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Abstract: This study examines CTD, ADCP and optical data collected during the PERLE-3 13 
cruise in March 2020 between the surface and 2000 m depth over an east-west section of the 14 
Tyrrhenian Sea in the Mediterranean. The focus is on the impact of double diffusion processes, 15 
in particular salt fingering, on the distribution and dynamics of particulate and dissolved matter. 16 
The staircases develop at the interface between the warm, saline Eastern Intermediate Water 17 
(EIW) and the colder, less saline Tyrrhenian Deep Water (TDW) in the centre of the basin with 18 
low hydrodynamic energy. The results show that thermohaline staircases formed by salt 19 
fingering significantly influence particle sedimentation and biogeochemical cycling in deep 20 
ocean environments by altering vertical flux patterns. These density steps create distinct vertical 21 
layers that act as physical barriers, slowing the descent of particles and facilitating their 22 
retention and aggregation. The staircases also affect dissolved matter by creating pronounced 23 
concentration gradients of oxygen and nutrients, which can influence microbial activity and 24 
nutrient fluxes.  25 
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1. Introduction 42 

 Gravitational settling of biologically derived particles, produced by marine plankton in 43 
the surface layer, is the primary driver of vertical fluxes of material in the deep ocean (Newton 44 
and Liss, 1990). In general, vertical mass fluxes of particles in the ocean decrease exponentially 45 
with depth due to particle degradation and the increasing density of seawater (Omand et al., 46 
2020). Marine particles have a wide range of sizes, from micrometres (clays) to centimetres 47 
(organic detritus). Particles generally tend to agglomerate to form aggregates of different sizes, 48 
shapes, densities, and characteristics (Kiko et al., 2022). The change in geometry of the 49 
aggregates as well as their excess density compared to seawater are the factors that determine 50 
their sedimentation rate. 51 

 The water column in the ocean is composed by the superposition of water masses with 52 
generally distinct thermohaline characteristics and often distant origins. Large density 53 
interfaces, associated with strong vertical gradients in temperature (~0.25 °C m-1) at seasonal 54 
thermoclines, or salinity (~0.5 g kg-1 m-1) at river plumes can occur in the upper ocean, resulting 55 
in the retention of the less dense particles. In the deep ocean temperature and salinity gradients 56 
are much weaker, and the effect of particle size becomes greater than the effect of density 57 
excess, so that settling velocity generally increases with particle size. Thus settling velocities 58 
in the open ocean are on the order of 5 x10-4 mm s-1 to 1 mm s-1 for particles ranging from 2 µm 59 
to 300 µm (McCave, 1975). 60 

However, in the deep ocean, in the transition zones between two water masses, areas of 61 
enhanced density gradients can occur due to double diffusion processes, in particular those 62 
associated with salt fingers. Salt fingering is a common process in the ocean (Kunze, 2003; 63 
Radko, 2013; Radko et al., 2014). It requires a stably stratified water column, where a layer of 64 
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warm, saline water overlies a layer of cooler, less saline water. Because molecular diffusion of 71 
temperature is about 100 times faster than that of salinity, the salinity interface initially remains 72 
essentially unchanged as temperature exchange occurs across it. As a result, the saltier water 73 
above this thin mixed layer of average temperature becomes denser than the less saline water 74 
below. This leads to salt finger instabilities at the interface: the saltier water sinks and the less 75 
saline water rises. The mixing process is then repeated at the new interfaces, resulting in a 76 
progressive thickening of the mixed layer and an increase in the vertical density gradients on 77 
either side of the interface. If favourable conditions persist, step structures can develop and 78 
reach thicknesses of several tens of meters (Radko et al., 2014). These staircases exhibit 79 
temperature and salinity steps ranging between 0.001 and 0.019°C and 0.001 and 0.2 g kg-1, 80 
respectively (Van Der Boog et al., 2021). 81 

Various experimental and numerical studies have explored the impact of density 82 
interfaces on the sedimentation of particulate material, but to our knowledge very little research 83 
has been applied to the deep oceanic environment. Laboratory experiments conducted for a 84 
variety of individual particles geometries and densities (e.g. Prairie et al., 2013; Mrokowska, 85 
2018; Doostmohammadi and Ardekani, 2014; Doostmohammadi and Ardekani, 2015; Verso et 86 
al., 2019) generally show a decrease in settling velocity, as well as a reorientation of the 87 
particles, during their passage through the transition layer formed by the density interface. The 88 
initial decrease is followed by an increase, once the particle reaches the base of the interface, 89 
but this settling velocity is always smaller in the lower layer due to its higher density. The initial 90 
decrease in velocity in the interface is likely due to the entrainment of less dense water by the 91 
particles and the drag of their wake as they cross the interface. Finally, Maggi (2013) shows 92 
that sedimentation rates are very well correlated with size for mineral particles, but are much 93 
less clear for biomineral or biological material. Thus, the sedimentation rate of a solid particle 94 
alone will depend almost exclusively on its size. This is not the case for aggregates, where 95 
composition, shape, excess density and porosity must also be taken into account. Kindler et al. 96 
(2010) demonstrated that slowly sinking particles, like highly porous aggregates, can be 97 
retained and therefore accumulate at density interfaces, increasing the likelihood of collisions 98 
and subsequent aggregation. They suggested that this increase in retention time may affect 99 
carbon transformation through increased microbial colonization and utilization of particles and 100 
release of dissolved organics. 101 

The Mediterranean Sea is a prime location for the observation and study of thermohaline 102 
staircases due to its unique hydrographic conditions. The study presented here focuses on the 103 
behaviour of particulate matter and dissolved elements in the Tyrrhenian Sea (Fig. 1a), a region 104 
known to be favourable for salt fingers with the formation of large staircases at the transition 105 
between intermediate and deep waters (Durante et al., 2019). The Tyrrhenian Sea has a complex 106 
circulation pattern characterised by three main water masses: Atlantic Water (AW) at the 107 
surface, Eastern Intermediate Water (EIW) at intermediate depths and Tyrrhenian Deep Water 108 
(TDW) in the deeper layers (Millot and Taupier-Letage, 2005; Iacono et al., 2021). Note that 109 
the names of the water masses follow the nomenclature recommended by Schroeder et al. 110 
(2024). The surface circulation shows strong seasonal variability, with a basin-wide cyclonic 111 
pattern in winter, which weakens and becomes more complex in summer. The EIW, formed in 112 
the eastern Mediterranean Basin, enters through the Strait of Sicily. It is found throughout the 113 
Tyrrhenian Sea at depths between 200 and 700 m. It participates in the cyclonic flow and exits 114 
through the Corsican and Sardinian channels. The deep circulation, involving the TDWs, is 115 
defined as resulting from the mixing of the deep waters of the western Mediterranean with the 116 
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intermediate and deep waters of the eastern basin (Sparnocchia et al., 1999) but also from the 142 
possibility of local formation (Fuda et al., 2002). Staircase structures, characterized by 143 
remarkable spatial and temporal stability, extend over most of the central basin at depths 144 
between 600 and 2500 m, with individual layers spanning tens or even hundreds of meters in 145 
thickness. These persistent formations have been consistently observed and documented over 146 
several decades, demonstrating their long-term coherence in the region (Johannessen and Lee, 147 
1974; Molcard and Tait, 1977; Zodiatis and Gasparini, 1996; Sparnocchia et al., 1999; Falco et 148 
al., 2016). 149 

The dataset used in this work was obtained from the PERLE-3 cruise (Pujo-Pay et al., 150 
2020) whose main objective is to study the formation of Levantine intermediate waters in the 151 
eastern basin and their fate and transformation along their course in the Mediterranean Sea. 152 
Here, we focused on a section between the Bay of Naples and southern Sardinia, which cuts 153 
across the Tyrrhenian Sea from east to west. The data collected included hydrological 154 
parameters (temperature, salinity, density), hydrodynamic parameters (current velocity and 155 
direction), and particulate (turbidity, large particle abundance) and dissolved (oxygen, nitrate) 156 
parameters in the upper 2000 m of the water column. The two questions addressed here are (1) 157 
what are the characteristics and development conditions of the notable staircase structures 158 
observed during this cruise, and (2) what is the impact of these staircases on the distribution of 159 
dissolved and particulate matter. The answers to these two questions will provide new insights 160 
into the ecological consequences of these small-scale structures. 161 

  

Figure 1 (a) Map of the stations carried out during part of the PERLE-3 cruise (14–16 March 162 
2020) in the Tyrrhenian Sea.  The route followed by the ship is indicated by the dotted red line. 163 
The northward deviation in the centre of the basin is associated with the recovery of the 164 
profiling float. (b) !-S diagram for the different stations of the transect and associated water 165 
masses (AW, Atlantic Water; TIW, Tyrrhenian Intermediate Water; EIW, Eastern Intermediate 166 
Water; TDW, Tyrrhenian Deep Water), with depth in color. 167 

 168 

2. Material and Methods 169 
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2.1 Hydrographical and optical data 187 

This hydrographic survey of the Tyrrhenian Sea was conducted in March 2020 as part 188 
of the PERLE-3 cruise, which was unexpectedly shortened due to the outbreak of the COVID-189 
19 pandemic. It includes 16 stations for which hydrological profiles were obtained between the 190 
surface and 2000 m with a Seabird 911+ CTD-O2 probe mounted on a rosette carrying 22 191 
twelve-liter Niskin bottles. Additional optical sensors (Wetlabs C-Star 0.25 m pathlength 192 
transmissometer at 650 nm wavelength, Seabird Suna V2 UV nitrate sensor, Hydroptic 193 
Underwater Vision Profiler UVP-5) were connected to the probe. 194 

 Data from the CTD sensors and the transmissometer were recorded at a frequency of 195 
24 Hz. Data were therefore acquired every 2 cm vertically at a descent rate of 1 m s-1. The 196 
temperature and conductivity sensors provided measurements with a resolution of 2.10-4 °C 197 
(4.10-5 S/m) and an accuracy of 2.10-3 °C (3.10-4 S m-1), respectively. The dissolved oxygen 198 
sensor provided measurements with a resolution of 0.2 μmol kg-1. The transmissometer has a 199 
resolution of 1.25 mV over a range of 0 to 5 V (WET Labs, Inc., 2011), giving a beam 200 
attenuation coefficient [BAC= -4×ln (T%), where T% is the transmittance in %] and resolution 201 
of 10-3 1/m. The UVP-5 (Picheral et al., 2010) is a stand-alone camera mounted on the 202 
CTD/rosette frame to quantify the vertical distribution of large particles and zooplankton. 203 
Images were acquired at a frequency of up to 6 Hz, i.e. on average every 20 cm at a descent 204 
rate of 1 m/s. The small size limit of the UVP-5 is determined by the optical resolution (94.7 µm 205 
corresponding to 1 pixel), while the large size limit is determined by the volume of water 206 
illuminated (1.02 l). 207 

The stand-alone Seabird Suna V2 UV nitrate sensor attached to the CTD collected data 208 
at 1 Hz from the surface down to 2000 m. It uses ultraviolet absorption spectroscopy to measure 209 
nitrate in situ. A good correlation was observed with bottle measurements over the entire water 210 
column collected during the cruise at station PERLE3-10 (R2= 0.99, N=27 samples, p <10-5, 211 
NO3 SUNA = 0.991× NO3 btl – 0.116). 212 

The CTD data processing was performed with the SBE Data Processing software, and 213 
derived variables (potential temperature, salinity, potential density anomaly, and density ratio) 214 
were estimated based on the TEOS-10 toolbox (IOC, SCOR and IAPSO, 2010).  215 

The transmissometer provides a beam attenuation coefficient (BAC), which is linearly 216 
correlated with particle concentration. This signal is influenced by the size and composition of 217 
the particles (Hill et al., 2011). Due to their preponderance and larger surface to volume ratio, 218 
this signal is essentially sensitive to the finest (sub-micron to micron) particles. As a result, 219 
turbidity spikes causes by the rare passage of large particles through the beam were eliminated 220 
by smoothing (Giering et al., 2020).  221 

The UVP provides quantitative data of the abundance (in number of particles per litre, 222 
# L-1) of large particles for the different size classes between 80 µm and 2000 µm (equivalent 223 
circular diameter) was estimated from the raw images (Picheral et al., 2010). It is refer in the 224 
text as large particulate matter (LPM).The UVP data were then processed to estimate the 225 
particle size distribution, which was modelled using a typical power law of the form N(d) = 226 
C×d – a, where C represents a constant, d stands for particle diameter, and –a denotes the Junge 227 
index (Guidi et al., 2009). The Junge index is determined through linear regression involving 228 
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log-transformed values of N(d) and d. The calculation was performed on the size range between 253 
80 and 400 µm, in order to consider only the most abundant particles, which represent up to 254 
99% of the total number observed and whose concentration is greater than 1 particle per litre 255 
(Table A1). The Junge index, a, varies between 2.5 and 4.5 for this data set. A slope of the 256 
differential particle size distribution of 4 indicates an equal amount of mass in logarithmically 257 
increasing size intervals. Higher values indicate a greater dominance of fine particles within the 258 
particle population, while lower values are associated with particle populations enriched in 259 
larger particles.  260 

Another CTD data set was collected from a BGC-Argo profiling float (WMO 6902903). 261 
This float was equipped with SBE-41CP pumped CTD with a sampling rate of 0.5 Hz and an 262 
instrumental precision of 0.01 for salinity, 0.002 °C for temperature and 2.4 dbar for pressure. 263 
CTD profiles were collected during an ascent from the parking depth to the surface, which took 264 
between 3 and 6 hours, depending on the depth, at a nominal vertical speed of 0.1 m s-1. The 265 
profiling float collected data for almost 2 years, between 23 June 2018 and 15 March 2020 (date 266 
of recovery during the PERLE-3 cruise). It remained in the centre of the Tyrrhenian Basin 267 
(between 39.1-39.7° N, 11.6-12.8° E) during this period. The resulting time series of CTD 268 
profiles includes 16 profiles between 0 and 1000 m from June 23 to July 6, 2018, and 118 269 
profiles between 0 and 2000 m from July 13, 2018 to March 15, 2020, with a time resolution 270 
of 7 days until October 2019, then 3 days thereafter.  271 

The filtering step proved to be very important, given the scales on which the study 272 
focused, to remove the spikes and reduce the noise of the signal while maintaining the best 273 
vertical resolution. The 24 Hz raw data were subjected to outlier removal using two successive 274 
moving median filters with window lengths of 7 and 5 scans, respectively. The data were then 275 
binned at 1 m intervals and smoothed with a Loess regression filter. For temperature, salinity, 276 
and potential density anomaly signals, the loess regression smoothing window length was 10 277 
scans (10 metres). For dissolved oxygen, nitrate, beam attenuation coefficient, UVP, and Junge 278 
index signals we applied a Loess regression smoothing with a window length of 50 scans (50 279 
metres). 280 

Thermohaline staircases are characterized by alternating mixed layers, which are thick 281 
regions of nearly constant temperature, salinity and density, and interfaces, which are thin layers 282 
with sharp changes in temperature salinity, and density. Step structures were defined based on 283 
temperature and salinity profiles between 500 and 2000 m depth, following the procedure 284 
described in Durante et al. (2019). Relative maxima in the vertical gradient of salinity and 285 
potential temperature are used to identify interfaces that form well-marked steps and delimit a 286 
well-mixed layer. Gradient thresholds of 10-4°C m-1 for potential temperature and 5 x10-4 287 
PSU m-1 for salinity were used. 288 

 289 

2.2 Acoustical data 290 

During the PERLE-3 survey, two shipboard Acoustic Doppler Current Profilers – S-291 
ADCPs – collected continuous current data from 21 m to 1200 m depth. The first S-ADCP was 292 
an RDI OS150 with an acoustic frequency of 150 kHz, a sampling rate of 1 Hz, and a cell size 293 
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of 8 m, allowing a total range of 220 m. The second S-ADCP was an RDI OS38 with an 300 
acoustic frequency of 38 kHz, a sampling rate of 1 Hz, and a cell size of 8 m, allowing a 301 
maximum range of 1200 m. Data averaged over a 2-min period were concatenated and 302 
processed using Cascade V7.2 processing software (Kermabon et al., 2018) to compute 303 
horizontal ocean current velocities with a spatial resolution of 2 km, corrected for navigation 304 
and ship attitude parameters, and filtered according to various quality criteria (i.e., thresholds 305 
on vertical velocity error, vertical shear, correlation, minimum percentage of valid ensembles, 306 
Kermabon et al., 2018). Bathymetry (Etopo 1 with 1 arc-minute resolution) was incorporated 307 
in the processing to account for bottom detection. The profile data for the meridional and zonal 308 
components of the current for the two S-ADCPs were combined to obtain a complete profile 309 
between 21 and 1200 m depth with maximum resolution in the surface layer. 310 

In addition to the S-ADCP current measurements, current data between the surface and 311 
2000 m depth were also collected using a dual-head Lowered-Acoustic Doppler Current 312 
Profiler (L-ADCP) system. These measurements were collected with two RDI 313 
Workhorse 300 kHz current meters mounted on the CTD frame, one looking up and one looking 314 
down. The vertical profiling resolution was 8 m. The data were processed by the velocity 315 
inversion method using version IX of the LDEO software (Thurnherr, 2021). Qualified external 316 
data (CTD, S-ADCP, GPS) are used to process the L-ADCP data. The horizontal current 317 
profiles generated by the L-ADCPs were combined with the current profiles obtained by the S-318 
ADCPs to obtain current sections between the 21 and 2000 m. Vertical ocean velocities were 319 
calculated using the LADCP_w_ocean utility from combined raw L-ADCP and CTD data 320 
(Thurnherr, 2022). The upward and downward looking data were processed separately and 321 
combined during post-processing to provide vertical velocity profiles for the downcast and 322 
upcast.  323 

The data from the 38 KHz S-ADCP were also used to derive the acoustic backscatter 324 
index (BI, Mullison, 2017), which is a proxy for the abundance of centimetre-scale reflectors 325 
(organic detritus, zooplankton, micronecton…) in the water column. This derivation takes into 326 
account the absorption and geometric dispersion of sound BI = Kc*(RL-Er) + (TLw + TLg), 327 
where KC is the conversion factor (count to decibels) of the ADCP used, RL the received signal, 328 
Er the signal noise, TLw and TLg are the absorption and geometric transmission losses of the 329 
acoustic signal in water respectively. 330 

 331 
 332 

2.3 Selection of representative stations 333 

The vertical profiles of key thermohaline (temperature, potential, salinity, potential 334 
density anomaly), particulate (beam attenuation coefficient, large particulate matter abundance, 335 
Junge index) and biogeochemical (dissolved oxygen, nitrate, apparent oxygen utilization) 336 
parameters are presented here for two contrasted stations, one with well-developed 337 
thermohaline staircases (station 9), the other without significant staircase (station 20). Station 338 
9 was chosen as a representative station for the processes occurring at the density interfaces, 339 
while station 20 was chosen as a reference station. Later, in the discussion of the effect of 340 
staircases on particle settling and degradation, several examples will be presented for several 341 
stations (8, 9 and 11). 342 
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 358 

3. Results 359 

3.1 Hydrological and hydrodynamical features along the section 360 

 3.1.1 Temperature, salinity, oxygen, and nitrate 361 

The temperature-salinity diagram (Fig. 1b) and the basin cross-section (Fig. 2) clearly 362 
identify the distribution of the water masses present in the study area. As in Falco et al. (2016), 363 
we used the isohaline 38.72 as the minimum salinity value to identify the shallowest and deepest 364 
levels of the EIW. The Atlantic Water (AW), which extends in the upper 200 m of the water 365 
column, has a higher temperature and lower salinity to the east. To the west, the colder 366 
Tyrrhenian Intermediate Water (TIW) can be distinguished at about 150 m depth. The warmer, 367 
saltier, and oxygen-depleted core of the Eastern Intermediate Water (EIW) is found at depths 368 
between 300 and 600 m, as illustrated in Fig. 2 (sections a, b, and c). The core of the colder and 369 
less saline Tyrrhenian Deep Water (TDW) is visible beyond 1200 m depth (Fig. 2a and b).  370 

 371 
In March, the nitrate distribution in the Tyrrhenian Sea (Fig. 2d) shows a nutrient-poor 372 

surface layer and a nutrient-rich deep layer, typical of oligotrophic conditions. Near the surface, 373 
nitrate concentrations are low, about 1 µmol kg-1, due to biological uptake. With increasing 374 
depth, nitrate concentrations increase. At intermediate depths (250–650 m) they range from 4 375 
to 7 µmol kg-1, indicating a transition zone with maximum vertical gradients. In deeper waters, 376 
concentrations reach 7 to 9 µmol kg-1 due to decomposing organic matter. The anticyclonic 377 
eddy around 12°E and the boundary current, especially over the eastern part of the section, 378 
modify the intermediate water depth (EIW) by a few hundred metres without significantly 379 
affecting the deep water depth (TDW). This deepening affects the distribution of oxygen and 380 
nitrate, which increase less rapidly with depth under these structures. 381 
 382 
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Figure 2: Cross-basin section of (a) potential temperature, (b) salinity, (c) dissolved oxygen, 417 
and (d) nitrate for the PERLE-3 cruise (March 2020). 418 
 419 

3.1.2 Currents 420 

The dynamic topography and currents measured in the water column during PERLE-3 421 
reveal the presence of two large mesoscale eddies in the centre of the basin with speed of  422 
typically 10-15 cm s-1 (Fig. 3a, b). The cyclonic eddy at 10.5° E extends to a depth of about 423 
200 m, while the eddy at 12° E extends to more than 500 m. The deep current running along 424 
the eastern edge of the basin defines the general along-slope cyclonic circulation. Below the 425 
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EIW core, i.e. at 600 m depth, the currents are very weak, of the order of a few cm s-1 (Fig. 3 429 
c). 430 
 431 

 432 

 

 

Figure 3: (a) Mean absolute dynamic topography (in cm) and surface geostrophic currents 433 
derived from the daily product during the period of the cruise (14–16 March 2020). The product 434 
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is the European Seas Gridded L 4 Sea Surface Heights and Derived Variables product, 437 
interpolated to a 3.75 arcmin grid, provided by the Copernicus Marine Environment 438 
Monitoring Service (CMEMS). (b) Stick plot of vertically averaged S-ADCP currents between 439 
21 m and 1200 m along the ship’s route across the basin, (c) Meridional component of 440 
combined S-ADCP and L-ADCP currents between the 21 and 2000 m depth for the PERLE-3 441 
cruise.  442 

The estimated vertical velocities for the layer between the surface and 2000 m depth 443 
(Fig. 4) are between -15 and 15 mm s-1 with a rms of 4 mm s-1. There was no significant spatial 444 
variation in vertical velocities, apart from greater vertical shear in the first 300 m of the water 445 
column on either side of the eddy at around 12°E. 446 

 447 
 448 

 449 
 450 
Figure 4: Histogram of the vertical velocities between 20 and 2000 m depth estimated form the 451 
L-ADCP measurements for all the stations during the PERLE 3 cruise. 452 
 453 

 3.1.3 Turbidity, large particle abundance and Junge index 454 

The beam attenuation coefficient, an indicator of the abundance of small 455 
particles (Fig. 5a) is highest in the surface layer and along the continental slope on both sides 456 
of the basin. The tongue of turbid water that descends to 500–600 m in the western half of the 457 
basin is associated with the downward movement of water around the anticyclonic eddy. 458 

Coarse particles observed with the UVP (Fig. 5b) are most abundant along the 459 
continental slope and between 400 and 900 m depth throughout the basin. The subduction effect 460 
of the anticyclonic eddy is also evident in the abundance of large particles.  461 
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Figure 5: Cross-basin section of (a) beam attenuation coefficient, (b) total large particle 462 
abundances, (c) backscatter index for the PERLE-3 cruise, and (d) Junge index. 463 

An accumulation of large reflectors between 200 and 500 m depth is clearly visible on 464 
the 38 kHz ADCP echo intensity (Fig. 5c). It corresponds to the deep scattering layer formed 465 
by the micronekton (small mesopelagic fishes, crustaceans, and cephalopods) (Kapelonis et al., 466 
2023; Peña, 2024) . Its fragmentation into "tongue" of lower intensity between 200-300 m is 467 
related to the diel vertical migrations (upward motion) of part of the organisms at night.  468 

The Junge index (Fig. 5d), estimated from UVP data, shows an intermediate maximum –469 
 indicating the preponderance of smaller particles over coarser ones – between 400 and 1000 m, 470 
below the deep scattering layer. Below 1000 m, the index decreases by one unit to 2000 m 471 
depth, indicating a decrease in the relative abundance of smaller particles compared to coarser 472 
particles. This decrease is more pronounced on the continental slope. 473 

 474 

3.2 Hydrological features of thermohaline staircases 475 

3.2.1 Attributes of staircase station vs. “non-staircase” station 476 

In this section we describe the vertical distribution of physical, dissolved and particulate 477 
parameters at station 20, which shows virtually no significant staircase (Fig. 6), and station 09 478 
which shows marked staircases between 700 and 1700 m (Fig. 7).   479 

At station 20, the vertical profiles of most variables exhibit relatively uniform 480 
characteristics between 800 m and 1070 m depth. At 1070 m, a homogeneous layer of 481 
approximately 70 m thickness is observed, immediately succeeded by a pronounced density 482 
interface. The water column structure below this interface demonstrates increased variability, 483 
characterized by minor step-like features in the measured parameters. 484 

The profiles of physical variables at station 09 show a series of steps starting at 750 m 485 
depth. Density steps result in thin interfaces (about 9–73 m) and density variations of a few 486 
thousandths of a kg m-3. The thickness of the mixed layers varies between 10 and 230 m and 487 
increases significantly below 1000 m. The profiles of the biogeochemical variables also show 488 
step-like profiles, with larger gradients corresponding to the density steps and nearly 489 
homogeneous concentrations in the mixed layers between each step. This is clearly visible for 490 
dissolved elements (oxygen, nitrate) and small particle concentration (beam attenuation 491 
coefficient). The effect of the density steps on the abundance of coarser material is less obvious 492 
due to the variability of the measurements, but it still appears that the total abundance decreases 493 
significantly below each step. It is noteworthy that the decrease in the Junge index between 700 494 
and 1600 m is greater for station 9 with staircase steps, of the order of one unit, than for 495 
station 20, which is more irregular and of the order of 0.2 units. 496 

 497 
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501 
Figure 6: Profiles of potential temperature, salinity, potential density anomaly (top row) and 502 
dissolved oxygen, nitrate, and apparent oxygen utilization (AOU) (middle row), beam 503 
attenuation coefficient, large particle abundance between 80 and 400 "m, and Junge index 504 
(bottom row) between 700 and 1700 m deep for station PERLE3-20. The grey dots are the data 505 
binned at 1-metre intervals and the solid red line indicates the smoothed profile. The horizontal 506 
dashed line indicates the base of the main density interface. See station position in Fig. 1. 507 

 508 
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509 
Fig. 7: Profiles of potential temperature, salinity, potential density anomaly (top row) and 510 
dissolved oxygen, nitrate, and apparent oxygen utilization (AOU) (middle row), beam 511 
attenuation coefficient, large particle abundance between 80 and 400 "m, and Junge index 512 
(bottom row) between 700 and 1600 m deep for station PERLE3-09. The grey dots are the data 513 
binned at 1-metre intervals and the solid red line indicates the smoothed profile. Major density 514 
steps are delineated by horizontal grey lines. The horizontal dashed lines indicate the base of 515 
the main density interfaces. See station positions in Fig. 1. 516 

 517 

3.2.2 Positioning and persistence of main staircases 518 

The transition zone between the EIW and the TDW thus provides the right conditions 519 
(warmer and saltier water mass overlying a colder and less saline water mass) for salt fingers. 520 
The thermohaline gradients from the profiles collected during the cruise and from the profiling 521 
float allowed us to identify the main stepped structures in the Tyrrhenian Basin (Fig. 8).  522 

 523 
During the PERLE-3 cruise, distinct thermohaline staircases are observed between 600 524 

and 2000 m depth, primarily in the central region of the basin (Fig. 8a). These staircases are 525 
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notably absent in two areas: near the western slope of the basin and beneath the deep 531 
anticyclonic eddy located at about 12° E. The absence of staircases extends to 1000 m depth 532 
beneath this eddy. 533 

 534 
The temporal evolution of the staircase in the centre of the basin, as seen by the profiling 535 

float between July 2018 and March 2020, underscores that these structures, particularly at 536 
depths greater than 1000 m, are relatively stable and have been maintained for several years 537 
(Fig. 8b).  538 

 539 

 

 

 

 

 540 

Figure 8: (a) depth of the main thermohaline staircases across the basin during the PERLE-3 541 
cruise and (b) temporal evolution of the staircases in the centre of the basin as seen by the 542 
profiling float between July 2018 and March 2020. The shaded band indicates the campaign 543 
period. The position of the stations and the trajectory of the profiling float are shown on the 544 
maps on the right. 545 

 546 

4. Discussion 547 

4.1 Circulation and thermohaline staircases  548 
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The hydrodynamic patterns observed during the PERLE-3 cruise are consistent with the 556 
established understanding of winter circulation in the southern Tyrrhenian Sea (Rinaldi et al., 557 
2010; Iacono et al., 2013; Iacono et al., 2021). The winter circulation in this region is primarily 558 
driven by wind forces, resulting in a vigorous cyclonic flow that encompasses the entire 559 
Tyrrhenian Basin and persistent mesoscale eddy structures. The observed anticyclonic gyre 560 
between 12°E-13°E and 39°N-40°N, and the cyclonic circulation between Sardinia and Sicily, 561 
corroborate the findings of previous studies. 562 

Our observations in the Tyrrhenian Sea between the surface and 2000 m show some 563 
well-defined thermohaline staircase structures associated with salt fingers. The observed 564 
thermohaline staircases occur mainly in the centre of the Tyrrhenian Basin and are less defined 565 
on the continental slope at both ends of the section. These latter regions are the ones that contain 566 
the cyclonic boundary circulation that entrains the core of the EIWs originating from the Strait 567 
of Sicily.  568 

These results are consistent with those of Zodiatis and Gasparini (1996) from ship 569 
observations, of Buffett et al. (2017) from seismic observations, and Taillandier et al. (2020) 570 
from profiling float observations, who showed that the staircases with the most distinct step-571 
like gradients appear in the centre of the basin, while they become less evident towards the 572 
boundaries and the bottom. They linked this change to increased vertical motions that prevent 573 
diffusive convection and staircase formation because the internal wave field and current shear 574 
are stronger near the boundaries. Similarly, Durante et al. (2021) found that internal gravity 575 
wave-induced mixing can modulate staircase structures in the basin interior. In addition, Yang 576 
et al. (2024) used seismic data from the Caribbean to show that mesoscale eddies can generate 577 
turbulent mixing that significantly perturbs thermohaline staircase structures down to depths of 578 
750 m. These eddies appear to generate vertical shear and instability, particularly at their 579 
periphery, leading to the disruption of thermohaline staircases. Our observations show an 580 
absence of staircases up to 1000 m deep beneath the anticyclonic eddy centered at 12°E. While 581 
this co-occurrence does not establish causality, and in the absence of direct turbulence 582 
measurements, the potential disruptive effect of this eddy on staircase formation warrants 583 
consideration. This observation is consistent with the emerging understanding of the dynamic 584 
interplay between mesoscale features and fine-scale thermohaline structures in the ocean 585 
interior. 586 

The persistence of thermohaline steps observed below 1000 m depth, as evidenced by 587 
both float measurements and cruise data in the basin's central region, also corroborates previous 588 
observations that have highlighting the stability of these structures in the basin interior. These 589 
step-like features have been documented to maintain their integrity over temporal scales ranging 590 
from years (Zodiatis and Gasparini, 1996; Falco et al., 2016; Taillandier et al., 2020) to decades 591 
(Durante et al., 2019) and show strong lateral coherence, sometimes reaching several hundred 592 
kilometres (Buffett et al., 2017). The size of the region occupied by thermohaline staircases is 593 
controlled by the competition between turbulent mixing and double diffusion. Ferron et al. 594 
(2017) measured very low microstructure derived dissipation rates in the southwestern part of 595 
the Tyrrhenian. This low turbulence plays a crucial role in allowing double-diffusive mixing to 596 
dominate transport processes, promoting the development and persistence of thermohaline 597 
staircases. 598 
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The subsequent sections provide a detailed examination of how these persistent, well-614 
developed thermohaline staircases may influence particulate matter dynamics, specifically 615 
addressing their impact on sedimentation processes (§ 4.2) and the degradation of suspended 616 
particles (§ 4.3). This analysis aims to investigate the complex interactions between small scale 617 
physical oceanographic features and biogeochemical cycles in the deep marine environment. 618 

 619 

4.2 Impact of staircases on the distribution and settling of particulate matter 620 

The slope of the Junge-type particle size spectrum has been shown to be a valid first-621 
order description of the particle size distribution, particularly for the study of size-dependent 622 
processes such as particle sinking (Guidi et al., 2009). In our case, the observed abundance of 623 
coarse particles and the slope of the particle size spectrum are greatest in the deep scattering 624 
layer between 400 and 800 m (Fig. 5). Deeper down to 2000 m, both the total particle abundance 625 
and the slope of the size spectrum decrease, indicating that the contribution of coarser particles 626 
to the particle population increases with depth. Similar results regarding the size distribution of 627 
smaller particles in the Tyrrhenian Basin were obtained by (Chaikalis et al., 2021) during the 628 
trans-Mediterranean cruise in March 2018 using an in-situ laser scattering and transmissometry 629 
instrument (LISST-Deep). In their study, they considered the size range between 5.6 and 92.6 630 
µm, complementary to that measured with the UVP. Their stations show similar particle 631 
distribution size with depth below the surface layer (>150 m), with an intermediate maximum 632 
at about 400–500 m depth and a steady decrease to 2000 m depth. Such an evolution of the 633 
abundance and particle size distribution is generally considered to be the result of aggregation, 634 
with smaller particles agglomerating to form larger ones, a common process in the ocean 635 
(McCave, 1984). 636 

The overall diminution suspended particles abundance, concurrent with an 637 
augmentation of the coarse fraction, is evident not only on a macroscale throughout the water 638 
column beneath the Eastern Intermediate Waters (EIWs), but also manifests on a microscale 639 
(spanning several decameters) within the thermohaline staircases. The influence of density 640 
steps on the vertical distribution of particle abundance and size is illustrated through an 641 
examination of three distinct interfaces, situated at different stations and depths ranging from 642 
700 to 1400 m, i.e. station 08 (Fig. 9), station 11 (Fig. 10), and station 09 (Fig. 11). These 643 
interfaces, characterized by thicknesses varying between 20 and 75 m, exhibit density variations 644 
of 3 to 5 × 10⁻³ kg m-3. 645 

These examples show a significant reduction in the abundance of fine particles, as 646 
evidenced by transmissometry (BAC) measurements, across each interface. For coarse particles 647 
detected by UVP, despite measurement variability, the change in abundance across the interface 648 
varies according to particle size. At stations 08 (Fig. 9) and 11 (Fig. 10), a slight decrease in 649 
abundance is observed for the smallest size fraction (80.6-161 µm), while minimal variation is 650 
noted for intermediate sizes (161-256 µm), and an increase is evident for the largest particles 651 
(> 256 µm). At station 08, the Junge index exhibits a clear decrease across the density interface. 652 
The signal is less pronounced at station 11, where the index decreases at the interface's upper 653 
boundary but shows a localized increase at its base. For the interface at station 09 (Fig. 11), all 654 
parameters — turbidity, abundance across different size fractions, and the Junge index — 655 
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decrease across the interface. These depth-dependent variations provide strong evidence that 678 
these density interfaces exert a significant influence on particle abundance and size distribution.  679 

 680 

Figure 9: Profiles of potential density anomaly, beam attenuation coefficient, large particle 681 
abundances for the first five size classes and for all sizes>256 "	m of the UVP, dissolved oxygen, 682 
nitrate, apparent oxygen utilization (AOU), and Junge Index between 1100 and 1400 m deep 683 
for station PERLE3-08. The top and base of the interface is delimited by dashed lines. 684 

 685 
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 686 

 687 

Figure 10: Profiles of potential density anomaly, beam attenuation coefficient, large particle 688 
abundances for the first five size classes and for all sizes>256 "m of the UVP, dissolved oxygen, 689 
nitrate, apparent oxygen utilization (AOU), and Junge Index between 1100 and 1300 m deep 690 
for station PERLE3-11. The top and base of the interface is delimited by dashed lines. 691 

 692 
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 693 

Figure 11: Profiles of potential density anomaly, beam attenuation coefficient, large particle 694 
abundances for the first five size classes and for all sizes>256 " m of the UVP, dissolved 695 
oxygen, nitrate, apparent oxygen utilization (AOU), and Junge Index between 700 and 770 m 696 
deep for station PERLE3-09. The top and base of the interface is delimited by dashed lines. 697 

Based on laboratory and modelling experiments in the literature, strong density 698 
interfaces are known to cause particle retention and promote aggregation. According to 699 
(Doostmohammadi and Ardekani, 2015), density interfaces can induce preferential retention of 700 
fine, slow-sinking particles compared to larger particles, and can therefore promote the 701 
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formation of clusters of fine particles, which can then aggregate. This retention phenomenon 703 
can also act on coarse particles, which are often formed by high porosity aggregates. According 704 
to Kindler et al. (2010), large porous particles whose effective density is close to that of ambient 705 
water are much more dependent on transition zones and large accumulations of porous particles 706 
can occur at interfaces due to their less dense water transport, which is also conducive to 707 
aggregation. In our case, the density difference at the interface between two staircases are really 708 
weak (a few thousandths of kg/m3) and despite the measurement uncertainty of the particle 709 
abundances, the results suggest that these interfaces have an effect on the size distribution –710 
 through retention and aggregation – of the settling particles. The larger particles, which are 711 
generally denser and have higher settling velocities, are not affected by the change in water 712 
density. 713 

In addition, convection phenomena in the mixed layers sandwiching the density 714 
interfaces are likely to even out the concentration of slowly sinking particles (especially the 715 
finest and most numerous). The estimated vertical velocities of the current, on the order of a 716 
few mm s-1, are likely to alter the settling of particles, helping to homogenize their abundance 717 
with depth and increase their residence time in each layer. 718 

 719 

4.3 Potential impact of staircases on the biogeochemical activity 720 

The vertical export of organic particles to the deep ocean is a crucial component of the 721 
oceanic carbon cycle, with flux decreasing significantly (>70%) in the mesopelagic zone (100-722 
1000 m depth). Several biogeochemical processes are responsible of the reduction of this flux 723 
and particle lability decrease with depth. Briggs et al. (2020) suggest that particle fragmentation 724 
could account for approximately half of the observed particle loss in the mesopelagic zone. 725 
Additionally, remineralization by heterotrophic respiration and enzymatic solubilization both 726 
by free-living and particle-attached microbes play a key role in particle degradation (Karl et al., 727 
1988; Collins et al., 2015). It is also well known that marine snow aggregates act as hotspots 728 
for microbial activity, hosting diverse communities of bacteria, protozoans, and other microor-729 
ganisms. Particle-attached microbial community evolves with depth, due to evolution of the 730 
initial attached community rather than de novo colonization, detachment or grazing as the ma-731 
rine snow sinks (Thiele et al., 2015). These communities are often orders of magnitude more 732 
concentrated and active than those in the surrounding water, leading to intense localized degra-733 
dation and remineralization of organic matter (Kiørboe, 2001; Baumas and Bizic, 2024). 734 

The presence of thermohaline staircases appears to affect the sedimentation pattern of 735 
particles; promoting particle retention and aggregation, increasing the time particles spend in 736 
the water column. These structures also create distinct microenvironments with gradients of 737 
oxygen and nutrients, which are believed to be the result of the degradation of particulate or-738 
ganic. This effect is illustrated for three separate interfaces in figures 9 to 11. It can be then 739 
hypothesized that the increase in particle residence time favors the remineralization process, 740 
which releases nutrients while consuming dissolved oxygen through heterotrophic respiration. 741 
Depending on the conditions and with a sufficiently long stability period, these activities can 742 
lead to localized oxygen depletion and an increase in AOU. In our data, this effect is clearly 743 
observed in the shallower staircases, between 750 and 900 m, at station 09 (Fig. 11, bottom 744 
row). For deeper interfaces for stations 08 and 11, at around 1200 m (Figs. 9 and 10, bottom 745 
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row), the increase in AOU and the potential accumulation of nitrate are masked by a stronger 793 
vertical oxygen gradient and higher nutrient concentrations compared to shallower depths. 794 
Moreover, biological activity within these deeper staircases is also reduced due to the decreased 795 
lability of organic matter with increasing depth (Ghiglione et al., 2009; Karl et al., 1988). 796 

The persistence of these staircase structures over long periods of time leaves sufficient 797 
time for significant biogeochemical transformations to occur. Arístegui et al. (2009) and Nagata 798 
and Kirchman (1997) showed that in deep marine environments, the degradation kinetics of 799 
organic matter, which vary according to temperature, oxygen availability, and microbial com-800 
position, can range from a few days to several months. This can lead to the local accumulation 801 
of nitrates, creating pockets of higher concentration and intensifying vertical double diffusive 802 
nitrate fluxes toward upper layers. However, observing these accumulations with the present 803 
resolution and precision remains challenging. Taillandier et al. (2020) already showed that the 804 
thermohaline staircases in the Tyrrhenian Sea significantly influence the biogeochemical dy-805 
namics by contributing to the nitrate enrichment of the EIW through diffusion. They estimated 806 
upward nitrate fluxes (assuming weak turbulent diapycnal diffusivity) in the transition zone 807 
between 400 and 2000 m depth to be about 4 μmol m-2 d-1 using the salt diffusivity formulation 808 
of Radko and Smith (2012) based on the density ratio (Rρ =  α × ∂θ/∂z /  β × ∂S/∂z), where α 809 
and β are the thermal expansion and haline contraction coefficients of seawater, respectively, 810 
and the molecular diffusivity of heat is kT = 1.4 × 10⁻⁷ m² s-1. We calculated nitrate diffusive 811 
fluxes, in assuming weak turbulent diapycnal diffusivity, at each interface using the same for-812 
mulation. The nitrate flux (FNO3) can be expressed as: 813 

FNO3 = Ksf × ∂CNO3/∂z = kT × Rρ × (135.7/ (Rρ – 1) 1/2 − 62.75) × ∂CNO3/∂z  814 

where Ksf  is the salt-fingering diffusivity of nitrate and ∂CNO3/∂z the vertical gradient in nitrate 815 
concentration. 816 

At station 09, the diffusive nitrate flux was assessed for each depth step between 600 817 
and 1600 m (Fig. 12). Fluxes ranged from 3.8 μmol m-2 d-1 at the deepest depth (1254 m) to 818 
19.1 µmol/m²/d for the three shallower depths (728 to 870 m). The fluxes at the interfaces are 819 
therefore stronger than the overall flux estimated by Taillandier et al. (2020) for the 400-2000 820 
m depth range. Fluxes at interfaces are the major contributor to the total nitrate flux.  In agree-821 
ment with our estimation of double diffusive upward nitrate flux, Durante et al. (2021) esti-822 
mated that heat and salt fluxes are more pronounced in the upper part of the staircases zone 823 
(700 m – 1600 m) but decrease below 1800 m, reaching a minimum near the base of the stair-824 
cases. 825 
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 843 

Figure 12: Estimated double diffusive nitrate fluxes across each interface (annotated in blue 844 
and expressed in µmol/m²/d) from station 9. The blue arrows indicate the direction of the flux 845 
and the sizes are proportional to the intensity. In red: the vertical profile of the specific volume 846 
anomaly ($! in kg m-3) delimiting homogeneous and gradient zones. The grey points correspond 847 
to nitrate measurements by the SUNA, while the blue squares are the values averaged over 1 m 848 
for each point at the upper and lower interfaces, and used to calculate the nitrate gradient in 849 
the shaded areas. 850 

 851 

5. Conclusion 852 

This study examines the effect of observed weakly stepped density gradients induced 853 
by salt fingering on the distribution and fluxes of particulate and dissolved elements. While the 854 
effect of density steps on particle settling has been well studied experimentally and 855 
demonstrated for strong density gradients in natural environments (i.e. buoyant river plumes 856 
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and pycnocline), this is the first time, to our knowledge, that this effect has been identified for 862 
steps with the extremely low-density gradients that exist in the deep ocean. 863 

In the Tyrrhenian Sea, the interface between the warm and saline intermediate waters 864 
(EIW) and the colder and less saline deep waters (TDW) presents thermohaline conditions 865 
favourable to the development of significant salt fingering staircases. These structures are 866 
predominantly observed in regions characterized by minimal hydrodynamic activity, situated 867 
in the interior of the basin, distanced from boundary influences, and beneath the depth of 868 
influence of mesoscale eddy dynamics. In addition, the study shows that the thermohaline 869 
staircases in the central region of the Tyrrhenian Basin are remarkably stable over time, 870 
persisting for several years. 871 

These results underscore the complex interplay between thermohaline staircases and 872 
sedimentary fluxes, dissolved matter distribution, and ecological and biogeochemical processes 873 
in deep marine environments. The presence of thermohaline staircases appears to have a 874 
significant influence on the distribution of particulate and dissolved matter. Profiles of particle 875 
abundance resolved down to a few hundred microns, or profiles of dissolved substances such 876 
as oxygen and nitrate, tend to mirror the step-like structure observed in the density profiles. 877 
Thermohaline staircases create distinct density interfaces that act as physical barriers, slowing 878 
the descent of particles. The retention of near-floating particles at density interfaces increases 879 
their residence time, promotes particle aggregation and, incidentally, allows the larger particles 880 
thus formed to cross the density interface. At the same time, the staircases influence the 881 
concentration of nutrients (such as nitrate) and dissolved oxygen levels, thereby potentially 882 
affecting microbial activity and nutrient cycling within these interfaces. The retention of part 883 
of the particulate material at the density interfaces allows the mineralization of organic matter, 884 
contributing to nitrate enrichment and increasing the upward diapycnal diffusive fluxes of 885 
oxygen and nitrate. Ecologically, it is assumed that these staircases can play a crucial role in 886 
promoting diverse habitats and influencing the lability of organic matter and the nutrient 887 
distribution and fluxes.  888 

Such findings underscore the importance of fine-scale physical structures in shaping the 889 
biogeochemical landscape of the ocean interior. and emphasizes the need for further research 890 
to fully understand their implications for marine ecosystems. 891 
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Appendix A 1087 

 1088 

Table A1 Mean abundance (#/L) percentage, and cumulative percentage by size class of 1089 
UVP between 80 and 2000 mm for all stations between the surface and 2000 m depth 1090 

 1091 

Size class Abundance (# L-1) Percentage Cumulative percentage 

80.6-102 µm 26.272 45.617 45.62 

102-128 µm 10.465 18.171 63.79 

128-161 µm 5.547 9.631 73.42 

161-203 µm 8.542 14.832 88.25 

203-256 µm 3.13 5.435 93.68 

256-323 µm 1.944 3.375 97.06 

323-406 µm 0.985 1.710 98.77 

406-512 µm 0.391 0.679 99.45 

512-645 µm 0.169 0.293 99.74 

645-813 µm 0.078 0.135 99.88 

0.813-1020 µm 0.038 0.066 99.94 

1.02-1290 µm 0.018 0.031 99.98 

1.29-1630 µm 0.009 0.016 99.99 

1630-2050 µm 0.005 0.009 100.00 
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