Supplementary Information - Short lifetimes of organic nitrates in a sub-urban temperate forest indicate efficient assimilation of reactive nitrogen by the biosphere

Simone T. Andersen¹, Rolf Sander¹, Patrick Dewald¹, Laura Wüst¹, Tobias Seubert¹, Gunther N. T. E. Türk¹, Jan Schuladen¹, Max R. McGillen², Chaoyang Xue², Abdelwahid Mellouki^{2,3}, Alexandre Kukui⁴, Vincent Michoud⁵, Manuela Cirtog⁵, Mathieu Cazaunau⁵, Astrid Bauville⁵, Hichem Bouzidi⁵, Paola Formenti⁵, Cyrielle Denjean⁶, Jean-Claude Etienne⁶, Olivier Garrouste⁶, Christopher Cantrell⁷, Jos Lelieveld¹, John N. Crowley¹

¹Atmospheric Chemistry Department, Max-Planck-Institute for Chemistry, 55128-Mainz, Germany

²Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, CEDEX 2, 45071 Orléans, France

³University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco

⁴Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS Orléans, France

⁵Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France

⁶CNRM, Universite de Toulouse, Meteo-France, CNRS, Toulouse, France

⁷Univ Paris Est Creteil and Université de Paris Cité, CNRS, LISA, F-94010 Créteil, France

Correspondence to: Simone T. Andersen (<u>simone.andersen@mpic.de</u>) and John N. Crowley (<u>john.crowley@mpic.de</u>)

Table S1: List of PANs included in Figure 8 under "Other PANs" from the MCM coming from the degradation of acetaldehyde, isoprene, propane, n-butane, isobutane, α -pinene, β -pinene, and limonene.

Figure S1: Distribution of correction factors for the Σ ANs (top) and Σ PANs (bottom) measurements.

Figure S2: The derived diel profile of the lifetime of α -pinene, β -pinene, and limonene during the ACROSS campaign when taking reactions with OH, O₃, and NO₃ into account using the rate coefficients in Table 1.

Figure S3: Average diel profiles for the measured total monoterpenes by PTRMS for phase 1 (left) and 2 (right) together with the derived monoterpenes mixtures of 10% β -pinene, 60% α -pinene, and 30% limonene (top) and 5% β -pinene, 85% α -pinene, and 10% limonene (bottom).

Figure S4: Average diel profiles of the total ANs production rate (top) and lifetime for phase 1 (orange) and 2 (blue) for the three different monoterpene mixtures (dotted, solid, and dashed lines) using the measured $[XO_2]$ (left) and $4 \times [XO_2]$ (right).

Figure S5: The measured and modelled when optimizing for daytime agreement Σ PANs is plotted for two individual days; one with low precursors (A) and one with high precursors (B). The optimised physical loss for each day is shown in panel C and D together with the thermal decomposition when taking recombination into account using both the measured and modelled mixing ratio of XO₂.

Figure S6: Measured and modelled XO_2 for a low and high precursor (of PANs) day.