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Abstract

This study presents a statistical time-domain approach for identifying transitions between climate states,
referred to as breakpoints, using well-established econometric tools. Our approach offers the advantage of
constructing time-domain confidence intervals for the breakpoints, and it includes procedures to determine
how many breakpoints are present in the time series. We apply these tools to the 67.1 million-year-long
compilation of benthic foraminiferal oxygen isotopes (6180), which signify global temperature and ice vol-
ume throughout the Cenozoic. This foundational dataset is presented in Westerhold et al. (2020), where
the authors use recurrence analysis to identify five breakpoints that define six climate states. Fixing the
number of breakpoints to five, our procedure results in breakpoint estimates that closely align with those
identified by Westerhold et al. (2020). However, by allowing the number of breakpoints to vary, we pro-
vide statistical justification for more than five breakpoints in the time series, which is used to characterize
Cenozoic paleoclimate and as a reference for many paleoclimate studies. This adds to our understanding of
Cenozoic climate history, in terms of the timing and rate of transitions between climate states, and provides

a tool to assess many other paleoclimate time series.

1 Introduction

Understanding the transitions between climate states in Earth’s past is crucial for constraining nonlinear
and feedback dynamics of our climate system, and anticipating potential climate system responses to an-
thropogenic warming. The Cenozoic Era, spanning from 66 million years ago (Ma) to today, is particularly
informative in this regard, as it is well-studied and it includes major shifts from hothouse climates with
temperatures 10°C warmer than today to the onset of permanent glaciations at both poles (Zachos et al.,
2001; Hansen et al., 2013). These transitions, or breakpoints, reflect large-scale changes in the climate sys-

tem, involving shifts in the carbon cycle, ocean circulation, ice volume, and more (Zachos et al., 2008). As
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emphasized by Tierney et al. (2020), paleoclimate records are essential for assessing climate sensitivity and
evaluating climate models under warmer-than-present conditions. Evidence suggests that the sensitivity of
the climate system to external forcings may depend on the climate state (Caballero and Huber, 2013), and
that projected future climates may increasingly resemble early Cenozoic conditions under continued emis-
sions (Burke et al., 2018; Steffen et al., 2018). These insights underscore the importance of identifying when
past climate state transitions occurred, how many there were, and how certain we are about their timing.
Addressing these questions is crucial for understanding the dynamics of long-term climate variability, and
recent work has increasingly emphasized transition detection as a key task in climate data analysis (e.g.,
Marwan et al., 2021; Trauth, 2025).

A widely used approach to identify breakpoints in paleoclimate records is recurrence analysis, which
identifies when a system returns to similar states over time, helping to detect changes in the underlying
dynamics of time series (Marwan et al., 2007; Marwan, 2023). Westerhold et al. (2020) apply this technique
to a record of §'30 from benthic foraminifera spanning from 67.1 Ma to the present, covering the Cenozoic
FEra. Based on the recurrence structure of the record, the authors identify four major climate states —
Hothouse, Warmhouse, Coolhouse, and Icehouse — which are further divided into six states through time.
To conduct this analysis, they resampled the data at an interval of 5 thousand years (kyr) and used both
un-detrended and detrended versions. Recurrence analysis provides valuable insights into the recurrence
structure and shifts in a time series, and recurrence quantification analysis offers complementary summary
measures, such as recurrence rate and determinism. However, the identification of transitions remains largely
based on visual interpretation of recurrence plots, and the method lacks formal procedures for selecting the
number and statistical certainty of the transitions.

Several methodological extensions have sought to address these limitations. For instance, Goswami et al.
(2018) propose a breakpoint detection method using a probability density function sequence representation of
the time series, which accounts for timestamping uncertainty. Bagniewski et al. (2021) combine recurrence
analysis with Kolmogorov—Smirnov tests to statistically assess abrupt shifts in recurrence distributions.
Rousseau et al. (2023) apply this method to the Westerhold et al. (2020) data, identifying a similar set of
transitions along with several additional ones. As discussed by Marwan et al. (2021), there are several other
approaches to identify transitions in paleoclimate time series. Among these, Livina et al. (2010) developed a
statistical method of potential analysis and applied it to detect the number of states in an ice core record. In
a Bayesian framework, Schiitz and Holschneider (2011) develop a method for detecting changes in trend, and
Ruggieri (2013) introduce a Bayesian algorithm for identifying multiple breakpoints. Reviews of breakpoint
detection techniques in more general climate time series are provided by Reeves et al. (2007) and Lund and
Shi (2023).

Recently, Trauth et al. (2024) explored a suite of methods, including recurrence analysis, changepoint
detection, and nonlinear curve fitting (e.g., sigmoid and ramp functions), to identify climate transitions
in a paleoclimate record. They apply a changepoint detection algorithm by Killick et al. (2012), which
efficiently detects multiple changepoints by minimizing a cost function that balances goodness-of-fit with
a penalty for additional changes. This approach enables the detection of shifts in the mean, variance, and

trend. The sigmoid functions are characterized by their S-shaped curves and allow for modeling gradual
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transitions (Crowley and Hyde, 2008; Trauth et al., 2021). In contrast, the ramp functions consist of
two horizontal segments connected by a linear trend and represent gradual transitions bounded by abrupt
changes in slope, which can be fitted using regression techniques. This method was proposed by Mudelsee
(2000) and has been applied to various paleoclimate records (e.g., Fleitmann et al., 2003; Mudelsee and
Raymo, 2005). Furthermore, Mudelsee et al. (2014) apply this ramp-function method, among others, to
detect major climate transitions in the Cenozoic. For further details, we refer to the textbook treatments
in Mudelsee (2014) and Trauth (2025).

We employ a statistical approach based on least-squares that allows the researcher to assess the uncer-
tainty in dating breakpoints through confidence intervals. Information criteria give guidance on the number
of breakpoints. The approach is an econometric time-domain framework (Bai and Perron, 1998, 2003),
which was originally applied to detect shifts in real interest rates data in economics (Garcia and Perron,
1996). We henceforth refer to this as the Bai-Perron framework. This framework offers the advantages of
constructing confidence intervals for the timestamps of the breakpoints, providing a measure of estimation
uncertainty, as well as procedures for selecting the number of breakpoints in the time series that provides the
best fit. These additional measures are crucial for understanding the certainty, significance, and timing of
climate transition periods in the past. The Bai-Perron framework offers flexibility in modeling both abrupt
and gradual transitions. We demonstrate its application and benefits by using the benthic 68O record from
Westerhold et al. (2020), though the framework is broadly applicable to a wide range of paleoclimate time

series.

2 Methodology

2.1 Data

We use the dataset provided by Westerhold et al. (2020), which compiles measurements of oxygen isotope
ratios from benthic foraminifera across 34 different studies and 14 ocean drilling locations into a single stack
covering the Cenozoic. Our study focuses on the benthic 680 record, specifically the correlation-corrected
values of benthic §%0.!

Benthic 6'®0 measures the deviations in the ratio of the stable oxygen isotopes 2O to 60 in the
shells of benthic foraminifera relative to the Vienna Pee Dee Belemnite (VPDB) standard. The weight
difference between the stable oxygen isotopes is a function of deep ocean temperatures (Epstein et al., 1951;
Shackleton, 1967; Lisiecki and Raymo, 2005) and of the 6*80 of the seawater, which in turn is a function
of ice volume and salinity (e.g., Waelbroeck et al., 2002; Oerlemans, 2004). Thus, the benthic stack is an
important reference record for global climate history across the Cenozoic. Hereafter, we refer to benthic
5180 simply as §'80.

The 6180 compilation by Westerhold et al. (2020) spans 67.10113 Ma to 564 years before present (Fig. 1).
It contains 24,333 entries, of which 74 are missing in the published version. After excluding these, we retain

24,259 data points, ordered from oldest to most recent. The §'80 record is irregularly spaced in time,

IThese are the values in column “benthic d180 VPDB Corr”, found in Sheet 33 of the file aba6853_tables_s8_s34.x1sx
provided in the Supplementary Materials of Westerhold et al. (2020).
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as is typical for paleoclimate proxy data, and sampling density increases through time, with an average
resolution of approximately 2.8 kyr. The longest gap spans about 115.4 kyr and 533 gaps exceed 10 kyr.
Additionally, 591 time stamps contain multiple §'80 values, with up to four observations recorded at the
same time. Westerhold et al. (2020) provide an age model, which has an accuracy ranging from +100 kyr
in the early Cenozoic to £10 kyr in the latest Cenozoic. We do not account for age model uncertainty in
this study, but we return to this issue in the results section. Using recurrence analysis, Westerhold et al.
(2020) identify six climate states, and we refer to these as Warmhouse I (66-56 Ma), Hothouse (56-47 Ma),
Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma), Coolhouse IT (13.9-3.3 Ma), and Icehouse (3.3 Ma-
present). Summary statistics for the full record and for each climate state identified by Westerhold et al.

(2020) are reported in Appendix B.1.

Warmhouse I ¢ Hothouse Warmhouse IT Coolhouse I Coolhouse IT Icehouse

70 60 50 40 30 20 10 0
Age (Ma)
® Data (6'%0)  ----- Westerhold transitions

Figure 1: §'®0 data from Westerhold et al. (2020). The order of the vertical axis is reversed, following standard
practice. The vertical dashed lines show transitions between the climate states by Westerhold et al. (2020). The

horizontal axis represents time, measured in millions of years before present.

2.2 The Bai-Perron framework

The Bai-Perron framework is based on minimizing the sum of squared residuals while treating the break-
points as unknown parameters to be estimated (Bai and Perron, 1998, 2003). Consider a linear regression
framework for the dependent variable y;, for t =1,...,T, and with m breakpoints, corresponding to m + 1

distinct states in the sample. The general model equation is
yt:ngﬁ—i_zilté‘]—’_uta t:j—’jfl+17aj—’j7 (1)

with j = 1,...,m + 1. The m break dates are denoted by (71,...,T,,), with the convention that Tj = 0
and T,,41 =T, and u,; is a disturbance term with mean zero and variance sz. The (p x 1)-vector z; and
the (¢ x 1)-vector z; comprise two sets of covariate vectors, for which § is the state-independent vector of
coefficients and §; is the state-dependent vector of coefficients. Since only specific coeflicients are subject
to structural breaks, this model is referred to as a partial structural change model. Moreover, we consider
breaks in the variance of u; at the break dates T, ..., Ty,, such that o2 # 0]2- for i # j. The parameters
and §; are estimated alongside the breakpoints but are not of primary interest here.

We initially treat the number of breakpoints, m, as known and estimate the coefficients and the break-

points using a sample of T observations of {y;, 2, 2:}. The estimation method is based on least squares for
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both the coefficients and the breakpoints. For each possible set of m breakpoints (T1,...,T,,) denoted as

{T;}" |, we obtain estimates of 3 and §; by minimizing the sum of squared residuals (SSR), that is,

m+1 T;

SSR=>""3" (y—2iB—20;)", 2)

J=1t=T; 1+1

where 3 is common to all states, while §; is specific for the state j, which is the period between T;_; 41
and Tj. The resulting estimated coefficients are denoted as 3 ({T;}",) and &; ({Ti}",). These coefficients

are then used to determine the SSR associated with each set of breakpoints,

m+1 T;

SSRr(TY) = 3 S (v — BT — 246, (T)) ()

J=1t=T; 1+1

The estimated breakpoints are then given by

(Tl, . ,Tm) — argmin SSRy ({T}}™,). (4)
1seeesdm
The minimization is conducted over all partitions (T73,...,T,,) such that T; — T;_; > dim(z;) to ensure

that there are enough data points to estimate the parameters d; in each partition. This procedure leads to
estimated parameters for the m breakpoints, i.e., {T;}™,, 3 = j ({Tz}?l1>7 and §; = 0, ({ﬁ}:’;l) Since
the possible combinations of the placement of the breakpoints is finite, this optimization can be conducted
using a grid search, which can be computationally heavy, especially for many breakpoints. Bai and Perron
(2003) introduce an efficient method for determining the global minimizers.

An essential advantage of the Bai-Perron framework is that it allows for constructing confidence intervals
for the breakpoints, something that is not available for the recurrence analysis approach implemented in
Westerhold et al. (2020). The construction of confidence intervals is based on the asymptotic distribution
of the estimated break dates. The convergence results for the construction of confidence intervals rely on a

number of assumptions (see Bai and Perron, 2003).

2.3 Model specifications

Three distinct specifications are considered within the Bai-Perron framework, referred to as the “Mean”,
“Fixed AR”, and “AR” models, where AR refers to the autoregressive model of order one with intercept.
These are all special cases of the framework outlined in Eq. (1). The simplest among them, the Mean

model, is specified as follows,
yt:Cj+ut7 tZTj_l—‘rl,...,Tj, (5)

for j = 1,...,m + 1, where ¢; is the state-dependent intercept and wu; is an error term. This model is
equivalent to setting ; =0, z, = 1, and d; = ¢; in Eq. (1). A breakpoint in this model specification leads
to an abrupt change in the mean of the dependent variable y;.

The Fixed AR model extends the Mean model by incorporating an autoregressive term. We obtain the

model

yt:Cj—’—goytfl"_utv t:ijl—’_lv"‘»erv (6)
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for j =1,...,m+1, where y;_; is the dependent variable lagged by one period, and ¢ is the autoregressive
coeflicient that is constant over the whole sample. In this model, the effect of a change in the coefficient c;
is more gradual, since it depends on the autoregressive dynamics. The Fixed AR model is obtained from
Eq. (1) by specifying z; = y1—1, S = ¢, 2 = 1, and 6; = ¢;.

The general AR specification also allows the autoregressive term to be state-dependent, resulting in the

AR model,
yr=cjt iy tu, =T+ 1.1y (7)

for j =1,...,m+1, where the autoregressive coefficient ¢ in Eq. (6) is now state-dependent and is denoted
by ;. This model is obtained from Eq. (1) by setting z; = 0, z; = (1,y:—1), and &; = (¢j, ;). Here,
both the intercept and the autoregressive coefficient are state-dependent. Thus, the three specifications are
nested: The AR model is the most general, the Fixed AR model is nested in the AR model by setting
Y1 = @2 = ... = Pm+1 = p, and the Mean model is nested in the Fixed AR model by setting ¢ = 0.
Figure 2 illustrates how the models capture breakpoints. The Mean model is designed to detect abrupt
breaks in the mean of a time series, while the Fixed AR model is for smoother breaks. The AR model is
more flexible, allowing for both relatively gradual (e.g., T1) and abrupt (e.g., T2) breakpoints compared to
the Fixed AR model.

=100
0.95
0.90

0.85

0.80

0 20 10 60 80 100
t
—— Mean model — AR model
—— Fixed AR model —--- Breakpoints

Figure 2: Simulated time series using the three model specifications, each with breakpoints 771 = 25 and 7> = 75,
and total sample size T = 100. For the Mean model, we set ¢; = 1.0, c2 = 1.2, and ¢z = 0.8. In the Fixed AR
model, the parameters are ¢ = 0.7, ¢1 = 0.30, c2 = 0.36, and c3 = 0.24, chosen to yield comparable state-wise
means. Likewise in the AR model, we set 1 = 0.7, o2 = 0.9, w3 = 0.4, ¢ = 0.30, c2 = 0.12, and ¢z = 0.48. In all

specifications, we set u; = 0 for all .

2.4 Implementation

The Bai-Perron framework is implemented using mbreaks, an R package specifically designed for this purpose
(Nguyen et al., 2023). For all model specifications, we set the minimum length of a state, h, to 2.5 million
years (Myr), facilitating the estimation of shorter climate states. Also, we let the variance of the error term,
denoted as O'JQ-, be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation is permitted in the regression residuals.

However, the time series of §'20 is likely subject to both autocorrelation and heteroscedasticity, as docu-
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mented in ice core records (Davidson et al., 2015; Keyes et al., 2023). Autocorrelation occurs when current
values correlate with past values, which is common in paleoclimate data due to long-term persistence in
climate dynamics (Mudelsee et al., 2014). Since only up to one lag is included in the covariates in the model
specifications in this paper, residual serial correlation is likely to remain. Heteroscedasticity, or time-varying
error variance, is already partially addressed in the model specifications through state-dependent variance.
However, additional heteroscedasticity may arise within the estimated states due to factors such as orbital
forcing and changes in ice sheet extent. Addressing both autocorrelation and heteroscedasticity is essential
to ensure unbiased parameter estimates and valid confidence intervals for the estimated breakpoints.

To account for these issues, we use the autocorrelation and heteroscedasticity consistent (HAC) co-
variance matrix estimator with prewhitening in the Bai-Perron framework. The prewhitening procedure,
proposed by Andrews and Monahan (1992), entails applying an autoregressive model with one lag to z;dy,
where 7; denotes the residuals. The HAC covariance matrix estimator by Andrews (1991) is then con-
structed based on the filtered series using the quadratic spectral kernel with bandwidth selected by an AR
of order one approximation. This approach is used for all model specifications and is straightforward to

implement using the R package (Nguyen et al., 2023).

2.5 Constant data frequency

To conduct breakpoint estimation using the Bai-Perron framework, we need a regularly sampled time series.
We use a binning approach to construct a dataset with evenly spaced observations, which is common practice
in the analysis of paleoclimate data; see for instance Boettner et al. (2021). We divide the dataset into
bins of fixed time intervals and compute the mean of the observations within each bin. In the case of gaps
in the binned data, we use the values immediately preceding and succeeding the section with missing data
to perform linear interpolation. We consider six different bin sizes, namely 5, 10, 25, 50, 75, and 100 kyr
(Fig. 3). Summary statistics for the full sample length and for each climate state identified by Westerhold
et al. (2020) for all binning frequencies are provided in Appendix B.1.

Data binned at higher frequencies follow the variations in the dataset more closely, whereas data binned
at lower frequencies tend to be smoother (Fig. 3). In case of large gaps, a high binning frequency results in
linear interpolation between observations (Fig. 3 bottom left). This effect does not occur for periods with
many observations, where low binning frequencies capture only a small part of the variation in the original
data (Fig. 3 bottom right). Binning offers a simple approach to handle the uneven frequency of the dataset.
However, it leads to data loss at lower binning frequencies and to the introduction of artificial data points
resulting from linear interpolation at higher binning frequencies. The selection of binning frequencies can
therefore alter the properties of the time series, potentially misrepresenting the dynamics of the original
data.

The Bai-Perron framework is developed for estimating and testing for multiple breakpoints in linear
regression models where the regressors are non-trending or state-wise stationary (Bai and Perron, 2003). A
time series is considered stationary if its statistical properties, such as mean and variance, do not change
over time. The §'%0 data appears non-stationary over most of the record, even within climate states

found by Westerhold et al. (2020). As pointed out by Kejriwal et al. (2013), if the time series maintains
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its stationarity properties over the respective states, the methods developed for stationary data are still
applicable for these cases. However, if the process alternates between stationary and non-stationary states,

the theoretical properties of the methodology are unknown.

Warmhouse I :  Hothouse ‘Warmbhouse II Coolhouse I Coolhouse 1T Icehouse

o

70 60 30 40 30 20 10 0
Age (Ma)
Data (6'%0) Binned Data 5 kyr —— Binned Data 100 kyr =~ ----- Westerhold transitions

2.5
0.8

5180 (%o)

36.0 35.8 35.6 35.4 35.2 35.0 3.0 2.8 2.6 2.4 2.2 2.0
Age (Ma) Age (Ma)
®  Data (6'%0) Binned data 5 kyr —®— DBinned data 100 kyr e Data (6'%0) Binned data 5 kyr —8— Binned data 100 kyr

Figure 3: Top panel: The original data and the 5 and 100 kyr binned data. Bottom left panel: The period 36-35
Ma. Bottom right panel: The period 3-2 Ma.

To investigate whether the time series is non-stationary, we apply the Augmented Dickey-Fuller (ADF)
test (Dickey and Fuller, 1979), with the null hypothesis of non-stationarity. For the entire 25 kyr binned
data sample, the ADF test does not reject the null hypothesis at the 1% significance level, indicating non-
stationarity. However, when examining the binned data for each climate state identified by Westerhold et al.
(2020) separately, the ADF test rejects the null hypothesis at the 1% significance level for the Warmhouse
IT, Coolhouse I, and Icehouse states. These tests indicate the presence of state-wise non-stationarity, and
we therefore need to examine whether the Bai-Perron framework is applicable to data-generating processes
that are state-wise non-stationary or alternating between stationary and non-stationary states. For this
purpose, we conduct a large simulation study designed to verify that the Bai-Perron framework works as
intended when applied to these types of data-generating processes using the three model specifications.
The study is conducted for both independent and identically distributed (i.i.d.) error terms and serially
correlated error terms in Appendices C.1 and C.2, respectively. The results show that the procedure works
well with non-stationarity and is robust to processes with one stationary and one non-stationary state for
Fixed AR and AR models. However, the Mean model performs poorly when the data-generating process

exhibits high persistence. In the case of serial correlation, the results are less conclusive, but if the states
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are sufficiently different, the methodology still appears effective. The study also reveals that the coverage
rates for confidence intervals are generally adequate for the Fixed AR model, while the confidence intervals
of the AR model are too narrow in many cases. Overall, the Fixed AR model performs best across the

data-generating processes considered.

3 Results

3.1 Setting the number of breakpoints to five

As an initial step, we fix the number of breakpoints to five, which is the number used in the recurrence
analysis presented in Westerhold et al. (2020). We estimate the breakpoints and corresponding 95% confi-
dence intervals for each of the binning frequencies, 5, 10, 25, 50, 75, and 100 kyr, using Mean, Fixed AR,
and AR models for each (App. B.2; Fig. 4). The estimated confidence intervals around the breakpoints are
often asymmetrical. Bai and Perron (2003) advocate the use of asymmetric confidence intervals, as these
provide better coverage rates when the data are non-stationary.

For the Mean model, the estimated breakpoints generally remain at the same dates throughout as the
binned data frequency decreases step-by-step from 5 kyr to 100 kyr (Fig. 4.a). The width of the 95%
confidence intervals increases as the frequency decreases, which can be attributed to the resultant decrease
in the number of binned observations available for estimation at the lower frequencies. All the breakpoints
align with those identified by recurrence analysis in Westerhold et al. (2020). A similar pattern of alignment
is observed in the Fixed AR model, albeit with tighter confidence intervals (Fig. 4.b). The AR model exhibits
more sensitivity to the frequency of the binned data (Fig. 4.c). At higher frequencies, the breakpoints tend to
appear in the more recent parts of the sample. However, as the frequency decreases further, the breakpoints
are estimated to be in the older parts of the sample period.

For the results using 25 kyr, we find that the estimated breakpoints from the three model specifications
align closely with each other and nearly perfectly with those identified by Westerhold et al. (2020). The
three model specifications estimated using the 25 kyr binned data yield parameter estimates that differ
across states, reflecting differences in mean and autoregressive dynamics (App. B.3).

As a robustness check, we re-estimate the model specifications for five breakpoints using the 25 kyr
binned data reversed with respect to the time dimension, so that the time series is ordered from present to
past rather than past to present (App. A.1). We find that the results of the Mean and Fixed AR models
are robust to the ordering of the time axis, with almost unchanged estimated breakpoints. Conversely, the
AR model leads to estimated breakpoints in the more recent part of the sample, resulting in breakpoints at
16.9 Ma and 9.7 Ma, which differ from those estimated using the same model and binning frequency with
time running forward (Fig. 4).

In summary, changing the binning frequency mainly affects the width of the confidence intervals, while
the estimated breakpoint timing remains largely unchanged for both the Mean and Fixed AR models. In
contrast, the AR model is more sensitive to resolution and the direction of the time frame. As detailed in the
simulation study (App. C), the Mean model fails to accurately detect breakpoints in highly persistent data-
generating processes. Consequently, in what follows, we focus on the Fixed AR model for the estimation of

breakpoints in the 68O time series. Among the binning frequencies, we proceed with 10 kyr and 25 kyr,



as these yield the most consistent results across model specifications and strike a good balance between

a5 temporal resolution and signal quality.
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Figure 4: A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100 kyr
from top to bottom, fixing the number of breakpoints to five for each model specification. The black dots represent
estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

§'80 data from Westerhold et al. (2020) and their transitions.
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3.2 Selecting the number of breakpoints

We use information criteria to guide the choice of the number of breakpoints. These criteria are model
selection tools that balance goodness of fit with model complexity, helping to avoid overfitting. We initially
consider the following three criteria: the Bayesian Information Criterion (BIC) by Yao (1988), the modified
Schwarz Information Criterion (LWZ) by Liu et al. (1997), and the modified BIC (KT) by Kurozumi and
Tuvaandorj (2011). For all criteria, the preferred number of breakpoints is determined as the number of
breakpoints that minimizes the information criterion in question. A few paleoclimate studies use information
criteria for model selection, for example, Valler et al. (2024) show it can be beneficial.

Bai and Perron (2006) note that the BIC and LWZ criteria perform well in the absence of serial cor-
relation, but both lead to overestimation of the number of breakpoints in case of serial correlation in the
error term. In simulation studies (Appendices C.1 and C.2), we find that the KT information criterion
performs poorly, and hence, we exclude it from the subsequent analysis. We also find that the number
of breakpoints determined using the Mean model specification is generally too large when employing the
information criteria. For the Fixed AR and AR models, the BIC and LWZ criteria typically perform well,
especially in data-generating processes with a large break. With serial correlation in the error term, the BIC
criterion tends to overestimate the number of breakpoints, whereas the LWZ criterion generally performs
well in the Fixed AR and AR model specifications.

We use the BIC and LWZ information criteria for each model specification and binning frequency to
determine the number of breakpoints, and set the minimum state length to h = 2.5 Myr (App. B.4). For
our preferred specification, the Fixed AR model with 25 kyr binning frequency, the LWZ and BIC criteria
suggests six and 12 breakpoints, respectively. For a 10 kyr binning frequency, the estimated number of
breakpoints are seven and 14, respectively. Thus, the information criteria indicate that the number of

distinct climate states in the §80 record is larger than the five suggested in Westerhold et al. (2020).
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Figure 5: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 25 kyr
binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while
colored shaded rectangles indicate 95% confidence intervals. The results overlay the 6*®0 data from Westerhold

et al. (2020) and their transitions.

To further investigate the potential for a higher number of breakpoints, we consider the estimation of

up to 15 with the minimum length of a state set of h = 1 Myr. This analysis is conducted with the Fixed
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AR model and 25 kyr binned data (Fig. 5). The same analysis conducted using the 10 kyr binned data
led to nearly identical breakpoint estimates (App. A.2). Comparable findings are presented in Appendices
A.3 and A.4, which detail the results of estimating one to 15 breakpoints using the Mean and AR models,
respectively, with 25 kyr binned data.

The final estimated breakpoint is placed at 1.425 Ma for the Fixed AR model, just below the upper
boundary of the detection window at 1 Ma, imposed by the minimum state length of 1 Myr. Additionally,
the estimated breakpoint is located near the midpoint of a linear trend in the time series from approximately
3.3 Ma to the present, suggesting it may be driven by the trend rather than representing a break in the
time series (cf. Fig. 5). To investigate this further, we re-estimate the breakpoints for the Fixed AR
model, focusing solely on the Icehouse period, with the minimum length of a state set to 250 kyr and 5
kyr binning, leveraging the denser sampling in this part of the record. For the Fixed AR model, the LWZ
criterion suggests one breakpoint, while the BIC indicates two. With one breakpoint, the estimate is 1.355
Ma, and with two, the estimated breakpoints are 2.54 Ma and 0.95 Ma (Fig. 6). Estimating more than
two breakpoints leads to overlap between the confidence intervals, reducing the interpretability, and these
models are therefore excluded. The results are comparable for the Mean and AR models (Appendices A.5

and A.6).

3.0

o
o

2.0 5 1.0 0.5 0.0

1.
Age (Ma)
Data (6'%0)

Figure 6: A comparison of estimated breakpoints using the Fixed AR model for one and two breakpoints on 5 kyr
binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent
estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

5180 data from Westerhold et al. (2020).

3.3 Limitations of the Bai—Perron framework

Although the Bai—Perron framework provides a flexible and well-established method for detecting breaks,
it does have some limitations. The approach assumes piecewise linearity and white noise residuals (Bai
and Perron, 2003). However, in the estimations conducted in this study, the residuals are not white noise,
indicating that some dynamics are left unexplained. The simulation results show that the Bai-Perron
framework nevertheless performs well even when residuals exhibit complex dynamics (App. C). Confidence
intervals should still be interpreted with caution. The method is also computationally demanding for high-
resolution data, although it remains possible to run on personal computers.

Another limitation is that the method does not account for age model uncertainty, which is important
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for interpreting the timing and significance of time series analytical output (Marwan et al., 2021). In
the Westerhold et al. (2020) data, dating uncertainty ranges from about +10 kyr in the younger parts
to £100 kyr in the older parts. This can affect the timing of transitions and lead to differences when
comparing across records (Franke and Donner, 2019). Previous work has shown that age-depth models
often underestimate the true uncertainty in the chronology, which would amplify these effects (Telford
et al., 2004). While some progress has been made in including age uncertainty into recurrence analyses
(Goswami et al., 2018), incorporating it into the Bai-Perron framework remains a challenge. One could
however consider the use of age ensembles which are multiple plausible realizations of the time axis to assess
robustness of the estimated breakpoints. Fully integrating age uncertainty into the estimation process, for
example by modeling timestamps as random variables, would require further methodological development.
However, since the age model uncertainties reported by Westerhold et al. (2020) are small compared to the
duration of the estimated climate states, we expect our main findings to be robust.

In addition to age uncertainty, another direction for methodological advancement is developing a break-
point detection framework for irregularly spaced time series. This would obviate the need for aggregating
the data to fixed time intervals, preserving more of the original record. Steps in this direction have already
been made in concurrent research (Bennedsen et al., 2024), where the full 6'*0 and §'3C stacks (Westerhold
et al., 2020) are analyzed while taking the climate state transitions as given and addressing measurement

€ITors.

4 Discussion

Our results demonstrate that the Bai-Perron time-domain framework is a flexible and effective tool for
detecting breakpoints in paleoclimate time series. When fixing the number of breakpoints to five and
binning the data at 25 kyr intervals, all model specifications lead to breakpoint estimates that closely match
those identified by Westerhold et al. (2020), providing strong statistical support for their climate-state
classification. This not only corroborates their results obtained through recurrence analysis, but also lends
credibility to the use of this econometric tool for analyzing paleoclimate records.

Moreover, information criteria point to a higher number of transitions than previously reported, sug-
gesting the potential for a more detailed classification of Cenozoic climate variability. To explore this, we
estimate between one and 15 breakpoints using the Fixed AR model (Fig. 5). Allowing for six breakpoints,
we get an additional breakpoint in Warmhouse II at 40.075 Ma that remains for higher numbers of break-
points. This breakpoint aligns with the cooling following the Middle Eocene Climatic Optimum (MECO)
described by Bohaty and Zachos (2003). Allowing for seven, we identify another one in Coolhouse II around
9.975 Ma in the Miocene, which saw the expansion of C4 grasslands, altering the global carbon cycle and
land surface with potential effects on climate (Polissar et al., 2019; Strémberg, 2011). Using the same
580 dataset, Rousseau et al. (2023) apply recurrence plots and a Kolmogorov—Smirnov test and identify
similar transitions near 40 Ma and 9.7 Ma. Allowing for eight in the Bai-Perron framework, the additional
breakpoint occurs in the Icehouse. Some of the additional breakpoints up to 15 coincide with other known
climatic events, like the onset of the Mid-Miocene Climatic Optimum (MMCO) with an estimated age of
16.95 Ma (Flower and Kennett, 1994; Zachos et al., 2001). Particularly noteworthy is the lack of break-
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points, even with 15 detections, between the Eocene-Oligocene Transition (EOT) at 34 Ma and the onset
of the MMCO around 17 Ma. This is consistent with this being a relatively stable period in the Cenozoic
Era following the establishment of the Antarctic ice sheet (Zachos et al., 2001; Mudelsee et al., 2014).

To explore transitions within the relatively higher-resolution Icehouse period more closely, we have re-
estimated breakpoints using a finer 5 kyr binning and a reduced minimum regime length of h = 250 kyr.
This setup yields a single breakpoint at 1.355 Ma, which may reflect a midpoint in the record rather than a
distinct climatic shift. When allowing for two breakpoints as also suggested by the BIC, they are estimated
at 2.54 Ma and 0.95 Ma, corresponding well to the onset of Northern Hemisphere Glaciation (Lisiecki and
Raymo, 2005) and the Mid-Pleistocene Transition (MPT) (Pisias and Moore, 1981), respectively. The MPT
marks a change in the rhythm of glacial cycles, with its timing still debated. For instance, Clark et al. (2006)
describe it as a gradual transition between 1.25 and 0.7 Ma. This uncertainty is also reflected in the estimated
confidence interval of the latter breakpoint, which spans from 1.545 Ma to 0.66 Ma. These results underscore
the capability of the Bai-Perron framework to detect key transitions in Earth’s recent climate history and
emphasize the importance of climate system knowledge when interpreting breakpoint estimates. The same
period is examined by Rousseau et al. (2023), who apply recurrence plots and Kolmogorov—Smirnov tests to
a benthic 6180 record (Hodell and Channell, 2016) and identify six transitions at approximately 2.93 Ma,
2.52 Ma, 1.51 Ma, 1.25 Ma, 0.61 Ma, and 0.35 Ma. Their transitions at 2.52, 1.51, and 0.61 Ma broadly
align with the first estimated breakpoint and the confidence interval bounds of the second. In contrast
to the Bai-Perron framework used here, their approach neither determines the number of breakpoints nor
estimates confidence intervals for their placements.

Based on our findings, we offer several general recommendations for the application of this breakpoint
detection method in paleoclimate research and related fields. First, careful consideration should be given
to the choice of binning frequency. While finer binning enhances temporal resolution, it may also pre-
serve measurement errors and introduce artifacts by linear interpolations, particularly in unevenly sampled
records. Also, coarser binning can lead to loss of information. In our application, we find that the bin
width 10 and 25 kyr provide a good balance between detail and signal quality. For the 25 kyr bin width,
the mean number of observations per bin is approximately 9, and 3.6 for 10 kyr. However, these numbers
vary across the sample, being only 3.5 and 1.4, respectively, in the Warmhouse II and increasing to 28.3
and 11.3, respectively, in the Icehouse period. This highlights the importance of accounting for variable
sampling resolution when selecting bin widths. For other records, we recommend seeking a similar balance.
If the data are already evenly spaced in time, retaining the original resolution is preferable. Second, the
model specification should reflect the statistical features of the data, such as trends and autocorrelation.
Although the Fixed AR model has performed well in our study, the flexibility of the Bai—Perron framework
allows users to adapt the model specification to suit different datasets. Third, the number of breakpoints

can be selected based on information criteria.

5 Conclusion

This study presents a statistical time-domain approach to estimate breakpoints in the Cenozoic Era using

the econometric tools developed by Bai and Perron (1998, 2003). We analyze the time series of benthic §1%0
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provided by Westerhold et al. (2020), which is a widely cited foundational record for many corners of the field
of paleoclimatology. Westerhold et al. (2020) identified five breakpoints using recurrence analysis, and our
analysis strongly corroborates the placements of these breakpoints across various model specifications and
binning frequencies. Our approach offered the advantage of constructing confidence intervals for the dates of
the breakpoints, providing a measure of estimation uncertainty. Based on the results of our simulation study,
we advocate using the model specification with a state-independent autoregressive term and state-dependent
intercept.

By selecting the number of breakpoints using information criteria, we provide statistical justification for
more than five breakpoints in the time series. For instance, in specifications with seven or more breakpoints,
the five transitions identified by Westerhold et al. (2020) are preserved, while additional breakpoints suggest
that both the Warmhouse II and Coolhouse II states could be further divided into substates. This points
to the potential for a more detailed classification of Cenozoic climate states, enhancing our understanding
of Earth system dynamics. The results also show that the Bai-Perron framework can robustly capture
important transitions in Earth’s climate history. Many of the estimated breakpoints align with known
climatic events, such as the cooling after the Middle Eocene Climatic Optimum (MECO), the onset of the
Mid-Miocene Climatic Optimum (MMCO), and the Mid-Pleistocene Transition (MPT), supporting its use
in broader paleoclimate studies.

The applicability of the Bai-Perron framework extends well beyond the benthic §'80 stack by Westerhold
et al. (2020). It can be employed across a wide range of different paleoclimate archives, allowing for
investigations of regional differences in the estimated breakpoints, for instance. It can also be applied to
other proxies, such as §'2C and greenhouse gas concentrations. Furthermore, the method is suitable for
detecting both gradual and abrupt transitions, including climatic events such as Dansgaard-Oeschger events
(Dansgaard et al., 1993; Livina et al., 2010).

The framework allows for the inclusion of covariates, opening up many possibilities for future applica-
tions. For example, incorporating orbital parameters (e.g., eccentricity, obliquity, and precession; Laskar
et al., 2004) provides the potential for detecting transitions while controlling for these external effects. Alter-
natively, one could investigate breaks in the relationship between orbital forcings and paleoclimate variables,
reflecting changes in how strongly these external factors influence climate dynamics. A key example is the
MPT, marked by a shift in the dominant glacial cycle from 41 kyr to 100 kyr (Berends et al., 2021), the
timing of which could be estimated using the Bai—Perron framework.

These examples highlight the broader potential of the framework as a flexible tool for paleoclimate
data analysis. Understanding when and how breakpoints in the climate system occurred is essential for
interpreting past climate variability and, ultimately, for informing future projections. The Bai—Perron
framework provides a statistically rigorous way of estimating these breakpoints, offering new opportunities

to deepen our understanding of long-term climate dynamics.
Code and data availability. The data used in this study are available as the supplementary material of

Westerhold et al. (2020). The code used to conduct the analysis is based on the R-package mbreaks by

Nguyen et al. (2023) and the implementation is available upon request.
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A Graphs

A.1 Reversed time
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Figure 7: A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five
breakpoints on 25 kyr binned data where the time frame is reversed. The black dots represent estimated breakpoints,
while colored shaded rectangles indicate 95% confidence intervals. The results overlay the §'30 data from Westerhold
et al. (2020) and their transitions.

A.2 One to 15 breakpoints: Fixed AR model 10 kyr
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Figure 8: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 10 kyr
binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while
colored shaded rectangles indicate 95% confidence intervals. The results overlay the §'®0 data from Westerhold
et al. (2020) and their transitions.
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A.3 One to 15 breakpoints: Mean model
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Figure 9: A comparison of estimated breakpoints using the Mean model for one to 15 breakpoints on 25 kyr binned
data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored
shaded rectangles indicate 95% confidence intervals. The results overlay the §'*0 data from Westerhold et al. (2020)

and their transitions.

s A.4 One to 15 breakpoints: AR model
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Figure 10: A comparison of estimated breakpoints using the AR model for one to 15 breakpoints on 25 kyr binned
data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored
shaded rectangles indicate 95% confidence intervals. The results overlay the §'*0 data from Westerhold et al. (2020)

and their transitions.
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A.5 One and two breakpoints in the Icehouse: Mean model 5 kyr

%)

3.0 2.5 2.0 1.5 1.0 0.5 0.0
Age (Ma)
Data (6'%0)

Figure 11: A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr
binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent
estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the
§'80 data from Westerhold et al. (2020).

A.6 One and two breakpoints in the Icehouse: AR model 5 kyr
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Figure 12: A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr binned
data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent estimated
breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the §'*0 data
from Westerhold et al. (2020).
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B Tables
B.1

Summary statistics: State-wise and full sample

Bin size State Mean Sd. Max. Min. Data points
5 Warmhouse I 0.417 0.249 1.07 -0.215 2221
5 Hothouse -0.269 0.261  0.391 -2.014 1800
5 Warmhouse II 0.897 0.366 1.894 -0.254 2600
5 Coolhouse I 2.239 0.233  2.991 1.266 4020
5 Coolhouse IT 3.072 0.237  4.172 1.885 2120
5 Icehouse 4.037 0.463  5.405 3.05 660
5 Full sample period 1.561 1.277 5.405 -2.014 13421
10 Warmhouse I 0.417 0.245  0.977 -0.12 1111
10 Hothouse -0.269 0.256 0.308 -2.014 900
10 Warmhouse IT 0.897 0.366 1.777  -0.254 1300
10 Coolhouse 1 2.239 0.221 2.877 1.324 2010
10 Coolhouse IT 3.072 0.228  4.122 1.975 1060
10 Icehouse 4.034 0.447 5.33 3.181 330
10 Full sample period 1.561 1.276 5.33 -2.014 6711
25 Warmhouse I 0.418 0.237 0912 -0.065 445
25 Hothouse -0.269  0.245 0.218 -1.871 360
25 Warmhouse II 0.898 0.358 1.688 0.01 520
25 Coolhouse I 2.239 0.202  2.749 1.391 804
25 Coolhouse II 3.073 0.213  3.793 2.087 424
25 Icehouse 4.033 0.401 5.158 3.258 132
25 Full sample period 1.561 1.273 5.158  -1.871 2685
50 Warmhouse I 0.419 0.233  0.867 -0.042 223
50 Hothouse -0.268 0.233 0.197 -1.871 180
50 Warmhouse II 0.898 0.354  1.656 0.182 260
50 Coolhouse 1 2.24 0.188 2.713 1.567 402
50 Coolhouse IT 3.072 0.206 3.72 2.156 212
50 Icehouse 4.042 0.359  4.757 3.264 66
50 Full sample period 1.562 1.271  4.757  -1.871 1343
75 ‘Warmhouse I 0.42 0.229 0.837 0.006 148
75 Hothouse -0.26 0.203  0.167  -0.985 120
75 Warmhouse II 0.894 0.351 1.553 0.156 173
75 Coolhouse I 2.239 0.181  2.717 1.691 268
75 Coolhouse I 3.068 0.214  3.652 2.072 142
75 Icehouse 4.041 0.351  4.753 3.283 44
75 Full sample period 1.563 1.268 4.753  -0.985 895
100 Warmhouse I 0.42 0.229  0.832 0.007 112
100 Hothouse -0.263 0.203 0.155 -0.985 90
100 Warmhouse II 0.898 0.349 1.601 0.228 130
100 Coolhouse 1 2.241 0.175 2.685 1.739 201
100 Coolhouse IT 3.073 0.201  3.625 2.353 106
100 Icehouse 4.047 0.344  4.673 3.4 33
100 Full sample period 1.562 1.269 4.673 -0.985 672
Without binning ~ Warmhouse I 0.428 0.25 1.07 -0.215 2761
Without binning  Hothouse -0.279  0.255  0.391 -2.46 3030
Without binning  Warmhouse II 0.916 0.357 1.894  -0.254 1786
Without binning  Coolhouse I 2.251 0.242  3.263 1.026 6669
Without binning  Coolhouse II 3.102 0.254 4.49 1.84 6282
Without binning  Icehouse 4.064 0.533 5.53 2.66 3731
Without binning  Full sample period 2.128 1.445 5.53 -2.46 24259

Table 1: Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100 kyr) and the 580 data
without binning for each of the states identified by Westerhold et al. (2020) and the full sample period.
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s0s B.2 Estimated breakpoints: 5 breakpoints

Bin size BP index Mean Fixed AR AR
Estimate 95% CI Estimate 95% CI Estimate 95% CI

5 1 55.965  (56.085, 55.885)  55.995  (56.085, 55.92)  33.745  (33.745, 33.72)
5 2 46.725  (46.845, 46.675)  46.73 (46.76, 46.68) 16.96 (17.365, 16.78)
5 3 34.02 (34.025, 33.915) 34.05 (34.075, 34.015) 13.825 (13.84, 13.775)
5 4 13.36  (13.395, 13.325)  13.41 (13.465, 13.34)  9.555 (9.585, 9.505)
5 5 2.735 (2.845, 2.715) 2.74 (3.1, 2.715) 3.36 (3.815, 3.355)
10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)
10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)
10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)
10 4 13.36 (134, 13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)
10 5 2.73 (2.81, 2.7) 2.74 (3.18, 2.71) 2.74 (2.88, 2.72)
25 1 55.975 (56.3, 55.1) 56.025 (56.575, 55.7) 55.825 (55.85, 55.675)
25 2 46.725  (47.3,46.55) 46725  (46.825,46.45)  48.35 (48.625, 47.85)
25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)
25 4 13.4 (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)
25 5 2.725 (2.8, 2.625) 2.775 (3.075, 2.7) 2.575 (2.6, 2.55)
50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)
50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)
50 3 34.05 (34.05, 32.8) 34.2 (34.3, 33.9) 33.75 (33.75, 33.6)
50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)
50 5 2.75 (2.9, 2.5) 3.15 (3.4, 3.0) 14.3 (14.55, 12.8)
75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)
75 2 46.725 (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)
75 3 34.05 (34.05, 30.9) 34.2 (34.425, 33.675) 34.05 (34.05, 33.825)
75 4 13.35 (13.8,12.975)  13.875 (141, 13.125) 16.95 (17.325, 16.5)
75 5 2.775 (3.375, 2.4) 3.15 (3.525, 2.925) 14475 (15.075, 14.25)
100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)
100 2 46.7 (52.5, 46.3) 47.1 (47.7, 46.3) 53.4 (53.8, 52.1)
100 3 34.1 (34.1, 29.4) 34.2 (34.5, 33.4) 49.1 (50.8, 48.8)
100 4 13.8 (14.7, 13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)
100 5 2.9 (4.2, 2.3) 3.4 (3.8, 3.2) 13.8 (15.7, 12.9)

Table 2: Estimated breakpoints and their 95% confidence intervals (in Ma) where the number of breakpoints is fixed
to 5, and all values are rounded to three decimals. The table shows estimates for each method across bin sizes 5, 10,

25, 50, 75, and 100 kyr.
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B.3 Estimated parameters: 5 breakpoints and 25 kyr binned data

Mean Fixed AR AR

Parameter Estimate SE Estimate SE Estimate SE
e 0.418 0.051 0.069 0.008 -0.001 0.026
2 -0.256 0.040 -0.043 0.007 -0.108 0.015
c3 0.911 0.072 0.153 0.013 0.028 0.007
ca 2.247 0.017 0.373 0.031 0.660 0.061
cs 3.119 0.027 0.519 0.043 0.421 0.073
6 4.140 0.051 0.698 0.057 2.423 0.326
) X X 0.833 0.014 X X
1 X X x 0.990 0.054
©2 X X X X 0.631 0.037
©3 X X X X 0.970 0.008
P4 X X X X 0.706 0.027
©s X X X X 0.865 0.024
©6 X X X X 0.419 0.081
o} 0.237 X 0.095 x 0.106 x
o2 0.255 X 0.154 X 0.140 X
o3 0.347 X 0.112 X 0.107 X
ol 0.210 X 0.141 X 0.140 X
of 0.208 x 0.111 x 0.116 X
o¢ 0.351 x 0.340 x 0.315 X

Table 3: Estimated parameters and their corresponding standard errors (SE) for each model specification. Parameters
absent in a given model specification are denoted by x. The number of breakpoints is set to 5, and the parameters

are estimated with a binning frequency of 25 kyr and h = 2.5 Myr. All values are rounded to three decimals.

B.4 The number of breakpoints selected by information criteria

Bin size Mean Fixed AR AR
BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5
10 17 17 14 7 14 3
25 17 14 12 6 8 3
50 17 14 10 0 7 0
75 17 14 6 0 5 0
100 17 12 6 0 5 0

Table 4: The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies

considered. The minimum state length is set to A = 2.5 Myr and the maximum number of breakpoints is 26.
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C Simulation study

C.1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by Bai and Perron (1998, 2003) can be used to
accurately estimate the number and timing of breakpoints in a state-wise non-stationary time series. We
conduct 1000 simulations for each data-generating process (DGP) with a sample size of 500. All the DGPs

considered have the following form,

ye=cit+ o1y +en g KEN(0,0%)  for t <T)2
Yo = C2 + P2yr—1 + €1, &y RS (07 02) for t > T/2. (8)

Hence, we consider a single breakpoint in the middle of the sample interval, namely at t = 250. We examine

eight DGPs, each specified and described in Table 5.

DGP o c1 c2 ©1 w2 Description
1 1 0.1 0.2 1 1 Small break in the drift term of a RW
2 1 0.1 1 1 1 Large break in the drift term of a RW
3 1 0.1 1 0.95 0.95 Large break in the intercept and a fixed AR-coefficient
4 1 0.1 1 0.95 1 Break in the intercept and small break in the AR-coefficient
5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient
6 1 1 1 1 1 RW with a drift without a breakpoint
7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance
8 1 0.1 1 0.5 0.5  Large break in the intercept and a low fixed AR~coefficient

Table 5: Data-generating processes for the simulation study and short descriptions. RW: random walk.

The DGPs range from random walk models with a break in the drift term to models with breaks in both
the intercept and the AR coefficient. For comparison, we include a random walk without breakpoints as the
sixth model. For each of the DGPs, we are interested in the performance of the methodology by Bai and
Perron (1998, 2003) in estimating the breakpoint and confidence intervals. The model specifications from
Section 2.3 are estimated on the data generated by the DGPs, and we use the implementation outlined in
Section 2.4. We use the R-package mbreaks by Nguyen et al. (2023), and we impose a single breakpoint in
the estimation. The left and right panels of Figs. 13 through 20 display realizations of the DGP and density
plots of the estimated breakpoints for each of the models, respectively. The results are summarized in Table
6, which provides the mean of the estimated breakpoints, and medians of the lower and upper boundaries

of the estimated 95% Cls are tabulated along with their coverage rates for each model and DGP.
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DGP Mean Fixed AR AR
BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

333 -282 330 92% 249 246 253 97.8% 249 246 253 96%
249 237 264 95.1% 248 236 263 95.2% 248 236 263 94.5%

1 301 174 655 57.1% 251 216 336 43.4% 290 240 316 22.7%
2 333 -386 332 95.4% 249 237 262 93% 249 236 256 77.2%
3 263 253 284 41.4% 256 239 260 89.9% 251 241 260 85.9%
4 340 -190 340 97.5% 249 239 260 95.8% 249 238 250 65.8%
5 340 -114 340 97.1% 250 239 258 97% 250 241 250 72.9%
6 249  -3325 3976 X 253 142 371 X 254 202 312 X

7

8

Table 6: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence
intervals, along with the coverage rates for each model specification and DGP. DGP 6 is simulated without a

breakpoint, so the coverage rate is irrelevant and indicated by Xx.

In the first DGP, a random walk with a small drift term break, we observe that the mean of the
estimated breakpoints is later than the true breakpoint in all model specifications. Additionally, the density
plots exhibit asymmetry around the true breakpoint. This is expected due to the low magnitude of the
break in the drift term, which creates a subtle change in the overall stochastic trend, making accurate
breakpoint detection difficult. In the second DGP with a larger drift term break, the estimated breakpoints
exhibit a narrower and more bell-shaped density. The mean estimated breakpoints for the Fixed AR and
AR models slightly precede the true breakpoint. However, the Mean model performs poorly, with the mean
of the estimated breakpoints far from the true breakpoint.

In the third DGP, both the Fixed AR and AR models produce mean estimated breakpoints slightly
later than the true breakpoint. The Mean model exhibits better performance in this DGP than in the
second DGP. The fourth DGP has a break in the intercept and the AR-coefficient from 0.95 to 1, resulting
in a state-wise non-stationary model. This change leads to breakpoint estimates very close to the true
breakpoint, except in the Mean model. A similar outcome is observed in the fifth DGP, which features a
larger increase in the AR-coefficient. In the sixth DGP, which is defined without any breakpoints, the Mean
model estimates breakpoints near the midpoint of the sample period, while the other two specifications yield
inconclusive results. In the seventh DGP, the AR and Fixed AR models produce estimates close to the true
breakpoint. However, the Mean model continues to produce breakpoint estimates far from the true value.
Examining the eighth DGP, the three models perform almost equally well.

Overall, the Fixed AR and AR models tend to perform well in non-stationary scenarios, estimating
breakpoints close to the true breakpoints. The methodology, however, appears to struggle with accurately
estimating the true breakpoint in cases of minor changes between states and large error term variance. In
contrast, the Mean model does not perform well in DGPs featuring gradual changes, aligning with theoretical
expectations as detailed in Bai and Perron (2003).

The coverage rate of a CI is the proportion of times the CI covers the true breakpoint, here at ¢ = 250.
We find that the CIs of the Mean model are generally very wide and have varying coverage. In the Fixed
AR and AR models, the Cls are typically narrower. The coverage rates are best in the DGPs with large
differences between the states as seen in DGPs 4, 5, 7 and 8 using the Fixed AR model specification, which
is in line with the findings of Bai and Perron (2003). For the AR model, the coverage rates are only close
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to the desired 95% in the seventh and eighth DGP, indicating that the Cls are inadequate in most of the
DGPs considered.

DGP Mean Fixed AR AR
BIC LWZ KT BIC LWZ KT BIC LWz KT
1 3.0(0%) 3.0(0%) 3.0 (0%) 0.2(15%) 0.0(0%) 3.0(0%) 0.1(6%) 0.0 (0%) 0.0 (3%)
2 3.0 (0%) 3.0(0%) 3.0(0%) 1.0(97%) 0.8 (82%) 3.0 (0%) 1.0 (94%) 0.5 (46%) 1.0 (93%)
329 (0%) 2.7 (4%) 3.0 (0%) 1.0 (94%) 0.2 (16%) 2.9 (0%) 0.9 (85%) 0.0 (0%) 0.7 (70%)
4 3.0 (0%) 3.0(0%) 3.0(0%) 1.0(98%) 1.0(98%) 2.8 (0%) 1.0 (99%) 0.9 (92%) 1.0 (99%)
5 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (97%) 2.7 (0%) 1.0 (99%) 1.0 (100%) 1.0 (99%)
6 3.0 (0%) 3.0(0%) 3.00%) 0.0(98%) 0.0(100%) 3.0 (0%) 0.0 (100%) 0.0 (100%) 0.0 (100%)
7 30 (0%) 3.0((0%) 3.0(0%) 1.0(99%) 1.0 (100%) 3.0 (0%) 1.0 (98%) 1.0 (100%) 1.0 (98%)
8 1.5 (63%) 1.0 (98%) 1.3 (72%) 1.0 (99%) 1.0 (100%) 1.3 (73%) 1.0 (100%) 1.0 (98%) 1.0 (100%)

Table 7: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.

Table 7 shows the mean number of breakpoints estimated for each DGP and method, along with the
proportion of correctly estimated breakpoints. The difficulty in accurately estimating gradual changes using
the Mean model is also evident when estimating the number of breakpoints. This model specification leads
to overestimating the number of breakpoints in all DGPs considered except DGP 8, where it performs
well. The BIC criterion in the Fixed AR specification performs very well, with an estimated number of
breakpoints equal to the true number in most simulations in DGP 2-8. The LWZ criterion performs almost
equally well except in the third DGP, while the KT criterion vastly overestimates the number of breakpoints
in DGP 1-7. In the AR model, the information criteria all perform well in DGPs 2-8 except for the third

DGP where the LWZ criterion underestimates the number of breakpoints.
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C.2 Serially correlated error term

A possible extension of the simulation study outlined in Eq. (8) is allowing the error term to exhibit serial

correlation. We use the same DGPs as before, but generate {e;}7_; as follows,

ii.d.
=Y +O0p_1+n, m ~ (O,U%) Vt. (9)

We conduct 1000 simulations for each, with a sample size of 500. Here, we consider DGPs 2, 3, 4, 5, 7,
and 8 as outlined in Table 5 and refer to these DGPs in the serially correlated cases as models 24, 35, 4,
5s, Tg, and 8. We set ¢» = 6 = 0.5 and the standard deviation o), such that the standard deviation of e;

corresponds to the ¢ in Table 5. This is accomplished as follows,

Var (g¢) = Var (ve;—1 + 01 +m¢)
= 9? Var (er-1) + 6% Var (Nt—1) + 290 Cov (e¢—1,m:—1) + Var (n:) .
=p? Var (g;_1) + 9202 + 21&9072, + 0727,

since g;_1 and 7;—1 have zero means and E [e,1;] = ¢E [e1—1m] +0FE [memi—1] +E [nf] = J%. Given stationarity

of the process, which implies 0 = Var (;) for all ¢, we derive,

2 o 1-9?

or =0"—©15——.
n 1462+ 240
This adjustment ensures the comparability of the results between the two error term types.

In Figs. 21 through 26, we plot examples of realizations and frequency plots of the estimated breakpoints

using each of the models while imposing a single breakpoint in the estimation. The results are summarized

31



680

685

690

695

700

705

in Table 8, which provides means of the estimated breakpoints and medians of the lower and upper boundary
of the estimated confidence intervals, along with the coverage rates for each model specification and DGP.
Generally speaking, the mean of the estimated breakpoints are further from the true breakpoint and the
CIs become wider compared to the results from the corresponding DGPs without serial correlation. It is
evident that serial correlation in the error term makes it more difficult to estimate the dating of breaks.
We find that the Fixed AR and AR models perform well for DGP 7, which has a large difference between
the states and low variance. This is in line with the theoretical framework by Bai and Perron (2003), who
note that the estimated break dates are consistent even in the presence of serial correlation. The Fixed AR
model performs well in DGPs 2;, 4, and 55 where the mean of the estimated breakpoints is close to the
true breakpoint, and confidence intervals are reasonably wide with acceptable coverage rates. The results
of the AR model are less conclusive.

For the Mean and Fixed AR models, the coverage rates are generally close to the desired 95% and even
higher in some DGPs. However, the Cls are also extremely wide, reaching outside the sample window in
many DGPs. The CIs seem reasonable in the Fixed AR model for DGPs 24, 44, 55, and 74, where the
coverage rates are close to 95% and the medians of the lower and upper bounds of the Cls are not too
extreme. The CIs for the AR model are generally wider than in the version without serial correlation in
the error term. In the AR model, the coverage rates are lower than the desired 95%, but it seems that
DGPs with large breaks have higher coverage rates. The relatively poor performance is in line with the
theoretical framework by Bai and Perron (2003). The authors note that the construction of the CIs rely on
having no serial correlation in the error term if a lagged dependent variable is included as a regressor that

has coefficients that are subject to breakpoints.

DGP Mean Fixed AR AR
BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage
2 332 -1400 335 95.9% 247 188 312 95.7% 261 190 299 79.9%
3s 266 60 787 90.6% 285 -112 656 97.2% 276 156 421 77.1%

4, 340 =776 339 94.9% 252 197 301 96.9% 264 195 277 84.9%
5 342 -329 340 96.2% 256 196 266 96.4% 259 192 250 70.8%
Ts 333 -1708 329 92.3% 249 230 270 97.6% 251 230 267 92.8%
8s 250 122 370 98.3% 245 -5 492 99.8% 247 23 490 97.4%

Table 8: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence

intervals, along with the coverage rates for each model specification and DGP.

Table 9 shows the mean number of breakpoints estimated for each DGP and method, along with the
proportion of correctly estimated number. In the Mean model, all information criteria overestimate the
number of breakpoints. An important exception is the eighth DGP, where the performance is better, as
in the case without serial correlation. In the Fixed AR and AR model specifications, the LWZ criterion
generally performs well, while both the BIC and the KT criteria generally overestimate. However, the LWZ
criterion leads to underestimating the number of breakpoints in DGPs 35 and 8;. These two DGPs are
characterized by fixed AR-coefficients that are lower than one. This implies that these two processes do
not exhibit an autoregressive unit root. Hence, it seems that the LWZ criterion performs well in cases of

state-wise non-stationarity or switching between stationary and non-stationary states.

32



Compared to the findings in the DGPs without serial correlation, it is clear that the proportion of
correct estimates are lower for most DGPs and model specifications. Overall, the best performing criterion
seems to be the LWZ criterion in the Fixed AR and AR models, while the Mean model typically leads to

overestimating the number of breakpoints.

DGP Mean Fixed AR AR
BIC LWZ KT BIC LWZ KT BIC LWZ KT
2. 3.0 (0%) 3.0 (0%) 3.0(0%) 1.9 (32%) 0.9 (70%) 2.9 (0%) 1.8 (37%) 0.7 (61%) 1.9 (33%)
3s  3.0(0%) 2.8 (12%) 3.0(0%) 0.7(33%) 0.0(0%) 2.7 3%) 0.3(19%) 0.0 (0%) 0.4 (17%)
4, 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.7 (45%) 1.0 (85%) 2.8 (1%) 1.6 (51%) 0.8 (79%) 1.6 (47%)
5. 3.0 (0%) 3.0 (0%) 3.0(0%) 1.8 (5%) 1.1 (85%) 2.8 (0%) 1.7 (40%) 1.0 (92%) 1.6 (49%)
7s 3.0 (0%) 3.0(0%) 3.0(0%) 1.9 (34%) 1.1 (89%) 3.0 (0%) 1.9 (34%) 1.0 (96%) 1.9 (32%)
8 2.2 (21%) 1.2 (78%) 2.2 (23%) 0.4 (35%) 0.0 (0%) 1.9 (36%) 0.0 (4%) 0.0 (0%) 0.0 (3%)

Table 9: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.
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Figure 21: DGP 2,: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 22: DGP 3,: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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