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Abstract

This study presents a statistical time-domain approach for identifying transitions between climate states,
referred to as breakpoints, using well-established econometric tools. Our approach offers the advantage of
constructing time-domain confidence intervals for the breakpoints, and it includes procedures to determine
how many breakpoints are present in the time series. We apply these tools to a 67.1 million-year-long
compilation of benthic foraminiferal oxygen isotopes (6'0), which signify global temperature and ice volume
throughout the Cenozoic. This foundational dataset is presented in Westerhold et al. (2020), where the
authors use recurrence analysis to identify five breakpoints that define six climate states. Fixing the number
of breakpoints to five, our procedure results in breakpoint estimates that closely align with those identified by
Westerhold et al. (2020). By allowing the number of breakpoints to vary, we provide statistical justification
for more than five breakpoints in the time series. Our method adds to our understanding of Cenozoic
climate history in terms of the timing and rate of transitions between climate states and provides a tool for

robustly assessing breakpoints in many other paleoclimate time series.

1 Introduction

Understanding the transitions between climate states in Earth’s past is crucial for constraining nonlinear
and feedback dynamics of our climate system, and anticipating potential climate system responses to an-
thropogenic warming. The Cenozoic Era, spanning from 66 million years ago (Ma) to today, is particularly
informative in this regard, as it is well studied and includes major shifts from hothouse climates with tem-
peratures 10°C warmer than today to the onset of permanent glaciations at both poles (Zachos et al., 2001;
Hansen et al., 2013). These transitions, or breakpoints, reflect large-scale changes in the climate system,

involving shifts in the carbon cycle, ocean circulation, ice volume, and more (Zachos et al., 2008; Mudelsee
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et al., 2014). As emphasized by Tierney et al. (2020), paleoclimate records are essential for assessing climate
sensitivity and evaluating climate models under warmer-than-present conditions. Evidence suggests that
the sensitivity of the climate system to external forcings may depend on the climate state (Caballero and
Huber, 2013), and that projected future climates may increasingly resemble early Cenozoic conditions under
continued emissions (Burke et al., 2018; Steffen et al., 2018). These insights underscore the importance of
identifying when past climate state transitions occurred, how many there were, and how certain we are
about their timing. Addressing these questions is crucial for understanding the dynamics of long-term cli-
mate variability, and recent work has increasingly emphasized transition detection as a key task in climate
data analysis (e.g., Marwan et al., 2021; Trauth, 2025).

A widely used approach to identify breakpoints in paleoclimate records is recurrence analysis, which
identifies when a system returns to similar states over time, helping to detect changes in the underlying
dynamics of time series (Marwan et al., 2007; Marwan, 2023; see also Fischer et al., 2024; Liang et al., 2025
for recent applications in paleoclimate research). Westerhold et al. (2020) apply this technique to a stacked
record of §'80 from benthic foraminifera spanning from 67.1 Ma to the present, covering the Cenozoic Era.
Based on the recurrence structure of the record, the authors identify four major climate states — Hothouse,
Warmbhouse, Coolhouse, and Icehouse — which are further divided into six states through time. To conduct
this analysis, they resampled the data at an interval of 5 thousand years (kyr) and used both raw and
detrended versions. Recurrence analysis provides valuable insights into the recurrence structure and shifts
in a time series, and recurrence quantification analysis offers complementary summary measures, such as
recurrence rate and determinism. However, the identification of transitions remains largely based on visual
interpretation of recurrence plots, and the method lacks formal procedures for determining the number and
statistical certainty of the transitions.

Several methodological extensions have sought to address these limitations. For instance, Goswami et al.
(2018) propose a breakpoint detection method using a probability density function sequence representation of
the time series, which accounts for timestamping uncertainty. Bagniewski et al. (2021) combine recurrence
analysis with Kolmogorov—Smirnov tests to statistically assess abrupt shifts in recurrence distributions.
Rousseau et al. (2023) apply this method to the Westerhold et al. (2020) data, identifying a similar set of
transitions along with several additional ones. As discussed by Marwan et al. (2021), there are several other
approaches to identify transitions in paleoclimate time series. Among these, Livina et al. (2010) developed a
statistical method of potential analysis and applied it to detect the number of states in an ice core record. In
a Bayesian framework, Schiitz and Holschneider (2011) develop a method for detecting changes in trend, and
Ruggieri (2013) introduce a Bayesian algorithm for identifying multiple breakpoints. Reviews of breakpoint
detection techniques in more general climate time series are provided by Reeves et al. (2007) and Lund and
Shi (2023).

Recently, Trauth et al. (2024) explored a suite of methods, including recurrence analysis, changepoint
detection, and nonlinear curve fitting (e.g., sigmoid and ramp functions), to identify climate transitions in a
paleoclimate record. They apply a changepoint detection algorithm by Killick et al. (2012), which efficiently
detects multiple changepoints in the mean, variance, and trend by minimizing a cost function that balances

goodness-of-fit with a penalty for additional changes. The sigmoid functions are characterized by their
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S-shaped curves and allow for modeling gradual transitions (Crowley and Hyde, 2008; Trauth et al., 2021).
In contrast, the ramp functions consist of two horizontal segments connected by a linear trend and represent
gradual transitions bounded by abrupt changes in slope, which can be fitted using regression techniques.
This method was proposed by Mudelsee (2000) and has been applied to various paleoclimate records (e.g.,
Fleitmann et al., 2003; Mudelsee and Raymo, 2005). Furthermore, Mudelsee et al. (2014) apply this ramp-
function method, among others, to detect major climate transitions in the Cenozoic. For further details,
we refer to the textbook treatments in Mudelsee (2014) and Trauth (2025). While these approaches are
widely used, they do not typically include tools for selecting the number of transitions or for assessing the
uncertainty in their timing. In this study, we apply an alternative method that addresses both aspects.
Specifically, we employ a statistical approach based on least-squares to estimate breakpoints, and show-
case its use with the benthic 680 record from Westerhold et al. (2020). The approach is an econometric
time-domain method by Bai and Perron (1998, 2003), which was originally applied to detect shifts in real
interest rates data in economics (Garcia and Perron, 1996). We henceforth refer to this as the Bai-Perron
framework. While well-established in the econometrics literature, this framework has not been applied to
paleoclimate data, where it has a great potential for providing a rigorous statistical foundation for the
estimation of breakpoints. In particular, it offers the advantages of constructing confidence intervals for
the timestamps of the breakpoints, providing a measure of estimation uncertainty, as well as procedures for
selecting the number of breakpoints in the time series. These additional measures are crucial for under-
standing the certainty, significance, and timing of climate transition periods in the past. The Bai-Perron
framework offers flexibility in modeling both abrupt and gradual transitions. We demonstrate its application
and benefits by using the data from Westerhold et al. (2020), though the framework is broadly applicable

to a wide range of paleoclimate time series.

2 Methodology

2.1 Data

We use the dataset provided by Westerhold et al. (2020), which compiles measurements of oxygen isotope
ratios from benthic foraminifera across 34 different studies and 14 ocean drilling locations into a single stack
covering the Cenozoic. Our study focuses on the benthic 6180 record, specifically the correlation-corrected
values of benthic §%0.!

Benthic §'80 measures the deviations in the ratio of the stable oxygen isotopes 2O to 60 in the shells
of benthic foraminifera relative to the Vienna Pee Dee Belemnite (VPDB) standard. The ratio of heavy
to light stable oxygen isotopes is a function of deep ocean temperatures (Epstein et al., 1951; Shackleton,
1967; Lisiecki and Raymo, 2005) and of the §'80 of the seawater in which the foraminifera grow their shells,
which in turn is a function of ice volume and salinity (e.g., Waelbroeck et al., 2002; Oerlemans, 2004). Thus,
the benthic stack is an important reference record for global climate history across the Cenozoic. Hereafter,

we refer to benthic 6'80 simply as §'20.

IThese are the values in column “benthic d180 VPDB Corr”, found in Sheet 33 of the file aba6853_tables_s8_s34.x1sx
provided in the Supplementary Materials of Westerhold et al. (2020).
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The 680 compilation by Westerhold et al. (2020) spans 67.10113 Ma to 564 years before present (Fig. 1).
Using recurrence analysis, Westerhold et al. (2020) identify six climate states, and we refer to these as
Warmhouse I (66-56 Ma), Hothouse (56-47 Ma), Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma),
Coolhouse IT (13.9-3.3 Ma), and Icehouse (3.3 Ma-present). Summary statistics for the full record and for
each climate state identified by Westerhold et al. (2020) are reported in Appendix B.1.

The dataset contains 24,333 entries, of which 74 are missing in the published version. After excluding
these, we retain 24,259 data points, ordered from oldest to most recent. The 68O record is irregularly
spaced in time, as is typical for paleoclimate proxy data. Its average resolution is 2.77 kyr, ranging from
7.28 kyr during Warmhouse II, which has the lowest resolution, to 0.88 kyr during the Icehouse, which has
the highest. The longest gap in the data spans about 115.4 kyr and 533 gaps exceed 10 kyr. Additionally,
591 time stamps contain multiple §'80 values, with up to four observations recorded at the same time. The
0'80 stack includes an estimated age uncertainty of +100 kyr in the early Cenozoic and +10 kyr in more
recent periods, primarily due to uncertainties in orbital tuning and sedimentation rates (Westerhold et al.,
2020). We do not explicitly account for age uncertainty in this study, as it is small relative to the duration
of the states we estimate. We therefore expect our main findings to be robust and we will return to this

issue in the results section.

Epoch Cret, Paleocene Eocene Oligocene Miocene ‘ Plio. |Pleist.
-2 Warmhouse I Hothouse Warmhouse IT Coolhouse I Coolhouse IT Icehouse
—1

0
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4
5
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Figure 1: 6'®0 data from Westerhold et al. (2020). The vertical axis is reversed, following standard practice.
The vertical dashed lines show transitions between the climate states by Westerhold et al. (2020). The horizontal
axis represents time, measured in millions of years before present. Epoch abbreviations: Cret., Cretaceous; Plio.,

Pliocene; Pleist., Pleistocene.

2.2 The Bai-Perron framework

The Bai-Perron framework is based on minimizing the sum of squared residuals while treating the break-
points as unknown parameters to be estimated (Bai and Perron, 1998, 2003). Counsider a linear regression
framework for the dependent variable y;, for t = 1,...,T, and with m breakpoints, corresponding to m + 1

distinct states in the sample. The general model equation is
Y =z B+ 2,05 + uy, t=T,1+1,...,Tj, (1)

with j = 1,...,m + 1. The m break dates are denoted by (71,...,T,,), with the convention that Ty = 0

and T;,+1 =T, and u, is a disturbance term with mean zero and variance 032-. The (p x 1)-vector z; and
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the (g x 1)-vector z; comprise two sets of covariate vectors, for which f is the state-independent vector of
coeflicients and d; is the state-dependent vector of coefficients. Since only specific coeflicients are subject
to structural breaks, this model is referred to as a partial structural change model. Moreover, we consider
breaks in the variance of u; at the break dates T1,...,Ty,, such that o2 # O'JQ» for i # j. The parameters 3
and §; are estimated alongside the breakpoints but are not of primary interest here.

We initially treat the number of breakpoints, m, as known and estimate the coefficients and the break-
points using a sample of T observations of {y;, z, z:}. The estimation method is based on least squares for
both the coefficients and the breakpoints. For each possible set of m breakpoints (T1,...,T,,) denoted as

{T;}" |, we obtain estimates of 3 and §; by minimizing the sum of squared residuals (SSR), that is,

m+1 T;

SSR=>"" > (y—aiB— 25", (2)

J=1t=T; 1+1

where 3 is common to all states, while §; is specific for the state j, which is the period between T;_; 41
and Tj. The resulting estimated coefficients are denoted as 3 ({T;}",) and &, ({Ti}",). These coefficients

are then used to determine the SSR associated with each set of breakpoints,

m+1 T;

SSRr(TY) = 3 S (v - BT — 246, (1)) ()

J=1t=T; 1+1

The estimated breakpoints are then given by

(Tl, . ,Tm) — argmin SSRy ({T}}™,). (4)
T1,....,Tm
The minimization is conducted over all partitions (T71,...,T,,) such that T; — T;_; > dim(z;) to ensure

that there are enough data points to estimate the parameters d; in each partition. This procedure leads to
estimated parameters for the m breakpoints, i.e., {T;}™,, 3 = j ({Tz}?;1>7 and §; = 0, ({ﬁ}:’;l) Since
the possible combinations of the placement of the breakpoints is finite, this optimization can be conducted
using a grid search, which can be computationally heavy, especially for many breakpoints. Bai and Perron
(2003) introduce an efficient method for determining the global minimizers.

An essential advantage of the Bai-Perron framework is that it allows for constructing confidence intervals
for the timing of the breakpoints, something that is not available for the recurrence analysis approach
implemented in Westerhold et al. (2020). The construction of confidence intervals is based on the asymptotic
distribution of the estimated break dates. The convergence results for the construction of confidence intervals

rely on a number of assumptions (see Bai and Perron, 2003).

2.3 Model specifications

Three distinct specifications are considered within the Bai-Perron framework, referred to as the “Mean”,
“Fixed AR”, and “AR” models, where AR refers to the autoregressive model of order one with intercept.
These are all special cases of the framework outlined in Eq. (1). The simplest among them, the Mean

model, is specified as follows,

yt:cj—l—ut, t:Tj_l—‘rl,...,Tj, (5)
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for j = 1,...,m + 1, where ¢; is the state-dependent intercept and wu; is an error term. This model is
equivalent to setting x; =0, 2, = 1, and 6; = ¢; in Eq. (1). A breakpoint in this model specification leads
to an abrupt change in the mean of the dependent variable y;.

The Fixed AR model extends the Mean model by incorporating an autoregressive term. We obtain the

model
yt:0j+90yt—l+uta t:Tj—1+17"'7Tj7 (6)

for j=1,...,m+1, where y;_ is the dependent variable lagged by one period, and ¢ is the autoregressive
coefficient that is constant over the whole sample. In this model, the effect of a change in the coefficient c;
is more gradual, since it depends on the autoregressive dynamics. The Fixed AR model is obtained from
Eq. (1) by specifying z; = y1—1, 8 =, 2 = 1, and §; = ¢;.

The general AR specification also allows the autoregressive term to be state-dependent, resulting in the

AR model,
yt:cj+<pjyt_l+ut’ tzn—l+la--'311ja (7)

for j =1,...,m+1, where the autoregressive coefficient ¢ in Eq. (6) is now state-dependent and is denoted
by ¢;. This model is obtained from Eq. (1) by setting z; = 0, 2z = (1,y:—1), and &; = (¢j, ;). Here,
both the intercept and the autoregressive coefficient are state-dependent. Thus, the three specifications are
nested: The AR model is the most general, the Fixed AR model is nested in the AR model by setting
Y1 =@ =...= Pmr1 = @, and the Mean model is nested in the Fixed AR model by setting ¢ = 0.

Figure 2 illustrates how the models capture breakpoints. The Mean model is designed to detect abrupt
breaks in the mean of a time series, while the Fixed AR model is for smoother breaks. The AR model is
more flexible, allowing for both relatively gradual (e.g., T1) and abrupt (e.g., T2) breakpoints compared to
the Fixed AR model.

1.10

1.054

=1.004
0.95
0.90

0.854

0.80

0 20 10 60 80 100
— Mean model ! — AR model
—— Fixed AR model -=- Breakpoints
Figure 2: Simulated time series using the three model specifications, each with breakpoints 77 = 25 and T» = 75,
and total sample size T = 100. For the Mean model, we set ¢ = 1.0, c2 = 1.2, and ¢z = 0.8. In the Fixed AR
model, the parameters are ¢ = 0.7, ¢1 = 0.30, c2 = 0.36, and c3 = 0.24, chosen to yield comparable state-wise

means. Likewise in the AR model, we set p1 = 0.7, 2 = 0.9, p3 = 0.4, ¢c1 = 0.30, c2 = 0.12, and ¢z = 0.48. In all

specifications, we set u; = 0 for all ¢.
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2.4 Implementation

The Bai-Perron framework is implemented using mbreaks, an R package specifically designed for this purpose
(Nguyen et al., 2023). For all model specifications, we set the minimum length of a state, h, to 2.5 million
years (Myr), facilitating the estimation of shorter climate states. Also, we let the variance of the error term,
denoted as UJQ-, be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation is permitted in the regression residuals. How-
ever, the time series of 6180 is likely subject to both autocorrelation and heteroscedasticity, as documented
in ice core records (Davidson et al., 2015; Keyes et al., 2023). Autocorrelation occurs when current values
correlate with past values, which in paleoclimate data arises from both long-term persistence in climate
dynamics (Mudelsee et al., 2014) and taphonomic processes such as bioturbation (Kunz et al., 2020). Since
only up to one lag is included in the covariates in the model specifications in this paper, residual serial cor-
relation is likely to remain. Heteroscedasticity, or time-varying error variance, is already partially addressed
in the model specifications through state-dependent variance. However, additional heteroscedasticity may
arise within the estimated states due to factors such as orbital forcing and changes in ice sheet extent.
Addressing both autocorrelation and heteroscedasticity is essential to ensure unbiased parameter estimates
and valid confidence intervals for the estimated breakpoints.

To account for these issues, we use the autocorrelation and heteroscedasticity consistent (HAC) co-
variance matrix estimator with prewhitening in the Bai-Perron framework. The prewhitening procedure,
proposed by Andrews and Monahan (1992), entails applying an autoregressive model with one lag to z;i,
where ; denotes the residuals. The HAC covariance matrix estimator by Andrews (1991) is then con-
structed based on the filtered series using the quadratic spectral kernel with bandwidth selected by an AR
of order one approximation. This approach is used for all model specifications and is straightforward to

implement using the R package (Nguyen et al., 2023).

2.5 Constant data frequency

To conduct breakpoint estimation using the Bai-Perron framework, we need a regularly sampled time series.
We use a binning approach to construct a dataset with evenly spaced observations, which is common practice
in the analysis of paleoclimate data; see for instance Boettner et al. (2021). We divide the dataset into
bins of fixed time intervals and compute the mean of the observations within each bin. In the case of gaps
in the binned data, we use the values immediately preceding and succeeding the section with missing data
to perform linear interpolation. We consider six different bin sizes, namely 5, 10, 25, 50, 75, and 100 kyr
(Fig. 3). Summary statistics for the full sample length and for each climate state identified by Westerhold
et al. (2020) for all binning frequencies are provided in Appendix B.1.

Data binned at higher frequencies follow the variations in the dataset more closely, whereas data binned
at lower frequencies tend to be smoother (Fig. 3). In case of large gaps, a high binning frequency results in
linear interpolation between observations (Fig. 3 bottom left). This effect does not occur for periods with
many observations, where low binning frequencies capture only a small part of the variation in the original

data (Fig. 3 bottom right). Binning offers a simple approach to handle the uneven frequency of the dataset.



215

220

225

However, it leads to data loss at lower binning frequencies and to the introduction of artificial data points
resulting from linear interpolation at higher binning frequencies. The selection of binning frequencies can

therefore alter the properties of the time series, potentially misrepresenting the dynamics of the original

data.
Epoch Cret. Paleocene ‘ Eocene Oligocene ‘ Miocene ‘ Plio. |Pleist.
-2 Warmhouse [ : Hothouse Warmhouse II Coolhouse I Coolhouse IT Icehouse
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Figure 3: Top panel: Benthic foraminiferal §'*0 data from Westerhold et al. (2020), along with 5 and 100 kyr-binned
versions. The record spans 67.10-0.0006 Ma and is based on cores from 14 ocean drilling sites. The vertical dashed
lines show transitions between the climate states by Westerhold et al. (2020). Bottom left: 36-35 Ma with an average
resolution of approximately 17.2 kyr. Bottom right: 3-2 Ma with an average resolution of approximately 0.9 kyr.

Epoch abbreviations: Cret., Cretaceous; Plio., Pliocene; Pleist., Pleistocene.

The Bai-Perron framework is developed for estimating and testing for multiple breakpoints in linear
regression models where the regressors are non-trending or state-wise stationary (Bai and Perron, 2003). A
time series is considered stationary if its statistical properties, such as mean and variance, do not change
over time. The §'80 data appears non-stationary over most of the record, even within climate states
found by Westerhold et al. (2020). As pointed out by Kejriwal et al. (2013), if the time series maintains
its stationarity properties over the respective states, the methods developed for stationary data are still
applicable for these cases. However, if the process alternates between stationary and non-stationary states,

the theoretical properties of the methodology are unknown.
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To investigate whether the time series is non-stationary, we apply the Augmented Dickey-Fuller (ADF)
test (Dickey and Fuller, 1979), with the null hypothesis of non-stationarity. For the entire 25 kyr-binned
data sample, the ADF test does not reject the null hypothesis at the 1% significance level, indicating non-
stationarity. However, when examining the binned data for each climate state identified by Westerhold et al.
(2020) separately, the ADF test rejects the null hypothesis at the 1% significance level for the Warmhouse
IT, Coolhouse I, and Icehouse states. These tests indicate the presence of state-wise non-stationarity, and we
therefore need to examine whether the Bai-Perron framework is applicable to data-generating processes that
are state-wise non-stationary or alternating between stationary and non-stationary states. For this purpose,
we conduct a large simulation study to verify that the Bai-Perron framework works as intended when applied
to these types of data-generating processes using the three model specifications. The study is conducted
for both independent and identically distributed (i.i.d.) error terms and serially correlated error terms
(App. C.1 and C.2, respectively). The results show that the procedure works well with non-stationarity
and is robust to processes with one stationary and one non-stationary state for Fixed AR and AR models.
However, the Mean model performs poorly when the data-generating process exhibits high persistence.
In the case of serial correlation, the results are less conclusive, but if the states are sufficiently different,
the methodology appears effective. The study reveals that the coverage rates for confidence intervals are
generally adequate for the Fixed AR model, while the confidence intervals of the AR model are too narrow

in many cases. Overall, the Fixed AR model performs best across the data-generating processes considered.

3 Results

3.1 Fixed number of breakpoints

As an initial step, we fix the number of breakpoints to 5, which is the number used in the recurrence analysis
presented in Westerhold et al. (2020). We estimate the breakpoints and corresponding 95% confidence
intervals for each of the binning frequencies, 5, 10, 25, 50, 75, and 100 kyr, using Mean, Fixed AR, and AR
models for each (App. B.2 and Fig. 4). The estimated confidence intervals around the breakpoints are often
asymmetrical. Bai and Perron (2003) advocate the use of asymmetric confidence intervals, as these provide
better coverage rates when the data are non-stationary.

For the Mean model, the estimated breakpoints generally remain at the same dates throughout as the
binned data frequency decreases step-by-step from 5 kyr to 100 kyr (Fig. 4.a). The width of the 95%
confidence intervals increases as the frequency decreases, which can be attributed to the resultant decrease
in the number of binned observations available for estimation at the lower frequencies. All the breakpoints
align with those identified by recurrence analysis in Westerhold et al. (2020). A similar pattern of alignment
is observed in the Fixed AR model, albeit with tighter confidence intervals (Fig. 4.b). The AR model exhibits
more sensitivity to the frequency of the binned data (Fig. 4.c). At higher frequencies, the breakpoints tend to
appear in the more recent parts of the sample. However, as the frequency decreases further, the breakpoints
are estimated to be in the older parts of the sample period.

For the results using 25 kyr, we find that the estimated breakpoints from the three model specifications
align closely with each other and nearly perfectly with those identified by Westerhold et al. (2020). The

three model specifications estimated using the 25 kyr-binned data yield parameter estimates that differ



s across states, reflecting differences in mean and autoregressive dynamics (App. B.3).
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Figure 4: A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100
kyr from top to bottom, fixing the number of breakpoints to 5 for each model specification. The black dots represent
estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

§'80 data from Westerhold et al. (2020) (blue dots) and their transitions (vertical dashed lines).

As a robustness check, we re-estimate the model specifications for 5 breakpoints using the 25 kyr-binned
data reversed with respect to the time dimension, so that the time series is ordered from present to past
rather than past to present (App. A.1). We find that the results of the Mean and Fixed AR models are

robust to the ordering of the time axis, with almost unchanged estimated breakpoints. Conversely, the AR

10
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model leads to estimated breakpoints in the more recent part of the sample, resulting in breakpoints at 16.9
Ma and 9.7 Ma, which differ from those estimated using the same model and binning frequency with time
running forward (Fig. 4).

In summary, changing the binning frequency mainly affects the width of the confidence intervals, while
the estimated breakpoint timing remains largely unchanged for both the Mean and Fixed AR models. In
contrast, the AR model is more sensitive to resolution and the direction of the time frame. As detailed in the
simulation study (App. C), the Mean model fails to accurately detect breakpoints in highly persistent data-
generating processes. Consequently, in what follows, we focus on the Fixed AR model for the estimation of
breakpoints in the 68O time series. Among the binning frequencies, we proceed with 10 kyr and 25 kyr,
as these yield the most consistent results across model specifications and strike a good balance between
temporal resolution and signal quality. For the 25 kyr bin width, the mean number of observations per bin
is approximately 9, and 3.6 for 10 kyr. However, these numbers vary across the sample, being only 3.5 and
1.4, respectively, in the Warmhouse II and increasing to 28.3 and 11.3, respectively, in the Icehouse period.
This highlights the importance of accounting for varying sampling resolution when selecting bin widths. For

applications of this framework to other paleoclimate records, we recommend seeking a similar balance.

3.2 Flexible number of breakpoints

We now relax the assumption of a pre-specified number of breakpoints and use information criteria to guide
the choice of the number of breakpoints. These criteria are model selection tools that balance goodness of
fit with model complexity, helping to avoid overfitting. We initially consider the following three criteria:
the Bayesian Information Criterion (BIC) by BIC, the modified Schwarz Information Criterion (LWZ) by
Liu et al. (1997), and the modified BIC (KT) by Kurozumi and Tuvaandorj (2011). For all criteria, the
preferred number of breakpoints is determined as the number of breakpoints that minimizes the information
criterion in question.

Bai and Perron (2006) note that the BIC and LWZ criteria perform well in the absence of serial cor-
relation, but both lead to overestimation of the number of breakpoints in case of serial correlation in the
error term. In simulation studies, we find that the KT information criterion performs poorly, and hence, we
exclude it from the subsequent analysis (App. C.1 and C.2). We also find that the number of breakpoints
determined using the Mean model specification is generally too large when employing the information cri-
teria. For the Fixed AR and AR models, the BIC and LWZ criteria typically perform well, especially in
data-generating processes with a large break. With serial correlation in the error term, the BIC criterion
tends to slightly overestimate the number of breakpoints, whereas the LWZ criterion generally performs
well in the Fixed AR and AR model specifications.

We use the BIC and LWZ information criteria for each model specification and binning frequency to
determine the number of breakpoints, and set the minimum state length to h = 2.5 Myr (App. B.4). For
our preferred specification, the Fixed AR model with 25 kyr binning frequency, the LWZ and BIC criteria
suggests 6 and 12 breakpoints, respectively. For a 10 kyr binning frequency, the estimated number of
breakpoints are 7 and 14, respectively. Thus, the information criteria indicate that the number of distinct

climate states in the 680 record is larger than the 5 suggested in Westerhold et al. (2020).
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Figure 5: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 25 kyr-
binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while
colored shaded rectangles indicate 95% confidence intervals. The results overlay the 6’30 data from Westerhold

et al. (2020) and their transitions.

To further investigate the potential for a higher number of breakpoints, we consider the estimation of
up to 15 breakpoints with the minimum length of a state set of h = 1 Myr. This analysis is conducted with
the Fixed AR model and 25 kyr-binned data (Fig. 5). These findings show that the breakpoints identified
by Westerhold et al. (2020) are preserved in estimations which include 5 or more breakpoints. Furthermore,
the additional breakpoints are, in most cases, also very stable and consistently reappear across specifications
with a higher number of breakpoints. The same analysis using 10 kyr-binned data led to nearly identical
breakpoint estimates, while the Mean and AR models with 25 kyr-binned data yielded estimates that align
in certain cases (App. A.2, A.3, and A 4).

[}

Number of breakpoints

3.0 2.5 2.0 1.5 1.0 0.5 0.0
Age (Ma)

Figure 6: A comparison of estimated breakpoints using the Fixed AR model for one and two breakpoints on 5
kyr-binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent
estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

§'80 data from Westerhold et al. (2020).

The final estimated breakpoint is placed at 1.425 Ma for the Fixed AR model, just below the upper
boundary of the detection window at 1 Ma, imposed by the minimum state length of 1 Myr. Additionally,
the estimated breakpoint is located near the midpoint of a linear trend in the time series from approximately

3.3 Ma to the present, suggesting it may be driven by the trend rather than representing a break in the
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time series (cf. Fig. 5). To investigate this further, we re-estimate the breakpoints for the Fixed AR model,
focusing solely on the Icehouse period, with the minimum length of a state set to 250 kyr and 5 kyr binning,
leveraging the denser sampling in this part of the record. For the Fixed AR model, the LWZ criterion
suggests one breakpoint, while the BIC indicates two. With one breakpoint, the estimate is 1.355 Ma,
and with two, the estimated breakpoints are 2.54 Ma and 0.95 Ma (Fig. 6). Estimating more than two
breakpoints leads to overlap between the estimated confidence intervals, reducing the interpretability, and
these models are therefore excluded. The results are comparable for the Mean and AR models (App. A.5
and A.6).

3.3 Limitations of the Bai—Perron framework

Although the Bai—Perron framework provides a flexible and well-established method for detecting breaks,
it has some limitations. First, the approach assumes piecewise linearity and white noise residuals (Bai
and Perron, 2003). However, in the estimations conducted in this study, the residuals are not white noise,
indicating that some dynamics are left unexplained. The simulation results show that the Bai-Perron
framework nevertheless performs well even when residuals exhibit complex dynamics (App. C). Confidence
intervals should still be interpreted with caution. Second, the method is also computationally demanding
for high-resolution data, although it remains possible to run on personal computers.

Thirdly, the method does not account for age model uncertainty, which is important for interpreting the
timing and significance of time series analytical output (Marwan et al., 2021). In the Westerhold et al. (2020)
data, dating uncertainty ranges from about £10 kyr in the younger parts to £100 kyr in the older parts.
This can affect the timing of breakpoints and lead to differences when comparing across records (Franke and
Donner, 2019). Previous work has shown that age-depth models often underestimate the true uncertainty
in the chronology, which would amplify these effects (Telford et al., 2004). While some progress has been
made in including age uncertainty into recurrence analyses (Goswami et al., 2018), incorporating it into
the Bai-Perron framework remains a challenge. One could however consider the use of age ensembles which
are multiple plausible realizations of the time axis to assess robustness of the estimated breakpoints. Fully
integrating age uncertainty into the estimation process, for example by modeling timestamps as random
variables, would require further methodological development. However, since the age model uncertainties
reported by Westerhold et al. (2020) are small compared to the duration of the estimated climate states,
we expect our main findings to be robust.

In addition to age uncertainty, another direction for methodological advancement is developing a break-
point detection framework for irregularly spaced time series. This would obviate the need for aggregating
the data to fixed time intervals, preserving more of the original record. Steps in this direction have already
been made in concurrent research (Bennedsen et al., 2024), where the full 6**0 and §13C stacks (Westerhold
et al., 2020) are analyzed while taking the climate state transitions as given and addressing measurement

errors.
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4 Discussion

Our results demonstrate that the Bai-Perron time-domain framework is a flexible and effective tool for
detecting breakpoints in paleoclimate time series. When fixing the number of breakpoints to 5, all model
specifications lead to breakpoint estimates that closely match those identified by Westerhold et al. (2020),
providing strong statistical support for their climate-state classification. The results of this work are also
consistent with the findings by Rousseau et al. (2023).

Information criteria point to a higher number of transitions than previously reported (Westerhold et al.,
2020), suggesting the potential for a more detailed classification of Cenozoic climate variability. To explore
this, we estimate between 1 and 15 breakpoints using the Fixed AR model (Fig. 5). Using the BIC, we find
statistical justification for 12 breakpoints in the time series (Tab. 1). Some of the 12 estimated breakpoints
align with major transitions in benthic 6**C (Westerhold et al., 2020), atmospheric CO, concentration
estimates (Honisch et al., 2023), and global sea level estimates (Miller et al., 2020) (Fig. 7). This alignment
may reflect episodes of large-scale reorganization in the Earth system, potentially involving coupled changes

in the carbon cycle, temperature, and ice volume.

Breakpoint name  Estimate 95% CI
BP: 61.250 (61.375, 60.525)
BP» 58.200 (58.275, 57.825)
BPs3 55.975 (56.275, 55.700)
BP, 48.825  (49.000, 47.675)
BPs 46.725 (46.800, 46.475)
BPg 39.650 (39.750, 39.375)
BP~ 34.025 (34.050, 33.850)
BPs 16.950  (18.175, 16.225)
BPy 13.875 (13.900, 13.675)
BP1o 9.975 (10.075, 9.700)
BP, 3.400 (3.625, 3.325)
BPi2 1.425 (1.850, 1.225)

Table 1: Estimated breakpoints and 95% confidence intervals (CI) in Ma for the Fixed AR model with 12 breakpoints
determined using the BIC.

Five of these breakpoints (BP3, BP5, BP7, BPg, and BP;;) closely match the five major transitions
identified by Westerhold et al. (2020), each corresponding to a well-known climatic event. Specifically, BP3
aligns with the Paleocene-Eocene Thermal Maximum (PETM, 56 Ma), a short-lived but intense global
warming event (McInerney and Wing, 2011). BP5 marks the end of the Early Eocene Climate Optimum
(EECO, 47 Ma), a peak in long-term warmth during the early Cenozoic (Westerhold et al., 2018). BP~
captures the Eocene-Oligocene Transition (EOT, 34 Ma), when Antarctic glaciation began and global
temperatures declined sharply (Coxall et al., 2005; Spray et al., 2019). BPg corresponds to the Middle
Miocene Climate Transition (MMCT, 13.9 Ma), which is associated with expansion of the Antarctic ice
sheets (Flower and Kennett, 1994). Finally, BP; is close to the M2 glaciation event (3.3 Ma), which

preceded the onset of sustained Northern Hemisphere glaciation in the Pleistocene (Lisiecki and Raymo,
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Figure 7: Overview of key paleoclimate proxies across the Cenozoic Era. From top to bottom: Benthic foraminiferal
580 (Westerhold et al., 2020), §*3C (Westerhold et al., 2020), atmospheric CO2 concentration estimates from
multiple proxy records (Honisch et al., 2023), and global sea-level estimates relative to present (Miller et al., 2020).
Breakpoints (black dots) and confidence intervals (light green bars) are estimated using the preferred 12-breakpoint
model on the §'¥0 record. The vertical dashed lines show the transitions found by Westerhold et al. (2020). Notable
alignments of features in the records with estimated breakpoints include the PETM (56 Ma), EOT (34 Ma), and

MMCO (17 Ma), supporting the interpretation of the breakpoints as indicators of major climate transitions.

Several of the remaining seven estimated breakpoints also coincide with known climate events. For
instance, BPg aligns with the cooling following the Middle Eocene Climatic Optimum (MECO), originally
described by Bohaty and Zachos (2003), and occurs after a peak in atmospheric COy concentrations inferred
from boron isotope records (Henehan et al., 2020) (Fig. 8). Another breakpoint, BP1y, is estimated at 9.975
Ma and broadly coincides with the expansion of C4 grasslands (Fig. 9), which altered the global carbon
cycle and land surface with potential downstream effects on climate (Polissar et al., 2019; Stromberg, 2011).
Notably, both of these breakpoints are also identified by Rousseau et al. (2023), who applied recurrence
analysis and a Kolmogorov-Smirnov test to the same 680 dataset. BPg matches the onset of the Mid-
Miocene Climatic Optimum (MMCO), estimated at 16.95 Ma (Flower and Kennett, 1994; Zachos et al.,
2001). BP, aligns with the maximum in both the §'*C and sea level records at 58.03 Ma and 58.21 Ma,
respectively (Fig. 7). This period has also been described by Harper et al. (2024) as the peak of the Paleocene
Carbon Isotope Maximum (PCIM).

Particularly noteworthy is the lack of breakpoints, even with 15 detections, between the EOT at 34 Ma
and the onset of the MMCO around 17 Ma. This is consistent with the idea that this interval is especially
stable in the Cenozoic Era, following the establishment of the Antarctic ice sheet (Zachos et al., 2001;
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Figure 8: Boron isotope measurements (§''B) from multi- Figure 9: Cy4 grassland expansion, inferred from plant
ple ocean drilling sites compiled by Henehan et al. (2020), wax carbon isotopes in marine sediments (Polissar et al.,
shown alongside 6'%0 values. The estimated breakpoint, 2019), shown alongside §'%0 values. The estimated
BPs (black dot), and its confidence interval (light green breakpoint, BP1o (black dot), and its confidence inter-
bar), align with the post-MECO cooling. val (light green bar), align with this ecological transition.

We now focus on the breakpoints estimated within the Icehouse period, which has an average resolution
of 0.88 kyr compared to 2.77 kyr for the full record (Fig. 6). The estimation yields a single breakpoint at
1.355 Ma, which may reflect a midpoint in the record rather than a distinct climatic shift. When allowing
for two breakpoints, as suggested by the BIC, they are estimated at 2.54 Ma and 0.95 Ma, coinciding well
with the intensification of Northern Hemisphere Glaciation (iNHG) (Lisiecki and Raymo, 2005) and the
Mid-Pleistocene Transition (MPT) (Pisias and Moore, 1981), respectively. The iNHG marks the initiation
of sustained, large-scale glaciation in the Northern Hemisphere, beginning around 2.6 Ma, as evidenced by
increasing ice-rafted debris (IRD) and declining sea level (McClymont et al., 2023). The MPT marks a
change in the periodicity and amplitude of glacial-interglacial cycles, which Clark et al. (2006) describe as
a gradual transition occurring between 1.25 and 0.7 Ma. James et al. (2024) provide a dynamical argument
supporting this view, while others identify a more abrupt increase in ice volume and deep-ocean cooling
centered around 0.9 Ma (Elderfield et al., 2012). Both the iNHG and the MPT are thought to be relatively
gradual and complex events, which is supported by the long, asymmetrical confidence intervals, ranging
from 2.92 to 2.41 Ma for the first breakpoint and from 1.545 to 0.66 Ma for the second.

These results underscore the capability of the Bai-Perron framework to detect key transitions in Earth’s
climate history but also emphasize the importance of prior understanding of the climate system when

interpreting breakpoint estimates.

5 Conclusion

This study presents a statistical time-domain approach to estimate breakpoints in the Cenozoic Era using
the econometric tools developed by Bai and Perron (1998, 2003). We analyze the time series of benthic 6180
compiled by Westerhold et al. (2020), which is a widely cited foundational record particularly for the field
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of paleoclimatology. Westerhold et al. (2020) identified 5 breakpoints using recurrence analysis, and our
analysis strongly corroborates the placement of these breakpoints across various model specifications and
binning frequencies. Our approach offers the advantage of constructing confidence intervals for the ages of
the breakpoints, providing a measure of estimation uncertainty. Based on the results of our simulation study,
we advocate using the model specification with a state-independent autoregressive term and state-dependent
intercept.

By selecting the number of breakpoints using information criteria, we provide statistical justification
for more than 5 breakpoints in the time series. For instance, the BIC suggests 12 breakpoints. For these,
the 5 transitions identified by Westerhold et al. (2020) are preserved, while the additional breakpoints
suggest further divisions of the climate states they found. This points to the potential for a more detailed
classification of Cenozoic climate states, adding to our understanding of Earth system dynamics.

Although we focus on the benthic 60 stack (Westerhold et al., 2020) in this study, the Bai-Perron
framework is broadly applicable across paleoclimate research and related disciplines. To guide its use in
other contexts, we offer several general recommendations based on our findings: 1. Careful consideration
should be given to the choice of binning frequency. While finer binning enhances temporal resolution, it may
also preserve measurement errors and introduce artifacts by linear interpolations, particularly in unevenly
sampled records. Conversely, coarser binning can lead to loss of information. In our application, we find
that the bin width 10 and 25 kyr provide a good balance between detail and signal quality. For other
records, we recommend seeking a similar balance. 2. The model specification should reflect the statistical
features of the data, such as trends and autocorrelation. Although the Fixed AR model has performed well
in our study, the flexibility of the Bai-Perron framework allows users to adapt the model specification to
suit different datasets. 3. The number of breakpoints should be selected based on information criteria, such
as the BIC or LWZ, which may yield different outcomes depending on model complexity. In our analysis,
the BIC tends to favor more breakpoints than the LWZ. We recommend complementing statistical selection
with a careful assessment of the climatic relevance of the estimated breakpoints.

These recommendations support the broader application of the framework to other paleoclimate records,
like the Cenozoic-spanning reconstructions of §'2C or paleo-COy. The method is suitable for detecting both
gradual and abrupt transitions, including climatic events such as Dansgaard-Oeschger events (Dansgaard
et al., 1993; Livina et al., 2010). In addition to its versatility in application, the framework allows for the
inclusion of covariates, opening up many possibilities for future applications. As such, incorporating orbital
parameters (e.g., eccentricity, obliquity, and precession; Laskar et al., 2004) could create the potential for
detecting transitions while controlling for these external drivers. Additionally, one could investigate breaks
in the relationship between orbital forcings and paleoclimate variables, reflecting changes in how strongly
these external factors influence climate dynamics. A key example is the MPT, marked by a shift in the
dominant glacial cycle from 41 kyr to 100 kyr (Berends et al., 2021; Barker et al., 2025), the timing of which
could be estimated using the Bai-Perron framework.

These examples highlight the broader potential of the framework as a flexible tool for paleoclimate data
analysis. Understanding when and how breakpoints in the climate system occurred is essential for interpret-

ing past climate variability, events, and shifts, and ultimately for informing projections of future climate
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change. The Bai—Perron framework provides a statistically rigorous way of estimating these breakpoints,

offering new opportunities to deepen our understanding of long-term climate dynamics.

Code and data availability. The data used in this study are available as the supplementary material of
Westerhold et al. (2020). The code used to conduct the analysis is based on the R-package mbreaks by

Nguyen et al. (2023) and the implementation is available upon request.
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Figure A.1: A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five
breakpoints on 25 kyr binned data where the time frame is reversed. The black dots represent estimated breakpoints,
while colored shaded rectangles indicate 95% confidence intervals. The results overlay the 6*30 data from Westerhold
et al. (2020) and their transitions.
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Figure A.2: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 10 kyr
binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while
colored shaded rectangles indicate 95% confidence intervals. The results overlay the 6'30 data from Westerhold
et al. (2020) and their transitions.
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A.3 One to 15 breakpoints: Mean model
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Figure A.3: A comparison of estimated breakpoints using the Mean model for one to 15 breakpoints on 25 kyr binned
data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored
shaded rectangles indicate 95% confidence intervals. The results overlay the §'%0 data from Westerhold et al. (2020)

and their transitions.
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Figure A.4: A comparison of estimated breakpoints using the AR model for one to 15 breakpoints on 25 kyr binned
data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored
shaded rectangles indicate 95% confidence intervals. The results overlay the 6*30 data from Westerhold et al. (2020)

and their transitions.
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A.5 One and two breakpoints in the Icehouse: Mean model 5 kyr
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Figure A.5: A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr
binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent
estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the
§'80 data from Westerhold et al. (2020).

A.6 One and two breakpoints in the Icehouse: AR model 5 kyr
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Figure A.6: A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr binned
data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent estimated
breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the §'*0 data
from Westerhold et al. (2020).
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B Tables
B.1

Summary statistics: State-wise and full sample

Bin size State Mean Sd. Max. Min. Data points
5 Warmhouse I 0.417 0.249 1.07 -0.215 2221
5 Hothouse -0.269 0.261  0.391 -2.014 1800
5 Warmhouse II 0.897 0.366 1.894 -0.254 2600
5 Coolhouse I 2.239 0.233  2.991 1.266 4020
5 Coolhouse IT 3.072 0.237  4.172 1.885 2120
5 Icehouse 4.037 0.463  5.405 3.05 660
5 Full sample period 1.561 1.277 5.405 -2.014 13421
10 Warmhouse I 0.417 0.245  0.977 -0.12 1111
10 Hothouse -0.269 0.256 0.308 -2.014 900
10 Warmhouse IT 0.897 0.366 1.777  -0.254 1300
10 Coolhouse 1 2.239 0.221 2.877 1.324 2010
10 Coolhouse IT 3.072 0.228  4.122 1.975 1060
10 Icehouse 4.034 0.447 5.33 3.181 330
10 Full sample period 1.561 1.276 5.33 -2.014 6711
25 Warmhouse I 0.418 0.237 0912 -0.065 445
25 Hothouse -0.269  0.245 0.218 -1.871 360
25 Warmhouse II 0.898 0.358 1.688 0.01 520
25 Coolhouse I 2.239 0.202  2.749 1.391 804
25 Coolhouse II 3.073 0.213  3.793 2.087 424
25 Icehouse 4.033 0.401 5.158 3.258 132
25 Full sample period 1.561 1.273 5.158  -1.871 2685
50 Warmhouse I 0.419 0.233  0.867 -0.042 223
50 Hothouse -0.268 0.233 0.197 -1.871 180
50 Warmhouse II 0.898 0.354  1.656 0.182 260
50 Coolhouse 1 2.24 0.188 2.713 1.567 402
50 Coolhouse IT 3.072 0.206 3.72 2.156 212
50 Icehouse 4.042 0.359  4.757 3.264 66
50 Full sample period 1.562 1.271  4.757  -1.871 1343
75 ‘Warmhouse I 0.42 0.229 0.837 0.006 148
75 Hothouse -0.26 0.203  0.167  -0.985 120
75 Warmhouse II 0.894 0.351 1.553 0.156 173
75 Coolhouse I 2.239 0.181  2.717 1.691 268
75 Coolhouse I 3.068 0.214  3.652 2.072 142
75 Icehouse 4.041 0.351  4.753 3.283 44
75 Full sample period 1.563 1.268 4.753  -0.985 895
100 Warmhouse I 0.42 0.229  0.832 0.007 112
100 Hothouse -0.263 0.203 0.155 -0.985 90
100 Warmhouse II 0.898 0.349 1.601 0.228 130
100 Coolhouse 1 2.241 0.175 2.685 1.739 201
100 Coolhouse IT 3.073 0.201  3.625 2.353 106
100 Icehouse 4.047 0.344  4.673 3.4 33
100 Full sample period 1.562 1.269 4.673 -0.985 672
Without binning ~ Warmhouse I 0.428 0.25 1.07 -0.215 2761
Without binning  Hothouse -0.279  0.255  0.391 -2.46 3030
Without binning  Warmhouse II 0.916 0.357 1.894  -0.254 1786
Without binning  Coolhouse I 2.251 0.242  3.263 1.026 6669
Without binning  Coolhouse II 3.102 0.254 4.49 1.84 6282
Without binning  Icehouse 4.064 0.533 5.53 2.66 3731
Without binning  Full sample period 2.128 1.445 5.53 -2.46 24259

Table B.1: Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100 kyr) and the 6*30 data
without binning for each of the states identified by Westerhold et al. (2020) and the full sample period.

28



B.2 Estimated breakpoints: 5 breakpoints

Bin size BP index Mean Fixed AR AR
Estimate 95% CI Estimate 95% CI Estimate 95% CI

5 1 55.965  (56.085, 55.885)  55.995  (56.085, 55.92)  33.745  (33.745, 33.72)
5 2 46.725  (46.845, 46.675)  46.73 (46.76, 46.68) 16.96 (17.365, 16.78)
5 3 34.02 (34.025, 33.915) 34.05 (34.075, 34.015) 13.825 (13.84, 13.775)
5 4 13.36  (13.395, 13.325)  13.41 (13.465, 13.34)  9.555 (9.585, 9.505)
5 5 2.735 (2.845, 2.715) 2.74 (3.1, 2.715) 3.36 (3.815, 3.355)
10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)
10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)
10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)
10 4 13.36 (134, 13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)
10 5 2.73 (2.81, 2.7) 2.74 (3.18, 2.71) 2.74 (2.88, 2.72)
25 1 55.975 (56.3, 55.1) 56.025 (56.575, 55.7) 55.825 (55.85, 55.675)
25 2 46.725  (47.3,46.55) 46725  (46.825,46.45)  48.35 (48.625, 47.85)
25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)
25 4 13.4 (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)
25 5 2.725 (2.8, 2.625) 2.775 (3.075, 2.7) 2.575 (2.6, 2.55)
50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)
50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)
50 3 34.05 (34.05, 32.8) 34.2 (34.3, 33.9) 33.75 (33.75, 33.6)
50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)
50 5 2.75 (2.9, 2.5) 3.15 (3.4, 3.0) 14.3 (14.55, 12.8)
75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)
75 2 46.725 (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)
75 3 34.05 (34.05, 30.9) 34.2 (34.425, 33.675) 34.05 (34.05, 33.825)
75 4 13.35 (13.8,12.975)  13.875 (141, 13.125) 16.95 (17.325, 16.5)
75 5 2.775 (3.375, 2.4) 3.15 (3.525, 2.925) 14475 (15.075, 14.25)
100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)
100 2 46.7 (52.5, 46.3) 47.1 (47.7, 46.3) 53.4 (53.8, 52.1)
100 3 34.1 (34.1, 29.4) 34.2 (34.5, 33.4) 49.1 (50.8, 48.8)
100 4 13.8 (14.7, 13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)
100 5 2.9 (4.2, 2.3) 3.4 (3.8, 3.2) 13.8 (15.7, 12.9)

Table B.2: Estimated breakpoints and their 95% confidence intervals (in Ma) where the number of breakpoints is

fixed to 5, and all values are rounded to three decimals. The table shows estimates for each method across bin sizes

5, 10, 25, 50, 75, and 100 kyr.
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B.3 Estimated parameters: 5 breakpoints and 25 kyr binned data

Mean Fixed AR AR

Parameter Estimate SE Estimate SE Estimate SE
e 0.418 0.051 0.069 0.008 -0.001 0.026
2 -0.256 0.040 -0.043 0.007 -0.108 0.015
c3 0.911 0.072 0.153 0.013 0.028 0.007
ca 2.247 0.017 0.373 0.031 0.660 0.061
cs 3.119 0.027 0.519 0.043 0.421 0.073
6 4.140 0.051 0.698 0.057 2.423 0.326
) X X 0.833 0.014 X X
1 X X x 0.990 0.054
©2 X X X X 0.631 0.037
©3 X X X X 0.970 0.008
P4 X X X X 0.706 0.027
©s X X X X 0.865 0.024
©6 X X X X 0.419 0.081
o} 0.237 X 0.095 x 0.106 x
o2 0.255 X 0.154 X 0.140 X
o3 0.347 X 0.112 X 0.107 X
ol 0.210 X 0.141 X 0.140 X
of 0.208 x 0.111 x 0.116 X
o¢ 0.351 x 0.340 x 0.315 X

Table B.3: Estimated parameters and their corresponding standard errors (SE) for each model specification. Pa-
rameters absent in a given model specification are denoted by x. The number of breakpoints is set to 5, and the
parameters are estimated with a binning frequency of 25 kyr and h = 2.5 Myr. All values are rounded to three

decimals.

s B.4 The number of breakpoints selected by information criteria

Bin size Mean Fixed AR AR
BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5
10 17 17 14 7 14 3
25 17 14 12 6 8 3
50 17 14 10 0 7 0
75 17 14 6 0 5 0
100 17 12 0 5 0

Table B.4: The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies

considered. The minimum state length is set to h = 2.5 Myr and the maximum number of breakpoints is 26.
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C Simulation study

C.1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by Bai and Perron (1998, 2003) can be used to
accurately estimate the number and timing of breakpoints in a state-wise non-stationary time series. We
conduct 1000 simulations for each data-generating process (DGP) with a sample size of 500. All the DGPs

considered have the following form,

Ve =1+ @11+ g KON (0,6%) fort<T/2
Y = Co+ a1 + 1, e KEN (0,0%) fort>T/2. (C1)

Hence, we consider a single breakpoint in the middle of the sample interval, namely at t = 250. We examine

eight DGPs, each specified and described in Table C.1.

DGP o c1 c2 ©1 w2 Description
1 1 0.1 0.2 1 1 Small break in the drift term of a RW
2 1 0.1 1 1 1 Large break in the drift term of a RW
3 1 0.1 1 0.95 0.95 Large break in the intercept and a fixed AR-coefficient
4 1 0.1 1 0.95 1 Break in the intercept and small break in the AR-coefficient
5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient
6 1 1 1 1 1 RW with a drift without a breakpoint
7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance
8 1 0.1 1 0.5 0.5  Large break in the intercept and a low fixed AR~coefficient

Table C.1: Data-generating processes for the simulation study and short descriptions. RW: random walk.

The DGPs range from random walk models with a break in the drift term to models with breaks in both
the intercept and the AR coefficient. For comparison, we include a random walk without breakpoints as the
sixth model. For each of the DGPs, we are interested in the performance of the methodology by Bai and
Perron (1998, 2003) in estimating the breakpoint and confidence intervals. The model specifications from
Section 2.3 are estimated on the data generated by the DGPs, and we use the implementation outlined in
Section 2.4. We use the R-package mbreaks by Nguyen et al. (2023), and we impose a single breakpoint
in the estimation. The left and right panels of Figs. C.1 through C.8 display realizations of the DGP and
density plots of the estimated breakpoints for each of the models, respectively. The results are summarized
in Table C.2, which provides the mean of the estimated breakpoints, and medians of the lower and upper

boundaries of the estimated 95% Cls are tabulated along with their coverage rates for each model and DGP.
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DGP Mean Fixed AR AR
BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

333 -282 330 92% 249 246 253 97.8% 249 246 253 96%
249 237 264 95.1% 248 236 263 95.2% 248 236 263 94.5%

1 301 174 655 57.1% 251 216 336 43.4% 290 240 316 22.7%
2 333 -386 332 95.4% 249 237 262 93% 249 236 256 77.2%
3 263 253 284 41.4% 256 239 260 89.9% 251 241 260 85.9%
4 340 -190 340 97.5% 249 239 260 95.8% 249 238 250 65.8%
5 340 -114 340 97.1% 250 239 258 97% 250 241 250 72.9%
6 249  -3325 3976 X 253 142 371 X 254 202 312 X

7

8

Table C.2: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated
confidence intervals, along with the coverage rates for each model specification and DGP. DGP 6 is simulated

without a breakpoint, so the coverage rate is irrelevant and indicated by x.

In the first DGP, a random walk with a small drift term break, we observe that the mean of the
estimated breakpoints is later than the true breakpoint in all model specifications. Additionally, the density
plots exhibit asymmetry around the true breakpoint. This is expected due to the low magnitude of the
break in the drift term, which creates a subtle change in the overall stochastic trend, making accurate
breakpoint detection difficult. In the second DGP with a larger drift term break, the estimated breakpoints
exhibit a narrower and more bell-shaped density. The mean estimated breakpoints for the Fixed AR and
AR models slightly precede the true breakpoint. However, the Mean model performs poorly, with the mean
of the estimated breakpoints far from the true breakpoint.

In the third DGP, both the Fixed AR and AR models produce mean estimated breakpoints slightly
later than the true breakpoint. The Mean model exhibits better performance in this DGP than in the
second DGP. The fourth DGP has a break in the intercept and the AR-coefficient from 0.95 to 1, resulting
in a state-wise non-stationary model. This change leads to breakpoint estimates very close to the true
breakpoint, except in the Mean model. A similar outcome is observed in the fifth DGP, which features a
larger increase in the AR-coefficient. In the sixth DGP, which is defined without any breakpoints, the Mean
model estimates breakpoints near the midpoint of the sample period, while the other two specifications yield
inconclusive results. In the seventh DGP, the AR and Fixed AR models produce estimates close to the true
breakpoint. However, the Mean model continues to produce breakpoint estimates far from the true value.
Examining the eighth DGP, the three models perform almost equally well.

Overall, the Fixed AR and AR models tend to perform well in non-stationary scenarios, estimating
breakpoints close to the true breakpoints. The methodology, however, appears to struggle with accurately
estimating the true breakpoint in cases of minor changes between states and large error term variance. In
contrast, the Mean model does not perform well in DGPs featuring gradual changes, aligning with theoretical
expectations as detailed in Bai and Perron (2003).

The coverage rate of a CI is the proportion of times the CI covers the true breakpoint, here at ¢ = 250.
We find that the CIs of the Mean model are generally very wide and have varying coverage. In the Fixed
AR and AR models, the Cls are typically narrower. The coverage rates are best in the DGPs with large
differences between the states as seen in DGPs 4, 5, 7 and 8 using the Fixed AR model specification, which
is in line with the findings of Bai and Perron (2003). For the AR model, the coverage rates are only close
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to the desired 95% in the seventh and eighth DGP, indicating that the Cls are inadequate in most of the
DGPs considered.

DGP Mean Fixed AR AR
BIC LWZ KT BIC LWZ KT BIC LWz KT
1 3.0(0%) 3.0(0%) 3.0 (0%) 0.2(15%) 0.0(0%) 3.0(0%) 0.1(6%) 0.0 (0%) 0.0 (3%)
2 3.0 (0%) 3.0(0%) 3.0(0%) 1.0(97%) 0.8 (82%) 3.0 (0%) 1.0 (94%) 0.5 (46%) 1.0 (93%)
329 (0%) 2.7 (4%) 3.0 (0%) 1.0 (94%) 0.2 (16%) 2.9 (0%) 0.9 (85%) 0.0 (0%) 0.7 (70%)
4 3.0 (0%) 3.0(0%) 3.0(0%) 1.0(98%) 1.0(98%) 2.8 (0%) 1.0 (99%) 0.9 (92%) 1.0 (99%)
5 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (97%) 2.7 (0%) 1.0 (99%) 1.0 (100%) 1.0 (99%)
6 3.0 (0%) 3.0(0%) 3.00%) 0.0(98%) 0.0(100%) 3.0 (0%) 0.0 (100%) 0.0 (100%) 0.0 (100%)
7 30 (0%) 3.0((0%) 3.0(0%) 1.0(99%) 1.0 (100%) 3.0 (0%) 1.0 (98%) 1.0 (100%) 1.0 (98%)
8 1.5 (63%) 1.0 (98%) 1.3 (72%) 1.0 (99%) 1.0 (100%) 1.3 (73%) 1.0 (100%) 1.0 (98%) 1.0 (100%)

Table C.3: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.

Table C.3 shows the mean number of breakpoints estimated for each DGP and method, along with
the proportion of correctly estimated breakpoints. The difficulty in accurately estimating gradual changes
using the Mean model is also evident when estimating the number of breakpoints. This model specification
leads to overestimating the number of breakpoints in all DGPs considered except DGP 8, where it performs
well. The BIC criterion in the Fixed AR specification performs very well, with an estimated number of
breakpoints equal to the true number in most simulations in DGP 2-8. The LWZ criterion performs almost
equally well except in the third DGP, while the KT criterion vastly overestimates the number of breakpoints
in DGP 1-7. In the AR model, the information criteria all perform well in DGPs 2-8 except for the third

DGP where the LWZ criterion underestimates the number of breakpoints.

0.0081
100 Example 1 — Memn
Example 2 Fixed AR
Example 3 — AR
80 ]
Example 4 o 0006 -~ Breakpoint
@ Example 5 2
) -~ Breakpoint 5
s 2.0.004
1 Z
g
20 =
0.002 |
0
. 0.000
0 100 200 300 400 500 0 100 200 300 400 500

t t

Figure C.1: DGP 1: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.

300

Example 1 —— Mean

—— Fixed AR
Example 3 — AR
Example 4

250 Example 2

=
15}

200 == Breakpoint

1=}
%

Example 5
1501 Breakpoint
It

100

Density for BP
=
E

0.04+

50
ﬁ% 0.02+
0
0.00
0 100 200 300 400 500 100 150 200 250 300 350 400 450

t t

Figure C.2: DGP 2: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C.3: DGP 3: Left:

specification.

Figure C.4: DGP 4: Left:

specification.

Figure C.5: DGP 5: Left:

specification.
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C.2 Serially correlated error term

A possible extension of the simulation study outlined in Eq. (C1) is allowing the error term to exhibit serial

correlation. We use the same DGPs as before, but generate {e;}7_; as follows,

i.4.d.

er =g +0p—1+n, M ~TN(0,07) V. (C2)

We conduct 1000 simulations for each, with a sample size of 500. Here, we consider DGPs 2, 3, 4, 5, 7,
and 8 as outlined in Table C.1 and refer to these DGPs in the serially correlated cases as models 24, 3, 44,
5s, Tg, and 8. We set » = 6 = 0.5 and the standard deviation o, such that the standard deviation of e;

corresponds to the ¢ in Table C.1. This is accomplished as follows,

Var (e¢) = Var (ve;—1 + 01 +m¢)
= 9? Var (er-1) + 6% Var (Nt—1) + 290 Cov (e¢—1,m:—1) + Var (n:) .
=p? Var (g;_1) + 9202 + 21&9072, + 0727,

since g;_1 and 7;—1 have zero means and E [e,1;] = ¢E [e;—1m] +0E [emi—1] +E [nf] = (f%. Given stationarity
of the process, which implies 0 = Var (g;) for all ¢, we derive,
02 =o? _ 1 ¢ .
n 1+ 62+ 2¢0
This adjustment ensures the comparability of the results between the two error term types.
In Figs. C.9 through C.14, we plot examples of realizations and frequency plots of the estimated

breakpoints using each of the models while imposing a single breakpoint in the estimation. The results are
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summarized in Table C.4, which provides means of the estimated breakpoints and medians of the lower
and upper boundary of the estimated confidence intervals, along with the coverage rates for each model
specification and DGP. Generally speaking, the mean of the estimated breakpoints are further from the
true breakpoint and the Cls become wider compared to the results from the corresponding DGPs without
serial correlation. It is evident that serial correlation in the error term makes it more difficult to estimate
the dating of breaks. We find that the Fixed AR and AR models perform well for DGP 7, which has a
large difference between the states and low variance. This is in line with the theoretical framework by Bai
and Perron (2003), who note that the estimated break dates are consistent even in the presence of serial
correlation. The Fixed AR model performs well in DGPs 24, 4, and 55 where the mean of the estimated
breakpoints is close to the true breakpoint, and confidence intervals are reasonably wide with acceptable
coverage rates. The results of the AR model are less conclusive.

For the Mean and Fixed AR models, the coverage rates are generally close to the desired 95% and even
higher in some DGPs. However, the Cls are also extremely wide, reaching outside the sample window in
many DGPs. The ClIs seem reasonable in the Fixed AR model for DGPs 24, 44, 55, and 74, where the
coverage rates are close to 95% and the medians of the lower and upper bounds of the Cls are not too
extreme. The CIs for the AR model are generally wider than in the version without serial correlation in
the error term. In the AR model, the coverage rates are lower than the desired 95%, but it seems that
DGPs with large breaks have higher coverage rates. The relatively poor performance is in line with the
theoretical framework by Bai and Perron (2003). The authors note that the construction of the CIs rely on
having no serial correlation in the error term if a lagged dependent variable is included as a regressor that

has coefficients that are subject to breakpoints.

DGP Mean Fixed AR AR
BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage
2 332 -1400 335 95.9% 247 188 312 95.7% 261 190 299 79.9%
3s 266 60 787 90.6% 285 -112 656 97.2% 276 156 421 77.1%

4, 340 =776 339 94.9% 252 197 301 96.9% 264 195 277 84.9%
5 342 -329 340 96.2% 256 196 266 96.4% 259 192 250 70.8%
Ts 333 -1708 329 92.3% 249 230 270 97.6% 251 230 267 92.8%
8s 250 122 370 98.3% 245 -5 492 99.8% 247 23 490 97.4%

Table C.4: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated

confidence intervals, along with the coverage rates for each model specification and DGP.

Table C.5 shows the mean number of breakpoints estimated for each DGP and method, along with the
proportion of correctly estimated number. In the Mean model, all information criteria overestimate the
number of breakpoints. An important exception is the eighth DGP, where the performance is better, as
in the case without serial correlation. In the Fixed AR and AR model specifications, the LWZ criterion
generally performs well, while both the BIC and the KT criteria generally overestimate. However, the LWZ
criterion leads to underestimating the number of breakpoints in DGPs 35 and 8;. These two DGPs are
characterized by fixed AR-coefficients that are lower than one. This implies that these two processes do
not exhibit an autoregressive unit root. Hence, it seems that the LWZ criterion performs well in cases of

state-wise non-stationarity or switching between stationary and non-stationary states.
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Compared to the findings in the DGPs without serial correlation, it is clear that the proportion of
70 correct estimates are lower for most DGPs and model specifications. Overall, the best performing criterion
seems to be the LWZ criterion in the Fixed AR and AR models, while the Mean model typically leads to

overestimating the number of breakpoints.

DGP

Mean Fixed AR AR
BIC LWZ KT BIC LWZ KT BIC LWZ KT
2. 3.0 (0%) 3.0 (0%) 3.0(0%) 1.9 (32%) 0.9 (70%) 2.9 (0%) 1.8 (37%) 0.7 (61%) 1.9 (33%)
3s  3.0(0%) 2.8 (12%) 3.0(0%) 0.7(33%) 0.0(0%) 2.7 3%) 0.3(19%) 0.0 (0%) 0.4 (17%)
4, 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.7 (45%) 1.0 (85%) 2.8 (1%) 1.6 (51%) 0.8 (79%) 1.6 (47%)
5. 3.0 (0%) 3.0 (0%) 3.0(0%) 1.8 (5%) 1.1 (85%) 2.8 (0%) 1.7 (40%) 1.0 (92%) 1.6 (49%)
7s 3.0 (0%) 3.0(0%) 3.0(0%) 1.9 (34%) 1.1 (89%) 3.0 (0%) 1.9 (34%) 1.0 (96%) 1.9 (32%)
8 2.2 (21%) 1.2 (78%) 2.2 (23%) 0.4 (35%) 0.0 (0%) 1.9 (36%) 0.0 (4%) 0.0 (0%) 0.0 (3%)

Table C.5: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.
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Figure C.11: DGP 4,: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C.12: DGP 5,: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C.13: DGP 7,: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C.14: DGP 8,: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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