs for the AR model are generally wider than in the version without serial correlation in the error term. In the AR model,

the coverage rates are lower than the desired 95%, but it seems that DGPs with large breaks have higher coverage rates. The relatively poor485

performance is in line with the theoretical framework by Bai and Perron (2003). The authors note that the construction of the CIs rely on

having no serial correlation in the error term if a lagged dependent variable is included as a regressor that has coefficients that are subject to

breakpoints.

Table C.5 shows the mean number of breakpoints estimated for each DGP and method, along with the proportion of correctly estimated

number. In the Mean model, all information criteria overestimate the number of breakpoints. An important exception is the eighth DGP,490
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DGP Mean Fixed AR AR
BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

2s 332 -1400 335 95.9% 247 188 312 95.7% 261 190 299 79.9%
3s 266 60 787 90.6% 285 -112 656 97.2% 276 156 421 77.1%
4s 340 -776 339 94.9% 252 197 301 96.9% 264 195 277 84.9%
5s 342 -329 340 96.2% 256 196 266 96.4% 259 192 250 70.8%
7s 333 -1708 329 92.3% 249 230 270 97.6% 251 230 267 92.8%
8s 250 122 370 98.3% 245 -5 492 99.8% 247 23 490 97.4%

Table C.4. Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence intervals, along

with the coverage rates for each model specification and DGP.

where the performance is better, as in the case without serial correlation. In the Fixed AR and AR model specifications, the LWZ criterion

generally performs well, while both the BIC and the KT criteria generally overestimate. However, the LWZ criterion leads to underestimating

the number of breakpoints in DGPs 3s and 8s. These two DGPs are characterized by fixed AR-coefficients that are lower than one. This

implies that these two processes do not exhibit an autoregressive unit root. Hence, it seems that the LWZ criterion performs well in cases of

state-wise non-stationarity or switching between stationary and non-stationary states.495

Compared to the findings in the DGPs without serial correlation, it is clear that the proportion of correct estimates are lower for most

DGPs and model specifications. Overall, the best performing criterion seems to be the LWZ criterion in the Fixed AR and AR models, while

the Mean model typically leads to overestimating the number of breakpoints.

DGP Mean Fixed AR AR
BIC LWZ KT BIC LWZ KT BIC LWZ KT

2s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (32%) 0.9 (70%) 2.9 (0%) 1.8 (37%) 0.7 (61%) 1.9 (33%)
3s 3.0 (0%) 2.8 (2%) 3.0 (0%) 0.7 (33%) 0.0 (0%) 2.7 (3%) 0.3 (19%) 0.0 (0%) 0.4 (17%)
4s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.7 (45%) 1.0 (85%) 2.8 (1%) 1.6 (51%) 0.8 (79%) 1.6 (47%)
5s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.8 (5%) 1.1 (85%) 2.8 (0%) 1.7 (40%) 1.0 (92%) 1.6 (49%)
7s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (34%) 1.1 (89%) 3.0 (0%) 1.9 (34%) 1.0 (96%) 1.9 (32%)
8s 2.2 (21%) 1.2 (78%) 2.2 (23%) 0.4 (35%) 0.0 (0%) 1.9 (36%) 0.0 (4%) 0.0 (0%) 0.0 (3%)

Table C.5. Means of the estimated number of breakpoints for each model specification across different DGPs, rounded to one decimal.

Percentages indicate the proportion of estimates equal to the true number of breakpoints.
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Figure C.9. DGP 2s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.

0 100 200 300 400 500
t

−20

−10

0

10

20

30

y t

Example 1

Example 2

Example 3

Example 4

Example 5

Breakpoint

0 100 200 300 400 500
t

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

fo
r

B
P

Mean

Fixed AR

AR

Breakpoint

Figure C.10. DGP 3s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.11. DGP 4s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.12. DGP 5s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.13. DGP 7s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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Figure C.14. DGP 8s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each specification.
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