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Abstract. The IPCC’s assessment report shows that the radiative forcing of aerosol-radiation interactions still involves 

significant uncertainty. The commonly used method for factor uncertainty estimation is the One-at-A-Time (OAT) method 

which evaluates factor sensitivity by controlling the change in a single variable while keeping others constant. The outcomes 

from the OAT method require high data quality to ensure accuracy, and the results are only valid near the selected constant. 

This study proposes a new method called Constrained Parameter (CP) to quantify the uncertainty contribution of factors in a 10 

multi-factor system. This method constrains the uncertainty of a single factor and evaluates its sensitivity by analyzing how 

this change affects output uncertainty. The most significant advantage of the CP method is that it can be applied to any data 

distribution, and its results can reflect the overall data characteristics. By comparing the results calculated by the CP method 

and the OAT method, the proportion of factor interactions in the factor uncertainty contributions can be obtained. As an 

application of the CP method, it is used to perform a detailed analysis of aerosol-radiation interaction factors’ uncertainty 15 

contributions. The top 3 most sensitive factors are the complex refractive index of aerosol shell materials, light-absorbing 

carbon parameters, and Mie theory parameters. Due to their high sensitivity and low observational precision, these factors 

represent significant sources of uncertainty in aerosol-radiation interactions. These factors need to be prioritized for 

operational observation programs and model parameter inputs. 

1 Introduction 20 

Aerosol-Radiation Interaction (ARI) refers to the direct scattering and absorption of solar radiation by aerosols, and it’s a 

key component of aerosol radiative forcing that can have a significant influence on the climate system (IPCC, 2021). In 

recent years, numerous studies have focused on 𝑅𝐹𝑎𝑟𝑖  and its associated impacts. According to the Intergovernmental Panel 

on Climate Change (IPCC) Sixth Assessment Report (Forster et al., 2021), the estimated 𝑅𝐹𝑎𝑟𝑖  is −0.22[−0.47~0.04]W/

m2 , a value comparable to the radiative forcing of N₂O at 0.21[0.18~0.24]W/m2 , and second only to that of CO₂ at 25 

2.16[1.90~2.41]W/m2, CH₄ at 0.54[0.43~0.65]W/m2, and O₃ at 0.47[0.24~0.71]W/m2. Despite significant advances, 

the estimated 𝑅𝐹𝑎𝑟𝑖  has undergone substantial revisions across successive IPCC reports, and its uncertainty has not notably 

decreased (Houghton, 1996; Houghton, 2001; Solomon, 2007; Stocker, 2014; Forster et al., 2021). Furthermore, significant 

discrepancies exist between 𝑅𝐹𝑎𝑟𝑖 estimates derived from surface temperature changes and those from model simulations 
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(Anderson et al., 2003; Hansen et al., 2023), suggesting that the cooling effect of aerosols may be underestimated, potentially 30 

due to the omission of key factors in current models. To address these issues, it is crucial to conduct a thorough and precise 

uncertainty analysis of ARI factors and improve routine aerosol observation projects and model settings to better capture the 

contributions of critical factors. 

At present, research on assessing the uncertainty contributions of ARI factors has primarily focused on the sensitivity of 

these factors (McComiskey et al., 2008; Loeb and Su, 2010; Lee et al., 2011; Srivastava et al., 2011; Lee et al., 2016). The 35 

commonly used sensitivity analysis method is the One-at-a-time (OAT) method, which is based on the principle of the 

control variable method. In this approach, a single factor 𝑑𝑥 is varied while all other factors are held constant, and the 

corresponding change in the output 𝑑𝑦 is observed. The sensitivity of a factor is then defined as 

𝑆𝑂𝐴𝑇 =
𝑑𝑦

𝑑𝑥
,            (1) 

The main advantage of the OAT evaluation method is its computational efficiency, as it requires only two experiments to 40 

determine the sensitivity of a factor, making it particularly suitable for large-scale ensemble models where computational 

costs are high. To ensure the accuracy of the OAT method, two conditions must be met: first, the covariance among the 

observed data of each factor must be zero; second, the sensitivity results obtained are only valid near the selected constant 

value. For ARI system, these conditions may not be strictly fulfilled, a discussion that will be elaborated upon in section 2. 

In addition to the possible errors caused by the evaluation method, the factors discussed in the current assessment work 45 

exhibit certain limitations. In order to facilitate the discussion in the model, evaluation work usually only focuses on the 

most common observation items: Aerosol Optical Parameters (AOPs), including Aerosol Optical Depth (AOD), Single 

Scattering Albedo (SSA), and Asymmetry Factor (g). Many works have shown that AOPs are the most direct influencing 

factor of 𝑅𝐹𝑎𝑟𝑖 (Andrews et al., 2006; McComiskey et al., 2008; Loeb and Su, 2010; Chung, 2012; Zhao et al., 2018). AOPs 

are affected by various aerosol parameters and environmental parameters, which in turn affect 𝑅𝐹𝑎𝑟𝑖 , but there is little 50 

discussion on the uncertainty contribution of such factors. The lack of a complete evaluation of the factors may lead to the 

importance of some factors being underestimated. Moreover, in assessment reports from the IPCC and similar studies, 

multiple global models are utilized to independently simulate the radiative forcing effects. The parameterization processes in 

these large models simplify the underlying physical mechanisms, and the differing settings among models hinder a 

comprehensive understanding of ARI. As a result, this variability can lead to inaccurate conclusions regarding the effects of 55 

ARI. 

This study introduces a new method for analyzing the uncertainty contribution of factors in multi-factor system. As an 

application, 𝑅𝐹𝑎𝑟𝑖 is calculated using a radiative transfer mechanism model and the uncertainty contribution of the factors is 

analyzed. The factors identified as high uncertainty contribution through this analysis should be prioritized in future aerosol 

observational projects and model settings to prevent overlooking significant influences. Section 2 provides a detailed 60 

introduction to the new method, while Section 3 presents the analysis results for ARI factor uncertainty contributions and 

compares them with those obtained using the OAT method. 
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2 Analysis Method of Factor Uncertainty Contributions 

This section will provide a comprehensive analysis of the most commonly used method for assessing factor uncertainty 

contributions through control variables. Additionally, it will introduce a new method for analyzing factor uncertainty 65 

contributions, aiming to address potential issues associated with the traditional control variable method. 

2.1 OAT Method 

For a multi-factor system, it can be expressed as 

𝑦 = 𝑓(𝑋),            (2) 

Among them, 𝑦 is the output variable, 𝑋 is the input variable, 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 . Since there may be interactions between 70 

factors, the input variables satisfy 

𝑥𝑖 = 𝑔𝑖(𝑋),            (3) 

𝜕𝑋

𝜕𝑥𝑖
= [

𝜕𝑔1

𝜕𝑥𝑖
,

𝜕𝑔2

𝜕𝑥𝑖
, … ,

𝜕𝑔𝑛

𝜕𝑥𝑖
]𝑇,           (4) 

If the variables are independent of each other, then 

𝑔𝑖(𝑋) = 𝑥𝑖,            (5) 75 

Taylor expansion of this formula gives 

𝑓(𝑋) = 𝑓(𝐴) + [∇𝑓(𝐴)]𝑇(𝑋 − 𝐴) +
1

2!
[𝑋 − 𝐴]𝑇𝐻(𝐴)[𝑋 − 𝐴] + ⋯,      (6) 

Where 𝐻(𝐴) is the Hessian matrix of 𝑓(𝑋) at 𝐴. When 𝑋 → 𝐴 is satisfied, the higher-order terms above the second order 

tend to 0, and at this time 

𝑓(𝑋)𝑋→𝐴 = 𝑓(𝐴) + [∇𝑓(𝐴)]𝑇(𝑋 − 𝐴) + 𝑂2,         (7) 80 

If the 𝑋 → 𝐴 condition cannot be met, the influence of the higher-order terms in the equation cannot be ignored. Taking the 

partial derivative of 𝑓(𝑋) with respect to the input variable 𝑥𝑖, we have 

𝜕𝑓(𝑋)

𝜕𝑥𝑖 𝑋→𝐴
=

𝜕[𝛻𝑓(𝐴)]𝑇(𝑋−𝐴)

𝜕𝑥𝑖
= ∑

𝜕𝑓(𝐴)

𝜕𝑥𝑗

𝑛
𝑗=1

𝜕𝑔𝑗(𝑋)

𝜕𝑥𝑖
,        (8) 

When the variables are independent of each other,  

𝜕𝑔𝑗(𝑋)

𝜕𝑥𝑖
= 1, 𝑗 = 𝑖 ,            (9) 85 

𝜕𝑔𝑗(𝑋)

𝜕𝑥𝑖
= 0, 𝑗 ≠ 𝑖,            (10) 

The sensitivity analysis results of the OAT method can be obtained 

𝑆𝑂𝐴𝑇 =
𝜕𝑓(𝑋)

𝜕𝑥𝑖 𝑋→𝐴
=

𝜕𝑓(𝐴)

𝜕𝑥𝑖
,           (11) 

There is a linear relationship between the output variable and all variables 

𝑦|𝑋 → 𝐴 = 𝐾𝑋 + 𝐶,           (12) 90 
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Where 𝐾 = [𝛻𝑓(𝐴)]𝑇, 𝐶 = 𝑓(𝐴) − 𝐴[𝛻𝑓(𝐴)]𝑇, and the uncertainty of each input variable and output variable has a transfer 

relationship 

𝐷𝜎𝑦
2 = 𝐾𝑇𝐷𝜎𝑥𝑖

2𝐾,           (13) 

Here, 𝜎𝑦 and 𝜎𝑥𝑖
 are the standard deviations of the output variable and each input variable, respectively, and 𝐷 represents a 

diagonal matrix. Under these conditions, the uncertainty of the output can be decomposed into factor sensitivity and factor 95 

uncertainty, expressed as follows: 

𝑈𝑦
2 = ∑ 𝑆𝑖

2 × 𝑈𝑥𝑖

2,           (14) 

When the variables are not independent, we have 

𝑆𝑂𝐴𝑇 −
𝜕𝑓(𝐴)

𝜕𝑥𝑖
= ∑

𝜕𝑓(𝐴)

𝜕𝑥𝑗

𝑛
𝑗=1,𝑗≠𝑖

𝜕𝑔𝑗(𝑋)

𝜕𝑥𝑖
，         (15) 

It can be concluded that the sensitivity analysis results obtained by the OAT method are valid only when: 100 

(1) 𝑋 → 𝐴; 

(2) The variables are independent of each other. 

When these two conditions are met, the analysis results of the OAT method can strictly reflect the sensitivity of the input 

variable 𝑥𝑖 to the output 𝑦. 

2.2 Applicability of OAT Method in ARI system 105 

For the ARI system, meeting these two conditions is challenging for the following reasons: 

(1) In aerosol observations, inaccuracies in certain instruments or uncertainties arising from the inversion process of the 

joint observation system can lead to significant uncertainties in the generated observation data. As a result, the statistical 

average of the measurement results may not accurately reflect the true properties of aerosols. This discrepancy means 

that there can be a considerable deviation between the calculated 𝐴 value 𝐴𝑐𝑎𝑙  and the actual 𝐴 value 𝐴𝑟𝑒𝑎𝑙 , resulting in 110 

obtained results that are not entirely accurate. 

(2) Due to the influence of various factors such as aerosol sources, aging processes, and changes in the atmospheric 

environment, the observed values of the physical and chemical properties of aerosols may vary significantly over time. 

The sensitivity analysis conducted using the OAT method on a set of observational data only reflects conditions near the 

selected 𝐴 value, meaning that the sensitivity results obtained cannot adequately represent the overall situation. 115 

(3) Considering the temporal variations (such as diurnal, seasonal, and interannual changes) and spatial variations 

(including differences between coastal and inland areas, urban and rural settings, and between the boundary layer and 

free atmosphere), the observed data may exhibit a linear trend rather than conforming to a strict normal distribution. 

When performing sensitivity analysis, it is essential to first account for these variation trends in the data; otherwise, the 

results may be distorted. To address this issue, a thorough analysis of the actual physical environment is required, which 120 

may necessitate additional time and computational resources. 
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(4) For ARI, the interactions between factors are significant, making it impossible to ensure that all discussed factors are 

strictly independent of one another; thus, the covariance between observed data may not equal zero. When applying the 

OAT method to analyze the sensitivity of a specific factor, it is essential to hold the values of other factors constant. 

However, this approach does not accurately reflect the actual physical conditions, leading to errors in the final results 125 

related to factor interaction terms. 

(5) When evaluating 𝑅𝐹𝑎𝑟𝑖 in a large ensemble model, certain factors are often parameterized due to constraints related to 

computational costs. This parameterization can lead to discrepancies between the physical processes represented in the 

model and the actual conditions, meaning that the results obtained from sensitivity analyses may not accurately reflect 

reality. Additionally, some parameterized settings may introduce correlations between factors, further compromising 130 

their independence and affecting the overall reliability of the analysis. 

The outcome of sensitivity analysis is to ascertain the uncertainty contribution of various factors. It is essential to perform 

separate statistical analyses on the sensitivity of these factors and on observational uncertainty. To address the challenge of 

high uncertainty in the evaluation results of 𝑅𝐹𝑎𝑟𝑖, a more practical discussion should focus on how constraints imposed by 

observations, or improvements in observational accuracy, can enhance the reliability of the results. While sensitivity analysis 135 

does not directly answer this question, it offers valuable insights into the significance of each factor from a different 

perspective, guiding future efforts to reduce uncertainty. 

In summary, when employing the OAT method to analyze factor sensitivity within the ARI system, there are strict 

requirements and numerous limitations regarding data quality. Forced application of this method may lead to discrepancies 

between the results and actual conditions. Besides the OAT method, various sensitivity analysis techniques have been widely 140 

utilized across many fields (Hamby, 1995; Christopher and Patil, 2002; Saltelli et al., 2005; Marino et al., 2008). Each of 

these methods also has specific requirements for data quality. Therefore, to enhance the reliability of the evaluation results 

for 𝑅𝐹𝑎𝑟𝑖, it is crucial to adopt a more suitable analysis method to assess the uncertainty contributions and significance of the 

influencing factors. 

2.3 CP Method 145 

Building on the history match method (Edwards et al., 2011; Williamson et al., 2013; Lee et al., 2016), this work introduces 

the Constrained Parameter (CP) method to quantitatively rank the uncertainty contributions of various factors. The central 

concept of the CP method is to define the importance of a variable's uncertainty by constraining the value range of the input 

variable and observing how this constraint affects the standard deviation of the output variable. The specific analytical 

approach includes the following steps: 150 

(1) A Monte Carlo (MC) simulation is conducted on the system, where the range of each input parameter is determined 

based on the distribution of actual measurement results. The initial MC simulation allows for the exploration of all 

possible states of the system given the input variable distribution, enabling the calculation of the standard deviation 𝜎𝑦 
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of the output variable. To enhance the efficiency of the MC simulation, Latin Hypercube Sampling (LHS) is employed 

for data sampling. 155 

(2) For a specific input variable, the distribution range is constrained, reducing its standard deviation from 𝜎𝑥 to 𝜎𝑥′, while 

keeping the standard deviation of the other input variables unchanged. However, when the factors are not independent, 

constraining the distribution of one input variable may also alter the distributions of the other input variables. 

(3) Conduct another Monte Carlo (MC) simulation using the updated range of input variables to obtain the new standard 

deviation 𝜎𝑦′ of the output variable. 160 

(4) The sensitivity of the input variable to the output variable is defined as: 

𝑆𝐶𝑃 = √
𝜎𝑦

2−𝜎𝑦′2

𝜎𝑥
2−𝜎𝑥′2 = √

𝑑𝜎𝑦
2

𝑑𝜎𝑥
2,           (16) 

Since only a specific input variable is constrained while the standard deviations of the distributions of the other input 

variables remain unchanged, the change in the distribution of the output variable is solely influenced by the alteration in the 

uncertainty of the constrained input variable. Therefore, the definition of 𝑆𝐶𝑃 is specifically related to the uncertainty of the 165 

data, and it can also be referred to as the sensitivity of uncertainty. This method is not limited to specific system equations 

and can be applied to all multi-factor systems. 

When the factors are strictly independent of each other, the covariance between the observed data is equal to zero, which can 

be expressed mathematically as: 

𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗) = 𝐸(𝑥𝑖𝑥𝑗) − 𝐸(𝑥𝑖)𝐸(𝑥𝑗) = 0,         (17) 170 

Satisfying the error transfer formula, we obtain: 

𝜎𝑦
2 =

𝜕𝑓(𝑋)

𝜕𝑥1

2
∙ 𝜎𝑥1

2 + ⋯ +
𝜕𝑓(𝑋)

𝜕𝑥𝑖

2

∙ 𝜎𝑥𝑖
2 + ⋯ +

𝜕𝑓(𝑋)

𝜕𝑥𝑛

2

∙ 𝜎𝑥𝑛
2,       (18) 

For the CP method, we can get 

𝜎𝑦′2 =
𝜕𝑓(𝑋)

𝜕𝑥1

2
∙ 𝜎𝑥1

2 + ⋯ +
𝜕𝑓(𝑋)

𝜕𝑥𝑖

2

∙ 𝜎𝑥𝑖
′2 + ⋯ +

𝜕𝑓(𝑋)

𝜕𝑥𝑛

2

∙ 𝜎𝑥𝑛
2,       (19) 

𝑑𝜎𝑦
2 =

𝜕𝑓(𝑋)

𝜕𝑥𝑖

2

∙ 𝑑𝜎𝑥𝑖
2,           (20) 175 

𝑆𝐶𝑃 = √
𝑑𝜎𝑦

2

𝑑𝜎𝑥
2 =

𝜕𝑓(𝑋)

𝜕𝑥𝑖
= 𝑆𝑂𝐴𝑇 ,          (21) 

Thus, when the factors are independent of one another, the sensitivity analysis results obtained using the CP method will 

align with those obtained through the OAT method. Consequently, the difference between the results of the CP method and 

the OAT method highlights the effects of factor interactions, providing insights into how these interactions may affect factor 

uncertainty contributions. 180 

The advantages of the CP method are as follows: 

(1) To ensure accuracy, the OAT method must strictly satisfy the condition of 𝑋 → 𝐴, meaning that the sensitivity analysis 

results are only valid near the value of 𝐴 . In contrast, the CP method examines the relationship between factor 
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uncertainty and output uncertainty. The sensitivity results derived from this method reflect the overall data distribution 

rather than focusing on a specific fixed value. Consequently, the analysis results obtained from the CP method are more 185 

representative and applicable. 

(2) When the distribution of one factor is constrained, it influences the distributions of other interacting factors as well. 

Consequently, any changes to the constraints of the input variable will also lead to alterations in the distributions of 

these other variables. Different constraints include two categories: one is the difference in data distribution types, such 

as uniform distribution and normal distribution; the other is the difference in data standard deviation, which is reflected 190 

in different degrees of improvement in observation accuracy. As a result of this influence, the output distribution will be 

affected by the level of constraint applied to the factor, leading to different sensitivity outcomes. Therefore, the results 

of the CP method can reflect the impact of different data constraints on the uncertainty of the output, which cannot be 

reflected in the OAT method. 

(3) The analytical method is used to obtain the quantitative ranking results of factor uncertainty contributions, aiming to 195 

solve the problem of large output uncertainty by focusing on high uncertainty contribution factors. The sensitivity 

analysis result 𝑆𝐶𝑃  illustrates the relationship between factor uncertainties and output uncertainties. The resulting 

ranking provides a direct response to this issue. The high uncertainty contribution factors identified by the CP method 

are essential elements in observation and model design that require our attention and enhancement. In contrast, the 

results from the OAT method represent statistical sensitivity concepts, serving as indirect indicators of factor uncertainty 200 

contributions, and lack robust physical grounding. 

Therefore, the CP method is employed to quantify the contribution of factor uncertainty, and the results obtained offer a 

more accurate representation of each factor's importance in practical physical terms. This approach enhances our 

understanding of how various factors influence the overall uncertainty, enabling more informed decision-making in 

observation projects and model development. 205 

3 Calculation of Uncertainty Contribution of 𝑹𝑭𝒂𝒓𝒊 Factors 

In this section, the uncertainty analysis method proposed in this paper is applied to the ARI system to verify its feasibility. A 

detailed discussion is provided regarding the importance of each factor within the ARI system, highlighting how this method 

enhances our understanding of their contributions to overall uncertainty. 

3.1 Analysis of ARI Factors 210 

Aerosol particles in the environment exhibit complex characteristics influenced by multiple factors. To effectively simulate 

the ARI system and minimize excessive parameterization, this study employs the radiative transfer mechanism model to 

calculate 𝑅𝐹𝑎𝑟𝑖 . The model used is SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer), developed by 

Ricchiazzi et al. (1998), which is capable of simulating and calculating radiation processes involving aerosols, the 
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atmosphere, surfaces, clouds, and solar spectra. Additionally, the Mie theory (Mie, 1908) is utilized to characterize the 215 

radiative properties of individual aerosol particles, allowing for the calculation of aerosol optical parameters (AOPs) such as 

aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry factor (g). These parameters serve as critical 

input for the SBDART model. The results of the factor analysis are presented in Figure 1. 

 

Figure 1: Analysis of ARI factors.  220 

In this analysis, we adopt a core-shell model assumption for aerosol particles, assuming that the core-shell composition is 

uniform. Specifically, the shell material is primarily composed of scattering materials, while the core consists of light-

absorbing carbon (LAC). The radiative characteristics of individual aerosol particles are determined by the complex 

refractive index of the core-shell material, 𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙,𝑑𝑟𝑦, 𝐶𝑅𝐼𝐿𝐴𝐶 , and the size of the core-shell particles. LAC is modeled as a 

combination of dense elemental carbon (EC) and hollow air (Zhao et al., 2020). By measuring the densities of EC and LAC, 225 

denoted as 𝜌𝐸𝐶  and 𝜌𝐿𝐴𝐶 , we can calculate the complex refractive index of LAC through a weighted approach. 

For a group of particles, it is essential to consider the size spectrum distribution of the aerosol particles and the LAC size 

spectrum distribution, 𝑃𝑁𝑆𝐷𝑑𝑟𝑦  and 𝐿𝐴𝐶𝑃𝑁𝑆𝐷 , respectively, to perform weighted calculations of the radiative 

characteristics of the aerosol ensemble. Additionally, aerosol particles absorb moisture from the environment, influenced by 

the hygroscopic parameter (Kappa) and the ambient relative humidity (RH). This moisture absorption leads to changes in the 230 

complex refractive index of the shell material, 𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙,𝑎𝑚𝑏 , and alters the ambient particle size spectrum distribution, 

𝑃𝑁𝑆𝐷𝑎𝑚𝑏 . 
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The strict assumptions of Mie theory often diverge from real-world conditions, resulting in discrepancies between theoretical 

calculations and observed phenomena. Numerous studies have explored these discrepancies (Volten et al., 2001; Cappa et al., 

2012; Fierce et al., 2016; Zhang et al., 2017; Freedman, 2020). To better understand the impact of these Mie theory 235 

assumptions on 𝑅𝐹𝑎𝑟𝑖, we will analyze the uncertainty contributions of several key factors, including the mixing state of 

aerosols (𝑀𝑆), LAC absorbing enhancement (𝐿𝐴𝐶𝐴𝐸), and coating thickness (𝐶𝑇). 

In the real atmospheric environment, aerosols and environmental parameters exhibit a vertical profile distribution, leading to 

significant variations in aerosol radiative capabilities at different altitudes. To investigate the impact of different vertical 

distribution types (VD) on 𝑅𝐹𝑎𝑟𝑖, we employ the vertical distribution parameterization scheme developed by Liu et al. (2009), 240 

which is grounded in aircraft observations. Using this scheme, we calculate the vertical distribution of 𝑃𝑁𝑆𝐷𝑎𝑚𝑏  and 

𝐿𝐴𝐶𝑃𝑁𝑆𝐷. Additionally, the vertical distribution of environmental parameters is established based on reanalysis data. 

According to the categories, all factors are divided into four categories:  

(1) Aerosol physical and chemical property parameters, including 𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙,𝑑𝑟𝑦, 𝑃𝑁𝑆𝐷𝑑𝑟𝑦 , and 𝐾𝑎𝑝𝑝𝑎;  

(2) LAC parameters, including the real part 𝑛𝐿𝐴𝐶  and imaginary part 𝑘𝐿𝐴𝐶  of 𝐶𝑅𝐼𝐿𝐴𝐶 , 𝜌𝐿𝐴𝐶 , and 𝐿𝐴𝐶𝑃𝑁𝑆𝐷;  245 

(3) Mie theory parameters, including 𝑀𝑆, 𝐶𝑇, and 𝐿𝐴𝐶𝐴𝐸;  

(4) Environmental parameters, including 𝑉𝐷, 𝑅𝐻, and 𝑎𝑙𝑏𝑒𝑑𝑜.  

The uncertainty contributions of the four types of factors are discussed separately to determine the type of factors with the 

strongest impact. 

All the factors depicted in the Fig.1 influence 𝑅𝐹𝑎𝑟𝑖. We evaluate the uncertainty contributions of each factor using both the 250 

OAT method and the CP method, comparing the differences between the two approaches. Additionally, since AOD, SSA, 

and g are direct input parameters for SBDART and have the most immediate effects on 𝑅𝐹𝑎𝑟𝑖, we also discuss the sensitivity 

of each factor in relation to these AOPs. 

3.2 Data Sources and Mode Environment Settings 

In the simulation experiment, aerosol and environmental parameters are derived from a combination of field observations, 255 

previous research summaries, and instrument observation network data. Typical aerosol and environmental data 

representative of North China are utilized for the simulation. The calculation of 𝑅𝐹𝑎𝑟𝑖 incorporates integrated results across 

the full solar spectrum (0.25–4.00 µm), focusing specifically on the instantaneous results at noon on the summer solstice. 

Aerosol data are sourced from the Peking University observation station (116°W, 40°N) and the Taizhou observation station 

(120°W, 33°N). Environmental data are drawn from the fifth-generation ECMWF reanalysis data (ERA5) provided by the 260 

European Centre for Medium-Range Weather Forecasts (ECMWF), as well as Moderate Resolution Imaging 

Spectroradiometer (MODIS) observation data collected from the Terra and Aqua satellites. The details are summarized in 

Table 1. 

Properties Values Data Source 
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𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙  1.58+1e-3i 
Peking University Observation 

Site 

𝐶𝑅𝐼𝐸𝐶  2.26+1.26i Taylor et al., 2015 

𝐶𝑅𝐼𝑎𝑖𝑟  1+1e-3i Zhao et al., 2020 

𝜌𝐸𝐶  1.8 Bond and Bergstrom, 2006 

𝜌𝐿𝐴𝐶  0.95 Zhao et al., 2019 

𝐾𝑎𝑝𝑝𝑎 0.215 
Peking University Observation 

Site 

𝑀𝑆 0.7 Gong et al., 2016 

𝑃𝑁𝑆𝐷𝑑𝑟𝑦  / Taizhou Observation Site 

𝐿𝐴𝐶𝑃𝑁𝑆𝐷 / Taizhou Observation Site 

𝑉𝐷 / Liu et al., 2009 

𝑅𝐻 / ERA5 Data 

𝑎𝑙𝑏𝑒𝑑𝑜 / MODIS Data 

Location Settings 116°W, 40°N / 

Date Settings April 1 / 

Time Settings 12:00 local time / 

Table 1: Observation data sources and SBDART environment parameter settings. 

3.3 Quantitative Ranking Results of ARI Factor Uncertainty Contributions 265 

The sensitivity analysis of the factors affecting 𝑅𝐹𝑎𝑟𝑖 and AOPs was conducted using both the OAT method and the CP 

method. The results of this analysis are illustrated in Figure 2 and Figure 3.  
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Figure 2: The factor uncertainty contribution analysis results of 𝑹𝑭𝒂𝒓𝒊. The results from the CP method are represented by color 

bars, while the differences between the CP method and the OAT method are indicated by white bars. 270 

 

Figure 3: The factor uncertainty contribution analysis results of AOPs. The results from the CP method are represented by color 

bars, while the differences between the CP method and the OAT method are indicated by white bars. 

3.3.1 Comparison of Results between CP Method and OAT Method 

The sensitivity analysis results indicate that the OAT method overlooks the impact of factor interactions, while the CP 275 

method accounts for these interactions. Consequently, the differences between the results from the two methods provide a 

measure of the influence of factor interactions on the sensitivity outcomes. In the analysis of 𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝 and 𝑅𝐹𝑎𝑟𝑖,𝑏𝑜𝑡𝑡𝑜𝑚, the 

proportion of interaction effects ranges from 1.1% to 91%, with an average of 25%. After weighting according to sensitivity, 

the average difference is calculated to be 10%. For AOPs, the proportion of interactions varies from 0.33% to 386%, with an 

average of 56% and a weighted average of 25%. This variability suggests that different factors experience varying degrees of 280 

influence from interactions, with some factors significantly affected. Therefore, using the OAT method for sensitivity 

analysis may lead to an average relative error of 10% for 𝑅𝐹𝑎𝑟𝑖 and 25% for AOPs, due to the neglect of factor interactions. 

The CP method enables sensitivity analysis for data with varying degrees of factor constraints and non-normal distributions. 

The OAT method's sensitivity results are only valid near the chosen 𝐴 value, meaning that changes in the A value may 

significantly impact the results. Additionally, the choice of 𝑑𝑥 in the 
𝑑𝑦

𝑑𝑥
 calculation can also influence outcomes. To explore 285 

these aspects, we computed results for the following seven sensitivity analysis cases: 

(1) Using the CP method, when the data is normally distributed, constrain the data distribution of a certain factor so that the 

standard deviation is reduced from 𝜎𝑥𝑖
 to 𝜎𝑥𝑖

′, and perform sensitivity analysis; 

(2) Using the CP method, when the data is normally distributed, constrain the data distribution of a certain factor so that the 

standard deviation is reduced from 𝜎𝑥𝑖
 to 2𝜎𝑥𝑖

′, and perform sensitivity analysis; 290 

(3) Using the CP method, when the data is uniformly distributed, constrain the data distribution of a certain factor so that 

the standard deviation is reduced from 𝜎𝑥𝑖
 to 𝜎𝑥𝑖

′, and perform sensitivity analysis; 

(4) Using the OAT method perform sensitivity analysis; 
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(5) Using the OAT method, set the 𝐴 value as 0.9 times that of case (4), perform sensitivity analysis; 

(6) Using the OAT method, set the 𝐴 value as 1.1 times that of case (4), perform sensitivity analysis; 295 

(7) Using the OAT method, set the 𝑑𝑥 value as 0.5 times that of case (4), perform sensitivity analysis; 

(8) Using the OAT method, set the 𝑑𝑥 value as 2 times that of case (4), perform sensitivity analysis. 

A sensitivity analysis of 𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝 was performed on all the above situations, and the results are shown in Table 2. 

 𝐶𝑃𝑛𝑜𝑟𝑚𝑎𝑙−𝑛𝑜𝑟𝑚𝑎𝑙  𝐶𝑃𝑛𝑜𝑟𝑚𝑎𝑙−𝑛𝑜𝑟𝑚𝑎𝑙 ′ 𝐶𝑃𝑢𝑛𝑖𝑓𝑜𝑟𝑚−𝑛𝑜𝑟𝑚𝑎𝑙  OAT 𝑂𝐴𝑇0.9𝐴 𝑂𝐴𝑇1.1𝐴 𝑂𝐴𝑇0.5𝑑𝑥 𝑂𝐴𝑇2𝑑𝑥 

𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙,𝑑𝑟𝑦  14.8 15.7 14.6 14.2 8.90 19.3 14.9 14.08 

𝑃𝑁𝑆𝐷𝑑𝑟𝑦  3.31 4.49 4.41 3.15 3.20 3.05 3.20 3.15 

𝜅 0.71 0.59 0.37 0.20 0.20 0.15 0.20 0.18 

𝑛𝐵𝐶  1.17 1.19 1.20 0.10 0.30 0.10 0.40 0.20 

𝑘𝐵𝐶  1.65 1.99 0.90 1.20 1.40 1.45 1.60 1.43 

𝜌𝐵𝐶  1.88 1.60 1.46 1.35 1.70 1.50 0.80 1.60 

LACPNSD 2.43 2.59 2.70 2.30 2.25 2.80 1.80 2.53 

MS 1.22 1.81 1.47 1.05 0.55 1.05 1.10 0.80 

CT 3.78 4.99 4.36 4.00 5.00 3.30 3.60 4.15 

LACAE 3.51 3.25 2.62 2.80 2.80 3.30 2.30 3.05 

VP 1.31 0.71 0.06 0.20 0.20 0.30 0.70 0.05 

RH 0.65 0.81 0.43 0.35 0.35 0.35 0.30 0.35 

albedo 8.87 8.24 8.50 8.00 8.15 8.35 7.90 8.25 

Table 2: Comparison of the analysis results of the CP method and the OAT method under different scenario settings. 

In cases (1) and (2), we varied the standard deviations of the constrained factors while applying the CP method, ensuring that 300 

the data distribution remained consistent. The analysis reveals a difference in results ranging from 1.7% to 48%, with an 

average difference of 21%. The weighted average calculated based on sensitivity is 14%. Under varying constraints, factors 

exert different influences on one another due to their interactions. Consequently, the final output is shaped not only by the 

constraints imposed on individual factors but also by these interactions, leading to differing sensitivity analysis results. The 

results demonstrate that the CP method can accurately quantify how factors contribute to the reduction of output uncertainty 305 

under varying levels of observation accuracy improvement. In contrast, the OAT method overlooks the influence of factor 

interactions on the outcomes, making it incapable of performing differential analyses under different observation constraints, 

which represents a significant limitation. 

In cases (1) and (3), we applied the CP method with save standard deviations of the factors before and after the constraints. 

However, the differing data distributions lead to a notable variation in analysis results, ranging from 1.3% to 95%, with an 310 

average difference of 15% and a weighted average of 4.9%. In scenarios where the volume of observational data is limited or 

influenced by external factors, the data cannot be guaranteed to be strictly normally distributed, and a linear trend may 
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appear. The presence of this linear trend, identified through the CP method, can cause substantial variability among the 

factors, suggesting that the uncertainty contributions of certain factors are significantly influenced by the data distribution—

an aspect not captured in the OAT method's analysis. 315 

In cases (4), (5), and (6), we changed the selected 𝐴 values for the OAT method vary from -10% to +10%. The differences in 

the analysis results vary from 0% to 50%, with an average difference of 22% and a weighted average difference of 20%. 

Some factors do not act linearly on the output, which makes the sensitivity analysis results of such factors highly dependent 

on the choice of 𝐴 value. Consequently, even minor variations in the 𝐴 value can result in significant errors. Therefore, when 

employing the OAT method for sensitivity analysis, careful attention must be given to the stability of the results. 320 

In cases (4), (7), and (8), we changed the selected 𝑑𝑥 values in the OAT method range from -50% to +100%. The differences 

in the analysis results vary from 0% to 300%, with an average difference of 37% and a weighted average difference of 7.8%. 

The sensitivity analysis outcomes for certain factors are highly sensitive to the chosen 𝑑𝑥 value, and different strategies for 

selecting 𝑑𝑥  can result in varied analysis results. Mathematically, smaller 𝑑𝑥  values tend to provide a more accurate 

reflection of the actual sensitivity. However, in practice, the choice of 𝑑𝑥 is influenced by the model's accuracy and the 325 

distribution of actual observed data, necessitating certain trade-offs. This variability contributes to the stability issues 

observed in the analysis results produced by the OAT method. 

A comprehensive comparison indicates that the CP method yields results that are representative of the entire data distribution. 

It effectively calculates differences in uncertainty contributions under various factor constraints, and distinguishes between 

sensitivity results from non-normal and normal data distributions. In contrast, the OAT method provides results that are 330 

primarily relevant near a fixed value, and when data quality standards are not met, its results may exhibit poor stability. 

3.3.2 ARI Factor Uncertainty Contribution Ranking Results 

The results indicate that among the four parameter categories, the aerosol physical and chemical property parameters exhibit 

the most significant sensitivity. Specifically, 𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙,𝑑𝑟𝑦  demonstrates the highest sensitivity across all five sensitivity 

analyses. Besides, 𝑃𝑁𝑆𝐷𝑑𝑟𝑦  shows strong sensitivity to both AOD and SSA, while 𝑘𝑎𝑝𝑝𝑎 exhibits pronounced sensitivity to 335 

g. When the core-shell structure model of the Mie theory is not considered, these three parameters sufficiently characterize 

the complex refractive index, particle number size distribution, and hygroscopic properties of aerosols. They are thus crucial 

for understanding the radiative forcing characteristics of aerosols. 

The Mie theory parameters exhibit the second highest sensitivity. Due to the fact that changes in the aerosol mixing state can 

strongly influence both AOPs and 𝑅𝐹𝑎𝑟𝑖, 𝐶𝑇 demonstrate significant sensitivity across all parameters. The 𝐿𝐴𝐶𝐴𝐸 primarily 340 

affects the aerosol's absorption characteristics, leading to strong sensitivity to SSA, which results in high sensitivity to both 

𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝  and 𝑅𝐹𝑎𝑟𝑖,𝑏𝑜𝑡𝑡𝑜𝑚 . Additionally, 𝑀𝑆  influence the ratio of LAC to coating materials, significantly affecting the 

shape of the aerosol particle number size distribution; consequently, it show considerable sensitivity to g. 
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The sensitivity of LAC parameters ranks third. Specifically, the parameters 𝑛𝐵𝐶 , 𝑘𝐵𝐶 , and 𝜌𝐵𝐶  influence the aerosol's CRI, 

while 𝐿𝐴𝐶𝑃𝑁𝑆𝐷 affects both the LAC particle size spectrum distribution and the aerosol mixing state. The results indicate 345 

that, as the primary absorptive component of aerosols, the complex refractive index of LAC significantly impacts aerosol 

absorption characteristics, leading to a pronounced effect on SSA. This, in turn, results in strong sensitivity of both 𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝 

and 𝑅𝐹𝑎𝑟𝑖,𝑏𝑜𝑡𝑡𝑜𝑚 . Furthermore, 𝐿𝐴𝐶𝑃𝑁𝑆𝐷  exhibits the highest sensitivity among the LAC parameters, highlighting the 

substantial influence of the aerosol mixing state on 𝑅𝐹𝑎𝑟𝑖 . Notably, the limited availability of observations for LAC 

parameters may contribute to considerable evaluation errors. 350 

This study also examines the influence of environmental factors on 𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝  and 𝑅𝐹𝑎𝑟𝑖,𝑏𝑜𝑡𝑡𝑜𝑚 . Three environmental 

parameters are discussed: 𝑉𝐷, 𝑅𝐻, and 𝑎𝑙𝑏𝑒𝑑𝑜. Among these, both 𝑅𝐻 and 𝑎𝑙𝑏𝑒𝑑𝑜 demonstrate significant sensitivity to 

𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝  and 𝑅𝐹𝑎𝑟𝑖,𝑏𝑜𝑡𝑡𝑜𝑚 . These environmental parameters effectively characterize the impact of boundary layer 

characteristics, vertical humidity profiles, and surface conditions on 𝑅𝐹𝑎𝑟𝑖 . The results indicate that the effects of 

environmental factors on 𝑅𝐹𝑎𝑟𝑖  are comparable to those of the aerosol's own radiative characteristics and should not be 355 

overlooked in research calculations. Notably, the sensitivity of 𝑉𝐷 to radiative forcing differs markedly between the top of 

the atmosphere and the surface. While 𝑉𝐷  has minimal impact on 𝑅𝐹𝑎𝑟𝑖,𝑡𝑜𝑝 , it exhibits considerable sensitivity 

to𝑅𝐹𝑎𝑟𝑖,𝑏𝑜𝑡𝑡𝑜𝑚, suggesting that the type of boundary layer significantly influences surface heating rates but has a lesser effect 

on the overall ground-atmosphere radiation budget. 

4 Summary 360 

The evaluation results of 𝑅𝐹𝑎𝑟𝑖  indicate significant uncertainty, with notable discrepancies between observational and 

simulation outcomes. This discrepancy contributes to the overall uncertainty in climate sensitivity assessments. This study 

introduces a novel method for analyzing factor uncertainty contributions, enabling a quantitative ranking of the contributions 

from various factors and addressing the extent to which enhancing observational accuracy can reduce result uncertainty. 

Additionally, through a comprehensive analysis of the factors of ARI system, this research identifies several previously 365 

overlooked factors of importance, providing valuable insights for aerosol observation projects and model settings. 

This study analyzes the advantages and disadvantages of the OAT method, which is currently the most commonly used 

method in the ARI factor uncertainty contribution analysis. While the OAT method facilitates rapid quantification of factor 

sensitivity, it also brings the defects of high data quality requirements and poor stability. For ARI systems, the OAT method 

faces challenges due to the low accuracy of observational data, potential linear trends in the data distribution, and significant 370 

interactions among factors. Additionally, this method only provides sensitivity results close to fixed values, making it less 

reliable both mathematically and physically. As a result, the OAT method may produce substantial errors. To address these 

challenges, this work introduces a new analysis method, CP, designed for sensitivity analysis of both input and output 

uncertainties. This method is universally applicable to all multi-factor systems. Unlike traditional methods that focus on 
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sensitivity near specific values, CP is based on the collective data distribution, providing a more comprehensive 375 

representation. It directly addresses how improvements in data accuracy can enhance result certainty, offering practical 

insights. Additionally, CP can assess differences in factor uncertainty contributions under various observational constraints 

and with non-normally distributed data, broadening its applicability. 

This study employs Mie theory to calculate the AOPs and utilizes the SBDART radiative transfer model to simulate 𝑅𝐹𝑎𝑟𝑖. 

The factors across all physical processes are categorized based on their modes of influence into four groups: aerosol physical 380 

and chemical property parameters, Mie theory parameters, LAC parameters, and environmental parameters. Each category 

undergoes a separate uncertainty contribution analysis. The results reveal that among all factors, 𝐶𝑅𝐼𝑠ℎ𝑒𝑙𝑙,𝑑𝑟𝑦  holds the 

highest importance. Additionally, both the LAC parameters and Mie theoretical parameters demonstrate high uncertainty 

contributions, indicating that the scattering and absorptive properties of aerosols, along with the assumptions inherent in Mie 

theory, substantially influence 𝑅𝐹𝑎𝑟𝑖 . Due to the challenges associated with direct observation, these factors have been 385 

insufficiently addressed in routine observation projects and model settings. To mitigate the high uncertainty associated with 

𝑅𝐹𝑎𝑟𝑖 evaluations, it is imperative to focus attention on these critical factors. 
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