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Abstract

This study presents a statistical time-domain approach for identifying transitions between climate states,

referred to as breakpoints, using well-established econometric tools. Our approach offers the advantage of15

constructing time-domain confidence intervals for the breakpoints, and it includes procedures to determine

how many breakpoints are present in the time series. We apply these tools to the 67.1 million-year-long

compilation of benthic foraminiferal oxygen isotopes (δ18O), which signify global temperature and ice vol-

ume throughout the Cenozoic. This foundational dataset is presented in Westerhold et al. (2020), where

the authors use recurrence analysis to identify five breakpoints that define six climate states. Fixing the20

number of breakpoints to five, our procedure results in breakpoint estimates that closely align with those

identified by Westerhold et al. (2020). However, by allowing the number of breakpoints to vary, we pro-

vide statistical justification for more than five breakpoints in the time series, which is used to characterize

Cenozoic paleoclimate and as a reference for many paleoclimate studies. This adds to our understanding of

Cenozoic climate history, in terms of the timing and rate of transitions between climate states, and provides25

a tool to assess many other paleoclimate time series.

1 Introduction

Understanding the transitions between climate states in Earth’s past is crucial for constraining nonlinear

and feedback dynamics of our climate system, and anticipating potential climate system responses to an-

thropogenic warming. The Cenozoic Era, spanning from 66 million years ago (Ma) to today, is particularly30

informative in this regard, as it is well-studied and it includes major shifts from hothouse climates with

temperatures 10◦C warmer than today to the onset of permanent glaciations at both poles (Zachos et al.,

2001; Hansen et al., 2013). These transitions, or breakpoints, reflect large-scale changes in the climate sys-

tem, involving shifts in the carbon cycle, ocean circulation, ice volume, and more (Zachos et al., 2008). As

1

mailto:kblarsen@econ.au.dk


emphasized by Tierney et al. (2020), paleoclimate records are essential for assessing climate sensitivity and35

evaluating climate models under warmer-than-present conditions. Evidence suggests that the sensitivity of

the climate system to external forcings may depend on the climate state (Caballero and Huber, 2013), and

that projected future climates may increasingly resemble early Cenozoic conditions under continued emis-

sions (Burke et al., 2018; Steffen et al., 2018). These insights underscore the importance of identifying when

past climate state transitions occurred, how many there were, and how certain we are about their timing.40

Addressing these questions is crucial for understanding the dynamics of long-term climate variability, and

recent work has increasingly emphasized transition detection as a key task in climate data analysis (e.g.,

Marwan et al., 2021; Trauth, 2025).

A widely used approach to identify breakpoints in paleoclimate records is recurrence analysis, which

identifies when a system returns to similar states over time, helping to detect changes in the underlying45

dynamics of time series (Marwan et al., 2007; Marwan, 2023). Westerhold et al. (2020) apply this technique

to a record of δ18O from benthic foraminifera spanning from 67.1 Ma to the present, covering the Cenozoic

Era. Based on the recurrence structure of the record, the authors identify four major climate states −
Hothouse, Warmhouse, Coolhouse, and Icehouse − which are further divided into six states through time.

To conduct this analysis, they resampled the data at an interval of 5 thousand years (kyr) and used both50

un-detrended and detrended versions. Recurrence analysis provides valuable insights into the recurrence

structure and shifts in a time series, and recurrence quantification analysis offers complementary summary

measures, such as recurrence rate and determinism. However, the identification of transitions remains largely

based on visual interpretation of recurrence plots, and the method lacks formal procedures for selecting the

number and statistical certainty of the transitions.55

Several methodological extensions have sought to address these limitations. For instance, Goswami et al.

(2018) propose a breakpoint detection method using a probability density function sequence representation of

the time series, which accounts for timestamping uncertainty. Bagniewski et al. (2021) combine recurrence

analysis with Kolmogorov–Smirnov tests to statistically assess abrupt shifts in recurrence distributions.

Rousseau et al. (2023) apply this method to the Westerhold et al. (2020) data, identifying a similar set of60

transitions along with several additional ones. As discussed by Marwan et al. (2021), there are several other

approaches to identify transitions in paleoclimate time series. Among these, Livina et al. (2010) developed a

statistical method of potential analysis and applied it to detect the number of states in an ice core record. In

a Bayesian framework, Schütz and Holschneider (2011) develop a method for detecting changes in trend, and

Ruggieri (2013) introduce a Bayesian algorithm for identifying multiple breakpoints. Reviews of breakpoint65

detection techniques in more general climate time series are provided by Reeves et al. (2007) and Lund and

Shi (2023).

Recently, Trauth et al. (2024) explored a suite of methods, including recurrence analysis, changepoint

detection, and nonlinear curve fitting (e.g., sigmoid and ramp functions), to identify climate transitions

in a paleoclimate record. They apply a changepoint detection algorithm by Killick et al. (2012), which70

efficiently detects multiple changepoints by minimizing a cost function that balances goodness-of-fit with

a penalty for additional changes. This approach enables the detection of shifts in the mean, variance, and

trend. The sigmoid functions are characterized by their S-shaped curves and allow for modeling gradual
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transitions (Crowley and Hyde, 2008; Trauth et al., 2021). In contrast, the ramp functions consist of

two horizontal segments connected by a linear trend and represent gradual transitions bounded by abrupt75

changes in slope, which can be fitted using regression techniques. This method was proposed by Mudelsee

(2000) and has been applied to various paleoclimate records (e.g., Fleitmann et al., 2003; Mudelsee and

Raymo, 2005). Furthermore, Mudelsee et al. (2014) apply this ramp-function method, among others, to

detect major climate transitions in the Cenozoic. For further details, we refer to the textbook treatments

in Mudelsee (2014) and Trauth (2025).80

We employ a statistical approach based on least-squares that allows the researcher to assess the uncer-

tainty in dating breakpoints through confidence intervals. Information criteria give guidance on the number

of breakpoints. The approach is an econometric time-domain framework (Bai and Perron, 1998, 2003),

which was originally applied to detect shifts in real interest rates data in economics (Garcia and Perron,

1996). We henceforth refer to this as the Bai-Perron framework. This framework offers the advantages of85

constructing confidence intervals for the timestamps of the breakpoints, providing a measure of estimation

uncertainty, as well as procedures for selecting the number of breakpoints in the time series that provides the

best fit. These additional measures are crucial for understanding the certainty, significance, and timing of

climate transition periods in the past. The Bai-Perron framework offers flexibility in modeling both abrupt

and gradual transitions. We demonstrate its application and benefits by using the benthic δ18O record from90

Westerhold et al. (2020), though the framework is broadly applicable to a wide range of paleoclimate time

series.

2 Methodology

2.1 Data

We use the dataset provided by Westerhold et al. (2020), which compiles measurements of oxygen isotope95

ratios from benthic foraminifera across 34 different studies and 14 ocean drilling locations into a single stack

covering the Cenozoic. Our study focuses on the benthic δ18O record, specifically the correlation-corrected

values of benthic δ18O.1

Benthic δ18O measures the deviations in the ratio of the stable oxygen isotopes 18O to 16O in the

shells of benthic foraminifera relative to the Vienna Pee Dee Belemnite (VPDB) standard. The weight100

difference between the stable oxygen isotopes is a function of deep ocean temperatures (Epstein et al., 1951;

Shackleton, 1967; Lisiecki and Raymo, 2005) and of the δ18O of the seawater, which in turn is a function

of ice volume and salinity (e.g., Waelbroeck et al., 2002; Oerlemans, 2004). Thus, the benthic stack is an

important reference record for global climate history across the Cenozoic. Hereafter, we refer to benthic

δ18O simply as δ18O.105

The δ18O compilation by Westerhold et al. (2020) spans 67.10113 Ma to 564 years before present (Fig. 1).

It contains 24,333 entries, of which 74 are missing in the published version. After excluding these, we retain

24,259 data points, ordered from oldest to most recent. The δ18O record is irregularly spaced in time,

1These are the values in column “benthic d18O VPDB Corr”, found in Sheet 33 of the file aba6853 tables s8 s34.xlsx

provided in the Supplementary Materials of Westerhold et al. (2020).

3



as is typical for paleoclimate proxy data, and sampling density increases through time, with an average

resolution of approximately 2.8 kyr. The longest gap spans about 115.4 kyr and 533 gaps exceed 10 kyr.110

Additionally, 591 time stamps contain multiple δ18O values, with up to four observations recorded at the

same time. Westerhold et al. (2020) provide an age model, which has an accuracy ranging from ±100 kyr

in the early Cenozoic to ±10 kyr in the latest Cenozoic. We do not account for age model uncertainty in

this study, but we return to this issue in the results section. Using recurrence analysis, Westerhold et al.

(2020) identify six climate states, and we refer to these as Warmhouse I (66-56 Ma), Hothouse (56-47 Ma),115

Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma), Coolhouse II (13.9-3.3 Ma), and Icehouse (3.3 Ma-

present). Summary statistics for the full record and for each climate state identified by Westerhold et al.

(2020) are reported in Appendix B.1.

010203040506070
Age (Ma)

−2

−1

0

1

2

3

4

5

δ1
8
O

(‰
)

IcehouseCoolhouse IICoolhouse IWarmhouse IIHothouseWarmhouse I

Data (δ18O) Westerhold transitions

Figure 1: δ18O data from Westerhold et al. (2020). The order of the vertical axis is reversed, following standard

practice. The vertical dashed lines show transitions between the climate states by Westerhold et al. (2020). The

horizontal axis represents time, measured in millions of years before present.

2.2 The Bai-Perron framework

The Bai-Perron framework is based on minimizing the sum of squared residuals while treating the break-120

points as unknown parameters to be estimated (Bai and Perron, 1998, 2003). Consider a linear regression

framework for the dependent variable yt, for t = 1, . . . , T , and with m breakpoints, corresponding to m+ 1

distinct states in the sample. The general model equation is

yt = x′tβ + z′tδj + ut, t = Tj−1 + 1, . . . , Tj , (1)

with j = 1, . . . ,m + 1. The m break dates are denoted by (T1, . . . , Tm), with the convention that T0 = 0

and Tm+1 = T , and ut is a disturbance term with mean zero and variance σ2
j . The (p × 1)-vector xt and125

the (q × 1)-vector zt comprise two sets of covariate vectors, for which β is the state-independent vector of

coefficients and δj is the state-dependent vector of coefficients. Since only specific coefficients are subject

to structural breaks, this model is referred to as a partial structural change model. Moreover, we consider

breaks in the variance of ut at the break dates T1, . . . , Tm, such that σ2
i ̸= σ2

j for i ̸= j. The parameters β

and δj are estimated alongside the breakpoints but are not of primary interest here.130

We initially treat the number of breakpoints, m, as known and estimate the coefficients and the break-

points using a sample of T observations of {yt, xt, zt}. The estimation method is based on least squares for
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both the coefficients and the breakpoints. For each possible set of m breakpoints (T1, . . . , Tm) denoted as

{Ti}mi=1, we obtain estimates of β and δj by minimizing the sum of squared residuals (SSR), that is,

SSR =

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt − x′tβ − z′tδj)
2
, (2)

where β is common to all states, while δj is specific for the state j, which is the period between Tj−1 + 1

and Tj . The resulting estimated coefficients are denoted as β̂ ({Ti}mi=1) and δ̂j ({Ti}
m
i=1). These coefficients

are then used to determine the SSR associated with each set of breakpoints,135

SSRT ({Ti}mi=1) ≡
m+1∑
j=1

Tj∑
t=Tj−1+1

(
yt − x′tβ̂ ({Ti}mi=1)− z′tδ̂j ({Ti}mi=1)

)2

. (3)

The estimated breakpoints are then given by(
T̂1, . . . , T̂m

)
= argmin

T1,...,Tm

SSRT ({Ti}mi=1) . (4)

The minimization is conducted over all partitions (T1, . . . , Tm) such that Tj − Tj−1 ≥ dim(zt) to ensure

that there are enough data points to estimate the parameters δj in each partition. This procedure leads to

estimated parameters for the m breakpoints, i.e., {T̂i}mi=1, β̂ = β̂
(
{T̂i}mi=1

)
, and δ̂j = δ̂j

(
{T̂i}mi=1

)
. Since

the possible combinations of the placement of the breakpoints is finite, this optimization can be conducted140

using a grid search, which can be computationally heavy, especially for many breakpoints. Bai and Perron

(2003) introduce an efficient method for determining the global minimizers.

An essential advantage of the Bai-Perron framework is that it allows for constructing confidence intervals

for the breakpoints, something that is not available for the recurrence analysis approach implemented in

Westerhold et al. (2020). The construction of confidence intervals is based on the asymptotic distribution145

of the estimated break dates. The convergence results for the construction of confidence intervals rely on a

number of assumptions (see Bai and Perron, 2003).

2.3 Model specifications

Three distinct specifications are considered within the Bai-Perron framework, referred to as the “Mean”,

“Fixed AR”, and “AR” models, where AR refers to the autoregressive model of order one with intercept.150

These are all special cases of the framework outlined in Eq. (1). The simplest among them, the Mean

model, is specified as follows,

yt = cj + ut, t = Tj−1 + 1, . . . , Tj , (5)

for j = 1, . . . ,m + 1, where cj is the state-dependent intercept and ut is an error term. This model is

equivalent to setting xt = 0, zt = 1, and δj = cj in Eq. (1). A breakpoint in this model specification leads

to an abrupt change in the mean of the dependent variable yt.155

The Fixed AR model extends the Mean model by incorporating an autoregressive term. We obtain the

model

yt = cj + φyt−1 + ut, t = Tj−1 + 1, . . . , Tj , (6)
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for j = 1, . . . ,m+1, where yt−1 is the dependent variable lagged by one period, and φ is the autoregressive

coefficient that is constant over the whole sample. In this model, the effect of a change in the coefficient cj

is more gradual, since it depends on the autoregressive dynamics. The Fixed AR model is obtained from160

Eq. (1) by specifying xt = yt−1, β = φ, zt = 1, and δj = cj .

The general AR specification also allows the autoregressive term to be state-dependent, resulting in the

AR model,

yt = cj + φjyt−1 + ut, t = Tj−1 + 1, . . . , Tj , (7)

for j = 1, . . . ,m+1, where the autoregressive coefficient φ in Eq. (6) is now state-dependent and is denoted

by φj . This model is obtained from Eq. (1) by setting xt = 0, zt = (1, yt−1), and δj = (cj , φj). Here,165

both the intercept and the autoregressive coefficient are state-dependent. Thus, the three specifications are

nested: The AR model is the most general, the Fixed AR model is nested in the AR model by setting

φ1 = φ2 = . . . = φm+1 = φ, and the Mean model is nested in the Fixed AR model by setting φ = 0.

Figure 2 illustrates how the models capture breakpoints. The Mean model is designed to detect abrupt

breaks in the mean of a time series, while the Fixed AR model is for smoother breaks. The AR model is170

more flexible, allowing for both relatively gradual (e.g., T1) and abrupt (e.g., T2) breakpoints compared to

the Fixed AR model.
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Figure 2: Simulated time series using the three model specifications, each with breakpoints T1 = 25 and T2 = 75,

and total sample size T = 100. For the Mean model, we set c1 = 1.0, c2 = 1.2, and c3 = 0.8. In the Fixed AR

model, the parameters are φ = 0.7, c1 = 0.30, c2 = 0.36, and c3 = 0.24, chosen to yield comparable state-wise

means. Likewise in the AR model, we set φ1 = 0.7, φ2 = 0.9, φ3 = 0.4, c1 = 0.30, c2 = 0.12, and c3 = 0.48. In all

specifications, we set ut = 0 for all t.

2.4 Implementation

The Bai-Perron framework is implemented using mbreaks, an R package specifically designed for this purpose

(Nguyen et al., 2023). For all model specifications, we set the minimum length of a state, h, to 2.5 million175

years (Myr), facilitating the estimation of shorter climate states. Also, we let the variance of the error term,

denoted as σ2
j , be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation is permitted in the regression residuals.

However, the time series of δ18O is likely subject to both autocorrelation and heteroscedasticity, as docu-
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mented in ice core records (Davidson et al., 2015; Keyes et al., 2023). Autocorrelation occurs when current180

values correlate with past values, which is common in paleoclimate data due to long-term persistence in

climate dynamics (Mudelsee et al., 2014). Since only up to one lag is included in the covariates in the model

specifications in this paper, residual serial correlation is likely to remain. Heteroscedasticity, or time-varying

error variance, is already partially addressed in the model specifications through state-dependent variance.

However, additional heteroscedasticity may arise within the estimated states due to factors such as orbital185

forcing and changes in ice sheet extent. Addressing both autocorrelation and heteroscedasticity is essential

to ensure unbiased parameter estimates and valid confidence intervals for the estimated breakpoints.

To account for these issues, we use the autocorrelation and heteroscedasticity consistent (HAC) co-

variance matrix estimator with prewhitening in the Bai-Perron framework. The prewhitening procedure,

proposed by Andrews and Monahan (1992), entails applying an autoregressive model with one lag to ztût,190

where ût denotes the residuals. The HAC covariance matrix estimator by Andrews (1991) is then con-

structed based on the filtered series using the quadratic spectral kernel with bandwidth selected by an AR

of order one approximation. This approach is used for all model specifications and is straightforward to

implement using the R package (Nguyen et al., 2023).

2.5 Constant data frequency195

To conduct breakpoint estimation using the Bai-Perron framework, we need a regularly sampled time series.

We use a binning approach to construct a dataset with evenly spaced observations, which is common practice

in the analysis of paleoclimate data; see for instance Boettner et al. (2021). We divide the dataset into

bins of fixed time intervals and compute the mean of the observations within each bin. In the case of gaps

in the binned data, we use the values immediately preceding and succeeding the section with missing data200

to perform linear interpolation. We consider six different bin sizes, namely 5, 10, 25, 50, 75, and 100 kyr

(Fig. 3). Summary statistics for the full sample length and for each climate state identified by Westerhold

et al. (2020) for all binning frequencies are provided in Appendix B.1.

Data binned at higher frequencies follow the variations in the dataset more closely, whereas data binned

at lower frequencies tend to be smoother (Fig. 3). In case of large gaps, a high binning frequency results in205

linear interpolation between observations (Fig. 3 bottom left). This effect does not occur for periods with

many observations, where low binning frequencies capture only a small part of the variation in the original

data (Fig. 3 bottom right). Binning offers a simple approach to handle the uneven frequency of the dataset.

However, it leads to data loss at lower binning frequencies and to the introduction of artificial data points

resulting from linear interpolation at higher binning frequencies. The selection of binning frequencies can210

therefore alter the properties of the time series, potentially misrepresenting the dynamics of the original

data.

The Bai-Perron framework is developed for estimating and testing for multiple breakpoints in linear

regression models where the regressors are non-trending or state-wise stationary (Bai and Perron, 2003). A

time series is considered stationary if its statistical properties, such as mean and variance, do not change215

over time. The δ18O data appears non-stationary over most of the record, even within climate states

found by Westerhold et al. (2020). As pointed out by Kejriwal et al. (2013), if the time series maintains

7



its stationarity properties over the respective states, the methods developed for stationary data are still

applicable for these cases. However, if the process alternates between stationary and non-stationary states,

the theoretical properties of the methodology are unknown.220

010203040506070
Age (Ma)

−2

−1

0

1

2

3

4

5

δ1
8
O

(‰
)

IcehouseCoolhouse IICoolhouse IWarmhouse IIHothouseWarmhouse I

Data (δ18O) Binned Data 5 kyr Binned Data 100 kyr Westerhold transitions

35.035.235.435.635.836.0
Age (Ma)

0.8

1.0

1.2

1.4

1.6

δ1
8
O

(‰
)

Data (δ18O) Binned data 5 kyr Binned data 100 kyr

2.02.22.42.62.83.0
Age (Ma)

2.5

3.0

3.5

4.0

4.5

5.0

δ1
8
O

(‰
)

Data (δ18O) Binned data 5 kyr Binned data 100 kyr

Figure 3: Top panel: The original data and the 5 and 100 kyr binned data. Bottom left panel: The period 36-35

Ma. Bottom right panel: The period 3-2 Ma.

To investigate whether the time series is non-stationary, we apply the Augmented Dickey-Fuller (ADF)

test (Dickey and Fuller, 1979), with the null hypothesis of non-stationarity. For the entire 25 kyr binned

data sample, the ADF test does not reject the null hypothesis at the 1% significance level, indicating non-

stationarity. However, when examining the binned data for each climate state identified by Westerhold et al.

(2020) separately, the ADF test rejects the null hypothesis at the 1% significance level for the Warmhouse225

II, Coolhouse I, and Icehouse states. These tests indicate the presence of state-wise non-stationarity, and

we therefore need to examine whether the Bai-Perron framework is applicable to data-generating processes

that are state-wise non-stationary or alternating between stationary and non-stationary states. For this

purpose, we conduct a large simulation study designed to verify that the Bai-Perron framework works as

intended when applied to these types of data-generating processes using the three model specifications.230

The study is conducted for both independent and identically distributed (i.i.d.) error terms and serially

correlated error terms in Appendices C.1 and C.2, respectively. The results show that the procedure works

well with non-stationarity and is robust to processes with one stationary and one non-stationary state for

Fixed AR and AR models. However, the Mean model performs poorly when the data-generating process

exhibits high persistence. In the case of serial correlation, the results are less conclusive, but if the states235
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are sufficiently different, the methodology still appears effective. The study also reveals that the coverage

rates for confidence intervals are generally adequate for the Fixed AR model, while the confidence intervals

of the AR model are too narrow in many cases. Overall, the Fixed AR model performs best across the

data-generating processes considered.

3 Results240

3.1 Setting the number of breakpoints to five

As an initial step, we fix the number of breakpoints to five, which is the number used in the recurrence

analysis presented in Westerhold et al. (2020). We estimate the breakpoints and corresponding 95% confi-

dence intervals for each of the binning frequencies, 5, 10, 25, 50, 75, and 100 kyr, using Mean, Fixed AR,

and AR models for each (App. B.2; Fig. 4). The estimated confidence intervals around the breakpoints are245

often asymmetrical. Bai and Perron (2003) advocate the use of asymmetric confidence intervals, as these

provide better coverage rates when the data are non-stationary.

For the Mean model, the estimated breakpoints generally remain at the same dates throughout as the

binned data frequency decreases step-by-step from 5 kyr to 100 kyr (Fig. 4.a). The width of the 95%

confidence intervals increases as the frequency decreases, which can be attributed to the resultant decrease250

in the number of binned observations available for estimation at the lower frequencies. All the breakpoints

align with those identified by recurrence analysis in Westerhold et al. (2020). A similar pattern of alignment

is observed in the Fixed AR model, albeit with tighter confidence intervals (Fig. 4.b). The AR model exhibits

more sensitivity to the frequency of the binned data (Fig. 4.c). At higher frequencies, the breakpoints tend to

appear in the more recent parts of the sample. However, as the frequency decreases further, the breakpoints255

are estimated to be in the older parts of the sample period.

For the results using 25 kyr, we find that the estimated breakpoints from the three model specifications

align closely with each other and nearly perfectly with those identified by Westerhold et al. (2020). The

three model specifications estimated using the 25 kyr binned data yield parameter estimates that differ

across states, reflecting differences in mean and autoregressive dynamics (App. B.3).260

As a robustness check, we re-estimate the model specifications for five breakpoints using the 25 kyr

binned data reversed with respect to the time dimension, so that the time series is ordered from present to

past rather than past to present (App. A.1). We find that the results of the Mean and Fixed AR models

are robust to the ordering of the time axis, with almost unchanged estimated breakpoints. Conversely, the

AR model leads to estimated breakpoints in the more recent part of the sample, resulting in breakpoints at265

16.9 Ma and 9.7 Ma, which differ from those estimated using the same model and binning frequency with

time running forward (Fig. 4).

In summary, changing the binning frequency mainly affects the width of the confidence intervals, while

the estimated breakpoint timing remains largely unchanged for both the Mean and Fixed AR models. In

contrast, the AR model is more sensitive to resolution and the direction of the time frame. As detailed in the270

simulation study (App. C), the Mean model fails to accurately detect breakpoints in highly persistent data-

generating processes. Consequently, in what follows, we focus on the Fixed AR model for the estimation of

breakpoints in the δ18O time series. Among the binning frequencies, we proceed with 10 kyr and 25 kyr,
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as these yield the most consistent results across model specifications and strike a good balance between

temporal resolution and signal quality.275
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(b) Fixed AR model
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Figure 4: A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100 kyr

from top to bottom, fixing the number of breakpoints to five for each model specification. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020) and their transitions.
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3.2 Selecting the number of breakpoints

We use information criteria to guide the choice of the number of breakpoints. These criteria are model

selection tools that balance goodness of fit with model complexity, helping to avoid overfitting. We initially

consider the following three criteria: the Bayesian Information Criterion (BIC) by Yao (1988), the modified

Schwarz Information Criterion (LWZ) by Liu et al. (1997), and the modified BIC (KT) by Kurozumi and280

Tuvaandorj (2011). For all criteria, the preferred number of breakpoints is determined as the number of

breakpoints that minimizes the information criterion in question. A few paleoclimate studies use information

criteria for model selection, for example, Valler et al. (2024) show it can be beneficial.

Bai and Perron (2006) note that the BIC and LWZ criteria perform well in the absence of serial cor-

relation, but both lead to overestimation of the number of breakpoints in case of serial correlation in the285

error term. In simulation studies (Appendices C.1 and C.2), we find that the KT information criterion

performs poorly, and hence, we exclude it from the subsequent analysis. We also find that the number

of breakpoints determined using the Mean model specification is generally too large when employing the

information criteria. For the Fixed AR and AR models, the BIC and LWZ criteria typically perform well,

especially in data-generating processes with a large break. With serial correlation in the error term, the BIC290

criterion tends to overestimate the number of breakpoints, whereas the LWZ criterion generally performs

well in the Fixed AR and AR model specifications.

We use the BIC and LWZ information criteria for each model specification and binning frequency to

determine the number of breakpoints, and set the minimum state length to h = 2.5 Myr (App. B.4). For

our preferred specification, the Fixed AR model with 25 kyr binning frequency, the LWZ and BIC criteria295

suggests six and 12 breakpoints, respectively. For a 10 kyr binning frequency, the estimated number of

breakpoints are seven and 14, respectively. Thus, the information criteria indicate that the number of

distinct climate states in the δ18O record is larger than the five suggested in Westerhold et al. (2020).
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Figure 5: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 25 kyr

binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while

colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.

To further investigate the potential for a higher number of breakpoints, we consider the estimation of

up to 15 with the minimum length of a state set of h = 1 Myr. This analysis is conducted with the Fixed300
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AR model and 25 kyr binned data (Fig. 5). The same analysis conducted using the 10 kyr binned data

led to nearly identical breakpoint estimates (App. A.2). Comparable findings are presented in Appendices

A.3 and A.4, which detail the results of estimating one to 15 breakpoints using the Mean and AR models,

respectively, with 25 kyr binned data.

The final estimated breakpoint is placed at 1.425 Ma for the Fixed AR model, just below the upper305

boundary of the detection window at 1 Ma, imposed by the minimum state length of 1 Myr. Additionally,

the estimated breakpoint is located near the midpoint of a linear trend in the time series from approximately

3.3 Ma to the present, suggesting it may be driven by the trend rather than representing a break in the

time series (cf. Fig. 5). To investigate this further, we re-estimate the breakpoints for the Fixed AR

model, focusing solely on the Icehouse period, with the minimum length of a state set to 250 kyr and 5310

kyr binning, leveraging the denser sampling in this part of the record. For the Fixed AR model, the LWZ

criterion suggests one breakpoint, while the BIC indicates two. With one breakpoint, the estimate is 1.355

Ma, and with two, the estimated breakpoints are 2.54 Ma and 0.95 Ma (Fig. 6). Estimating more than

two breakpoints leads to overlap between the confidence intervals, reducing the interpretability, and these

models are therefore excluded. The results are comparable for the Mean and AR models (Appendices A.5315

and A.6).
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Figure 6: A comparison of estimated breakpoints using the Fixed AR model for one and two breakpoints on 5 kyr

binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020).

3.3 Limitations of the Bai–Perron framework

Although the Bai–Perron framework provides a flexible and well-established method for detecting breaks,

it does have some limitations. The approach assumes piecewise linearity and white noise residuals (Bai

and Perron, 2003). However, in the estimations conducted in this study, the residuals are not white noise,320

indicating that some dynamics are left unexplained. The simulation results show that the Bai-Perron

framework nevertheless performs well even when residuals exhibit complex dynamics (App. C). Confidence

intervals should still be interpreted with caution. The method is also computationally demanding for high-

resolution data, although it remains possible to run on personal computers.

Another limitation is that the method does not account for age model uncertainty, which is important325
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for interpreting the timing and significance of time series analytical output (Marwan et al., 2021). In

the Westerhold et al. (2020) data, dating uncertainty ranges from about ±10 kyr in the younger parts

to ±100 kyr in the older parts. This can affect the timing of transitions and lead to differences when

comparing across records (Franke and Donner, 2019). Previous work has shown that age-depth models

often underestimate the true uncertainty in the chronology, which would amplify these effects (Telford330

et al., 2004). While some progress has been made in including age uncertainty into recurrence analyses

(Goswami et al., 2018), incorporating it into the Bai-Perron framework remains a challenge. One could

however consider the use of age ensembles which are multiple plausible realizations of the time axis to assess

robustness of the estimated breakpoints. Fully integrating age uncertainty into the estimation process, for

example by modeling timestamps as random variables, would require further methodological development.335

However, since the age model uncertainties reported by Westerhold et al. (2020) are small compared to the

duration of the estimated climate states, we expect our main findings to be robust.

In addition to age uncertainty, another direction for methodological advancement is developing a break-

point detection framework for irregularly spaced time series. This would obviate the need for aggregating

the data to fixed time intervals, preserving more of the original record. Steps in this direction have already340

been made in concurrent research (Bennedsen et al., 2024), where the full δ18O and δ13C stacks (Westerhold

et al., 2020) are analyzed while taking the climate state transitions as given and addressing measurement

errors.

4 Discussion

Our results demonstrate that the Bai-Perron time-domain framework is a flexible and effective tool for345

detecting breakpoints in paleoclimate time series. When fixing the number of breakpoints to five and

binning the data at 25 kyr intervals, all model specifications lead to breakpoint estimates that closely match

those identified by Westerhold et al. (2020), providing strong statistical support for their climate-state

classification. This not only corroborates their results obtained through recurrence analysis, but also lends

credibility to the use of this econometric tool for analyzing paleoclimate records.350

Moreover, information criteria point to a higher number of transitions than previously reported, sug-

gesting the potential for a more detailed classification of Cenozoic climate variability. To explore this, we

estimate between one and 15 breakpoints using the Fixed AR model (Fig. 5). Allowing for six breakpoints,

we get an additional breakpoint in Warmhouse II at 40.075 Ma that remains for higher numbers of break-

points. This breakpoint aligns with the cooling following the Middle Eocene Climatic Optimum (MECO)355

described by Bohaty and Zachos (2003). Allowing for seven, we identify another one in Coolhouse II around

9.975 Ma in the Miocene, which saw the expansion of C4 grasslands, altering the global carbon cycle and

land surface with potential effects on climate (Polissar et al., 2019; Strömberg, 2011). Using the same

δ18O dataset, Rousseau et al. (2023) apply recurrence plots and a Kolmogorov–Smirnov test and identify

similar transitions near 40 Ma and 9.7 Ma. Allowing for eight in the Bai-Perron framework, the additional360

breakpoint occurs in the Icehouse. Some of the additional breakpoints up to 15 coincide with other known

climatic events, like the onset of the Mid-Miocene Climatic Optimum (MMCO) with an estimated age of

16.95 Ma (Flower and Kennett, 1994; Zachos et al., 2001). Particularly noteworthy is the lack of break-
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points, even with 15 detections, between the Eocene–Oligocene Transition (EOT) at 34 Ma and the onset

of the MMCO around 17 Ma. This is consistent with this being a relatively stable period in the Cenozoic365

Era following the establishment of the Antarctic ice sheet (Zachos et al., 2001; Mudelsee et al., 2014).

To explore transitions within the relatively higher-resolution Icehouse period more closely, we have re-

estimated breakpoints using a finer 5 kyr binning and a reduced minimum regime length of h = 250 kyr.

This setup yields a single breakpoint at 1.355 Ma, which may reflect a midpoint in the record rather than a

distinct climatic shift. When allowing for two breakpoints as also suggested by the BIC, they are estimated370

at 2.54 Ma and 0.95 Ma, corresponding well to the onset of Northern Hemisphere Glaciation (Lisiecki and

Raymo, 2005) and the Mid-Pleistocene Transition (MPT) (Pisias and Moore, 1981), respectively. The MPT

marks a change in the rhythm of glacial cycles, with its timing still debated. For instance, Clark et al. (2006)

describe it as a gradual transition between 1.25 and 0.7 Ma. This uncertainty is also reflected in the estimated

confidence interval of the latter breakpoint, which spans from 1.545 Ma to 0.66 Ma. These results underscore375

the capability of the Bai-Perron framework to detect key transitions in Earth’s recent climate history and

emphasize the importance of climate system knowledge when interpreting breakpoint estimates. The same

period is examined by Rousseau et al. (2023), who apply recurrence plots and Kolmogorov–Smirnov tests to

a benthic δ18O record (Hodell and Channell, 2016) and identify six transitions at approximately 2.93 Ma,

2.52 Ma, 1.51 Ma, 1.25 Ma, 0.61 Ma, and 0.35 Ma. Their transitions at 2.52, 1.51, and 0.61 Ma broadly380

align with the first estimated breakpoint and the confidence interval bounds of the second. In contrast

to the Bai-Perron framework used here, their approach neither determines the number of breakpoints nor

estimates confidence intervals for their placements.

Based on our findings, we offer several general recommendations for the application of this breakpoint

detection method in paleoclimate research and related fields. First, careful consideration should be given385

to the choice of binning frequency. While finer binning enhances temporal resolution, it may also pre-

serve measurement errors and introduce artifacts by linear interpolations, particularly in unevenly sampled

records. Also, coarser binning can lead to loss of information. In our application, we find that the bin

width 10 and 25 kyr provide a good balance between detail and signal quality. For the 25 kyr bin width,

the mean number of observations per bin is approximately 9, and 3.6 for 10 kyr. However, these numbers390

vary across the sample, being only 3.5 and 1.4, respectively, in the Warmhouse II and increasing to 28.3

and 11.3, respectively, in the Icehouse period. This highlights the importance of accounting for variable

sampling resolution when selecting bin widths. For other records, we recommend seeking a similar balance.

If the data are already evenly spaced in time, retaining the original resolution is preferable. Second, the

model specification should reflect the statistical features of the data, such as trends and autocorrelation.395

Although the Fixed AR model has performed well in our study, the flexibility of the Bai–Perron framework

allows users to adapt the model specification to suit different datasets. Third, the number of breakpoints

can be selected based on information criteria.

5 Conclusion

This study presents a statistical time-domain approach to estimate breakpoints in the Cenozoic Era using400

the econometric tools developed by Bai and Perron (1998, 2003). We analyze the time series of benthic δ18O
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provided by Westerhold et al. (2020), which is a widely cited foundational record for many corners of the field

of paleoclimatology. Westerhold et al. (2020) identified five breakpoints using recurrence analysis, and our

analysis strongly corroborates the placements of these breakpoints across various model specifications and

binning frequencies. Our approach offered the advantage of constructing confidence intervals for the dates of405

the breakpoints, providing a measure of estimation uncertainty. Based on the results of our simulation study,

we advocate using the model specification with a state-independent autoregressive term and state-dependent

intercept.

By selecting the number of breakpoints using information criteria, we provide statistical justification for

more than five breakpoints in the time series. For instance, in specifications with seven or more breakpoints,410

the five transitions identified by Westerhold et al. (2020) are preserved, while additional breakpoints suggest

that both the Warmhouse II and Coolhouse II states could be further divided into substates. This points

to the potential for a more detailed classification of Cenozoic climate states, enhancing our understanding

of Earth system dynamics. The results also show that the Bai-Perron framework can robustly capture

important transitions in Earth’s climate history. Many of the estimated breakpoints align with known415

climatic events, such as the cooling after the Middle Eocene Climatic Optimum (MECO), the onset of the

Mid-Miocene Climatic Optimum (MMCO), and the Mid-Pleistocene Transition (MPT), supporting its use

in broader paleoclimate studies.

The applicability of the Bai-Perron framework extends well beyond the benthic δ18O stack by Westerhold

et al. (2020). It can be employed across a wide range of different paleoclimate archives, allowing for420

investigations of regional differences in the estimated breakpoints, for instance. It can also be applied to

other proxies, such as δ13C and greenhouse gas concentrations. Furthermore, the method is suitable for

detecting both gradual and abrupt transitions, including climatic events such as Dansgaard-Oeschger events

(Dansgaard et al., 1993; Livina et al., 2010).

The framework allows for the inclusion of covariates, opening up many possibilities for future applica-425

tions. For example, incorporating orbital parameters (e.g., eccentricity, obliquity, and precession; Laskar

et al., 2004) provides the potential for detecting transitions while controlling for these external effects. Alter-

natively, one could investigate breaks in the relationship between orbital forcings and paleoclimate variables,

reflecting changes in how strongly these external factors influence climate dynamics. A key example is the

MPT, marked by a shift in the dominant glacial cycle from 41 kyr to 100 kyr (Berends et al., 2021), the430

timing of which could be estimated using the Bai–Perron framework.

These examples highlight the broader potential of the framework as a flexible tool for paleoclimate

data analysis. Understanding when and how breakpoints in the climate system occurred is essential for

interpreting past climate variability and, ultimately, for informing future projections. The Bai–Perron

framework provides a statistically rigorous way of estimating these breakpoints, offering new opportunities435

to deepen our understanding of long-term climate dynamics.

Code and data availability. The data used in this study are available as the supplementary material of

Westerhold et al. (2020). The code used to conduct the analysis is based on the R-package mbreaks by

Nguyen et al. (2023) and the implementation is available upon request.

15



Author contributions. All authors contributed equally and are listed alphabetically.440

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. For helpful comments and suggestions, we thank participants at the conferences on

Econometric Models of Climate Change (EMCC-VII and VIII) in Amsterdam in 2023 and in Cambridge,

UK, in 2024, at the General Assembly of the EGU in Vienna in 2024, and seminar participants at Aarhus

University. MB acknowledges funding from the International Research Fund Denmark under grant 7015-445

00018B.

References

Andrews, D. W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estima-

tion. Econometrica, 59(3):817–858.

Andrews, D. W. K. and Monahan, J. C. (1992). An Improved Heteroskedasticity and Autocorrelation450

Consistent Covariance Matrix Estimator. Econometrica, 60(4):953–966.

Bagniewski, W., Ghil, M., and Rousseau, D. D. (2021). Automatic detection of abrupt transitions in

paleoclimate records. Chaos, 31(11):113129.

Bai, J. and Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes.

Econometrica, 66(1):47–78.455

Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of

Applied Econometrics, 18(1):1–22.

Bai, J. and Perron, P. (2006). Multiple Structural Change Models: A Simulation Analysis, page 212–238.

Cambridge University Press.

Bennedsen, M., Hillebrand, E., Koopman, S. J., and Larsen, K. B. (2024). Continuous-time state-space460

methods for delta-O-18 and delta-C-13. arXiv:2404.05401.
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A Graphs

A.1 Reversed time
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Figure 7: A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five

breakpoints on 25 kyr binned data where the time frame is reversed. The black dots represent estimated breakpoints,

while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.

A.2 One to 15 breakpoints: Fixed AR model 10 kyr
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Figure 8: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 10 kyr

binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while

colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.
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A.3 One to 15 breakpoints: Mean model

010203040506070
Age (Ma)

−2

−1

0

1

2

3

4

5

δ1
8
O

(‰
)

IcehouseCoolhouse IICoolhouse IWarmhouse IIHothouseWarmhouse I 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Data (δ18O) Westerhold transitions

Figure 9: A comparison of estimated breakpoints using the Mean model for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.

A.4 One to 15 breakpoints: AR model600
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Figure 10: A comparison of estimated breakpoints using the AR model for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.
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A.5 One and two breakpoints in the Icehouse: Mean model 5 kyr
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Figure 11: A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr

binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020).

A.6 One and two breakpoints in the Icehouse: AR model 5 kyr
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Figure 12: A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr binned

data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent estimated

breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data

from Westerhold et al. (2020).
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B Tables

B.1 Summary statistics: State-wise and full sample

Bin size State Mean Sd. Max. Min. Data points

5 Warmhouse I 0.417 0.249 1.07 -0.215 2221

5 Hothouse -0.269 0.261 0.391 -2.014 1800

5 Warmhouse II 0.897 0.366 1.894 -0.254 2600

5 Coolhouse I 2.239 0.233 2.991 1.266 4020

5 Coolhouse II 3.072 0.237 4.172 1.885 2120

5 Icehouse 4.037 0.463 5.405 3.05 660

5 Full sample period 1.561 1.277 5.405 -2.014 13421

10 Warmhouse I 0.417 0.245 0.977 -0.12 1111

10 Hothouse -0.269 0.256 0.308 -2.014 900

10 Warmhouse II 0.897 0.366 1.777 -0.254 1300

10 Coolhouse I 2.239 0.221 2.877 1.324 2010

10 Coolhouse II 3.072 0.228 4.122 1.975 1060

10 Icehouse 4.034 0.447 5.33 3.181 330

10 Full sample period 1.561 1.276 5.33 -2.014 6711

25 Warmhouse I 0.418 0.237 0.912 -0.065 445

25 Hothouse -0.269 0.245 0.218 -1.871 360

25 Warmhouse II 0.898 0.358 1.688 0.01 520

25 Coolhouse I 2.239 0.202 2.749 1.391 804

25 Coolhouse II 3.073 0.213 3.793 2.087 424

25 Icehouse 4.033 0.401 5.158 3.258 132

25 Full sample period 1.561 1.273 5.158 -1.871 2685

50 Warmhouse I 0.419 0.233 0.867 -0.042 223

50 Hothouse -0.268 0.233 0.197 -1.871 180

50 Warmhouse II 0.898 0.354 1.656 0.182 260

50 Coolhouse I 2.24 0.188 2.713 1.567 402

50 Coolhouse II 3.072 0.206 3.72 2.156 212

50 Icehouse 4.042 0.359 4.757 3.264 66

50 Full sample period 1.562 1.271 4.757 -1.871 1343

75 Warmhouse I 0.42 0.229 0.837 0.006 148

75 Hothouse -0.26 0.203 0.167 -0.985 120

75 Warmhouse II 0.894 0.351 1.553 0.156 173

75 Coolhouse I 2.239 0.181 2.717 1.691 268

75 Coolhouse II 3.068 0.214 3.652 2.072 142

75 Icehouse 4.041 0.351 4.753 3.283 44

75 Full sample period 1.563 1.268 4.753 -0.985 895

100 Warmhouse I 0.42 0.229 0.832 0.007 112

100 Hothouse -0.263 0.203 0.155 -0.985 90

100 Warmhouse II 0.898 0.349 1.601 0.228 130

100 Coolhouse I 2.241 0.175 2.685 1.739 201

100 Coolhouse II 3.073 0.201 3.625 2.353 106

100 Icehouse 4.047 0.344 4.673 3.4 33

100 Full sample period 1.562 1.269 4.673 -0.985 672

Without binning Warmhouse I 0.428 0.25 1.07 -0.215 2761

Without binning Hothouse -0.279 0.255 0.391 -2.46 3030

Without binning Warmhouse II 0.916 0.357 1.894 -0.254 1786

Without binning Coolhouse I 2.251 0.242 3.263 1.026 6669

Without binning Coolhouse II 3.102 0.254 4.49 1.84 6282

Without binning Icehouse 4.064 0.533 5.53 2.66 3731

Without binning Full sample period 2.128 1.445 5.53 -2.46 24259

Table 1: Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100 kyr) and the δ18O data

without binning for each of the states identified by Westerhold et al. (2020) and the full sample period.
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B.2 Estimated breakpoints: 5 breakpoints605

Bin size BP index Mean Fixed AR AR

Estimate 95% CI Estimate 95% CI Estimate 95% CI

5 1 55.965 (56.085, 55.885) 55.995 (56.085, 55.92) 33.745 (33.745, 33.72)

5 2 46.725 (46.845, 46.675) 46.73 (46.76, 46.68) 16.96 (17.365, 16.78)

5 3 34.02 (34.025, 33.915) 34.05 (34.075, 34.015) 13.825 (13.84, 13.775)

5 4 13.36 (13.395, 13.325) 13.41 (13.465, 13.34) 9.555 (9.585, 9.505)

5 5 2.735 (2.845, 2.715) 2.74 (3.1, 2.715) 3.36 (3.815, 3.355)

10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)

10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)

10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)

10 4 13.36 (13.4, 13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)

10 5 2.73 (2.81, 2.7) 2.74 (3.18, 2.71) 2.74 (2.88, 2.72)

25 1 55.975 (56.3, 55.1) 56.025 (56.575, 55.7) 55.825 (55.85, 55.675)

25 2 46.725 (47.3, 46.55) 46.725 (46.825, 46.45) 48.35 (48.625, 47.85)

25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)

25 4 13.4 (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)

25 5 2.725 (2.8, 2.625) 2.775 (3.075, 2.7) 2.575 (2.6, 2.55)

50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)

50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)

50 3 34.05 (34.05, 32.8) 34.2 (34.3, 33.9) 33.75 (33.75, 33.6)

50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)

50 5 2.75 (2.9, 2.5) 3.15 (3.4, 3.0) 14.3 (14.55, 12.8)

75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)

75 2 46.725 (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)

75 3 34.05 (34.05, 30.9) 34.2 (34.425, 33.675) 34.05 (34.05, 33.825)

75 4 13.35 (13.8, 12.975) 13.875 (14.1, 13.125) 16.95 (17.325, 16.5)

75 5 2.775 (3.375, 2.4) 3.15 (3.525, 2.925) 14.475 (15.075, 14.25)

100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)

100 2 46.7 (52.5, 46.3) 47.1 (47.7, 46.3) 53.4 (53.8, 52.1)

100 3 34.1 (34.1, 29.4) 34.2 (34.5, 33.4) 49.1 (50.8, 48.8)

100 4 13.8 (14.7, 13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)

100 5 2.9 (4.2, 2.3) 3.4 (3.8, 3.2) 13.8 (15.7, 12.9)

Table 2: Estimated breakpoints and their 95% confidence intervals (in Ma) where the number of breakpoints is fixed

to 5, and all values are rounded to three decimals. The table shows estimates for each method across bin sizes 5, 10,

25, 50, 75, and 100 kyr.
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B.3 Estimated parameters: 5 breakpoints and 25 kyr binned data

Mean Fixed AR AR

Parameter Estimate SE Estimate SE Estimate SE

c1 0.418 0.051 0.069 0.008 -0.001 0.026

c2 -0.256 0.040 -0.043 0.007 -0.108 0.015

c3 0.911 0.072 0.153 0.013 0.028 0.007

c4 2.247 0.017 0.373 0.031 0.660 0.061

c5 3.119 0.027 0.519 0.043 0.421 0.073

c6 4.140 0.051 0.698 0.057 2.423 0.326

φ × × 0.833 0.014 × ×
φ1 × × × × 0.990 0.054

φ2 × × × × 0.631 0.037

φ3 × × × × 0.970 0.008

φ4 × × × × 0.706 0.027

φ5 × × × × 0.865 0.024

φ6 × × × × 0.419 0.081

σ2
1 0.237 × 0.095 × 0.106 ×

σ2
2 0.255 × 0.154 × 0.140 ×

σ2
3 0.347 × 0.112 × 0.107 ×

σ2
4 0.210 × 0.141 × 0.140 ×

σ2
5 0.208 × 0.111 × 0.116 ×

σ2
6 0.351 × 0.340 × 0.315 ×

Table 3: Estimated parameters and their corresponding standard errors (SE) for each model specification. Parameters

absent in a given model specification are denoted by ×. The number of breakpoints is set to 5, and the parameters

are estimated with a binning frequency of 25 kyr and h = 2.5 Myr. All values are rounded to three decimals.

B.4 The number of breakpoints selected by information criteria

Bin size Mean Fixed AR AR

BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5

10 17 17 14 7 14 3

25 17 14 12 6 8 3

50 17 14 10 0 7 0

75 17 14 6 0 5 0

100 17 12 6 0 5 0

Table 4: The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies

considered. The minimum state length is set to h = 2.5 Myr and the maximum number of breakpoints is 26.
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C Simulation study

C.1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by Bai and Perron (1998, 2003) can be used to610

accurately estimate the number and timing of breakpoints in a state-wise non-stationary time series. We

conduct 1000 simulations for each data-generating process (DGP) with a sample size of 500. All the DGPs

considered have the following form,

yt = c1 + φ1yt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
for t ≤ T/2

yt = c2 + φ2yt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
for t > T/2. (8)

Hence, we consider a single breakpoint in the middle of the sample interval, namely at t = 250. We examine

eight DGPs, each specified and described in Table 5.615

DGP σ c1 c2 φ1 φ2 Description

1 1 0.1 0.2 1 1 Small break in the drift term of a RW

2 1 0.1 1 1 1 Large break in the drift term of a RW

3 1 0.1 1 0.95 0.95 Large break in the intercept and a fixed AR-coefficient

4 1 0.1 1 0.95 1 Break in the intercept and small break in the AR-coefficient

5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient

6 1 1 1 1 1 RW with a drift without a breakpoint

7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance

8 1 0.1 1 0.5 0.5 Large break in the intercept and a low fixed AR-coefficient

Table 5: Data-generating processes for the simulation study and short descriptions. RW: random walk.

The DGPs range from random walk models with a break in the drift term to models with breaks in both

the intercept and the AR coefficient. For comparison, we include a random walk without breakpoints as the

sixth model. For each of the DGPs, we are interested in the performance of the methodology by Bai and

Perron (1998, 2003) in estimating the breakpoint and confidence intervals. The model specifications from

Section 2.3 are estimated on the data generated by the DGPs, and we use the implementation outlined in620

Section 2.4. We use the R-package mbreaks by Nguyen et al. (2023), and we impose a single breakpoint in

the estimation. The left and right panels of Figs. 13 through 20 display realizations of the DGP and density

plots of the estimated breakpoints for each of the models, respectively. The results are summarized in Table

6, which provides the mean of the estimated breakpoints, and medians of the lower and upper boundaries

of the estimated 95% CIs are tabulated along with their coverage rates for each model and DGP.625
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DGP Mean Fixed AR AR

BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

1 301 174 655 57.1% 251 216 336 43.4% 290 240 316 22.7%

2 333 -386 332 95.4% 249 237 262 93% 249 236 256 77.2%

3 263 253 284 41.4% 256 239 260 89.9% 251 241 260 85.9%

4 340 -190 340 97.5% 249 239 260 95.8% 249 238 250 65.8%

5 340 -114 340 97.1% 250 239 258 97% 250 241 250 72.9%

6 249 -3325 3976 × 253 142 371 × 254 202 312 ×
7 333 -282 330 92% 249 246 253 97.8% 249 246 253 96%

8 249 237 264 95.1% 248 236 263 95.2% 248 236 263 94.5%

Table 6: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence

intervals, along with the coverage rates for each model specification and DGP. DGP 6 is simulated without a

breakpoint, so the coverage rate is irrelevant and indicated by ×.

In the first DGP, a random walk with a small drift term break, we observe that the mean of the

estimated breakpoints is later than the true breakpoint in all model specifications. Additionally, the density

plots exhibit asymmetry around the true breakpoint. This is expected due to the low magnitude of the

break in the drift term, which creates a subtle change in the overall stochastic trend, making accurate

breakpoint detection difficult. In the second DGP with a larger drift term break, the estimated breakpoints630

exhibit a narrower and more bell-shaped density. The mean estimated breakpoints for the Fixed AR and

AR models slightly precede the true breakpoint. However, the Mean model performs poorly, with the mean

of the estimated breakpoints far from the true breakpoint.

In the third DGP, both the Fixed AR and AR models produce mean estimated breakpoints slightly

later than the true breakpoint. The Mean model exhibits better performance in this DGP than in the635

second DGP. The fourth DGP has a break in the intercept and the AR-coefficient from 0.95 to 1, resulting

in a state-wise non-stationary model. This change leads to breakpoint estimates very close to the true

breakpoint, except in the Mean model. A similar outcome is observed in the fifth DGP, which features a

larger increase in the AR-coefficient. In the sixth DGP, which is defined without any breakpoints, the Mean

model estimates breakpoints near the midpoint of the sample period, while the other two specifications yield640

inconclusive results. In the seventh DGP, the AR and Fixed AR models produce estimates close to the true

breakpoint. However, the Mean model continues to produce breakpoint estimates far from the true value.

Examining the eighth DGP, the three models perform almost equally well.

Overall, the Fixed AR and AR models tend to perform well in non-stationary scenarios, estimating

breakpoints close to the true breakpoints. The methodology, however, appears to struggle with accurately645

estimating the true breakpoint in cases of minor changes between states and large error term variance. In

contrast, the Mean model does not perform well in DGPs featuring gradual changes, aligning with theoretical

expectations as detailed in Bai and Perron (2003).

The coverage rate of a CI is the proportion of times the CI covers the true breakpoint, here at t = 250.

We find that the CIs of the Mean model are generally very wide and have varying coverage. In the Fixed650

AR and AR models, the CIs are typically narrower. The coverage rates are best in the DGPs with large

differences between the states as seen in DGPs 4, 5, 7 and 8 using the Fixed AR model specification, which

is in line with the findings of Bai and Perron (2003). For the AR model, the coverage rates are only close
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to the desired 95% in the seventh and eighth DGP, indicating that the CIs are inadequate in most of the

DGPs considered.655

DGP Mean Fixed AR AR

BIC LWZ KT BIC LWZ KT BIC LWZ KT

1 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.2 (15%) 0.0 (0%) 3.0 (0%) 0.1 (6%) 0.0 (0%) 0.0 (3%)

2 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (97%) 0.8 (82%) 3.0 (0%) 1.0 (94%) 0.5 (46%) 1.0 (93%)

3 2.9 (0%) 2.7 (4%) 3.0 (0%) 1.0 (94%) 0.2 (16%) 2.9 (0%) 0.9 (85%) 0.0 (0%) 0.7 (70%)

4 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (98%) 1.0 (98%) 2.8 (0%) 1.0 (99%) 0.9 (92%) 1.0 (99%)

5 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (97%) 2.7 (0%) 1.0 (99%) 1.0 (100%) 1.0 (99%)

6 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.0 (98%) 0.0 (100%) 3.0 (0%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

7 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (100%) 3.0 (0%) 1.0 (98%) 1.0 (100%) 1.0 (98%)

8 1.5 (63%) 1.0 (98%) 1.3 (72%) 1.0 (99%) 1.0 (100%) 1.3 (73%) 1.0 (100%) 1.0 (98%) 1.0 (100%)

Table 7: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.

Table 7 shows the mean number of breakpoints estimated for each DGP and method, along with the

proportion of correctly estimated breakpoints. The difficulty in accurately estimating gradual changes using

the Mean model is also evident when estimating the number of breakpoints. This model specification leads

to overestimating the number of breakpoints in all DGPs considered except DGP 8, where it performs

well. The BIC criterion in the Fixed AR specification performs very well, with an estimated number of660

breakpoints equal to the true number in most simulations in DGP 2-8. The LWZ criterion performs almost

equally well except in the third DGP, while the KT criterion vastly overestimates the number of breakpoints

in DGP 1-7. In the AR model, the information criteria all perform well in DGPs 2-8 except for the third

DGP where the LWZ criterion underestimates the number of breakpoints.
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Figure 13: DGP 1: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 14: DGP 2: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 15: DGP 3: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 16: DGP 4: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 17: DGP 5: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 18: DGP 6: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 19: DGP 7: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 20: DGP 8: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.

C.2 Serially correlated error term665

A possible extension of the simulation study outlined in Eq. (8) is allowing the error term to exhibit serial

correlation. We use the same DGPs as before, but generate {εt}Tt=1 as follows,

εt = ψεt−1 + θηt−1 + ηt, ηt
i.i.d.∼ N (0, σ2

η) ∀t. (9)

We conduct 1000 simulations for each, with a sample size of 500. Here, we consider DGPs 2, 3, 4, 5, 7,

and 8 as outlined in Table 5 and refer to these DGPs in the serially correlated cases as models 2s, 3s, 4s,

5s, 7s, and 8s. We set ψ = θ = 0.5 and the standard deviation ση, such that the standard deviation of εt670

corresponds to the σ in Table 5. This is accomplished as follows,

Var (εt) = Var (ψεt−1 + θηt−1 + ηt)

= ψ2 Var (εt−1) + θ2 Var (ηt−1) + 2ψθCov (εt−1, ηt−1) + Var (ηt) .

= ψ2 Var (εt−1) + θ2σ2
η + 2ψθσ2

η + σ2
η,

since εt−1 and ηt−1 have zero means and E [εtηt] = ϕE [εt−1ηt]+θE [ηtηt−1]+E
[
η2t
]
= σ2

η. Given stationarity

of the process, which implies σ2 = Var (εt) for all t, we derive,

σ2
η = σ2 1− ψ2

1 + θ2 + 2ψθ
.

This adjustment ensures the comparability of the results between the two error term types.

In Figs. 21 through 26, we plot examples of realizations and frequency plots of the estimated breakpoints

using each of the models while imposing a single breakpoint in the estimation. The results are summarized675
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in Table 8, which provides means of the estimated breakpoints and medians of the lower and upper boundary

of the estimated confidence intervals, along with the coverage rates for each model specification and DGP.

Generally speaking, the mean of the estimated breakpoints are further from the true breakpoint and the

CIs become wider compared to the results from the corresponding DGPs without serial correlation. It is

evident that serial correlation in the error term makes it more difficult to estimate the dating of breaks.680

We find that the Fixed AR and AR models perform well for DGP 7s, which has a large difference between

the states and low variance. This is in line with the theoretical framework by Bai and Perron (2003), who

note that the estimated break dates are consistent even in the presence of serial correlation. The Fixed AR

model performs well in DGPs 2s, 4s and 5s where the mean of the estimated breakpoints is close to the

true breakpoint, and confidence intervals are reasonably wide with acceptable coverage rates. The results685

of the AR model are less conclusive.

For the Mean and Fixed AR models, the coverage rates are generally close to the desired 95% and even

higher in some DGPs. However, the CIs are also extremely wide, reaching outside the sample window in

many DGPs. The CIs seem reasonable in the Fixed AR model for DGPs 2s, 4s, 5s, and 7s, where the

coverage rates are close to 95% and the medians of the lower and upper bounds of the CIs are not too690

extreme. The CIs for the AR model are generally wider than in the version without serial correlation in

the error term. In the AR model, the coverage rates are lower than the desired 95%, but it seems that

DGPs with large breaks have higher coverage rates. The relatively poor performance is in line with the

theoretical framework by Bai and Perron (2003). The authors note that the construction of the CIs rely on

having no serial correlation in the error term if a lagged dependent variable is included as a regressor that695

has coefficients that are subject to breakpoints.

DGP Mean Fixed AR AR

BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

2s 332 -1400 335 95.9% 247 188 312 95.7% 261 190 299 79.9%

3s 266 60 787 90.6% 285 -112 656 97.2% 276 156 421 77.1%

4s 340 -776 339 94.9% 252 197 301 96.9% 264 195 277 84.9%

5s 342 -329 340 96.2% 256 196 266 96.4% 259 192 250 70.8%

7s 333 -1708 329 92.3% 249 230 270 97.6% 251 230 267 92.8%

8s 250 122 370 98.3% 245 -5 492 99.8% 247 23 490 97.4%

Table 8: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence

intervals, along with the coverage rates for each model specification and DGP.

Table 9 shows the mean number of breakpoints estimated for each DGP and method, along with the

proportion of correctly estimated number. In the Mean model, all information criteria overestimate the

number of breakpoints. An important exception is the eighth DGP, where the performance is better, as

in the case without serial correlation. In the Fixed AR and AR model specifications, the LWZ criterion700

generally performs well, while both the BIC and the KT criteria generally overestimate. However, the LWZ

criterion leads to underestimating the number of breakpoints in DGPs 3s and 8s. These two DGPs are

characterized by fixed AR-coefficients that are lower than one. This implies that these two processes do

not exhibit an autoregressive unit root. Hence, it seems that the LWZ criterion performs well in cases of

state-wise non-stationarity or switching between stationary and non-stationary states.705
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Compared to the findings in the DGPs without serial correlation, it is clear that the proportion of

correct estimates are lower for most DGPs and model specifications. Overall, the best performing criterion

seems to be the LWZ criterion in the Fixed AR and AR models, while the Mean model typically leads to

overestimating the number of breakpoints.

DGP Mean Fixed AR AR

BIC LWZ KT BIC LWZ KT BIC LWZ KT

2s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (32%) 0.9 (70%) 2.9 (0%) 1.8 (37%) 0.7 (61%) 1.9 (33%)

3s 3.0 (0%) 2.8 (2%) 3.0 (0%) 0.7 (33%) 0.0 (0%) 2.7 (3%) 0.3 (19%) 0.0 (0%) 0.4 (17%)

4s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.7 (45%) 1.0 (85%) 2.8 (1%) 1.6 (51%) 0.8 (79%) 1.6 (47%)

5s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.8 (5%) 1.1 (85%) 2.8 (0%) 1.7 (40%) 1.0 (92%) 1.6 (49%)

7s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (34%) 1.1 (89%) 3.0 (0%) 1.9 (34%) 1.0 (96%) 1.9 (32%)

8s 2.2 (21%) 1.2 (78%) 2.2 (23%) 0.4 (35%) 0.0 (0%) 1.9 (36%) 0.0 (4%) 0.0 (0%) 0.0 (3%)

Table 9: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.
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Figure 21: DGP 2s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 22: DGP 3s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 23: DGP 4s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 24: DGP 5s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 25: DGP 7s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 26: DGP 8s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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