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Abstract

This study presents a statistical time-domain approach for identifying transitions between climate states,

referred to as breakpoints, using well-established econometric tools. Our approach offers the advantage of15

constructing time-domain confidence intervals for the breakpoints, and it includes procedures to determine

how many breakpoints are present in the time series. We apply these tools to the a 67.1 million-year-

long compilation of benthic foraminiferal oxygen isotopes (δ18O), which signify global temperature and

ice volume throughout the Cenozoic. This foundational dataset is presented in Westerhold et al. (2020),

where the authors use recurrence analysis to identify five breakpoints that define six climate states. Fixing20

the number of breakpoints to five, our procedure results in breakpoint estimates that closely align with

those identified by Westerhold et al. (2020). However, by By allowing the number of breakpoints to vary, we

provide statistical justification for more than five breakpoints in the time series, which is used to characterize

Cenozoic paleoclimate and as a reference for many paleoclimate studies. This . Our method adds to our

understanding of Cenozoic climate history , in terms of the timing and rate of transitions between climate25

states, and provides a tool to assess for robustly assessing breakpoints in many other paleoclimate time

series.

1 Introduction

Understanding the transitions between climate states in Earth’s past is crucial for constraining nonlin-

ear and feedback dynamics of our climate system, and anticipating potential climate system responses to30

anthropogenic warming. The Cenozoic Era, spanning from 66 million years ago (Ma) to today, is partic-

ularly informative in this regard, as it is well-studied and it well studied and includes major shifts from

hothouse climates with temperatures 10◦C warmer than today to the onset of permanent glaciations at
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both poles (Zachos et al., 2001; Hansen et al., 2013). These transitions, or breakpoints, reflect large-scale

changes in the climate system, involving shifts in the carbon cycle, ocean circulation, ice volume, and more35

(Zachos et al., 2008)(Zachos et al., 2008; Mudelsee et al., 2014). As emphasized by Tierney et al. (2020),

paleoclimate records are essential for assessing climate sensitivity and evaluating climate models under

warmer-than-present conditions. Evidence suggests that the sensitivity of the climate system to external

forcings may depend on the climate state (Caballero and Huber, 2013), and that projected future climates

may increasingly resemble early Cenozoic conditions under continued emissions (Burke et al., 2018; Steffen40

et al., 2018). These insights underscore the importance of identifying when past climate state transitions

occurred, how many there were, and how certain we are about their timing. Addressing these questions is

crucial for understanding the dynamics of long-term climate variability, and recent work has increasingly

emphasized transition detection as a key task in climate data analysis (e.g., Marwan et al., 2021; Trauth,

2025).45

A widely used approach to identify breakpoints in paleoclimate records is recurrence analysis, which

identifies when a system returns to similar states over time, helping to detect changes in the underlying

dynamics of time series (Marwan et al., 2007; Marwan, 2023)(Marwan et al., 2007; Marwan, 2023; see also

Fischer et al., 2024; Liang et al., 2025 for recent applications in paleoclimate research). Westerhold et al.

(2020) apply this technique to a stacked record of δ18O from benthic foraminifera spanning from 67.1 Ma to50

the present, covering the Cenozoic Era. Based on the recurrence structure of the record, the authors identify

four major climate states − Hothouse, Warmhouse, Coolhouse, and Icehouse − which are further divided

into six states through time. To conduct this analysis, they resampled the data at an interval of 5 thousand

years (kyr) and used both un-detrended raw and detrended versions. Recurrence analysis provides valuable

insights into the recurrence structure and shifts in a time series, and recurrence quantification analysis offers55

complementary summary measures, such as recurrence rate and determinism. However, the identification of

transitions remains largely based on visual interpretation of recurrence plots, and the method lacks formal

procedures for selecting determining the number and statistical certainty of the transitions.

Several methodological extensions have sought to address these limitations. For instance, Goswami et al.

(2018) propose a breakpoint detection method using a probability density function sequence representation of60

the time series, which accounts for timestamping uncertainty. Bagniewski et al. (2021) combine recurrence

analysis with Kolmogorov–Smirnov tests to statistically assess abrupt shifts in recurrence distributions.

Rousseau et al. (2023) apply this method to the Westerhold et al. (2020) data, identifying a similar set of

transitions along with several additional ones. As discussed by Marwan et al. (2021), there are several other

approaches to identify transitions in paleoclimate time series. Among these, Livina et al. (2010) developed a65

statistical method of potential analysis and applied it to detect the number of states in an ice core record. In

a Bayesian framework, Schütz and Holschneider (2011) develop a method for detecting changes in trend, and

Ruggieri (2013) introduce a Bayesian algorithm for identifying multiple breakpoints. Reviews of breakpoint

detection techniques in more general climate time series are provided by Reeves et al. (2007) and Lund and

Shi (2023).70

Recently, Trauth et al. (2024) explored a suite of methods, including recurrence analysis, changepoint

detection, and nonlinear curve fitting (e.g., sigmoid and ramp functions), to identify climate transitions in a
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paleoclimate record. They apply a changepoint detection algorithm by Killick et al. (2012), which efficiently

detects multiple changepoints in the mean, variance, and trend by minimizing a cost function that balances

goodness-of-fit with a penalty for additional changes. This approach enables the detection of shifts in the75

mean, variance, and trend. The sigmoid functions are characterized by their S-shaped curves and allow for

modeling gradual transitions (Crowley and Hyde, 2008; Trauth et al., 2021). In contrast, the ramp functions

consist of two horizontal segments connected by a linear trend and represent gradual transitions bounded

by abrupt changes in slope, which can be fitted using regression techniques. This method was proposed by

Mudelsee (2000) and has been applied to various paleoclimate records (e.g., Fleitmann et al., 2003; Mudelsee80

and Raymo, 2005). Furthermore, Mudelsee et al. (2014) apply this ramp-function method, among others, to

detect major climate transitions in the Cenozoic. For further details, we refer to the textbook treatments in

Mudelsee (2014) and Trauth (2025). While these approaches are widely used, they do not typically include

tools for selecting the number of transitions or for assessing the uncertainty in their timing. In this study,

we apply an alternative method that addresses both aspects.85

We Specifically, we employ a statistical approach based on least-squares that allows the researcher to

assess the uncertainty in dating breakpointsthrough confidence intervals. Information criteria give guidance

on the number of breakpointsto estimate breakpoints, and showcase its use with the benthic δ18O record from

Westerhold et al. (2020). The approach is an econometric time-domain framework (Bai and Perron, 1998, 2003)

method by Bai and Perron (1998, 2003), which was originally applied to detect shifts in real interest rates90

data in economics (Garcia and Perron, 1996). We henceforth refer to this as the Bai-Perron framework.

This framework While well-established in the econometrics literature, this framework has not been applied

to paleoclimate data, where it has a great potential for providing a rigorous statistical foundation for the

estimation of breakpoints. In particular, it offers the advantages of constructing confidence intervals for

the timestamps of the breakpoints, providing a measure of estimation uncertainty, as well as procedures for95

selecting the number of breakpoints in the time seriesthat provides the best fit. These additional measures

are crucial for understanding the certainty, significance, and timing of climate transition periods in the past.

The Bai-Perron framework offers flexibility in modeling both abrupt and gradual transitions. We demon-

strate its application and benefits by using the benthic δ18O record data from Westerhold et al. (2020),

though the framework is broadly applicable to a wide range of paleoclimate time series.100

2 Methodology

2.1 Data

We use the dataset provided by Westerhold et al. (2020), which compiles measurements of oxygen isotope

ratios from benthic foraminifera across 34 different studies and 14 ocean drilling locations into a single stack

covering the Cenozoic. Our study focuses on the benthic δ18O record, specifically the correlation-corrected105

values of benthic δ18O.1

Benthic δ18O measures the deviations in the ratio of the stable oxygen isotopes 18O to 16O in the shells

1These are the values in column “benthic d18O VPDB Corr”, found in Sheet 33 of the file aba6853 tables s8 s34.xlsx

provided in the Supplementary Materials of Westerhold et al. (2020).
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of benthic foraminifera relative to the Vienna Pee Dee Belemnite (VPDB) standard. The weight difference

between the ratio of heavy to light stable oxygen isotopes is a function of deep ocean temperatures (Epstein

et al., 1951; Shackleton, 1967; Lisiecki and Raymo, 2005) and of the δ18O of the seawater in which the110

foraminifera grow their shells, which in turn is a function of ice volume and salinity (e.g., Waelbroeck et al.,

2002; Oerlemans, 2004). Thus, the benthic stack is an important reference record for global climate history

across the Cenozoic. Hereafter, we refer to benthic δ18O simply as δ18O.

The δ18O compilation by Westerhold et al. (2020) spans 67.10113 Ma to 564 years before present (Fig. 1).

It Using recurrence analysis, Westerhold et al. (2020) identify six climate states, and we refer to these as115

Warmhouse I (66-56 Ma), Hothouse (56-47 Ma), Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma),

Coolhouse II (13.9-3.3 Ma), and Icehouse (3.3 Ma-present). Summary statistics for the full record and for

each climate state identified by Westerhold et al. (2020) are reported in Appendix B.1.

The dataset contains 24,333 entries, of which 74 are missing in the published version. After excluding

these, we retain 24,259 data points, ordered from oldest to most recent. The δ18O record is irregularly spaced120

in time, as is typical for paleoclimate proxy data, and sampling density increases through time, with an

average resolutionof approximately 2.8 kyr . Its average resolution is 2.77 kyr, ranging from 7.28 kyr during

Warmhouse II, which has the lowest resolution, to 0.88 kyr during the Icehouse, which has the highest. The

longest gap in the data spans about 115.4 kyr and 533 gaps exceed 10 kyr. Additionally, 591 time stamps con-

tain multiple δ18O values, with up to four observations recorded at the same time. Westerhold et al. (2020)125

provide an age model, which has an accuracy ranging from ±100 The δ18O stack includes an estimated age

uncertainty of ±100 kyr in the early Cenozoic to ±10 kyr in the latest Cenozoicand ±10 kyr in more recent

periods, primarily due to uncertainties in orbital tuning and sedimentation rates (Westerhold et al., 2020)

. We do not explicitly account for age model uncertainty in this study, but we as it is small relative to the

duration of the states we estimate. We therefore expect our main findings to be robust and we will return130

to this issue in the results section. Using recurrence analysis, Westerhold et al. (2020) identify six climate

states, and we refer to these as Warmhouse I (66-56 Ma), Hothouse (56-47 Ma), Warmhouse II (47-34 Ma),

Coolhouse I (34-13.9 Ma), Coolhouse II (13.9-3.3 Ma), and Icehouse (3.3 Ma-present). Summary statistics

for the full record and for each climate state identified by Westerhold et al. (2020) are reported in Appendix

B.1.135
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Figure 1: δ18O data from Westerhold et al. (2020). The order of the vertical axis is reversed, following standard

practice. The vertical dashed lines show transitions between the climate states by Westerhold et al. (2020). The

horizontal axis represents time, measured in millions of years before present. Epoch abbreviations: Cret., Cretaceous;

Plio., Pliocene; Pleist., Pleistocene.

2.2 The Bai-Perron framework

The Bai-Perron framework is based on minimizing the sum of squared residuals while treating the break-

points as unknown parameters to be estimated (Bai and Perron, 1998, 2003). Consider a linear regression

framework for the dependent variable yt, for t = 1, . . . , T , and with m breakpoints, corresponding to m+ 1

distinct states in the sample. The general model equation is140

yt = x′tβ + z′tδj + ut, t = Tj−1 + 1, . . . , Tj , (1)

with j = 1, . . . ,m + 1. The m break dates are denoted by (T1, . . . , Tm), with the convention that T0 = 0

and Tm+1 = T , and ut is a disturbance term with mean zero and variance σ2
j . The (p × 1)-vector xt and

the (q × 1)-vector zt comprise two sets of covariate vectors, for which β is the state-independent vector of

coefficients and δj is the state-dependent vector of coefficients. Since only specific coefficients are subject

to structural breaks, this model is referred to as a partial structural change model. Moreover, we consider145

breaks in the variance of ut at the break dates T1, . . . , Tm, such that σ2
i ̸= σ2

j for i ̸= j. The parameters β

and δj are estimated alongside the breakpoints but are not of primary interest here.

We initially treat the number of breakpoints, m, as known and estimate the coefficients and the break-

points using a sample of T observations of {yt, xt, zt}. The estimation method is based on least squares for

both the coefficients and the breakpoints. For each possible set of m breakpoints (T1, . . . , Tm) denoted as150

{Ti}mi=1, we obtain estimates of β and δj by minimizing the sum of squared residuals (SSR), that is,

SSR =

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt − x′tβ − z′tδj)
2
, (2)
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where β is common to all states, while δj is specific for the state j, which is the period between Tj−1 + 1

and Tj . The resulting estimated coefficients are denoted as β̂ ({Ti}mi=1) and δ̂j ({Ti}
m
i=1). These coefficients

are then used to determine the SSR associated with each set of breakpoints,

SSRT ({Ti}mi=1) ≡
m+1∑
j=1

Tj∑
t=Tj−1+1

(
yt − x′tβ̂ ({Ti}mi=1)− z′tδ̂j ({Ti}mi=1)

)2

. (3)

The estimated breakpoints are then given by(
T̂1, . . . , T̂m

)
= argmin

T1,...,Tm

SSRT ({Ti}mi=1) . (4)

The minimization is conducted over all partitions (T1, . . . , Tm) such that Tj − Tj−1 ≥ dim(zt) to ensure

that there are enough data points to estimate the parameters δj in each partition. This procedure leads to155

estimated parameters for the m breakpoints, i.e., {T̂i}mi=1, β̂ = β̂
(
{T̂i}mi=1

)
, and δ̂j = δ̂j

(
{T̂i}mi=1

)
. Since

the possible combinations of the placement of the breakpoints is finite, this optimization can be conducted

using a grid search, which can be computationally heavy, especially for many breakpoints. Bai and Perron

(2003) introduce an efficient method for determining the global minimizers.

An essential advantage of the Bai-Perron framework is that it allows for constructing confidence intervals160

for the timing of the breakpoints, something that is not available for the recurrence analysis approach

implemented in Westerhold et al. (2020). The construction of confidence intervals is based on the asymptotic

distribution of the estimated break dates. The convergence results for the construction of confidence intervals

rely on a number of assumptions (see Bai and Perron, 2003).

2.3 Model specifications165

Three distinct specifications are considered within the Bai-Perron framework, referred to as the “Mean”,

“Fixed AR”, and “AR” models, where AR refers to the autoregressive model of order one with intercept.

These are all special cases of the framework outlined in Eq. (1). The simplest among them, the Mean

model, is specified as follows,

yt = cj + ut, t = Tj−1 + 1, . . . , Tj , (5)

for j = 1, . . . ,m + 1, where cj is the state-dependent intercept and ut is an error term. This model is170

equivalent to setting xt = 0, zt = 1, and δj = cj in Eq. (1). A breakpoint in this model specification leads

to an abrupt change in the mean of the dependent variable yt.

The Fixed AR model extends the Mean model by incorporating an autoregressive term. We obtain the

model

yt = cj + φyt−1 + ut, t = Tj−1 + 1, . . . , Tj , (6)

for j = 1, . . . ,m+1, where yt−1 is the dependent variable lagged by one period, and φ is the autoregressive175

coefficient that is constant over the whole sample. In this model, the effect of a change in the coefficient cj

is more gradual, since it depends on the autoregressive dynamics. The Fixed AR model is obtained from

Eq. (1) by specifying xt = yt−1, β = φ, zt = 1, and δj = cj .
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The general AR specification also allows the autoregressive term to be state-dependent, resulting in the

AR model,180

yt = cj + φjyt−1 + ut, t = Tj−1 + 1, . . . , Tj , (7)

for j = 1, . . . ,m+1, where the autoregressive coefficient φ in Eq. (6) is now state-dependent and is denoted

by φj . This model is obtained from Eq. (1) by setting xt = 0, zt = (1, yt−1), and δj = (cj , φj). Here,

both the intercept and the autoregressive coefficient are state-dependent. Thus, the three specifications are

nested: The AR model is the most general, the Fixed AR model is nested in the AR model by setting

φ1 = φ2 = . . . = φm+1 = φ, and the Mean model is nested in the Fixed AR model by setting φ = 0.185

Figure 2 illustrates how the models capture breakpoints. The Mean model is designed to detect abrupt

breaks in the mean of a time series, while the Fixed AR model is for smoother breaks. The AR model is

more flexible, allowing for both relatively gradual (e.g., T1) and abrupt (e.g., T2) breakpoints compared to

the Fixed AR model.
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Figure 2: Simulated time series using the three model specifications, each with breakpoints T1 = 25 and T2 = 75,

and total sample size T = 100. For the Mean model, we set c1 = 1.0, c2 = 1.2, and c3 = 0.8. In the Fixed AR

model, the parameters are φ = 0.7, c1 = 0.30, c2 = 0.36, and c3 = 0.24, chosen to yield comparable state-wise

means. Likewise in the AR model, we set φ1 = 0.7, φ2 = 0.9, φ3 = 0.4, c1 = 0.30, c2 = 0.12, and c3 = 0.48. In all

specifications, we set ut = 0 for all t.

2.4 Implementation190

The Bai-Perron framework is implemented using mbreaksmbreaks, an R package specifically designed for

this purpose (Nguyen et al., 2023). For all model specifications, we set the minimum length of a state, h,

to 2.5 million years (Myr), facilitating the estimation of shorter climate states. Also, we let the variance of

the error term, denoted as σ2
j , be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation is permitted in the regression residuals.195

However, the time series of δ18O is likely subject to both autocorrelation and heteroscedasticity, as docu-

mented in ice core records (Davidson et al., 2015; Keyes et al., 2023). Autocorrelation occurs when current

values correlate with past values, which is common in paleoclimate data due to long-term persistence in

climate dynamics (Mudelsee et al., 2014). Since only up to one lag is included in the covariates in the model
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specifications in this paper, residual serial correlation is likely to remain. Heteroscedasticity, or time-varying200

error variance, is already partially addressed in the model specifications through state-dependent variance.

However, additional heteroscedasticity may arise within the estimated states due to factors such as orbital

forcing and changes in ice sheet extent. Addressing both autocorrelation and heteroscedasticity is essential

to ensure unbiased parameter estimates and valid confidence intervals for the estimated breakpoints.

To account for these issues, we use the autocorrelation and heteroscedasticity consistent (HAC) co-205

variance matrix estimator with prewhitening in the Bai-Perron framework. The prewhitening procedure,

proposed by Andrews and Monahan (1992), entails applying an autoregressive model with one lag to ztût,

where ût denotes the residuals. The HAC covariance matrix estimator by Andrews (1991) is then con-

structed based on the filtered series using the quadratic spectral kernel with bandwidth selected by an AR

of order one approximation. This approach is used for all model specifications and is straightforward to210

implement using the R package (Nguyen et al., 2023).

2.5 Constant data frequency

To conduct breakpoint estimation using the Bai-Perron framework, we need a regularly sampled time series.

We use a binning approach to construct a dataset with evenly spaced observations, which is common practice

in the analysis of paleoclimate data; see for instance Boettner et al. (2021). We divide the dataset into215

bins of fixed time intervals and compute the mean of the observations within each bin. In the case of gaps

in the binned data, we use the values immediately preceding and succeeding the section with missing data

to perform linear interpolation. We consider six different bin sizes, namely 5, 10, 25, 50, 75, and 100 kyr

(Fig. 3). Summary statistics for the full sample length and for each climate state identified by Westerhold

et al. (2020) for all binning frequencies are provided in Appendix B.1.220

Data binned at higher frequencies follow the variations in the dataset more closely, whereas data binned

at lower frequencies tend to be smoother (Fig. 3). In case of large gaps, a high binning frequency results in

linear interpolation between observations (Fig. 3 bottom left). This effect does not occur for periods with

many observations, where low binning frequencies capture only a small part of the variation in the original

data (Fig. 3 bottom right). Binning offers a simple approach to handle the uneven frequency of the dataset.225

However, it leads to data loss at lower binning frequencies and to the introduction of artificial data points

resulting from linear interpolation at higher binning frequencies. The selection of binning frequencies can

therefore alter the properties of the time series, potentially misrepresenting the dynamics of the original

data.
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Figure 3: Top panel: Benthic foraminiferal δ18O data from Westerhold et al. (2020), along with 5 and 100 kyr-

binned versions. The record spans 67.10–0.0006 Ma and is based on cores from 14 ocean drilling sites. The vertical

dashed lines show transitions between the climate states by Westerhold et al. (2020). Bottom left: 36–35 Ma with

an average resolution of approximately 17.2 kyr. Bottom right: 3–2 Ma with an average resolution of approximately

0.9 kyr. Epoch abbreviations: Cret., Cretaceous; Plio., Pliocene; Pleist., Pleistocene. Top panel: The original data

and the 5 and 100 kyr binned data. Bottom left panel: The period 36-35 Ma. Bottom right panel: The period 3-2

Ma.

The Bai-Perron framework is developed for estimating and testing for multiple breakpoints in linear230

regression models where the regressors are non-trending or state-wise stationary (Bai and Perron, 2003). A

time series is considered stationary if its statistical properties, such as mean and variance, do not change

over time. The δ18O data appears non-stationary over most of the record, even within climate states

found by Westerhold et al. (2020). As pointed out by Kejriwal et al. (2013), if the time series maintains

its stationarity properties over the respective states, the methods developed for stationary data are still235

applicable for these cases. However, if the process alternates between stationary and non-stationary states,

the theoretical properties of the methodology are unknown.

To investigate whether the time series is non-stationary, we apply the Augmented Dickey-Fuller (ADF)
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test (Dickey and Fuller, 1979), with the null hypothesis of non-stationarity. For the entire 25 kyr binned

kyr-binned data sample, the ADF test does not reject the null hypothesis at the 1% significance level,240

indicating non-stationarity. However, when examining the binned data for each climate state identified

by Westerhold et al. (2020) separately, the ADF test rejects the null hypothesis at the 1% significance

level for the Warmhouse II, Coolhouse I, and Icehouse states. These tests indicate the presence of state-

wise non-stationarity, and we therefore need to examine whether the Bai-Perron framework is applicable

to data-generating processes that are state-wise non-stationary or alternating between stationary and non-245

stationary states. For this purpose, we conduct a large simulation study designed to verify that the Bai-

Perron framework works as intended when applied to these types of data-generating processes using the

three model specifications. The study is conducted for both independent and identically distributed (i.i.d.)

error terms and serially correlated error terms in Appendices (App. C.1 and C.2, respectively). The results

show that the procedure works well with non-stationarity and is robust to processes with one stationary250

and one non-stationary state for Fixed AR and AR models. However, the Mean model performs poorly

when the data-generating process exhibits high persistence. In the case of serial correlation, the results are

less conclusive, but if the states are sufficiently different, the methodology still appears effective. The study

also reveals that the coverage rates for confidence intervals are generally adequate for the Fixed AR model,

while the confidence intervals of the AR model are too narrow in many cases. Overall, the Fixed AR model255

performs best across the data-generating processes considered.

3 Results

3.1 Setting the Fixed number of breakpointsto five

As an initial step, we fix the number of breakpoints to five, which is the number used in the recurrence anal-

ysis presented in Westerhold et al. (2020). We estimate the breakpoints and corresponding 95% confidence260

intervals for each of the binning frequencies, 5, 10, 25, 50, 75, and 100 kyr, using Mean, Fixed AR, and AR

models for each (App. B.2 ; and Fig. 4). The estimated confidence intervals around the breakpoints are

often asymmetrical. Bai and Perron (2003) advocate the use of asymmetric confidence intervals, as these

provide better coverage rates when the data are non-stationary.

For the Mean model, the estimated breakpoints generally remain at the same dates throughout as the265

binned data frequency decreases step-by-step from 5 kyr to 100 kyr (Fig. 4.a). The width of the 95%

confidence intervals increases as the frequency decreases, which can be attributed to the resultant decrease

in the number of binned observations available for estimation at the lower frequencies. All the breakpoints

align with those identified by recurrence analysis in Westerhold et al. (2020). A similar pattern of alignment

is observed in the Fixed AR model, albeit with tighter confidence intervals (Fig. 4.b). The AR model exhibits270

more sensitivity to the frequency of the binned data (Fig. 4.c). At higher frequencies, the breakpoints tend to

appear in the more recent parts of the sample. However, as the frequency decreases further, the breakpoints

are estimated to be in the older parts of the sample period.

For the results using 25 kyr, we find that the estimated breakpoints from the three model specifications

align closely with each other and nearly perfectly with those identified by Westerhold et al. (2020). The275

three model specifications estimated using the 25 kyr binned kyr-binned data yield parameter estimates
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that differ across states, reflecting differences in mean and autoregressive dynamics (App. B.3).
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(b) Fixed AR model
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(c) AR model

Figure 4: A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100 kyr

from top to bottom, fixing the number of breakpoints to five for each model specification. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020) (blue dots) and their transitions (vertical dashed lines).

As a robustness check, we re-estimate the model specifications for five breakpoints using the 25 kyr

binned kyr-binned data reversed with respect to the time dimension, so that the time series is ordered

from present to past rather than past to present (App. A.1). We find that the results of the Mean and280

Fixed AR models are robust to the ordering of the time axis, with almost unchanged estimated breakpoints.
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Conversely, the AR model leads to estimated breakpoints in the more recent part of the sample, resulting

in breakpoints at 16.9 Ma and 9.7 Ma, which differ from those estimated using the same model and binning

frequency with time running forward (Fig. 4).

In summary, changing the binning frequency mainly affects the width of the confidence intervals, while285

the estimated breakpoint timing remains largely unchanged for both the Mean and Fixed AR models. In

contrast, the AR model is more sensitive to resolution and the direction of the time frame. As detailed in the

simulation study (App. C), the Mean model fails to accurately detect breakpoints in highly persistent data-

generating processes. Consequently, in what follows, we focus on the Fixed AR model for the estimation of

breakpoints in the δ18O time series. Among the binning frequencies, we proceed with 10 kyr and 25 kyr,290

as these yield the most consistent results across model specifications and strike a good balance between

temporal resolution and signal quality. For the 25 kyr bin width, the mean number of observations per bin

is approximately 9, and 3.6 for 10 kyr. However, these numbers vary across the sample, being only 3.5 and

1.4, respectively, in the Warmhouse II and increasing to 28.3 and 11.3, respectively, in the Icehouse period.

This highlights the importance of accounting for varying sampling resolution when selecting bin widths. For295

applications of this framework to other paleoclimate records, we recommend seeking a similar balance.

3.2 Selecting the Flexible number of breakpoints

We We now relax the assumption of a pre-specified number of breakpoints and use information criteria to

guide the choice of the number of breakpoints. These criteria are model selection tools that balance goodness

of fit with model complexity, helping to avoid overfitting. We initially consider the following three criteria:300

the Bayesian Information Criterion (BIC) by BIC, the modified Schwarz Information Criterion (LWZ) by

Liu et al. (1997), and the modified BIC (KT) by Kurozumi and Tuvaandorj (2011). For all criteria, the

preferred number of breakpoints is determined as the number of breakpoints that minimizes the information

criterion in question. A few paleoclimate studies use information criteria for model selection, for example,

Valler et al. (2024) show it can be beneficial.305

Bai and Perron (2006) note that the BIC and LWZ criteria perform well in the absence of serial cor-

relation, but both lead to overestimation of the number of breakpoints in case of serial correlation in the

error term. In simulation studies(Appendices C.1 and C.2), we find that the KT information criterion

performs poorly, and hence, we exclude it from the subsequent analysis . (App. C.1 and C.2). We also

find that the number of breakpoints determined using the Mean model specification is generally too large310

when employing the information criteria. For the Fixed AR and AR models, the BIC and LWZ criteria

typically perform well, especially in data-generating processes with a large break. With serial correlation

in the error term, the BIC criterion tends to slightly overestimate the number of breakpoints, whereas the

LWZ criterion generally performs well in the Fixed AR and AR model specifications.

We use the BIC and LWZ information criteria for each model specification and binning frequency to315

determine the number of breakpoints, and set the minimum state length to h = 2.5 Myr (App. B.4). For

our preferred specification, the Fixed AR model with 25 kyr binning frequency, the LWZ and BIC criteria

suggests six and 12 breakpoints, respectively. For a 10 kyr binning frequency, the estimated number of

breakpoints are seven and 14, respectively. Thus, the information criteria indicate that the number of

12



distinct climate states in the δ18O record is larger than the five suggested in Westerhold et al. (2020).320
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Figure 5: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 25 kyr

binned kyr-binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated

breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data

from Westerhold et al. (2020) and their transitions.

To further investigate the potential for a higher number of breakpoints, we consider the estimation of

up to 15 breakpoints with the minimum length of a state set of h = 1 Myr. This analysis is conducted with

the Fixed AR model and 25 kyr binned kyr-binned data (Fig. 5). These findings show that the breakpoints

identified by Westerhold et al. (2020) are preserved in estimations which include five or more breakpoints.

Furthermore, the additional breakpoints are, in most cases, also very stable and consistently reappear across325

specifications with a higher number of breakpoints. The same analysis conducted using the using 10 kyr

binned kyr-binned data led to nearly identical breakpoint estimates(App. A.2). Comparable findings are

presented in Appendices A.3 and A.4, which detail the results of estimating one to 15 breakpoints using the

, while the Mean and AR models , respectively, with 25 kyr binned data . kyr-binned data yielded estimates

that align in certain cases (App. A.2, A.3, and A.4).330
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Figure 6: A comparison of estimated breakpoints using the Fixed AR model for one and two breakpoints on 5

kyr-binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020) .
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The final estimated breakpoint is placed at 1.425 Ma for the Fixed AR model, just below the upper

boundary of the detection window at 1 Ma, imposed by the minimum state length of 1 Myr. Additionally,

the estimated breakpoint is located near the midpoint of a linear trend in the time series from approximately

3.3 Ma to the present, suggesting it may be driven by the trend rather than representing a break in the

time series (cf. Fig. 5). To investigate this further, we re-estimate the breakpoints for the Fixed AR model,335

focusing solely on the Icehouse period, with the minimum length of a state set to 250 kyr and 5 kyr binning,

leveraging the denser sampling in this part of the record. For the Fixed AR model, the LWZ criterion

suggests one breakpoint, while the BIC indicates two. With one breakpoint, the estimate is 1.355 Ma,

and with two, the estimated breakpoints are 2.54 Ma and 0.95 Ma (Fig. 6). Estimating more than two

breakpoints leads to overlap between the estimated confidence intervals, reducing the interpretability, and340

these models are therefore excluded. The results are comparable for the Mean and AR models (Appendices

App. A.5 and A.6).

3.3 Limitations of the Bai–Perron framework

Although the Bai–Perron framework provides a flexible and well-established method for detecting breaks,

it does have has some limitations. The First, the approach assumes piecewise linearity and white noise345

residuals (Bai and Perron, 2003). However, in the estimations conducted in this study, the residuals are

not white noise, indicating that some dynamics are left unexplained. The simulation results show that the

Bai-Perron framework nevertheless performs well even when residuals exhibit complex dynamics (App. C).

Confidence intervals should still be interpreted with caution. The Second, the method is also computation-

ally demanding for high-resolution data, although it remains possible to run on personal computers.350

Another limitation is that Thirdly, the method does not account for age model uncertainty, which is

important for interpreting the timing and significance of time series analytical output (Marwan et al.,

2021). In the Westerhold et al. (2020) data, dating uncertainty ranges from about ±10 kyr in the younger

parts to ±100 kyr in the older parts. This can affect the timing of transitions breakpoints and lead to

differences when comparing across records (Franke and Donner, 2019). Previous work has shown that age-355

depth models often underestimate the true uncertainty in the chronology, which would amplify these effects

(Telford et al., 2004). While some progress has been made in including age uncertainty into recurrence

analyses (Goswami et al., 2018), incorporating it into the Bai-Perron framework remains a challenge. One

could however consider the use of age ensembles which are multiple plausible realizations of the time axis

to assess robustness of the estimated breakpoints. Fully integrating age uncertainty into the estimation360

process, for example by modeling timestamps as random variables, would require further methodological

development. However, since the age model uncertainties reported by Westerhold et al. (2020) are small

compared to the duration of the estimated climate states, we expect our main findings to be robust.

In addition to age uncertainty, another direction for methodological advancement is developing a break-

point detection framework for irregularly spaced time series. This would obviate the need for aggregating365

the data to fixed time intervals, preserving more of the original record. Steps in this direction have already

been made in concurrent research (Bennedsen et al., 2024), where the full δ18O and δ13C stacks (Westerhold

et al., 2020) are analyzed while taking the climate state transitions as given and addressing measurement
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errors.

4 Discussion370

Our results demonstrate that the Bai-Perron time-domain framework is a flexible and effective tool for de-

tecting breakpoints in paleoclimate time series. When fixing the number of breakpoints to fiveand binning

the data at 25 kyr intervals, all model specifications lead to breakpoint estimates that closely match those

identified by Westerhold et al. (2020), providing strong statistical support for their climate-state classifica-

tion. This not only corroborates their results obtained through recurrence analysis, but also lends credibility375

to the use of this the econometric tool for analyzing paleoclimate records, introduced in this paper.

Moreover, information criteria point to a higher number of transitions than previously reported (Wester-

hold et al., 2020), suggesting the potential for a more detailed classification of Cenozoic climate variability.

To explore this, we estimate between one and 15 breakpoints using the Fixed AR model (Fig. 5). Allowing

for six breakpoints , we get an additional breakpoint in Warmhouse II at 40.075 Mathat remains for higher380

numbers of breakpoints. This breakpoint Using the BIC, we find statistical justification for 12 breakpoints

in the time series (Tab. 1). Some of the 12 estimated breakpoints align with major transitions in benthic

δ13C (Westerhold et al., 2020), atmospheric CO2 concentration estimates (Hönisch et al., 2023), and global

sea level estimates (Miller et al., 2020) (Fig. 7). This alignment may reflect episodes of large-scale reorga-

nization in the Earth system, potentially involving coupled changes in the carbon cycle, temperature, and385

ice volume.

Breakpoint name Estimate 95% CI

BP1 61.250 (61.375, 60.525)

BP2 58.200 (58.275, 57.825)

BP3 55.975 (56.275, 55.700)

BP4 48.825 (49.000, 47.675)

BP5 46.725 (46.800, 46.475)

BP6 39.650 (39.750, 39.375)

BP7 34.025 (34.050, 33.850)

BP8 16.950 (18.175, 16.225)

BP9 13.875 (13.900, 13.675)

BP10 9.975 (10.075, 9.700)

BP11 3.400 (3.625, 3.325)

BP12 1.425 (1.850, 1.225)

Table 1: Estimated breakpoints and 95% confidence intervals (CI) in Ma for the Fixed AR model with 12 breakpoints

determined using the BIC.

Five of these breakpoints (BP3, BP5, BP7, BP9, and BP11) closely match the five major transitions

identified by Westerhold et al. (2020), each corresponding to a well-known climatic event. Specifically, BP3

aligns with the Paleocene–Eocene Thermal Maximum (PETM, 56 Ma), a short-lived but intense global

warming event (McInerney and Wing, 2011). BP5 marks the end of the Early Eocene Climate Optimum390
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(EECO, 47 Ma), a peak in long-term warmth during the early Cenozoic (Westerhold et al., 2018). BP7

captures the Eocene–Oligocene Transition (EOT, 34 Ma), when Antarctic glaciation began and global tem-

peratures declined sharply (Coxall et al., 2005; Spray et al., 2019). BP9 corresponds to the Middle Miocene

Climate Transition (MMCT, 13.9 Ma), which is associated with expansion of the Antarctic ice sheets

(Flower and Kennett, 1994). Finally, BP11 is close to the M2 glaciation event (3.3 Ma), which preceded the395

onset of sustained Northern Hemisphere glaciation in the Pleistocene (Lisiecki and Raymo, 2005).
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Figure 7: Overview of key paleoclimate proxies across the Cenozoic Era. From top to bottom: Benthic foraminiferal

δ18O (Westerhold et al., 2020), δ13C (Westerhold et al., 2020), atmospheric CO2 concentration estimates from mul-

tiple proxy records (Hönisch et al., 2023), and global sea-level estimates relative to present (Miller et al., 2020).

Breakpoints (black dots) and confidence intervals (light green bars) are estimated using the preferred 12-breakpoint

model on the δ18O record. The vertical dashed lines show the transitions found by Westerhold et al. (2020). Notable

alignments of features in the records with estimated breakpoints include the PETM (56 Ma), EOT (34 Ma), and

MMCO (17 Ma), supporting the interpretation of the breakpoints as indicators of major climate transitions.

Several of the remaining seven estimated breakpoints also coincide with known climate events. For in-

stance, BP6 aligns with the cooling following the Middle Eocene Climatic Optimum (MECO)described by

Bohaty and Zachos (2003). Allowing for seven, we identify another one in Coolhouse II around , originally

described by Bohaty and Zachos (2003), and occurs after a peak in atmospheric CO2 concentrations in-400

ferred from boron isotope records (Henehan et al., 2020) (Fig. 8). Another breakpoint, BP10, is estimated

at 9.975 Ma in the Miocene, which saw the expansion of C4 grasslands , altering and broadly coincides

with the expansion of C4 grasslands (Fig. 9), which altered the global carbon cycle and land surface with

potential downstream effects on climate (Polissar et al., 2019; Strömberg, 2011). Using the same δ18O

dataset, Rousseau et al. (2023) apply recurrence plots Notably, both of these breakpoints are also identified405
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by Rousseau et al. (2023), who applied recurrence analysis and a Kolmogorov–Smirnov test and identify

similar transitions near 40 Ma and 9.7 Ma. Allowing for eight in the Bai-Perron framework, the additional

breakpoint occurs in the Icehouse. Some of the additional breakpoints up to 15 coincide with other known

climatic events, like the to the same δ18O dataset. BP8 matches the onset of the Mid-Miocene Climatic

Optimum (MMCO)with an estimated age of , estimated at 16.95 Ma (Flower and Kennett, 1994; Zachos410

et al., 2001). BP2 aligns with the maximum in both the δ13C and sea level records at 58.03 Ma and 58.21

Ma, respectively (Fig. 7). This period has also been described by Harper et al. (2024) as the peak of the

Paleocene Carbon Isotope Maximum (PCIM).

Particularly noteworthy is the lack of breakpoints, even with 15 detections, between the Eocene–Oligocene

Transition (EOT ) EOT at 34 Ma and the onset of the MMCO around 17 Ma. This is consistent with this415

being a relatively stable period the idea that this interval is particularly stable in the Cenozoic Era, following

the establishment of the Antarctic ice sheet (Zachos et al., 2001; Mudelsee et al., 2014).
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Figure 8: Boron isotope measurements (δ11B) from multi-

ple ocean drilling sites compiled by Henehan et al. (2020)

, shown alongside δ18O values. The estimated breakpoint,

BP6 (black dot), and its confidence interval (light green

bar), align with the post-MECO cooling.
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Figure 9: C4 grassland expansion, inferred from

plant wax carbon isotopes in marine sediments

(Polissar et al., 2019), shown alongside δ18O values. The

estimated breakpoint, BP10 (black dot), and its confi-

dence interval (light green bar), align with this ecological

transition.

To explore transitions within the relatively higher-resolution Icehouse periodmore closely, we have

re-estimated breakpoints using a finer 5 kyr binning and a reduced minimum regime length of h = 250

kyr . This setup We now focus on the breakpoints estimated within the Icehouse period, which has an av-420

erage resolution of 0.88 kyr compared to 2.77 kyr for the full record (Fig. 6). The estimation yields a single

breakpoint at 1.355 Ma, which may reflect a midpoint in the record rather than a distinct climatic shift.

When allowing for two breakpointsas also , as suggested by the BIC, they are estimated at 2.54 Ma and 0.95

Ma, corresponding well to the onset coinciding well with the intensification of Northern Hemisphere Glacia-

tion (iNHG) (Lisiecki and Raymo, 2005) and the Mid-Pleistocene Transition (MPT) (Pisias and Moore,425

1981), respectively. The iNHG marks the initiation of sustained, large-scale glaciation in the Northern

Hemisphere, beginning around 2.6 Ma, as evidenced by increasing ice-rafted debris (IRD) and declining sea
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level (McClymont et al., 2023). The MPT marks a change in the rhythm of glacial cycles, with its timing

still debated. For instance, Clark et al. (2006) describe it periodicity and amplitude of glacial-interglacial

cycles, which Clark et al. (2006) describe as a gradual transition occurring between 1.25 and 0.7 Ma. This430

uncertainty is also reflected in the estimated confidence interval of the latter breakpoint , which spans ,

while others identify a more abrupt increase in ice volume and deep ocean cooling centered around 0.9 Ma

(Elderfield et al., 2012). Both the iNHG and the MPT are thought to be relatively gradual and complex

events, which is supported by the long, asymmetrical confidence intervals, ranging from 2.92 to 2.41 Ma for

the first breakpoint and from 1.545 Ma to 0.66 Ma . for the second.435

These results underscore the capability of the Bai-Perron framework to detect key transitions in Earth’s

recent climate historyand climate history, but also emphasize the importance of climate system knowledge

prior understanding of the climate system when interpreting breakpoint estimates. The same period is

examined by Rousseau et al. (2023), who apply recurrence plots and Kolmogorov–Smirnov tests to a benthic

δ18O record (Hodell and Channell, 2016) and identify six transitions at approximately 2.93 Ma, 2.52 Ma,440

1.51 Ma, 1.25 Ma, 0.61 Ma, and 0.35 Ma. Their transitions at 2.52, 1.51, and 0.61 Ma broadly align with the

first estimated breakpoint and the confidence interval bounds of the second. In contrast to the Bai-Perron

framework used here, their approach neither determines the number of breakpoints nor estimates confidence

intervals for their placements.

Based on our findings, we offer several general recommendations for the application of this breakpoint445

detection method in paleoclimate research and related fields. First, careful consideration should be given to

the choice of binning frequency. While finer binning enhances temporal resolution, it may also preserve

measurement errors and introduce artifacts by linear interpolations, particularly in unevenly sampled

records. Also, coarser binning can lead to loss of information. In our application, we find that the bin

width 10 and 25 kyr provide a good balance between detail and signal quality. For the 25 kyr bin width,450

the mean number of observations per bin is approximately 9, and 3.6 for 10 kyr. However, these numbers

vary across the sample, being only 3.5 and 1.4, respectively, in the Warmhouse II and increasing to 28.3

and 11.3, respectively, in the Icehouse period. This highlights the importance of accounting for variable

sampling resolution when selecting bin widths. For other records, we recommend seeking a similar balance.

If the data are already evenly spaced in time, retaining the original resolution is preferable. Second, the455

model specification should reflect the statistical features of the data, such as trends and autocorrelation.

Although the Fixed AR model has performed well in our study, the flexibility of the Bai–Perron framework

allows users to adapt the model specification to suit different datasets. Third, the number of breakpoints

can be selected based on information criteria.

5 Conclusion460

This study presents a statistical time-domain approach to estimate breakpoints in the Cenozoic Era using

the econometric tools developed by Bai and Perron (1998, 2003)Bai and Perron (1998, 2003). We analyze

the time series of benthic δ18O provided compiled by Westerhold et al. (2020), which is a widely cited

foundational record for many corners of particularly for the field of paleoclimatology. Westerhold et al.

(2020) identified five breakpoints using recurrence analysis, and our analysis strongly corroborates the465
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placements placement of these breakpoints across various model specifications and binning frequencies.

Our approach offered offers the advantage of constructing confidence intervals for the dates ages of the

breakpoints, providing a measure of estimation uncertainty. Based on the results of our simulation study,

we advocate using the model specification with a state-independent autoregressive term and state-dependent

intercept.470

By selecting the number of breakpoints using information criteria, we provide statistical justification

for more than five breakpoints in the time series. For instance, in specifications with seven or more

breakpointsthe BIC suggests 12 breakpoints. For these, the five transitions identified by Westerhold et al.

(2020) are preserved, while the additional breakpoints suggest that both the Warmhouse II and Coolhouse II

states could be further divided into substatesfurther divisions of the climate states they found. This points475

to the potential for a more detailed classification of Cenozoic climate states, enhancing adding to our un-

derstanding of Earth system dynamics. The results also show that the Bai-Perron framework can robustly

capture important transitions in Earth’s climate history. Many of the estimated breakpoints align with

known climatic events, such as the cooling after the Middle Eocene Climatic Optimum (MECO), the onset

of the Mid-Miocene Climatic Optimum (MMCO), and the Mid-Pleistocene Transition (MPT), supporting480

its use in broader paleoclimate studies.

The applicability of the Bai-Perron framework extends well beyond the benthic δ18O stack byWesterhold et al. (2020).

It can be employed across a wide range of different paleoclimate archives, allowing for investigations of

regional differences in the estimated breakpoints, for instance. It can also be applied to other proxies, such as

δ13C and greenhouse gas concentrations. Although we focus on the benthic δ18O stack (Westerhold et al., 2020)485

in this study, the Bai–Perron framework is broadly applicable across paleoclimate research and related dis-

ciplines. To guide its use in other contexts, we offer several general recommendations based on our findings:

1. Careful consideration should be given to the choice of binning frequency. While finer binning enhances

temporal resolution, it may also preserve measurement errors and introduce artifacts by linear interpola-

tions, particularly in unevenly sampled records. Conversely, coarser binning can lead to loss of information.490

In our application, we find that the bin width 10 and 25 kyr provide a good balance between detail and

signal quality. For other records, we recommend seeking a similar balance. 2. The model specification

should reflect the statistical features of the data, such as trends and autocorrelation. Although the Fixed

AR model has performed well in our study, the flexibility of the Bai–Perron framework allows users to

adapt the model specification to suit different datasets. 3. The number of breakpoints should be selected495

based on information criteria, such as the BIC or LWZ, which may yield different outcomes depending on

model complexity. In our analysis, the BIC tends to favor more breakpoints than the LWZ. We recommend

complementing statistical selection with a careful assessment of the climatic relevance of the estimated

breakpoints.

These recommendations support the broader application of the framework to other paleoclimate records,500

like the Cenozoic-spanning reconstructions of δ13 or paleo-CO2. Furthermore, the The method is suitable

for detecting both gradual and abrupt transitions, including climatic events such as Dansgaard-Oeschger

events (Dansgaard et al., 1993; Livina et al., 2010).

The In addition to its versatility in application, the framework allows for the inclusion of covariates,
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opening up many possibilities for future applications. For exampleAs such, incorporating orbital param-505

eters (e.g., eccentricity, obliquity, and precession; Laskar et al., 2004) provides could create the potential

for detecting transitions while controlling for these external effects. Alternativelydrivers. Additionally,

one could investigate breaks in the relationship between orbital forcings and paleoclimate variables, re-

flecting changes in how strongly these external factors influence climate dynamics. A key example is

the MPT, marked by a shift in the dominant glacial cycle from 41 kyr to 100 kyr (Berends et al., 2021)510

(Berends et al., 2021; Barker et al., 2025), the timing of which could be estimated using the Bai–Perron

framework.

These examples highlight the broader potential of the framework as a flexible tool for paleoclimate data

analysis. Understanding when and how breakpoints in the climate system occurred is essential for inter-

preting past climate variabilityand, ultimately, for informing future projections , events, and shifts, and515

ultimately for informing projections of future climate change. The Bai–Perron framework provides a statis-

tically rigorous way of estimating these breakpoints, offering new opportunities to deepen our understanding

of long-term climate dynamics.
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A Graphs740

A.1 Reversed time
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Figure A1: A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five

breakpoints on 25 kyr binned data where the time frame is reversed. The black dots represent estimated breakpoints,

while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.

A.2 One to 15 breakpoints: Fixed AR model 10 kyr
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Figure A2: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 10 kyr

binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while

colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.
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A.3 One to 15 breakpoints: Mean model
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Figure A3: A comparison of estimated breakpoints using the Mean model for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.

A.4 One to 15 breakpoints: AR model
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Figure A4: A comparison of estimated breakpoints using the AR model for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.
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A.5 One and two breakpoints in the Icehouse: Mean model 5 kyr745

0.00.51.01.52.02.53.0
Age (Ma)

3.0

3.5

4.0

4.5

5.0

5.5

δ1
8
O

(‰
)

1

2 N
u

m
b

er
of

b
re

ak
p

oi
nt

s

Figure A5: A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr

binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020).

A.6 One and two breakpoints in the Icehouse: AR model 5 kyr
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Figure A6: A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr binned

data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent estimated

breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data

from Westerhold et al. (2020).
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B Tables

B.1 Summary statistics: State-wise and full sample

Bin size State Mean Sd. Max. Min. Data points

5 Warmhouse I 0.417 0.249 1.07 -0.215 2221

5 Hothouse -0.269 0.261 0.391 -2.014 1800

5 Warmhouse II 0.897 0.366 1.894 -0.254 2600

5 Coolhouse I 2.239 0.233 2.991 1.266 4020

5 Coolhouse II 3.072 0.237 4.172 1.885 2120

5 Icehouse 4.037 0.463 5.405 3.05 660

5 Full sample period 1.561 1.277 5.405 -2.014 13421

10 Warmhouse I 0.417 0.245 0.977 -0.12 1111

10 Hothouse -0.269 0.256 0.308 -2.014 900

10 Warmhouse II 0.897 0.366 1.777 -0.254 1300

10 Coolhouse I 2.239 0.221 2.877 1.324 2010

10 Coolhouse II 3.072 0.228 4.122 1.975 1060

10 Icehouse 4.034 0.447 5.33 3.181 330

10 Full sample period 1.561 1.276 5.33 -2.014 6711

25 Warmhouse I 0.418 0.237 0.912 -0.065 445

25 Hothouse -0.269 0.245 0.218 -1.871 360

25 Warmhouse II 0.898 0.358 1.688 0.01 520

25 Coolhouse I 2.239 0.202 2.749 1.391 804

25 Coolhouse II 3.073 0.213 3.793 2.087 424

25 Icehouse 4.033 0.401 5.158 3.258 132

25 Full sample period 1.561 1.273 5.158 -1.871 2685

50 Warmhouse I 0.419 0.233 0.867 -0.042 223

50 Hothouse -0.268 0.233 0.197 -1.871 180

50 Warmhouse II 0.898 0.354 1.656 0.182 260

50 Coolhouse I 2.24 0.188 2.713 1.567 402

50 Coolhouse II 3.072 0.206 3.72 2.156 212

50 Icehouse 4.042 0.359 4.757 3.264 66

50 Full sample period 1.562 1.271 4.757 -1.871 1343

75 Warmhouse I 0.42 0.229 0.837 0.006 148

75 Hothouse -0.26 0.203 0.167 -0.985 120

75 Warmhouse II 0.894 0.351 1.553 0.156 173

75 Coolhouse I 2.239 0.181 2.717 1.691 268

75 Coolhouse II 3.068 0.214 3.652 2.072 142

75 Icehouse 4.041 0.351 4.753 3.283 44

75 Full sample period 1.563 1.268 4.753 -0.985 895

100 Warmhouse I 0.42 0.229 0.832 0.007 112

100 Hothouse -0.263 0.203 0.155 -0.985 90

100 Warmhouse II 0.898 0.349 1.601 0.228 130

100 Coolhouse I 2.241 0.175 2.685 1.739 201

100 Coolhouse II 3.073 0.201 3.625 2.353 106

100 Icehouse 4.047 0.344 4.673 3.4 33

100 Full sample period 1.562 1.269 4.673 -0.985 672

Without binning Warmhouse I 0.428 0.25 1.07 -0.215 2761

Without binning Hothouse -0.279 0.255 0.391 -2.46 3030

Without binning Warmhouse II 0.916 0.357 1.894 -0.254 1786

Without binning Coolhouse I 2.251 0.242 3.263 1.026 6669

Without binning Coolhouse II 3.102 0.254 4.49 1.84 6282

Without binning Icehouse 4.064 0.533 5.53 2.66 3731

Without binning Full sample period 2.128 1.445 5.53 -2.46 24259

Table B1: Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100 kyr) and the δ18O data

without binning for each of the states identified by Westerhold et al. (2020) and the full sample period.
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B.2 Estimated breakpoints: 5 breakpoints

Bin size BP index Mean Fixed AR AR

Estimate 95% CI Estimate 95% CI Estimate 95% CI

5 1 55.965 (56.085, 55.885) 55.995 (56.085, 55.92) 33.745 (33.745, 33.72)

5 2 46.725 (46.845, 46.675) 46.73 (46.76, 46.68) 16.96 (17.365, 16.78)

5 3 34.02 (34.025, 33.915) 34.05 (34.075, 34.015) 13.825 (13.84, 13.775)

5 4 13.36 (13.395, 13.325) 13.41 (13.465, 13.34) 9.555 (9.585, 9.505)

5 5 2.735 (2.845, 2.715) 2.74 (3.1, 2.715) 3.36 (3.815, 3.355)

10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)

10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)

10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)

10 4 13.36 (13.4, 13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)

10 5 2.73 (2.81, 2.7) 2.74 (3.18, 2.71) 2.74 (2.88, 2.72)

25 1 55.975 (56.3, 55.1) 56.025 (56.575, 55.7) 55.825 (55.85, 55.675)

25 2 46.725 (47.3, 46.55) 46.725 (46.825, 46.45) 48.35 (48.625, 47.85)

25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)

25 4 13.4 (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)

25 5 2.725 (2.8, 2.625) 2.775 (3.075, 2.7) 2.575 (2.6, 2.55)

50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)

50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)

50 3 34.05 (34.05, 32.8) 34.2 (34.3, 33.9) 33.75 (33.75, 33.6)

50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)

50 5 2.75 (2.9, 2.5) 3.15 (3.4, 3.0) 14.3 (14.55, 12.8)

75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)

75 2 46.725 (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)

75 3 34.05 (34.05, 30.9) 34.2 (34.425, 33.675) 34.05 (34.05, 33.825)

75 4 13.35 (13.8, 12.975) 13.875 (14.1, 13.125) 16.95 (17.325, 16.5)

75 5 2.775 (3.375, 2.4) 3.15 (3.525, 2.925) 14.475 (15.075, 14.25)

100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)

100 2 46.7 (52.5, 46.3) 47.1 (47.7, 46.3) 53.4 (53.8, 52.1)

100 3 34.1 (34.1, 29.4) 34.2 (34.5, 33.4) 49.1 (50.8, 48.8)

100 4 13.8 (14.7, 13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)

100 5 2.9 (4.2, 2.3) 3.4 (3.8, 3.2) 13.8 (15.7, 12.9)

Table B2: Estimated breakpoints and their 95% confidence intervals (in Ma) where the number of breakpoints is

fixed to 5, and all values are rounded to three decimals. The table shows estimates for each method across bin sizes

5, 10, 25, 50, 75, and 100 kyr.
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B.3 Estimated parameters: 5 breakpoints and 25 kyr binned data750

Mean Fixed AR AR

Parameter Estimate SE Estimate SE Estimate SE

c1 0.418 0.051 0.069 0.008 -0.001 0.026

c2 -0.256 0.040 -0.043 0.007 -0.108 0.015

c3 0.911 0.072 0.153 0.013 0.028 0.007

c4 2.247 0.017 0.373 0.031 0.660 0.061

c5 3.119 0.027 0.519 0.043 0.421 0.073

c6 4.140 0.051 0.698 0.057 2.423 0.326

φ × × 0.833 0.014 × ×
φ1 × × × × 0.990 0.054

φ2 × × × × 0.631 0.037

φ3 × × × × 0.970 0.008

φ4 × × × × 0.706 0.027

φ5 × × × × 0.865 0.024

φ6 × × × × 0.419 0.081

σ2
1 0.237 × 0.095 × 0.106 ×

σ2
2 0.255 × 0.154 × 0.140 ×

σ2
3 0.347 × 0.112 × 0.107 ×

σ2
4 0.210 × 0.141 × 0.140 ×

σ2
5 0.208 × 0.111 × 0.116 ×

σ2
6 0.351 × 0.340 × 0.315 ×

Table B3: Estimated parameters and their corresponding standard errors (SE) for each model specification. Pa-

rameters absent in a given model specification are denoted by ×. The number of breakpoints is set to 5, and the

parameters are estimated with a binning frequency of 25 kyr and h = 2.5 Myr. All values are rounded to three

decimals.

B.4 The number of breakpoints selected by information criteria

Bin size Mean Fixed AR AR

BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5

10 17 17 14 7 14 3

25 17 14 12 6 8 3

50 17 14 10 0 7 0

75 17 14 6 0 5 0

100 17 12 6 0 5 0

Table B4: The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies

considered. The minimum state length is set to h = 2.5 Myr and the maximum number of breakpoints is 26.
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C Simulation study

C.1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by ?Bai and Perron (2003) can be used to accurately

estimate the number and timing of breakpoints in a state-wise non-stationary time series. We conduct 1000755

simulations for each data-generating process (DGP) with a sample size of 500. All the DGPs considered

have the following form,

yt = c1 + φ1yt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
for t ≤ T/2

yt = c2 + φ2yt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
for t > T/2. (C1)

Hence, we consider a single breakpoint in the middle of the sample interval, namely at t = 250. We examine

eight DGPs, each specified and described in Table C5.

DGP σ c1 c2 φ1 φ2 Description

1 1 0.1 0.2 1 1 Small break in the drift term of a RW

2 1 0.1 1 1 1 Large break in the drift term of a RW

3 1 0.1 1 0.95 0.95 Large break in the intercept and a fixed AR-coefficient

4 1 0.1 1 0.95 1 Break in the intercept and small break in the AR-coefficient

5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient

6 1 1 1 1 1 RW with a drift without a breakpoint

7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance

8 1 0.1 1 0.5 0.5 Large break in the intercept and a low fixed AR-coefficient

Table C5: Data-generating processes for the simulation study and short descriptions. RW: random walk.

The DGPs range from random walk models with a break in the drift term to models with breaks in both760

the intercept and the AR coefficient. For comparison, we include a random walk without breakpoints as

the sixth model. For each of the DGPs, we are interested in the performance of the methodology by ?Bai

and Perron (2003) in estimating the breakpoint and confidence intervals. The model specifications from

Section 2.3 are estimated on the data generated by the DGPs, and we use the implementation outlined in

Section 2.4. We use the R-package mbreaks by Nguyen et al. (2023), and we impose a single breakpoint765

in the estimation. The left and right panels of Figs. C7 through C14 display realizations of the DGP and

density plots of the estimated breakpoints for each of the models, respectively. The results are summarized

in Table C6, which provides the mean of the estimated breakpoints, and medians of the lower and upper

boundaries of the estimated 95% CIs are tabulated along with their coverage rates for each model and DGP.
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DGP Mean Fixed AR AR

BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

1 301 174 655 57.1% 251 216 336 43.4% 290 240 316 22.7%

2 333 -386 332 95.4% 249 237 262 93% 249 236 256 77.2%

3 263 253 284 41.4% 256 239 260 89.9% 251 241 260 85.9%

4 340 -190 340 97.5% 249 239 260 95.8% 249 238 250 65.8%

5 340 -114 340 97.1% 250 239 258 97% 250 241 250 72.9%

6 249 -3325 3976 × 253 142 371 × 254 202 312 ×
7 333 -282 330 92% 249 246 253 97.8% 249 246 253 96%

8 249 237 264 95.1% 248 236 263 95.2% 248 236 263 94.5%

Table C6: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated

confidence intervals, along with the coverage rates for each model specification and DGP. DGP 6 is simulated

without a breakpoint, so the coverage rate is irrelevant and indicated by ×.

In the first DGP, a random walk with a small drift term break, we observe that the mean of the770

estimated breakpoints is later than the true breakpoint in all model specifications. Additionally, the density

plots exhibit asymmetry around the true breakpoint. This is expected due to the low magnitude of the

break in the drift term, which creates a subtle change in the overall stochastic trend, making accurate

breakpoint detection difficult. In the second DGP with a larger drift term break, the estimated breakpoints

exhibit a narrower and more bell-shaped density. The mean estimated breakpoints for the Fixed AR and775

AR models slightly precede the true breakpoint. However, the Mean model performs poorly, with the mean

of the estimated breakpoints far from the true breakpoint.

In the third DGP, both the Fixed AR and AR models produce mean estimated breakpoints slightly

later than the true breakpoint. The Mean model exhibits better performance in this DGP than in the

second DGP. The fourth DGP has a break in the intercept and the AR-coefficient from 0.95 to 1, resulting780

in a state-wise non-stationary model. This change leads to breakpoint estimates very close to the true

breakpoint, except in the Mean model. A similar outcome is observed in the fifth DGP, which features a

larger increase in the AR-coefficient. In the sixth DGP, which is defined without any breakpoints, the Mean

model estimates breakpoints near the midpoint of the sample period, while the other two specifications yield

inconclusive results. In the seventh DGP, the AR and Fixed AR models produce estimates close to the true785

breakpoint. However, the Mean model continues to produce breakpoint estimates far from the true value.

Examining the eighth DGP, the three models perform almost equally well.

Overall, the Fixed AR and AR models tend to perform well in non-stationary scenarios, estimating

breakpoints close to the true breakpoints. The methodology, however, appears to struggle with accurately

estimating the true breakpoint in cases of minor changes between states and large error term variance. In790

contrast, the Mean model does not perform well in DGPs featuring gradual changes, aligning with theoretical

expectations as detailed in Bai and Perron (2003).

The coverage rate of a CI is the proportion of times the CI covers the true breakpoint, here at t = 250.

We find that the CIs of the Mean model are generally very wide and have varying coverage. In the Fixed

AR and AR models, the CIs are typically narrower. The coverage rates are best in the DGPs with large795

differences between the states as seen in DGPs 4, 5, 7 and 8 using the Fixed AR model specification, which

is in line with the findings of Bai and Perron (2003). For the AR model, the coverage rates are only close
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to the desired 95% in the seventh and eighth DGP, indicating that the CIs are inadequate in most of the

DGPs considered.

DGP Mean Fixed AR AR

BIC LWZ KT BIC LWZ KT BIC LWZ KT

1 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.2 (15%) 0.0 (0%) 3.0 (0%) 0.1 (6%) 0.0 (0%) 0.0 (3%)

2 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (97%) 0.8 (82%) 3.0 (0%) 1.0 (94%) 0.5 (46%) 1.0 (93%)

3 2.9 (0%) 2.7 (4%) 3.0 (0%) 1.0 (94%) 0.2 (16%) 2.9 (0%) 0.9 (85%) 0.0 (0%) 0.7 (70%)

4 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (98%) 1.0 (98%) 2.8 (0%) 1.0 (99%) 0.9 (92%) 1.0 (99%)

5 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (97%) 2.7 (0%) 1.0 (99%) 1.0 (100%) 1.0 (99%)

6 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.0 (98%) 0.0 (100%) 3.0 (0%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

7 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (100%) 3.0 (0%) 1.0 (98%) 1.0 (100%) 1.0 (98%)

8 1.5 (63%) 1.0 (98%) 1.3 (72%) 1.0 (99%) 1.0 (100%) 1.3 (73%) 1.0 (100%) 1.0 (98%) 1.0 (100%)

Table C7: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.

Table C7 shows the mean number of breakpoints estimated for each DGP and method, along with the800

proportion of correctly estimated breakpoints. The difficulty in accurately estimating gradual changes using

the Mean model is also evident when estimating the number of breakpoints. This model specification leads

to overestimating the number of breakpoints in all DGPs considered except DGP 8, where it performs

well. The BIC criterion in the Fixed AR specification performs very well, with an estimated number of

breakpoints equal to the true number in most simulations in DGP 2-8. The LWZ criterion performs almost805

equally well except in the third DGP, while the KT criterion vastly overestimates the number of breakpoints

in DGP 1-7. In the AR model, the information criteria all perform well in DGPs 2-8 except for the third

DGP where the LWZ criterion underestimates the number of breakpoints.
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Figure C7: DGP 1: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C8: DGP 2: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C9: DGP 3: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C10: DGP 4: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C11: DGP 5: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C12: DGP 6: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C13: DGP 7: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C14: DGP 8: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.

C.2 Serially correlated error term

A possible extension of the simulation study outlined in Eq. (C1) is allowing the error term to exhibit serial810

correlation. We use the same DGPs as before, but generate {εt}Tt=1 as follows,

εt = ψεt−1 + θηt−1 + ηt, ηt
i.i.d.∼ N (0, σ2

η) ∀t. (C2)

We conduct 1000 simulations for each, with a sample size of 500. Here, we consider DGPs 2, 3, 4, 5, 7,

and 8 as outlined in Table C5 and refer to these DGPs in the serially correlated cases as models 2s, 3s, 4s,

5s, 7s, and 8s. We set ψ = θ = 0.5 and the standard deviation ση, such that the standard deviation of εt

corresponds to the σ in Table C5. This is accomplished as follows,815

Var (εt) = Var (ψεt−1 + θηt−1 + ηt)

= ψ2 Var (εt−1) + θ2 Var (ηt−1) + 2ψθCov (εt−1, ηt−1) + Var (ηt) .

= ψ2 Var (εt−1) + θ2σ2
η + 2ψθσ2

η + σ2
η,

since εt−1 and ηt−1 have zero means and E [εtηt] = ϕE [εt−1ηt]+θE [ηtηt−1]+E
[
η2t
]
= σ2

η. Given stationarity

of the process, which implies σ2 = Var (εt) for all t, we derive,

σ2
η = σ2 1− ψ2

1 + θ2 + 2ψθ
.

This adjustment ensures the comparability of the results between the two error term types.

In Figs. C15 through C20, we plot examples of realizations and frequency plots of the estimated break-

points using each of the models while imposing a single breakpoint in the estimation. The results are
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summarized in Table C8, which provides means of the estimated breakpoints and medians of the lower820

and upper boundary of the estimated confidence intervals, along with the coverage rates for each model

specification and DGP. Generally speaking, the mean of the estimated breakpoints are further from the

true breakpoint and the CIs become wider compared to the results from the corresponding DGPs without

serial correlation. It is evident that serial correlation in the error term makes it more difficult to estimate

the dating of breaks. We find that the Fixed AR and AR models perform well for DGP 7s, which has a825

large difference between the states and low variance. This is in line with the theoretical framework by Bai

and Perron (2003), who note that the estimated break dates are consistent even in the presence of serial

correlation. The Fixed AR model performs well in DGPs 2s, 4s and 5s where the mean of the estimated

breakpoints is close to the true breakpoint, and confidence intervals are reasonably wide with acceptable

coverage rates. The results of the AR model are less conclusive.830

For the Mean and Fixed AR models, the coverage rates are generally close to the desired 95% and even

higher in some DGPs. However, the CIs are also extremely wide, reaching outside the sample window in

many DGPs. The CIs seem reasonable in the Fixed AR model for DGPs 2s, 4s, 5s, and 7s, where the

coverage rates are close to 95% and the medians of the lower and upper bounds of the CIs are not too

extreme. The CIs for the AR model are generally wider than in the version without serial correlation in835

the error term. In the AR model, the coverage rates are lower than the desired 95%, but it seems that

DGPs with large breaks have higher coverage rates. The relatively poor performance is in line with the

theoretical framework by Bai and Perron (2003). The authors note that the construction of the CIs rely on

having no serial correlation in the error term if a lagged dependent variable is included as a regressor that

has coefficients that are subject to breakpoints.840

DGP Mean Fixed AR AR

BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

2s 332 -1400 335 95.9% 247 188 312 95.7% 261 190 299 79.9%

3s 266 60 787 90.6% 285 -112 656 97.2% 276 156 421 77.1%

4s 340 -776 339 94.9% 252 197 301 96.9% 264 195 277 84.9%

5s 342 -329 340 96.2% 256 196 266 96.4% 259 192 250 70.8%

7s 333 -1708 329 92.3% 249 230 270 97.6% 251 230 267 92.8%

8s 250 122 370 98.3% 245 -5 492 99.8% 247 23 490 97.4%

Table C8: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated

confidence intervals, along with the coverage rates for each model specification and DGP.

Table C9 shows the mean number of breakpoints estimated for each DGP and method, along with the

proportion of correctly estimated number. In the Mean model, all information criteria overestimate the

number of breakpoints. An important exception is the eighth DGP, where the performance is better, as

in the case without serial correlation. In the Fixed AR and AR model specifications, the LWZ criterion

generally performs well, while both the BIC and the KT criteria generally overestimate. However, the LWZ845

criterion leads to underestimating the number of breakpoints in DGPs 3s and 8s. These two DGPs are

characterized by fixed AR-coefficients that are lower than one. This implies that these two processes do

not exhibit an autoregressive unit root. Hence, it seems that the LWZ criterion performs well in cases of

state-wise non-stationarity or switching between stationary and non-stationary states.

38



Compared to the findings in the DGPs without serial correlation, it is clear that the proportion of850

correct estimates are lower for most DGPs and model specifications. Overall, the best performing criterion

seems to be the LWZ criterion in the Fixed AR and AR models, while the Mean model typically leads to

overestimating the number of breakpoints.

DGP Mean Fixed AR AR

BIC LWZ KT BIC LWZ KT BIC LWZ KT

2s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (32%) 0.9 (70%) 2.9 (0%) 1.8 (37%) 0.7 (61%) 1.9 (33%)

3s 3.0 (0%) 2.8 (2%) 3.0 (0%) 0.7 (33%) 0.0 (0%) 2.7 (3%) 0.3 (19%) 0.0 (0%) 0.4 (17%)

4s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.7 (45%) 1.0 (85%) 2.8 (1%) 1.6 (51%) 0.8 (79%) 1.6 (47%)

5s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.8 (5%) 1.1 (85%) 2.8 (0%) 1.7 (40%) 1.0 (92%) 1.6 (49%)

7s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (34%) 1.1 (89%) 3.0 (0%) 1.9 (34%) 1.0 (96%) 1.9 (32%)

8s 2.2 (21%) 1.2 (78%) 2.2 (23%) 0.4 (35%) 0.0 (0%) 1.9 (36%) 0.0 (4%) 0.0 (0%) 0.0 (3%)

Table C9: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.

0 100 200 300 400 500
t

0

100

200

300

y t

Example 1

Example 2

Example 3

Example 4

Example 5

Breakpoint

0 100 200 300 400 500
t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

fo
r

B
P

Mean

Fixed AR

AR

Breakpoint

Figure C15: DGP 2s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C16: DGP 3s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C17: DGP 4s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C18: DGP 5s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C19: DGP 7s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure C20: DGP 8s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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