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Abstract

This study presents a statistical time-domain approach for identifying transitions between climate states,

referred to as breakpoints, using well-established econometric tools. We analyze a Our approach offers the

advantage of constructing time-domain confidence intervals for the breakpoints, and it includes procedures

to determine how many breakpoints are present in the time series. We apply these tools to the 67.1

million year record of the oxygen isotope ratio million-year-long compilation of benthic foraminiferal oxygen

isotopes (δ18Oderived from benthic foraminifera. The ), which signify global temperature and ice volume

throughout the Cenozoic. This foundational dataset is presented in Westerhold et al. (2020), where the

authors use recurrence analysis to identify five breakpoints that define six climate states. Fixing the number

of breakpoints to five, our procedure results in breakpoint estimates that closely align with those identified

by Westerhold et al. (2020). By treating However, by allowing the number of breakpoints as a parameter

to be estimatedto vary, we provide the statistical justification for more than five breakpoints in the time

series. Further, our approach offers the advantage of constructing confidence intervals for the breakpoints,

and it allows for testing the number of breakpoints present in the , which is used to characterize Cenozoic

paleoclimate and as a reference for many paleoclimate studies. This adds to our understanding of Cenozoic

climate history, in terms of the timing and rate of transitions between climate states, and provides a tool

to assess many other paleoclimate time series.

1 Introduction

Westerhold et al. (2020) present a time series dataset spanning from 67.1 Understanding the transitions be-

tween climate states in Earth’s past is crucial for constraining nonlinear and feedback dynamics of our climate

system, and anticipating potential climate system responses to anthropogenic warming. The Cenozoic Era,
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spanning from 66 million years ago (Ma) to the present time, covering the Cenozoic Era. Using recurrence

analysis, the authors identify four major climate states today, is particularly informative in this regard,

as it is well-studied and it includes major shifts from hothouse climates with temperatures 10◦C warmer

than today to the onset of permanent glaciations at both poles (Zachos et al., 2001; Hansen et al., 2013).

These transitions, or breakpoints, reflect large-scale changes in the climate system, involving shifts in

the carbon cycle, ocean circulation, ice volume, and more (Zachos et al., 2008). As emphasized by

Tierney et al. (2020),paleoclimate records are essential for assessing climate sensitivity and evaluating cli-

mate models under warmer-than-present conditions. Evidence suggests that the sensitivity of the climate

system to external forcings may depend on the climate state (Caballero and Huber, 2013), and that pro-

jected future climates may increasingly resemble early Cenozoic conditions under continued emissions

(Burke et al., 2018; Steffen et al., 2018). These insights underscore the importance of identifying when

past climate state transitions occurred, how many there were, and how certain we are about their tim-

ing. Addressing these questions is crucial for understanding the dynamics of long-term climate variability,

and recent work has increasingly emphasized transition detection as a key task in climate data analysis

(e.g., Marwan et al., 2021; Trauth, 2025).

A widely used approach to identify breakpoints in paleoclimate records is recurrence analysis, which

identifies when a system returns to similar states over time, helping to detect changes in the underlying dy-

namics of time series (Marwan et al., 2007; Marwan, 2023). Westerhold et al. (2020) apply this technique

to a record of δ18O from benthic foraminifera spanning from 67.1 Ma to the present, covering the Ceno-

zoic Era. Based on the recurrence structure of the record, the authors identify four major climate states

− Hothouse, Warmhouse, Coolhouse, and Icehouse Hothouse, Warmhouse, Coolhouse, and Icehouse −
which are further divided into six states. We refer to these as Warmhouse I (66-56 Ma), Hothouse (56-47

Ma), Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma), Coolhouse II (13.9-3.3 Ma), and Icehouse (3.3

Ma - present). The climate states in the Cenozoic Era range from very warm climates to the glaciation

of Earth’s polar regions (Zachos et al., 2001). The climatic transitions contain important information

about variations in Earth’s climate system; see Tierney et al. (2020) for a review. Our study presents

a statistical approach for identifying the transitions between climate states, referred to as breakpoints,

using econometric time-domain tools proposed by Bai and Perron (1998, 2003). This approach offers the

advantages of constructing confidence intervals for the dates of the breakpoints , providing a measure of

estimation uncertainty, as well as testing for the number of breakpoints in the time serieswhich are further

divided into six states through time.

The methodology used by Westerhold et al. (2020) to identify breakpoints is recurrence analysis, as

described by Marwan et al. (2007). To conduct this analysis, Westerhold et al. (2020) resampled their data

at a frequency they resampled the data at an interval of 5 thousand years (kyr) and used both un-detrended

and detrended versionsof the data. This analysis leads to the identification of the six climate states. .

Recurrence analysis provides valuable insights into the recurrence structure and shifts in a time series, and

recurrence quantification analysis offers complementary summary measures, such as recurrence rate and

determinism. However, the identification of transitions remains largely based on visual interpretation of

recurrence plots, and the method lacks formal procedures for selecting the number and statistical certainty
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of the transitions.

The use of recurrence analysis to identify climate states is common in the study of paleoclimate time

series, see the review in Marwan et al. (2021). Many extensions of this methodology have been suggested

to address different issues. Several methodological extensions have sought to address these limitations.

For instance, Goswami et al. (2018) propose a breakpoint detection method using a probability density

function sequence representation of the time series, which allows for uncertainties in the time stamping of

the time seriesaccounts for timestamping uncertainty. Bagniewski et al. (2021) combine recurrence anal-

ysis with Kolmogorov–Smirnov tests to detect abrupt transitions in a time series. Rousseau et al. (2023)

applies this method on statistically assess abrupt shifts in recurrence distributions. Rousseau et al. (2023)

apply this method to the Westerhold et al. (2020) dataand find similar climate states as the onesreported

in Westerhold et al. (2020), identifying a similar set of transitions along with several additional ones. As

discussed by Marwan et al. (2021), there are several other approaches to identify transitions in paleo-

climate time series. Among these, Livina et al. (2010) developed a new statistical method of potential

analysis and applied it to detect the number of states in a geophysical time series. an ice core record. In

a Bayesian framework, Schütz and Holschneider (2011) develop a method for detecting changes in trend,

and Ruggieri (2013) introduce a Bayesian algorithm for identifying multiple breakpoints. Reviews of break-

point detection techniques in more general climate time series are provided by Reeves et al. (2007) and

Lund and Shi (2023).

Our approach contributes to the existing breakpoint detection methods in paleoclimate research by

applying well-established econometric tools in the time-domain, developed in Bai and Perron (1998, 2003)

, Recently, Trauth et al. (2024) explored a suite of methods, including recurrence analysis, changepoint

detection, and nonlinear curve fitting (e.g., sigmoid and ramp functions), to identify climate states in the

paleo record. It enables the estimation of multiple breakpoints along with confidence intervals and provides

procedures to estimate the number of breakpoints.

The estimation methodology of Bai and Perron (1998, 2003) necessitates a constant observation

frequency and a predetermined model specification. To obtain a constant observation frequency, we use

mean binning, which entails dividing the data into intervals of fixed length and calculating the meanin

each bin. We explore three different model specifications and implement these using the R-package by

Nguyen et al. (2023). The first model is a state-dependent mean model, which posits an abrupt break in

the mean of δ18O for each climate state. The second model generalizes this by including a state-independent

autoregressive term, which makes the transitions between states more gradual. The final model extends

the second model by letting the autoregressive term be state-dependent as well, allowing for state-specific

transition dynamics. All models incorporate an error term with state-dependent variance. Given that

the time series appears state-wise non-stationary, meaning that the mean and/or the variance of the time

series vary over time within a state, we conduct a simulation study to demonstrate the applicability of

the approach by Bai and Perron (1998, 2003) in this non-stationary settingtransitions in a paleoclimate

record. They apply a changepoint detection algorithm by Killick et al. (2012), which efficiently detects

multiple changepoints by minimizing a cost function that balances goodness-of-fit with a penalty for ad-

ditional changes. This approach enables the detection of shifts in the mean, variance, and trend. The
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sigmoid functions are characterized by their S-shaped curves and allow for modeling gradual transitions

(Crowley and Hyde, 2008; Trauth et al., 2021). In contrast, the ramp functions consist of two horizontal

segments connected by a linear trend and represent gradual transitions bounded by abrupt changes in

slope, which can be fitted using regression techniques. This method was proposed by Mudelsee (2000) and

has been applied to various paleoclimate records (e.g., Fleitmann et al., 2003; Mudelsee and Raymo, 2005)

. Furthermore, Mudelsee et al. (2014) apply this ramp-function method, among others, to detect major cli-

mate transitions in the Cenozoic. For further details, we refer to the textbook treatments in Mudelsee (2014)

and Trauth (2025).

The number of breakpoints is a parameter in the statistical approach of Bai and Perron (1998, 2003)

. Fixing We employ a statistical approach based on least-squares that allows the researcher to assess

the uncertainty in dating breakpoints through confidence intervals. Information criteria give guidance on

the number of breakpointsto five, the resulting breakpoint estimates align closely with those identified by

Westerhold et al. (2020) across various binning frequencies and model specifications. This demonstrates the

robustness of the approach and corroborates the dating of the climate states of Westerhold et al. (2020)

with statistical analysis in the time domain. However, when we allow the number of breakpointsto vary

and treat this as a parameter to be estimated using information criteria, we find strong statistical evidence

for the presence of more than five breakpoints . Specifically, our analysis suggests that Warmhouse II and

Coolhouse II can each be split into two separate substates.

The remainder of the paper is structured as follows: In Section 2.1, we present the . The approach is an

econometric time-domain framework (Bai and Perron, 1998, 2003), which was originally applied to detect

shifts in real interest rates data in economics (Garcia and Perron, 1996). We henceforth refer to this as

the Bai-Perron framework. This framework offers the advantages of constructing confidence intervals for

the timestamps of the breakpoints, providing a measure of estimation uncertainty, as well as procedures

for selecting the number of breakpoints in the time series that provides the best fit. These additional

measures are crucial for understanding the certainty, significance, and timing of climate transition periods

in the past. The Bai-Perron framework offers flexibility in modeling both abrupt and gradual transitions.

We demonstrate its application and benefits by using the benthic δ18O dataset and climate states by

Westerhold et al. (2020). In Section 2, the statistical breakpoint detection methodology applied in this

paper is outlined. In Section 3, we conduct the analysis and discuss the results. Section 5 concludes.

The finite sample performance of the methodology under state-wise non-stationarity is investigated in a

simulation study in Appendix Crecord from Westerhold et al. (2020), though the framework is broadly

applicable to a wide range of paleoclimate time series.

2 DataMethodology

2.1 Data

The paleoclimate variable δ18O measures the ratio of 18O to 16O in the shells of benthic foraminifera

obtained from ocean sediment cores, relative to a standard sample. The weight difference between the

oxygen isotopes leads to an inverse relationship between δ18O and ocean temperatures; see for instance
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Epstein et al. (1951) and Shackleton (1967).

In this paper, we We use the dataset provided by Westerhold et al. (2020), which compiles measurements

of oxygen and carbon isotope ratios from benthic foraminifera across 34 different studies and 14 ocean drilling

locations into a single data filestack covering the Cenozoic. Our study focuses on the benthic δ18O record,

specifically the correlation-corrected observations of values of benthic δ18O(column “benthic d18O VPDB

Corr” from the data file).Westerhold et al. (2020) provide an estimated chronology of the data, which has

accuracy ranging from ±100 kyr in the older part of the sample period to ±10 kyr in the younger part. We

ignore the uncertainty of .1

Benthic δ18O measures the deviations in the ratio of the stable oxygen isotopes 18O to 16O

in the shells of benthic foraminifera relative to the Vienna Pee Dee Belemnite (VPDB) standard.

The weight difference between the stable oxygen isotopes is a function of deep ocean temperatures

(Epstein et al., 1951; Shackleton, 1967; Lisiecki and Raymo, 2005) and of the time stamps in this study.

The data cover the period 67.10113 Ma to 0.000564 Ma, and we order the observations from oldest to

most recent. We remove the 74 missing values in the record, leaving us with 24,259 data points. The

top panel of Fig. 1 shows the δ18O data with the breakpoints between the climate states as identified by

Westerhold et al. (2020). Summary statistics of the dataset for the full sample length and for each climate

state are presented in Appendix B.1. of the seawater, which in turn is a function of ice volume and salinity

(e.g., Waelbroeck et al., 2002; Oerlemans, 2004). Thus, the benthic stack is an important reference record

for global climate history across the Cenozoic. Hereafter, we refer to benthic δ18O simply as δ18O.

Top panel: δ18O data from Westerhold et al. (2020). The order of the vertical axis is reversed, following

standard practice. Bottom panel: The time between data points of δ18O data measured in kyr. The vertical

dashed lines show transitions between the climate states by Westerhold et al. (2020). The horizontal axis

represents time, measured in millions of years before present.

The δ18O data present unique challenges due to its irregular nature and intermittent gaps. The bottom

panel of Fig.1 shows the time series of increments between consecutive time stamps in the record. This graph

reveals that the time series is relatively sparse in the older part of the record and relatively dense in the

younger part. The average time between two adjacent data pointsis compilation by Westerhold et al. (2020)

spans 67.10113 Ma to 564 years before present (Fig. 1). It contains 24,333 entries, of which 74 are missing

in the published version. After excluding these, we retain 24,259 data points, ordered from oldest to most

recent. The δ18O record is irregularly spaced in time, as is typical for paleoclimate proxy data, and sampling

density increases through time, with an average resolution of approximately 2.8 kyr, and the longest gap

between data points is approximately . The longest gap spans about 115.4 kyr . There are and 533

occurrences of gaps between two data points lasting longer than gaps exceed 10 kyr. Moreover, there are

Additionally, 591 instances of multiple observations at the same time stamptime stamps contain multiple

δ18O values, with up to four simultaneous observations .

Methodology

1These are the values in column “benthic d18O VPDB Corr”, found in Sheet 33 of the file aba6853 tables s8 s34.xlsx

provided in the Supplementary Materials of Westerhold et al. (2020).
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In this section, we present and discuss the methodology developed by Bai and Perron (1998, 2003) for

estimating breakpoints in linear regression models. Section 2.2 provides an outline of the framework

for detecting multiple structural changes in linear regression coefficients. Section 2.3 discusses the model

specifications employed observations recorded at the same time. Westerhold et al. (2020) provide an age

model, which has an accuracy ranging from ±100 kyr in the early Cenozoic to ±10 kyr in the latest Cenozoic.

We do not account for age model uncertainty in this studyfor breakpoint estimation. Section 2.4 outlines

the implementation of the model specifications, but we return to this issue in the results section. Using re-

currence analysis, Westerhold et al. (2020) identify six climate states, and we refer to these as Warmhouse

I (66-56 Ma), Hothouse (56-47 Ma), Warmhouse II (47-34 Ma), Coolhouse I (34-13.9 Ma), Coolhouse II

(13.9-3.3 Ma), and Icehouse (3.3 Ma-present). Summary statistics for the full record and for each climate

state identified by Westerhold et al. (2020) are reported in Appendix B.1.
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Figure 1: δ18O data from Westerhold et al. (2020). The order of the vertical axis is reversed, following standard

practice. The vertical dashed lines show transitions between the climate states by Westerhold et al. (2020). The

horizontal axis represents time, measured in millions of years before present.

2.2 General The Bai-Perron framework

The method Bai-Perron framework is based on minimizing the sum of squared residuals while treating

the breakpoints as unknown parameters to be estimated (Bai and Perron, 1998, 2003). Consider a linear

regression framework for the dependent variable yt, for t = 1, . . . , T , and with m breakpoints, corresponding

to m+ 1 distinct states in the sample. The general model equation is

yt = x′tβ + z′tδj + ut, t = Tj−1 + 1, . . . , Tj , (1)

with j = 1, . . . ,m + 1. The m break dates are denoted by (T1, . . . , Tm), with the convention that T0 = 0

and Tm+1 = T , and ut is a disturbance term with mean zero and variance σ2
j . The (p × 1)-vector xt and

the (q × 1)-vector zt comprise two sets of covariate vectors, for which β is the state-independent vector of

coefficients and δj is the state-dependent vector of coefficients. Since only specific coefficients are subject

to structural breaks, this model is referred to as a partial structural change model. Moreover, we consider

breaks in the variance of ut at the break dates T1, . . . , Tm, such that σ2
i ̸= σ2

j for i ̸= j. The parameters β

and δj are estimated alongside the breakpoints but are not of primary interest here.

We initially treat the number of breakpoints, m, as known and estimate the coefficients and the break-
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points using a sample of T observations of {yt, xt, zt}. The estimation method is based on least squares for

both the coefficients and the breakpoints. For each possible set of m breakpoints (T1, . . . , Tm) denoted as

{Ti}mi=1, we obtain estimates of β and δj by minimizing the sum of squared residuals (SSR), that is,

SSR =

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt − x′tβ − z′tδj)
2
, (2)

where β is common to all states, while δj is specific for the state j, which is the period between Tj−1 + 1

and Tj . The resulting estimated coefficients are denoted as β̂ ({Ti}mi=1) and δ̂ ({Ti}
m
i=1) δ̂j ({Ti}

m
i=1). These

coefficients are then used to determine the SSR associated with each set of breakpoints,

SSRT ({Ti}mi=1) ≡
m+1∑
j=1

Tj∑
t=Tj−1+1

(
yt − x′tβ̂ ({Ti}mi=1)− z′tδ̂j ({Ti}mi=1)

)2

. (3)

The estimated breakpoints are then given by(
T̂1, . . . , T̂m

)
= argmin

T1,...,Tm

SSRT ({Ti}mi=1) . (4)

The minimization is conducted over all partitions (T1, . . . , Tm) such that Tj − Tj−1 ≥ dim(zt) to ensure

that there are enough data points to estimate the parameters δj in each partition. This procedure leads

to estimated parameters for the m breakpoints, i.e., {T̂i}mi=1, β̂ = β̂
(
{T̂i}mi=1

)
, and δ̂ = δ̂

(
{T̂i}mi=1

)
δ̂j =

δ̂j

(
{T̂i}mi=1

)
. Since the possible combinations of the placement of the breakpoints is finite, this optimization

can be conducted using a grid search, which can be computationally heavy, especially for many breakpoints.

Bai and Perron (2003) introduce an efficient method for determining the global minimizers.

An essential advantage of this the Bai-Perron framework is that it allows for constructing confidence in-

tervals for the breakpoints, something that is not available for the recurrence analysis approach implemented

in Westerhold et al. (2020). The construction of confidence intervals is based on the asymptotic distribution

of the estimated break dates. The convergence results for the construction of confidence intervals rely on

a number of assumptions (see Bai and Perron, 2003), which may possibly be violated for the δ18O data.

To examine whether the framework is adequate for the type of data studied here, we have conducted a

large simulation study, of which the details are reported in Appendix C. We discuss the results from the

simulation study and how they relate to the analysis of the δ18O data in Section 3. .

2.3 Model specifications

In this section, we introduce the model specifications employed in this paper for estimating breakpoints.

Three distinct specifications are considered within the Bai-Perron framework, referred to as the “Mean”,

“Fixed AR”, and “AR” models, where AR refers to the autoregressive model of order one with intercept.

These are all special cases of the framework outlined in Eq. (1). The simplest among them, the Mean

model, is specified as follows,

yt = cj + ut, t = Tj−1 + 1, . . . , Tj , (5)

for j = 1, . . . ,m + 1, where cj is the state-dependent intercept and ut is an error term. This model is

equivalent to setting xt = 0, zt = 1, and δj = cj in Eq. (1). A breakpoint in this model specification leads

to an abrupt change in the mean of the dependent variable yt.
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The Fixed AR model extends the Mean model by incorporating an autoregressive term. We obtain the

model

yt = cj + φyt−1 + ut, t = Tj−1 + 1, . . . , Tj , (6)

for j = 1, . . . ,m+1, where yt−1 is the dependent variable lagged by one period, and φ is the autoregressive

coefficient that is constant over the whole sample. In this model, the effect of a change in the coefficient cj

is more gradual, since it depends on the autoregressive dynamics. The Fixed AR model is obtained from

Eq. (1) by specifying xt = yt−1, β = φ, zt = 1, and δj = cj .

The general AR specification also allows the autoregressive term to be state-dependent, resulting in the

AR model,

yt = cj + φjyt−1 + ut, t = Tj−1 + 1, . . . , Tj , (7)

for j = 1, . . . ,m+1, where the autoregressive coefficient φ in Eq. (6) is now state-dependent and is denoted

by φj . This model is obtained from Eq. (1) by setting xt = 0, zt = (1, yt−1), and δj = (cj , φj). Here,

both the intercept and the autoregressive coefficient are state-dependent. Thus, the three specifications are

nested: The AR model is the most general; , the Fixed AR model is nested in the AR model by setting

φ1 = φ2 = . . . = φm+1= φ, and the Mean model is nested in the Fixed AR model by setting φ = 0. Figure 2

illustrates how the models capture breakpoints. The Mean model is designed to detect abrupt breaks in the

mean of a time series, while the Fixed AR model is for smoother breaks. The AR model is more flexible,

allowing for both relatively gradual (e.g., T1) and abrupt (e.g., T2) breakpoints compared to the Fixed AR

model.
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y t

Mean model

Fixed AR model
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Breakpoints

Figure 2: Simulated time series using the three model specifications, each with breakpoints T1 = 25 and T2 = 75,

and total sample size T = 100. For the Mean model, we set c1 = 1.0, c2 = 1.2, and c3 = 0.8. In the Fixed AR

model, the parameters are φ = 0.7, c1 = 0.30, c2 = 0.36, and c3 = 0.24, chosen to yield comparable state-wise

means. Likewise in the AR model, we set φ1 = 0.7, φ2 = 0.9, φ3 = 0.4, c1 = 0.30, c2 = 0.12, and c3 = 0.48. In all

specifications, we set ut = 0 for all t.

2.4 Implementation

The models are implemented using the Bai-Perron framework is implemented using mbreaksR-package

(Nguyen et al., 2023)based on the methodology of Bai and Perron (1998, 2003), an R package specifically
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designed for this purpose (Nguyen et al., 2023). For all model specifications, we set the minimum length of

a state, h, to 2.5 million years (Myr), facilitating the estimation of shorter climate states. Also, we let the

variance of the error term, denoted as σ2
j , be state-dependent.

As outlined by Bai and Perron (2003), no serial correlation is permitted in the errors of the

regressionsregression residuals. However, the time series of δ18O is likely subject to both autocorrela-

tion and heteroscedasticity. The assumption of no serial correlation in the errors may be violated , as

documented in ice core records (Davidson et al., 2015; Keyes et al., 2023). Autocorrelation occurs when

current values correlate with past values, which is common in paleoclimate data due to long-term persis-

tence in climate dynamics (Mudelsee et al., 2014). Since only up to one lag is included in the covariates

in the model specifications considered in this paper, since the incorporation of only up to one lag in the

covariates is unlikely to remove serial correlation in the errorsresidual serial correlation is likely to remain.

Heteroscedasticity, or time-varying error variance, is already partially addressed in the model specifications

through state-dependent variance. However, additional heteroscedasticity may arise within the estimated

states due to factors such as orbital forcing and changes in ice sheet extent. Addressing both autocorrelation

and heteroscedasticity is essential to ensure unbiased parameter estimates and valid confidence intervals for

the estimated breakpoints.

To address account for these issues, we use the autocorrelation and heteroscedasticity consistent (HAC)

covariance matrix estimator with prewhitening in our implementationsthe Bai-Perron framework. The

prewhitening procedure, proposed by Andrews and Monahan (1992), entails applying an autoregressive

model with one lag to ztût, where ût denotes the residuals. The HAC covariance matrix estimator by

Andrews (1991) is then constructed based on the filtered series using the quadratic spectral kernel with

bandwidth selected by an AR of order one approximation. This approach is used for both the Mean,

Fixed AR, and AR modelsall model specifications and is straightforward to implement using the R package

(Nguyen et al., 2023).

Analysis and results

This section presents the results of the breakpoint analysis of the δ18O record. The irregular sampling is

addressed by data binning in Section 2.5, where the stationarity properties of binned data are assessed. In

Section 3.1, we fix the number of breakpoints to five as in Westerhold et al. (2020). In Section 3.2, we treat

the number of breakpoints as a parameter to be estimated.

2.5 Constant data frequency

To conduct breakpoint estimation using the methodology of Bai and Perron (1998, 2003)Bai-Perron frame-

work, we need an equidistant a regularly sampled time series. We use a binning approach to construct a

dataset with evenly-spaced evenly spaced observations, which is common practice in the analysis of pale-

oclimate data; see for instance Boettner et al. (2021)or Reikard (2021). We divide the dataset into bins

of fixed time intervals and compute the mean of the observations within each bin. In the case of gaps in

the binned data, we use the values immediately preceding and succeeding the section with missing data to

perform linear interpolation. We consider six different bin sizes, namely 5, 10, 25, 50, 75, and 100 kyr .
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(Fig. 3). Summary statistics for the full sample length and for each climate state identified by Westerhold

et al. (2020) for all binning frequencies are provided in Appendix B.1. Figure 3 illustrates the binning

approach, with the top panel showing unaltered data and binned data at 5 kyr and 100 kyr frequencies,

and the bottom panels zooming in on two sub-samples.

Top panel: The original data and the 5 and 100 kyr binned data. Bottom left panel: The period 36-35

Ma. Bottom right panel: The period 3-2 Ma.

The top panel of Fig. 3 shows that data Data binned at higher frequencies follow the variations in the

dataset more closely, whereas data binned at lower frequencies tend to be smoother . The longest gap in

the dataset spans approximately 115 kyr and occurs between 36 Ma and 35 Ma. The bottom panels in

Fig.3 zoom in on the periods 36 to 35 Ma (left)and 3 to 2 Ma (right). These plots illustrate that in (Fig. 3).

In case of large gaps(left), a high binning frequency results in linear interpolation between observations .

(Fig. 3 bottom left). This effect does not occur for periods with many observations(right), where low binning

frequencies capture only a small part of the variation in the original data . (Fig. 3 bottom right). Binning

offers a simple approach to handle the uneven frequency of the dataset. However, it leads to data loss at

lower binning frequencies and to the introduction of artificial data points resulting from linear interpolation

at higher binning frequencies. The selection of binning frequencies can therefore alter the properties of the

time series, potentially misrepresenting the dynamics of the original data.

The theoretical framework of Bai and Perron (1998, 2003) Bai-Perron framework is developed for esti-

mating and testing for multiple breakpoints in linear regression models where the regressors are non-trending

or state-wise stationary . However, the (Bai and Perron, 2003). A time series is considered stationary if its

statistical properties, such as mean and variance, do not change over time. The δ18O data appears state-wise

non-stationary over most of the record, even within climate states found by Westerhold et al. (2020). As

pointed out by Kejriwal et al. (2013), if the time series maintains its stationarity properties over the re-

spective states, the methods developed for stationary data are still applicable for these cases. However,

if the process alternates between stationary and non-stationary states, the theoretical properties of the

methodology are unknown.

To investigate whether the time series is non-stationary, we apply the Augmented Dickey-Fuller (ADF)

test (Dickey and Fuller, 1979), with the null hypothesis of non-stationarity. For the entire 25 kyr binned

data sample, the ADF test does not reject the null hypothesis at the 1% significance level, indicating non-

stationarity. However, when examining the binned data for each climate state identified by Westerhold et al.

(2020) separately, the ADF test rejects the null hypothesis at the 1% significance level for the Warmhouse

II, Coolhouse I, and Icehouse states. These tests indicate the presence of state-wise non-stationarity, and we

therefore need to examine whether the methodology of Bai and Perron (1998, 2003) Bai-Perron framework is

applicable to data-generating processes that are state-wise non-stationary or alternating between stationary

and non-stationary states.
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Figure 3: Top panel: The original data and the 5 and 100 kyr binned data. Bottom left panel: The period 36-35

Ma. Bottom right panel: The period 3-2 Ma.

We conduct a simulation study to examine potential challenges in conducting breakpoint estimation on

For this purpose, we conduct a large simulation study designed to verify that the Bai-Perron framework works

as intended when applied to these types of data-generating processes using the three model specifications.

The study is conducted for both independent and identically distributed (i.i.d.i.i.d.) error terms and serially

correlated error terms in Appendices C.1 and C.2, respectively. The results show that the procedure works

well with non-stationarity and is robust to processes with one stationary and one non-stationary state for

Fixed AR and AR models. However, the Mean model performs poorly with highly persistent when the

data-generating processesprocess exhibits high persistence. In the case of serial correlation, the results are

less conclusive, but if the states are sufficiently different, the methodology still appears effective. The study

also reveals that the coverage rates of the estimated for confidence intervals are generally adequate for the

Fixed AR modelspecification in cases of large breaks. In contrast, , while the confidence intervals for of

the AR model are too narrow in many of the cases. Overall, the Fixed AR model performs best across the

data-generating processes considered.

3 Results

3.1 Setting the number of breakpoints to five Fixing the number of breakpoints to five

As an initial step, we fix the number of breakpoints to five, which is the number found in used in the
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recurrence analysis presented in Westerhold et al. (2020). We estimate the breakpoints and corresponding

95% confidence intervals for each of the binning frequencies, 5, 10, 25, 50, 75, and 100 kyr. In each estimation,

we use a minimum state length of 2.5 Myr, allowing us to estimate relatively short climate states. The

estimated breakpoints are tabulated in Appendix B.2 and are shown in Fig. 4, with subfigures for the ,

using Mean, Fixed AR, and AR models . for each (App. B.2; Fig. 4). The estimated confidence intervals

around the breakpoints are often asymmetrical. Bai and Perron (2003) advocate the use of asymmetric

confidence intervals, as these provide better coverage rates when the data are non-stationary.

For the Mean modelpresented in Fig. 4(a), it is evident that , the estimated breakpoints generally remain

at the same dates throughout as the binned data frequency decreases step-by-step from 5 kyr to 100 kyr

. (Fig. 4.a). The width of the 95% confidence intervals increases as the frequency decreases, which can be

attributed to the resultant decrease in the number of binned observations available for estimation at the

lower frequencies. All the breakpoints align with those identified by recurrence analysis in Westerhold et al.

(2020). A similar pattern of alignment is observed in the Fixed AR model, albeit with tighter confidence

intervals , as depicted in Fig.4((Fig. 4.b).

Figure 4(c) presents the findings for the AR model , which The AR model exhibits more sensitivity to

the frequency of the binned data . (Fig. 4.c). At higher frequencies, the breakpoints tend to appear in the

more recent parts of the sample. However, as the frequency decreases further, the breakpoints are estimated

to be in the older parts of the sample period.

For the results using 25 kyr, we find that the estimated breakpoints from the three model specifications

align closely . The estimated breakpoints align almost with each other and nearly perfectly with those

identified by Westerhold et al. (2020)and hence strongly corroborate their findings. The parameters of the

. The three model specifications , estimated using the 25 kyr binned data with the number of breakpoints

fixed at five, are provided in Appendix B.3yield parameter estimates that differ across states, reflecting

differences in mean and autoregressive dynamics (App. B.3).

(a) Mean model(b) Fixed AR model(c) AR model

A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100

kyr from top to bottom, fixing the number of breakpoints to five for each model specification. The black

dots represent estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals.

The results overlay the δ18O data from Westerhold et al. (2020) and their climate states.

As a robustness check, we re-estimate the model specifications for five breakpoints using the 25 kyr

binned data reversed with respect to the time dimension, i.e., letting time run backwards.The results are

shown in Appendix A.1so that the time series is ordered from present to past rather than past to present

(App. A.1). We find that the results of the Mean and Fixed AR models are robust to reversing the time

framethe ordering of the time axis, with almost unchanged estimated breakpoints. Conversely, the AR

model leads to estimated breakpoints in the more recent part of the sample, resulting in breakpoints at 16.9

Ma and 9.7 Ma, which differ from those estimated using the same model and binning frequency with time

running forward (Fig. 4) .
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(a) Mean model
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(b) Fixed AR model
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(c) AR model

Figure 4: A comparison of estimated breakpoints using binned data with frequencies of 5, 10, 25, 50, 75, and 100 kyr

from top to bottom, fixing the number of breakpoints to five for each model specification. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020) and their transitions.

In summary, the results of the changing the binning frequency mainly affects the width of the confidence

intervals, while the estimated breakpoint timing remains largely unchanged for both the Mean and Fixed AR

modelsexhibit robustness across different binning frequencies, whereas . In contrast, the AR model appears

is more sensitive to variations in binning frequency and the reversal resolution and the direction of the

time dimensionframe. As detailed in the simulation study in Appendix C(App. C), the Mean model fails to
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accurately detect breakpoints in highly persistent data-generating processes. Consequently, in what follows,

we focus on the Fixed AR model for the estimation of breakpoints in the δ18O time series. Furthermore, we

recommend using binning frequenciesAmong the binning frequencies, we proceed with 10 kyr and 25 kyras

they result in , as these yield the most consistent outcomesresults across model specifications and strike a

good balance between temporal resolution and signal quality.

3.2 Estimating the number of breakpoints Selecting the number of breakpoints

We use information criteria to estimate the guide the choice of the number of breakpoints. These criteria are

model selection tools that balance goodness of fit with model complexity, helping to avoid overfitting. We

initially consider the following three criteria: the Bayesian Information Criterion (BIC) by Yao (1988), the

modified Schwarz Information Criterion (LWZ) by Liu et al. (1997), and the modified BIC (KT) by Kurozumi

and Tuvaandorj (2011). For all criteria, the estimated preferred number of breakpoints is determined as the

number of breakpoints that minimizes the information criterion in question. A few paleoclimate studies use

information criteria for model selection, for example, Valler et al. (2024) show it can be beneficial.

Bai and Perron (2006) note that the BIC and LWZ criteria perform well in the absence of serial correla-

tion, but both of them lead to overestimation of the number of breakpoints in case of serial correlation in the

error term. In simulation studies , reported in (Appendices C.1 and C.2), we find that the KT information

criterion performs poorly, and hence, we exclude it from the subsequent analysis. We also find that the

number of breakpoints estimated determined using the Mean model specification is generally overestimated

too large when employing the information criteria. For the Fixed AR and AR models, the BIC and LWZ

criteria typically perform well, especially in data-generating processes with a large break. With serial cor-

relation in the error term, the BIC criterion tends to overestimate the number of breakpoints, whereas the

LWZ criterion generally performs well in the Fixed AR and AR model specifications.

Bin size Mean Fixed AR AR

BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5

10 17 17 14 7 14 3

25 17 14 12 6 8 3

50 17 14 10 0 7 0

75 17 14 6 0 5 0

100 17 12 6 0 5 0

Table 1: The number of breakpoints estimated using BIC and LWZ criteria for all models and binning frequencies

considered. The minimum state length is set to h = 2.5 Myr and the maximum number of breakpoints is 26.

We use the BIC and LWZ information criteria for each model specification and binning frequency to

determine the number of breakpoints, and set the minimum state length to h = 2.5 Myr . Table B.4shows

the estimated number of breakpoints. There is a tendency towards higher numbers with increasing binning

frequency, and for the BIC to indicate higher numbers than the LWZ criterion. (App. B.4). For our preferred

specification, the Fixed AR model with 25 kyr binning frequency, the LWZ and BIC criteria suggests six and
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twelve 12 breakpoints, respectively. For a 10 kyr binning frequency, the estimated number of breakpoints

are seven and fourteen14, respectively. Thus, the information criteria indicate that the number of distinct

climate states in the δ18O record is larger than the five suggested in Westerhold et al. (2020).
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Figure 5: A comparison of estimated breakpoints using the Fixed ARmodel for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.

To further investigate the potential for a higher number of breakpoints, we consider the estimation of up

to fifteen breakpoints. As previously discussed, we advocate for using the Fixed AR model and mid-range

binning frequency. Therefore, we estimate one to fifteen breakpoints using 15 with the minimum length of a

state set of h = 1 Myr. This analysis is conducted with the Fixed AR model and 25 kyr binned data . The

results are shown in Fig.5(Fig. 5). The same analysis conducted using the 10 kyr binned data led to nearly

identical breakpoint estimates and is therefore omitted for conciseness(App. A.2). Comparable findings are

presented in Appendices A.3 and A.4, which detail the results of estimating one to 15 breakpoints using the

Mean and AR models, respectively, with 25 kyr binned data.

The final estimated breakpoint is placed at 1.425 Ma for the Fixed AR model, just below the upper

boundary of the detection window at 1 Ma, imposed by the minimum state length of 1 Myr. Additionally,

the estimated breakpoint is located near the midpoint of a linear trend in the time series from approximately

3.3 Ma to the present, suggesting it may be driven by the trend rather than representing a break in the

time series (cf. Fig. 5). To investigate this further, we re-estimate the breakpoints for the Fixed AR

model, focusing solely on the Icehouse period, with the minimum length of a state set to 250 kyr and 5

kyr binning, leveraging the denser sampling in this part of the record. For the Fixed AR model, the LWZ

criterion suggests one breakpoint, while the BIC indicates two. With one breakpoint, the estimate is 1.355

Ma, and with two, the estimated breakpoints are 2.54 Ma and 0.95 Ma (Fig. 6). Estimating more than

two breakpoints leads to overlap between the confidence intervals, reducing the interpretability, and these

models are therefore excluded. The results are comparable for the Mean and AR models (Appendices A.5

and A.6).
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Figure 6: A comparison of estimated breakpoints using the Fixed AR model for one and two breakpoints on 5 kyr

binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020).

3.3 Limitations of the Bai–Perron framework

Although the Bai–Perron framework provides a flexible and well-established method for detecting breaks,

it does have some limitations. The approach assumes piecewise linearity and white noise residuals

(Bai and Perron, 2003). However, in the estimations conducted in this study, the residuals are not white

noise, indicating that some dynamics are left unexplained. The simulation results show that the Bai-Perron

framework nevertheless performs well even when residuals exhibit complex dynamics (App. C). Confidence

intervals should still be interpreted with caution. The method is also computationally demanding for high-

resolution data, although it remains possible to run on personal computers.

Another limitation is that the method does not account for age model uncertainty, which is important

for interpreting the timing and significance of time series analytical output (Marwan et al., 2021). In the

Westerhold et al. (2020) data, dating uncertainty ranges from about ±10 kyr in the younger parts to ±100

kyr in the older parts. This can affect the timing of transitions and lead to differences when comparing across

records (Franke and Donner, 2019). Previous work has shown that age-depth models often underestimate

the true uncertainty in the chronology, which would amplify these effects (Telford et al., 2004). While

some progress has been made in including age uncertainty into recurrence analyses (Goswami et al., 2018)

, incorporating it into the Bai-Perron framework remains a challenge. One could however consider the

use of age ensembles which are multiple plausible realizations of the time axis to assess robustness of

the estimated breakpoints. Fully integrating age uncertainty into the estimation process, for example by

modeling timestamps as random variables, would require further methodological development. However,

since the age model uncertainties reported by Westerhold et al. (2020) are small compared to the duration

of the estimatedclimate states, we expect our main findings to be robust.

In addition to age uncertainty, another direction for methodological advancement is developing a break-

point detection framework for irregularly spaced time series. This would obviate the need for aggregating

the data to fixed time intervals, preserving more of the original record. Steps in this direction have al-

ready been made in concurrent research (Bennedsen et al., 2024), where the full δ18O and δ13C stacks
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(Westerhold et al., 2020) are analyzed while taking the climate state transitions as given and addressing

measurement errors.

4 Discussion

Our results demonstrate that the Bai-Perron time-domain framework is a flexible and effective tool for

detecting breakpoints in paleoclimate time series. When fixing the number of breakpoints to five and

binning the data at 25 kyr intervals, all model specifications lead to breakpoint estimates that closely

match those identified by Westerhold et al. (2020), providing strong statistical support for their climate-

state classification. This not only corroborates their results obtained through recurrence analysis, but also

lends credibility to the use of this econometric tool for analyzing paleoclimate records.

Moreover, information criteria point to a higher number of transitions than previously reported, sug-

gesting the potential for a more detailed classification of Cenozoic climate variability. To explore this, we

estimate between one and 15 breakpoints using the Fixed AR model (Fig. 5). Allowing for six breakpoints,

we get an additional breakpoint in Warmhouse II at 40.075 Ma that remains for higher numbers of break-

points. This breakpoint aligns with the cooling following the Middle Eocene Climatic Optimum , a known

climatic event(MECO) described by Bohaty and Zachos (2003). Allowing for seven, we get identify another

one in Coolhouse II ; allowing for eight , another in Icehouse; allowing for nine, another in Coolhouse I;

and so onaround 9.975 Ma in the Miocene, which saw the expansion of C4 grasslands, altering the global

carbon cycle and land surface with potential effects on climate (Polissar et al., 2019; Strömberg, 2011).

Using the same δ18O dataset, Rousseau et al. (2023) apply recurrence plots and a Kolmogorov–Smirnov

test and identify similar transitions near 40 Ma and 9.7 Ma. Allowing for eight in the Bai-Perron frame-

work, the additional breakpoint occurs in the Icehouse. Some of these breakpoints the additional break-

points up to 15 coincide with other known climatic events, for instance, the Latest Danian Event at

62.2 like the onset of the Mid-Miocene Climatic Optimum (MMCO) with an estimated age of 16.95 Ma

(Flower and Kennett, 1994; Zachos et al., 2001). Particularly noteworthy is the lack of breakpoints, even

with 15 detections, between the Eocene–Oligocene Transition (EOT) at 34 Ma and the onset of the Miocene

Climatic Optimum at 16.9 Ma(Westerhold et al., 2020).

The estimation results based on information criteria justify dividing the climate states Warmhouse II and

Coolhouse II into two substates each at approximately 39.7 Ma and 10 Ma, respectivelyMMCO around 17

Ma. This is supported by the presence of breakpoints estimated approximately at these time stamps in the

estimations with seven or more breakpoints . Comparable findingsare presented in Appendices A.3 and A.4,

which detail the results of estimating one to fifteen breakpoints using the Mean and AR models, respectively,

with 25 kyrbinned data . This is consistent with this being a relatively stable period in the Cenozoic Era

following the establishment of the Antarctic ice sheet (Zachos et al., 2001; Mudelsee et al., 2014).

To explore transitions within the relatively higher-resolution Icehouse period more closely, we have

re-estimated breakpoints using a finer 5 kyr binning and a reduced minimum regime length of h = 250

kyr. This setup yields a single breakpoint at 1.355 Ma, which may reflect a midpoint in the record rather

than a distinct climatic shift. When allowing for two breakpoints as also suggested by the BIC, they are

estimated at 2.54 Ma and 0.95 Ma, corresponding well to the onset of Northern Hemisphere Glaciation
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(Lisiecki and Raymo, 2005) and the Mid-Pleistocene Transition (MPT) (Pisias and Moore, 1981), respec-

tively. The MPT marks a change in the rhythm of glacial cycles, with its timing still debated. For instance,

Clark et al. (2006) describe it as a gradual transition between 1.25 and 0.7 Ma. This uncertainty is also

reflected in the estimated confidence interval of the latter breakpoint, which spans from 1.545 Ma to 0.66

Ma. These results underscore the capability of the Bai-Perron framework to detect key transitions in Earth’s

recent climate history and emphasize the importance of climate system knowledge when interpreting break-

point estimates. The same period is examined by Rousseau et al. (2023), who apply recurrence plots and

Kolmogorov–Smirnov tests to a benthic δ18O record (Hodell and Channell, 2016) and identify six transi-

tions at approximately 2.93 Ma, 2.52 Ma, 1.51 Ma, 1.25 Ma, 0.61 Ma, and 0.35 Ma. Their transitions at

2.52, 1.51, and 0.61 Ma broadly align with the first estimated breakpoint and the confidence interval bounds

of the second. In contrast to the Bai-Perron framework used here, their approach neither determines the

number of breakpoints nor estimates confidence intervals for their placements.

Based on our findings, we offer several general recommendations for the application of this breakpoint

detection method in paleoclimate research and related fields. First, careful consideration should be given

to the choice of binning frequency. While finer binning enhances temporal resolution, it may also pre-

serve measurement errors and introduce artifacts by linear interpolations, particularly in unevenly sampled

records. Also, coarser binning can lead to loss of information. In our application, we find that the bin

width 10 and 25 kyr provide a good balance between detail and signal quality. For the 25 kyr bin width,

the mean number of observations per bin is approximately 9, and 3.6 for 10 kyr. However, these numbers

vary across the sample, being only 3.5 and 1.4, respectively, in the Warmhouse II and increasing to 28.3

and 11.3, respectively, in the Icehouse period. This highlights the importance of accounting for variable

sampling resolution when selecting bin widths. For other records, we recommend seeking a similar balance.

If the data are already evenly spaced in time, retaining the original resolution is preferable. Second, the

model specification should reflect the statistical features of the data, such as trends and autocorrelation.

Although the Fixed AR model has performed well in our study, the flexibility of the Bai–Perron framework

allows users to adapt the model specification to suit different datasets. Third, the number of breakpoints

can be selected based on information criteria.

5 Conclusion

This study presented presents a statistical time-domain approach to identify breakpoints between climate

states estimate breakpoints in the Cenozoic Era , using the econometric tools developed by Bai and Perron

(1998, 2003). We analyzed analyze the time series of benthic δ18O provided by Westerhold et al. (2020),

which we made equidistant through mean-binningis a widely cited foundational record for many corners of

the field of paleoclimatology. Westerhold et al. (2020) identified five breakpoints using recurrence analysis,

and our analysis strongly corroborated corroborates the placements of these breakpoints across various

model specifications and binning frequencies. Our approach offered the advantage of constructing confidence

intervals for the dates of the breakpoints, providing a measure of estimation uncertainty. Based on the results

of our simulation study, we advocate using the model specification with a state-independent autoregressive

term and state-dependent intercept.
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By treating selecting the number of breakpoints as a parameter to be estimated using information criteria,

we provided provide statistical justification for more than five breakpoints in the time series. We found

evidence that For instance, in specifications with seven or more breakpoints, the five transitions identified

by Westerhold et al. (2020) are preserved, while additional breakpoints suggest that both the Warmhouse II

and Coolhouse II could each be split into two substates, which were preserved along with the five breakpoints

also found by Westerhold et al. (2020)when considering seven or more breakpoints. states could be further

divided into substates. This points to the potential for a more detailed classification of Cenozoic climate

states, enhancing our understanding of Earth system dynamics. The results also show that the Bai-Perron

framework can robustly capture important transitions in Earth’s climate history. Many of the estimated

breakpoints align with known climatic events, such as the cooling after the Middle Eocene Climatic Optimum

(MECO), the onset of the Mid-Miocene Climatic Optimum (MMCO), and the Mid-Pleistocene Transition

(MPT), supporting its use in broader paleoclimate studies.

In concurrent research (Bennedsen et al., 2024), we address some other key challenges specific to paleo

time series, including uneven time stamps, multiple observations at the same time point, and measurement

errors, while taking the breakpoints identified by Westerhold et al. (2020) as given. Future research can

then focus on conducting breakpoint detection using the The applicability of the Bai-Perron framework

extends well beyond the benthic δ18O time series without applying data aggregation techniques. O stack by

Westerhold et al. (2020). It can be employed across a wide range of different paleoclimate archives, allowing

for investigations of regional differences in the estimated breakpoints, for instance. It can also be applied

to other proxies, such as δ13C and greenhouse gas concentrations. Furthermore, the method is suitable for

detecting both gradual and abrupt transitions, including climatic events such as Dansgaard-Oeschger events

(Dansgaard et al., 1993; Livina et al., 2010).

The framework allows for the inclusion of covariates, opening up many possibilities for future applica-

tions. For example, incorporating orbital parameters (e.g., eccentricity, obliquity, and precession; Laskar et al., 2004)

provides the potential for detecting transitions while controlling for these external effects. Alternatively, one

could investigate breaks in the relationship between orbital forcings and paleoclimate variables, reflecting

changes in how strongly these external factors influence climate dynamics. A key example is the MPT,

marked by a shift in the dominant glacial cycle from 41 kyr to 100 kyr (Berends et al., 2021), the timing of

which could be estimated using the Bai–Perron framework.

These examples highlight the broader potential of the framework as a flexible tool for paleoclimate

data analysis. Understanding when and how breakpoints in the climate system occurred is essential for

interpreting past climate variability and, ultimately, for informing future projections. The Bai–Perron

framework provides a statistically rigorous way of estimating these breakpoints, offering new opportunities

to deepen our understanding of long-term climate dynamics.

Code and data availability. The data used in this study are available as the supplementary material of

Westerhold et al. (2020). The code used to conduct the analysis is based on the R-package mbreaks by

Nguyen et al. (2023) and the implementation is available upon request.
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A Graphs

A.1 Reversed time
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Figure 7: A comparison of estimated breakpoints using the Mean, Fixed AR, and AR model specifications for five

breakpoints on 25 kyr binned data where the time frame is reversed. The black dots represent estimated breakpoints,

while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.

A.2 One to 15 breakpoints: Fixed AR model 10 kyr
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Figure 8: A comparison of estimated breakpoints using the Fixed AR model for one to 15 breakpoints on 10 kyr

binned data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while

colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold

et al. (2020) and their transitions.
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A.3 One to 15 breakpoints: Mean model
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Figure 9: A comparison of estimated breakpoints using the Mean model for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.

A.4 One to 15 breakpoints: AR model
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Figure 10: A comparison of estimated breakpoints using the AR model for one to 15 breakpoints on 25 kyr binned

data. The minimum state length is set to h = 1 Myr. The black dots represent estimated breakpoints, while colored

shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data from Westerhold et al. (2020)

and their transitions.
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A.5 One and two breakpoints in the Icehouse: Mean model 5 kyr
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Figure 11: A comparison of estimated breakpoints using the Mean model for one and two breakpoints on 5 kyr

binned data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent

estimated breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the

δ18O data from Westerhold et al. (2020).

A.6 One and two breakpoints in the Icehouse: AR model 5 kyr
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Figure 12: A comparison of estimated breakpoints using the AR model for one and two breakpoints on 5 kyr binned

data for the Icehouse period. The minimum state length is set to h = 250 kyr. The black dots represent estimated

breakpoints, while colored shaded rectangles indicate 95% confidence intervals. The results overlay the δ18O data

from Westerhold et al. (2020).
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B Tables

B.1 Summary statistics: State-wise and full sample

Bin size State Mean Sd. Max. Min. Data points

5 Warmhouse I 0.417 0.249 1.07 -0.215 2221

5 Hothouse -0.269 0.261 0.391 -2.014 1800

5 Warmhouse II 0.897 0.366 1.894 -0.254 2600

5 Coolhouse I 2.239 0.233 2.991 1.266 4020

5 Coolhouse II 3.072 0.237 4.172 1.885 2120

5 Icehouse 4.037 0.463 5.405 3.05 660

5 Full sample period 1.561 1.277 5.405 -2.014 13421

10 Warmhouse I 0.417 0.245 0.977 -0.12 1111

10 Hothouse -0.269 0.256 0.308 -2.014 900

10 Warmhouse II 0.897 0.366 1.777 -0.254 1300

10 Coolhouse I 2.239 0.221 2.877 1.324 2010

10 Coolhouse II 3.072 0.228 4.122 1.975 1060

10 Icehouse 4.034 0.447 5.33 3.181 330

10 Full sample period 1.561 1.276 5.33 -2.014 6711

25 Warmhouse I 0.418 0.237 0.912 -0.065 445

25 Hothouse -0.269 0.245 0.218 -1.871 360

25 Warmhouse II 0.898 0.358 1.688 0.01 520

25 Coolhouse I 2.239 0.202 2.749 1.391 804

25 Coolhouse II 3.073 0.213 3.793 2.087 424

25 Icehouse 4.033 0.401 5.158 3.258 132

25 Full sample period 1.561 1.273 5.158 -1.871 2685

50 Warmhouse I 0.419 0.233 0.867 -0.042 223

50 Hothouse -0.268 0.233 0.197 -1.871 180

50 Warmhouse II 0.898 0.354 1.656 0.182 260

50 Coolhouse I 2.24 0.188 2.713 1.567 402

50 Coolhouse II 3.072 0.206 3.72 2.156 212

50 Icehouse 4.042 0.359 4.757 3.264 66

50 Full sample period 1.562 1.271 4.757 -1.871 1343

75 Warmhouse I 0.42 0.229 0.837 0.006 148

75 Hothouse -0.26 0.203 0.167 -0.985 120

75 Warmhouse II 0.894 0.351 1.553 0.156 173

75 Coolhouse I 2.239 0.181 2.717 1.691 268

75 Coolhouse II 3.068 0.214 3.652 2.072 142

75 Icehouse 4.041 0.351 4.753 3.283 44

75 Full sample period 1.563 1.268 4.753 -0.985 895

100 Warmhouse I 0.42 0.229 0.832 0.007 112

100 Hothouse -0.263 0.203 0.155 -0.985 90

100 Warmhouse II 0.898 0.349 1.601 0.228 130

100 Coolhouse I 2.241 0.175 2.685 1.739 201

100 Coolhouse II 3.073 0.201 3.625 2.353 106

100 Icehouse 4.047 0.344 4.673 3.4 33

100 Full sample period 1.562 1.269 4.673 -0.985 672

Without binning Warmhouse I 0.428 0.25 1.07 -0.215 2761

Without binning Hothouse -0.279 0.255 0.391 -2.46 3030

Without binning Warmhouse II 0.916 0.357 1.894 -0.254 1786

Without binning Coolhouse I 2.251 0.242 3.263 1.026 6669

Without binning Coolhouse II 3.102 0.254 4.49 1.84 6282

Without binning Icehouse 4.064 0.533 5.53 2.66 3731

Without binning Full sample period 2.128 1.445 5.53 -2.46 24259

Table 2: Summary statistics of the binned data with bin sizes (5, 10, 25, 50, 75, and 100 kyr) and the δ18O data

without binning for each of the states identified by Westerhold et al. (2020) and the full sample period.
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B.2 Estimated breakpoints: 5 breakpoints

Bin size BP index Mean Fixed AR AR

Estimate 95% CI Estimate 95% CI Estimate 95% CI

5 1 55.965 (56.085, 55.885) 55.995 (56.085, 55.92) 33.745 (33.745, 33.72)

5 2 46.725 (46.845, 46.675) 46.73 (46.76, 46.68) 16.96 (17.365, 16.78)

5 3 34.02 (34.025, 33.915) 34.05 (34.075, 34.015) 13.825 (13.84, 13.775)

5 4 13.36 (13.395, 13.325) 13.41 (13.465, 13.34) 9.555 (9.585, 9.505)

5 5 2.735 (2.845, 2.715) 2.74 (3.1, 2.715) 3.36 (3.815, 3.355)

10 1 55.97 (56.15, 55.79) 55.99 (56.15, 55.88) 33.77 (33.77, 33.72)

10 2 46.73 (46.84, 46.64) 46.73 (46.77, 46.64) 17.88 (18.32, 17.64)

10 3 34.02 (34.03, 33.9) 34.15 (34.18, 34.09) 13.82 (13.84, 13.75)

10 4 13.36 (13.4, 13.3) 13.82 (13.89, 13.72) 9.59 (9.72, 9.45)

10 5 2.73 (2.81, 2.7) 2.74 (3.18, 2.71) 2.74 (2.88, 2.72)

25 1 55.975 (56.3, 55.1) 56.025 (56.575, 55.7) 55.825 (55.85, 55.675)

25 2 46.725 (47.3, 46.55) 46.725 (46.825, 46.45) 48.35 (48.625, 47.85)

25 3 34.025 (34.05, 33.5) 34.15 (34.225, 34.0) 33.75 (33.75, 33.675)

25 4 13.4 (13.525, 13.275) 13.875 (13.975, 13.65) 13.875 (14.05, 13.55)

25 5 2.725 (2.8, 2.625) 2.775 (3.075, 2.7) 2.575 (2.6, 2.55)

50 1 55.95 (56.2, 54.6) 56 (57.1, 55.35) 56 (56.65, 55.7)

50 2 46.7 (48.15, 46.45) 47.1 (47.25, 46.55) 48.8 (49.1, 40.45)

50 3 34.05 (34.05, 32.8) 34.2 (34.3, 33.9) 33.75 (33.75, 33.6)

50 4 13.8 (14.15, 13.6) 13.85 (14.0, 13.45) 16.95 (17.35, 16.7)

50 5 2.75 (2.9, 2.5) 3.15 (3.4, 3.0) 14.3 (14.55, 12.8)

75 1 55.95 (56.325, 53.775) 56.25 (57.45, 54.75) 55.95 (56.325, 55.5)

75 2 46.725 (50.625, 46.425) 47.1 (47.475, 46.425) 53.325 (53.625, 50.1)

75 3 34.05 (34.05, 30.9) 34.2 (34.425, 33.675) 34.05 (34.05, 33.825)

75 4 13.35 (13.8, 12.975) 13.875 (14.1, 13.125) 16.95 (17.325, 16.5)

75 5 2.775 (3.375, 2.4) 3.15 (3.525, 2.925) 14.475 (15.075, 14.25)

100 1 56 (56.4, 54.0) 56.2 (57.7, 54.5) 56 (56.3, 55.5)

100 2 46.7 (52.5, 46.3) 47.1 (47.7, 46.3) 53.4 (53.8, 52.1)

100 3 34.1 (34.1, 29.4) 34.2 (34.5, 33.4) 49.1 (50.8, 48.8)

100 4 13.8 (14.7, 13.4) 13.9 (14.1, 12.9) 34.1 (34.1, 33.8)

100 5 2.9 (4.2, 2.3) 3.4 (3.8, 3.2) 13.8 (15.7, 12.9)

Table 3: Estimated breakpoints and their 95% confidence intervals (in Ma) where the number of breakpoints is fixed

to 5, and all values are rounded to three decimals. The table shows estimates for each method across bin sizes 5, 10,

25, 50, 75, and 100 kyr.

29



B.3 Estimated parameters: 5 breakpoints and 25 kyr binned data

Mean Fixed AR AR

Parameter Estimate SE Estimate SE Estimate SE

c1 0.418 0.051 0.069 0.008 -0.001 0.026

c2 -0.256 0.040 -0.043 0.007 -0.108 0.015

c3 0.911 0.072 0.153 0.013 0.028 0.007

c4 2.247 0.017 0.373 0.031 0.660 0.061

c5 3.119 0.027 0.519 0.043 0.421 0.073

c6 4.140 0.051 0.698 0.057 2.423 0.326

φ × × 0.833 0.014 × ×
φ1 × × × × 0.990 0.054

φ2 × × × × 0.631 0.037

φ3 × × × × 0.970 0.008

φ4 × × × × 0.706 0.027

φ5 × × × × 0.865 0.024

φ6 × × × × 0.419 0.081

σ2
1 0.237 × 0.095 × 0.106 ×

σ2
2 0.255 × 0.154 × 0.140 ×

σ2
3 0.347 × 0.112 × 0.107 ×

σ2
4 0.210 × 0.141 × 0.140 ×

σ2
5 0.208 × 0.111 × 0.116 ×

σ2
6 0.351 × 0.340 × 0.315 ×

Table 4: Estimated parameters and their corresponding standard errors (SE) for each model specification. Parameters

absent in a given model specification are denoted by ×. The number of breakpoints is set to 5, and the parameters

are estimated with a binning frequency of 25 kyr and h = 2.5 Myr. All values are rounded to three decimals.

B.4 The number of breakpoints selected by information criteria

Bin size Mean Fixed AR AR

BIC LWZ BIC LWZ BIC LWZ

5 19 17 17 7 15 5

10 17 17 14 7 14 3

25 17 14 12 6 8 3

50 17 14 10 0 7 0

75 17 14 6 0 5 0

100 17 12 6 0 5 0

Table 5: The number of breakpoints selected using BIC and LWZ criterion for all models and binning frequencies

considered. The minimum state length is set to h = 2.5 Myr and the maximum number of breakpoints is 26.
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C Simulation study

C.1 Serially uncorrelated error term

In this appendix, we assess whether the methodology by Bai and Perron (1998, 2003) can be used to

accurately estimate the number and timing of breakpoints in a state-wise non-stationary time series. We

conduct 1000 simulations for each data-generating process (DGP) with a sample size of 500. All the DGPs

considered have the following form,

yt = c1 + φ1yt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
for t ≤ T/2

yt = c2 + φ2yt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
for t > T/2. (8)

Hence, we consider a single breakpoint in the middle of the sample interval, namely at t = 250. We examine

eight DGPs, each specified and described in Table 6.

DGP σ c1 c2 φ1 φ2 Description

1 1 0.1 0.2 1 1 Small break in the drift term of a RW

2 1 0.1 1 1 1 Large break in the drift term of a RW

3 1 0.1 1 0.95 0.95 Large break in the intercept and a fixed AR-coefficient

4 1 0.1 1 0.95 1 Break in the intercept and small break in the AR-coefficient

5 1 0.1 1 0.5 1 Break in the intercept and large break in the AR-coefficient

6 1 1 1 1 1 RW with a drift without a breakpoint

7 0.5 0.1 1 1 1 Large break in the drift of a RW with low variance

8 1 0.1 1 0.5 0.5 Large break in the intercept and a low fixed AR-coefficient

Table 6: Data-generating processes for the simulation study and short descriptions. RW: random walk.

The DGPs range from random walk models with a break in the drift term to models with breaks in both

the intercept and the AR coefficient. For comparison, we include a random walk without breakpoints as the

sixth model. For each of the DGPs, we are interested in the performance of the methodology by Bai and

Perron (1998, 2003) in estimating the breakpoint and confidence intervals. The model specifications from

Section 2.3 are estimated on the data generated by the DGPs, and we use the implementation outlined in

Section 2.4. We use the R-package mbreaks by Nguyen et al. (2023), and we impose a single breakpoint in

the estimation. The left and right panels of Figs. 13 through 20 display realizations of the DGP and density

plots of the estimated breakpoints for each of the models, respectively. The results are summarized in Table

7, which provides the mean of the estimated breakpoints, and medians of the lower and upper boundaries

of the estimated 95% CIs are tabulated along with their coverage rates for each model and DGP.
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DGP Mean Fixed AR AR

BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

1 301 174 655 57.1% 251 216 336 43.4% 290 240 316 22.7%

2 333 -386 332 95.4% 249 237 262 93% 249 236 256 77.2%

3 263 253 284 41.4% 256 239 260 89.9% 251 241 260 85.9%

4 340 -190 340 97.5% 249 239 260 95.8% 249 238 250 65.8%

5 340 -114 340 97.1% 250 239 258 97% 250 241 250 72.9%

6 249 -3325 3976 × 253 142 371 × 254 202 312 ×
7 333 -282 330 92% 249 246 253 97.8% 249 246 253 96%

8 249 237 264 95.1% 248 236 263 95.2% 248 236 263 94.5%

Table 7: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence

intervals, along with the coverage rates for each model specification and DGP. DGP 6 is simulated without a

breakpoint, so the coverage rate is irrelevant and indicated by ×.

In the first DGP, a random walk with a small drift term break, we observe that the mean of the

estimated breakpoints is later than the true breakpoint in all model specifications. Additionally, the density

plots exhibit asymmetry around the true breakpoint. This is expected due to the low magnitude of the

break in the drift term, which creates a subtle change in the overall stochastic trend, making accurate

breakpoint detection difficult. In the second DGP with a larger drift term break, the estimated breakpoints

exhibit a narrower and more bell-shaped density. The mean estimated breakpoints for the Fixed AR and

AR models slightly precede the true breakpoint. However, the Mean model performs poorly, with the mean

of the estimated breakpoints far from the true breakpoint.

In the third DGP, both the Fixed AR and AR models produce mean estimated breakpoints slightly

later than the true breakpoint. The Mean model exhibits better performance in this DGP than in the

second DGP. The fourth DGP has a break in the intercept and the AR-coefficient from 0.95 to 1, resulting

in a state-wise non-stationary model. This change leads to breakpoint estimates very close to the true

breakpoint, except in the Mean model. A similar outcome is observed in the fifth DGP, which features a

larger increase in the AR-coefficient. In the sixth DGP, which is defined without any breakpoints, the Mean

model estimates breakpoints near the midpoint of the sample period, while the other two specifications yield

inconclusive results. In the seventh DGP, the AR and Fixed AR models produce estimates close to the true

breakpoint. However, the Mean model continues to produce breakpoint estimates far from the true value.

Examining the eighth DGP, the three models perform almost equally well.

Overall, the Fixed AR and AR models tend to perform well in non-stationary scenarios, estimating

breakpoints close to the true breakpoints. The methodology, however, appears to struggle with accurately

estimating the true breakpoint in cases of minor changes between states and large error term variance. In

contrast, the Mean model does not perform well in DGPs featuring gradual changes, aligning with theoretical

expectations as detailed in Bai and Perron (2003).

The coverage rate of a CI is the proportion of times the CI covers the true breakpoint, here at t = 250.

We find that the CIs of the Mean model are generally very wide and have varying coverage. In the Fixed

AR and AR models, the CIs are typically narrower. The coverage rates are best in the DGPs with large

differences between the states as seen in DGPs 4, 5, 7 and 8 using the Fixed AR model specification, which

is in line with the findings of Bai and Perron (2003). For the AR model, the coverage rates are only close
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to the desired 95% in the seventh and eighth DGP, indicating that the CIs are inadequate in most of the

DGPs considered.

DGP Mean Fixed AR AR

BIC LWZ KT BIC LWZ KT BIC LWZ KT

1 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.2 (15%) 0.0 (0%) 3.0 (0%) 0.1 (6%) 0.0 (0%) 0.0 (3%)

2 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (97%) 0.8 (82%) 3.0 (0%) 1.0 (94%) 0.5 (46%) 1.0 (93%)

3 2.9 (0%) 2.7 (4%) 3.0 (0%) 1.0 (94%) 0.2 (16%) 2.9 (0%) 0.9 (85%) 0.0 (0%) 0.7 (70%)

4 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (98%) 1.0 (98%) 2.8 (0%) 1.0 (99%) 0.9 (92%) 1.0 (99%)

5 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (97%) 2.7 (0%) 1.0 (99%) 1.0 (100%) 1.0 (99%)

6 3.0 (0%) 3.0 (0%) 3.0 (0%) 0.0 (98%) 0.0 (100%) 3.0 (0%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

7 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.0 (99%) 1.0 (100%) 3.0 (0%) 1.0 (98%) 1.0 (100%) 1.0 (98%)

8 1.5 (63%) 1.0 (98%) 1.3 (72%) 1.0 (99%) 1.0 (100%) 1.3 (73%) 1.0 (100%) 1.0 (98%) 1.0 (100%)

Table 8: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.

Table 8 shows the mean number of breakpoints estimated for each DGP and method, along with the

proportion of correctly estimated breakpoints. The difficulty in accurately estimating gradual changes using

the Mean model is also evident when estimating the number of breakpoints. This model specification leads

to overestimating the number of breakpoints in all DGPs considered except DGP 8, where it performs

well. The BIC criterion in the Fixed AR specification performs very well, with an estimated number of

breakpoints equal to the true number in most simulations in DGP 2-8. The LWZ criterion performs almost

equally well except in the third DGP, while the KT criterion vastly overestimates the number of breakpoints

in DGP 1-7. In the AR model, the information criteria all perform well in DGPs 2-8 except for the third

DGP where the LWZ criterion underestimates the number of breakpoints.
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Figure 13: DGP 1: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 14: DGP 2: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 15: DGP 3: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 16: DGP 4: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.

0 100 200 300 400 500
t

0

50

100

150

200

250

y t

Example 1

Example 2

Example 3

Example 4

Example 5

Breakpoint

240 260 280 300 320 340 360 380
t

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

fo
r

B
P

Mean

Fixed AR

AR

Breakpoint

Figure 17: DGP 5: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 18: DGP 6: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 19: DGP 7: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 20: DGP 8: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.

C.2 Serially correlated error term

A possible extension of the simulation study outlined in Eq. (8) is allowing the error term to exhibit serial

correlation. We use the same DGPs as before, but generate {εt}Tt=1 as follows,

εt = ψεt−1 + θηt−1 + ηt, ηt
i.i.d.∼ N (0, σ2

η) ∀t. (9)

We conduct 1000 simulations for each, with a sample size of 500. Here, we consider DGPs 2, 3, 4, 5, 7,

and 8 as outlined in Table 6 and refer to these DGPs in the serially correlated cases as models 2s, 3s, 4s,

5s, 7s, and 8s. We set ψ = θ = 0.5 and the standard deviation ση, such that the standard deviation of εt

corresponds to the σ in Table 6. This is accomplished as follows,

Var (εt) = Var (ψεt−1 + θηt−1 + ηt)

= ψ2 Var (εt−1) + θ2 Var (ηt−1) + 2ψθCov (εt−1, ηt−1) + Var (ηt) .

= ψ2 Var (εt−1) + θ2σ2
η + 2ψθσ2

η + σ2
η,

since εt−1 and ηt−1 have zero means and E [εtηt] = ϕE [εt−1ηt]+θE [ηtηt−1]+E
[
η2t
]
= σ2

η. Given stationarity

of the process, which implies σ2 = Var (εt) for all t, we derive,

σ2
η = σ2 1− ψ2

1 + θ2 + 2ψθ
.

This adjustment ensures the comparability of the results between the two error term types.

In Figs. 21 through 26, we plot examples of realizations and frequency plots of the estimated breakpoints

using each of the models while imposing a single breakpoint in the estimation. The results are summarized
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in Table 9, which provides means of the estimated breakpoints and medians of the lower and upper boundary

of the estimated confidence intervals, along with the coverage rates for each model specification and DGP.

Generally speaking, the mean of the estimated breakpoints are further from the true breakpoint and the

CIs become wider compared to the results from the corresponding DGPs without serial correlation. It is

evident that serial correlation in the error term makes it more difficult to estimate the dating of breaks.

We find that the Fixed AR and AR models perform well for DGP 7s, which has a large difference between

the states and low variance. This is in line with the theoretical framework by Bai and Perron (2003), who

note that the estimated break dates are consistent even in the presence of serial correlation. The Fixed AR

model performs well in DGPs 2s, 4s and 5s where the mean of the estimated breakpoints is close to the

true breakpoint, and confidence intervals are reasonably wide with acceptable coverage rates. The results

of the AR model are less conclusive.

For the Mean and Fixed AR models, the coverage rates are generally close to the desired 95% and even

higher in some DGPs. However, the CIs are also extremely wide, reaching outside the sample window in

many DGPs. The CIs seem reasonable in the Fixed AR model for DGPs 2s, 4s, 5s, and 7s, where the

coverage rates are close to 95% and the medians of the lower and upper bounds of the CIs are not too

extreme. The CIs for the AR model are generally wider than in the version without serial correlation in

the error term. In the AR model, the coverage rates are lower than the desired 95%, but it seems that

DGPs with large breaks have higher coverage rates. The relatively poor performance is in line with the

theoretical framework by Bai and Perron (2003). The authors note that the construction of the CIs rely on

having no serial correlation in the error term if a lagged dependent variable is included as a regressor that

has coefficients that are subject to breakpoints.

DGP Mean Fixed AR AR

BP est. Lower Upper Coverage BP est. Lower Upper Coverage BP est. Lower Upper Coverage

2s 332 -1400 335 95.9% 247 188 312 95.7% 261 190 299 79.9%

3s 266 60 787 90.6% 285 -112 656 97.2% 276 156 421 77.1%

4s 340 -776 339 94.9% 252 197 301 96.9% 264 195 277 84.9%

5s 342 -329 340 96.2% 256 196 266 96.4% 259 192 250 70.8%

7s 333 -1708 329 92.3% 249 230 270 97.6% 251 230 267 92.8%

8s 250 122 370 98.3% 245 -5 492 99.8% 247 23 490 97.4%

Table 9: Mean of the estimated breakpoints and medians of the lower and upper boundary of the estimated confidence

intervals, along with the coverage rates for each model specification and DGP.

Table 10 shows the mean number of breakpoints estimated for each DGP and method, along with the

proportion of correctly estimated number. In the Mean model, all information criteria overestimate the

number of breakpoints. An important exception is the eighth DGP, where the performance is better, as

in the case without serial correlation. In the Fixed AR and AR model specifications, the LWZ criterion

generally performs well, while both the BIC and the KT criteria generally overestimate. However, the LWZ

criterion leads to underestimating the number of breakpoints in DGPs 3s and 8s. These two DGPs are

characterized by fixed AR-coefficients that are lower than one. This implies that these two processes do

not exhibit an autoregressive unit root. Hence, it seems that the LWZ criterion performs well in cases of

state-wise non-stationarity or switching between stationary and non-stationary states.
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Compared to the findings in the DGPs without serial correlation, it is clear that the proportion of

correct estimates are lower for most DGPs and model specifications. Overall, the best performing criterion

seems to be the LWZ criterion in the Fixed AR and AR models, while the Mean model typically leads to

overestimating the number of breakpoints.

DGP Mean Fixed AR AR

BIC LWZ KT BIC LWZ KT BIC LWZ KT

2s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (32%) 0.9 (70%) 2.9 (0%) 1.8 (37%) 0.7 (61%) 1.9 (33%)

3s 3.0 (0%) 2.8 (2%) 3.0 (0%) 0.7 (33%) 0.0 (0%) 2.7 (3%) 0.3 (19%) 0.0 (0%) 0.4 (17%)

4s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.7 (45%) 1.0 (85%) 2.8 (1%) 1.6 (51%) 0.8 (79%) 1.6 (47%)

5s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.8 (5%) 1.1 (85%) 2.8 (0%) 1.7 (40%) 1.0 (92%) 1.6 (49%)

7s 3.0 (0%) 3.0 (0%) 3.0 (0%) 1.9 (34%) 1.1 (89%) 3.0 (0%) 1.9 (34%) 1.0 (96%) 1.9 (32%)

8s 2.2 (21%) 1.2 (78%) 2.2 (23%) 0.4 (35%) 0.0 (0%) 1.9 (36%) 0.0 (4%) 0.0 (0%) 0.0 (3%)

Table 10: Means of the estimated number of breakpoints for each model specification across different DGPs, rounded

to one decimal. Percentages indicate the proportion of estimates equal to the true number of breakpoints.
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Figure 21: DGP 2s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 22: DGP 3s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 23: DGP 4s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 24: DGP 5s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 25: DGP 7s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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Figure 26: DGP 8s: Left: Five process realizations. Right: The densities of the estimated breakpoints for each

specification.
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