Supplementary Material for

5 Assessing the Effectiveness of SO₂, NOx, and NH₃ Emission Reductions in Mitigating Winter PM_{2.5} in Taiwan Using CMAQ Model

by

10 Ping-Chieh Huang¹, Hui-Ming Hung^{1*}, Hsin-Chih Lai², and Charles C.-K. Chou³

Contents of this file

15

Description of the relationship between S_{NOx,NO_3} and NO₂ concentration Tables S1 to S7 Figures S1 to S11

20 Relationship between SNOx,NO3 and NO2 concentration

The reduction in NOx emissions induces a decrease in NO₂ concentration, leading to a subsequent reduction in HNO₃ production through reaction R1.

$$NO_2 + OH \rightarrow HNO_3$$
 (R1)

The production rate of HNO₃ (P_{HNO3}) can be calculated with OH concentration assumed in the steady state as follows:

$$\frac{d[OH]}{dt} = P_r - L = P - \sum k_i [A]_i [OH] - k_{NO_2} [NO_2] [OH],$$
(1)

where P_r and L are chemical production and loss of [OH], $\sum k_i [A]_i$ [OH] is the sum of reaction rates of all OH-consuming chemical reactions except (R1), k_i is the rate constant of each reaction. The steady-state [OH] is estimated as follows:

30

25

$$[OH]_{SS} = \frac{P_r}{\sum k_i [A]_i + k_{NO_2} [NO_2]}$$
(2)

$$P_{HNO_3} = k_{NO_2} [NO_2] [OH]_{SS} = \frac{P_r \times k_{NO_2} [NO_2]}{\sum k_i [A]_i + k_{NO_2} [NO_2]}$$
(3)

The total [HNO₃] is contributed by the chemical process ([HNO₃]_{chem}) at a time frame of Δt and transported from outside the domain boundaries ([HNO₃]_{trans}) as follows:

$$[HNO_3] = [HNO_3]_{chem} + [HNO_3]_{trans} = \frac{P_r \times k_{NO_2} [NO_2] \Delta t}{\sum k_i [A]_i + k_{NO_2} [NO_2]} + [HNO_3]_{trans}$$
(4)

35

As [NO₂] low enough, [HNO₃]_{trans} would become comparable with [HNO₃]_{chem} to affect the total [HNO₃]. With the simple assumption of [NO₂] proportional to the emission reduction rate, i.e., [NO₂] = [NO₂]_{control_run} × *Er*, where *Er* is the emission ratio. With the assumption of $P_r \times \Delta t = 3$ and $\sum k_i [A]_i : k_{NO_2} [NO_2]_{control_run} = 7 : 5$, (the assumed variable values are applied to evaluate the influence

- 40 of transport term on the sensitivity, S_{NOx,NO_3}). Figure S11 shows HNO₃ concentration and S_{NOx,NO_3} in this condition with $[HNO_3]_{trans} = 0, 0.2, and 0.53$, which represents no transported HNO₃, transported HNO₃ equal to $[HNO_3]_{chem}$ at NO₂ = 0.1 and at NO₂ = 0.3. HNO₃ increases as *Er* increases, but the increase gradually slows down. The variation in transported HNO₃ does not alter the overall pattern of total HNO₃; it only introduces differences in values (Fig. S11a). However, the trend of S_{NOx,NO_3} is different (Fig. S11b).
- 45 In the absence of transported HNO₃, S_{NOx,NO_3} increases as Er decreases. Conversely, when [HNO₃]_{trans} is greater than 0, S_{NOx,NO_3} has a transition point, occurring at Er, corresponding to a [HNO₃]_{chem} similar to [HNO₃]_{trans}. The scatter plot of S_{NOx,NO_3} is calculated based on the six discrete points with an interval

of 0.2 to mimic the CMAQ simulation and shows a similar trend under the influence of non-zero $[HNO_3]_{trans}$.

	Parameters	Setting				
	Microphysics	WSM 5-class scheme				
	Cumulus Parameterization	Kain-Fritsch				
	Planetary Boundary Layer	YSU scheme				
	Surface Layer	MM5 Monin-Obukhov scheme				
WRF	Land Surface	Unified Noah land-surface model				
v3.7.1	Urban Surface	No				
	Longwave Radiation	cam scheme				
	Shortwave Radiation	cam scheme				
	SST_update	Yes				
	Chemical mechanism	Cb06				
	Horizontal advection	Yamo				
CMAQ	Vertical advection	WRF input				
v5.2.1	Horizontal mixing/diffusion	Multiscale				
	Aerosol	Aero 6				
	Cloud option	ACM AE6				
	Emission	TEDS 9.0				

50 Table S1: WRF-CMAQ model setting.

WRF Vertical Layer Grid size	45 91×91	45	45	45
Grid size	91×91	1((), 1(0))		
		100×109	223×223	223×223
FDDA	Yes	Yes	Yes	No
CMAQ Resolution	81km	27km	9km	3km
Vertical Layer	6	15	15	15
Grid size	70×80	70×80	70×80	90×135

Table S2: WRF-CMAQ resolution.

parameter	value	Description*
Temperature	291 K	
Cloud water	0.376 g kg ⁻¹	
CO _{2(g)}	400 ppmv	Constant
SO _{2(g)}	7.13 ppbv	${}^{b}SO_{2(g)} + {}^{c}dH_{2}O_{2}$
^a H ₂ O _{2(g)}	0.43 ppbv	
^b O _{3(g)}	18.7 ppbv	
Total ^a NH ₃	73.4 ppbv × ${}^{d}Er$	$NH_{3(g)} + NH_4^+(I+J+K)$
Total ^a HNO ₃	12.3 ppbv	$HNO_{3(g)} + NO_{3}(I+J+K)$
SO 4 ²⁻	0.088 µg m ⁻³	${}^{b}SO_{4}{}^{2}(I+J+K) - {}^{c}dH_{2}O_{2}$
^a Fe ³⁺	0.0238 µg m ⁻³	Fe(III) available for sulfate oxidation
^a Mn ²⁺	0.035 μg m ⁻³	Mn(II) available for sulfate oxidation
^a Na ⁺	0.48	I+J+K
^a K ⁺	0.82	J+K
^a Ca ²⁺	1.38	J+K
$^{a}Mg^{2+}$	1.00	J+K
^a Cl ⁻	0.64	I+J+K

55 Table S3: Box model initial conditions.

* I, J, K denotes Aitken, accumulation, and coarse modes in particle phase from CMAQ output.

* Condition: a grid point along the coast of Taichung (24.203° N, 120.5053° E, the second layer, ~ 68.5

m a.s.l) at 8:00 am local time on 3rd December 2018 from CMAQ.

^a The concentration from the control run.

^b The concentration from the NH3_02x run (NH₃ emission reduced to 0.2x of control run).

 $^{\rm c}$ dH_2O_2 is the H_2O_2 difference concentration (control run – NH3-02x run).

^d Er ranges from 0.2 to 1.0 at 0.1 intervals

Dis	solution reaction	Henry's constant (M atm ⁼¹)
1.	$CO_2 + H_2O \leftrightarrow CO_2 \cdot H_2O$	$H_{CO_2} = 0.034$
2.	$SO_2 + H_2O \leftrightarrow SO_2 \cdot H_2O$	$H_{SO_2} = 1.23$
3.	$HNO_{3(g)} \leftrightarrow HNO_{3(aq)}$	$H_{HNO_3} = 2.1 \times 10^5$
4.	$\mathrm{NH}_3 + \mathrm{H}_2\mathrm{O} \leftrightarrow \mathrm{NH}_3 \cdot \mathrm{H}_2\mathrm{O}$	$H_{NH_3} = 62$
5.	$0_{3(g)} \leftrightarrow 0_{3(aq)}$	$H_{O_3} = 1.14 \times 10^{-2}$
6.	$\mathrm{H_2O_{2(g)}} \leftrightarrow \mathrm{H_2O_{2(aq)}}$	$H_{H_2O_2} = 1 \times 10^5$
Dis	sociation reaction	Rate constant (M)
7.	$CO_2 \cdot H_2O \leftrightarrow HCO_3^- + H^+$ $HCO_3^- \leftrightarrow CO_3^{2-} + H^+$	$k_{c1} = 4.2 \times 10^{-7}$ $k_{c2} = 5.61 \times 10^{-11}$
8.	$SO_2 \cdot H_2O \leftrightarrow HSO_3^- + H^+$ $HSO_3^- \leftrightarrow SO_3^{2-} + H^+$	$k_{s1} = 1.3 \times 10^{-2}$ $k_{s2} = 6.6 \times 10^{-8}$
9.	$HNO_{3(aq)} \leftrightarrow NO_3^- + H^+$	$k_{a1} = 15.4$
10.	$\rm NH_3 \cdot H_2O \leftrightarrow \rm NH_4^+ + OH^-$	$k_{a1} = 1.7 \times 10^{-5}$
11.	$\begin{array}{l} H_2SO4 \leftrightarrow HSO_4^- + H^+ \\ HSO_4^- \leftrightarrow SO_4^{2-} + H^+ \end{array}$	as a complete dissociation $k_{a2} = 1.2 \times 10^{-2}$
12.	$H_20 \leftrightarrow H^+ + 0H^-$	
Aqı	eous oxidation reaction	Rate constant (M ⁻¹ s ⁻¹)
13.	$SO_2 + O_3 + H_2O \rightarrow SO_4^{2-} + O_2 + 2H^+$	$k_{O_{3},1} = 2.4 \times 10^4$
	$HSO_3^- + O_3 \rightarrow SO_4^{2-} + O_2 + H^+$	$k_{O_{3,2}} = 3.7 \times 10^5$
	$SO_3^{2-} + O_3 \rightarrow SO_4^{2-} + O_2$	$k_{O_{3},2} = 1.5 \times 10^9$
14.	$HSO_3^- + H_2O_2 + H^+ \rightarrow SO_4^{2-} + 2H^+ + H_2O_4^{}$	$k_{H_2O_2} = 7.45 \times 10^7$
15.	$S(IV) + \frac{1}{2}O_2 \xrightarrow{Mn^{2+}, Fe^{3+}} S(VI)$	$k_{Mn} = 750; k_{Fe} = 2600;$ $k_{Mn,Fe} = 1.0 \times 10^{10}$

65 Table S4: Reactions and rate constants used in box model (from Seinfeld and Pandis (2006))

	Tamsui	Shalu	Taixi	Qianzhen			
Temperature (degree C)							
Mean value of MOENV	18.61	20.19	20.00	23.31			
Mean value of WRF	18.48	19.50	19.05	22.39			
Correlation coefficient	0.87	0.93	0.84	0.93			
Mean bias error	-0.18	-0.69	-0.95	-0.92			
Mean absolute error	1.33	1.10	1.47	1.34			
	-	RH (%)					
Mean value of MOENV	85.12	74.97	82.85	69.49			
Mean value of WRF	80.42	76.49	80.71	69.95			
Correlation coefficient	0.71	0.84	0.58	0.86			
Mean bias error	-4.23	1.52	-2.14	0.46			
Mean absolute error	7.31	6.23	6.75	4.78			
CO (ppbv)							
Mean value of MOENV	331.98	355.42	258.98	644.20			
Mean value of CMAQ	137.84	143.09	129.03	266.13			
Correlation coefficient	0.59	0.53	0.46	0.62			
Mean bias error	-194.05	-212.32	-129.94	-377.72			
Mean absolute error	196.13	212.32	130.95	378.77			
O3 (ppbv)							
Mean value of MOENV	35.05	31.43	37.74	26.77			
Mean value of CMAQ	47.13	42.73	42.57	32.51			
Correlation coefficient	0.66	0.73	0.58	0.84			
Mean bias error	12.07	11.29	4.67	5.76			
Mean absolute error	13.0	12.93	8.94	11.05			

Table S5: Statistic of air temperature, relative humidity, CO, and O₃ of MOENV observation and model simulation.

70 Correlation coefficient = $\frac{\sum_{i=1}^{n} (m_i - \bar{m}) (o_i - \bar{o})}{\sqrt{\sum_{i=1}^{n} (m_i - \bar{m})^2} \sqrt{\sum_{i=1}^{n} (o_i - \bar{o})^2}}$

Mean bias error = $\overline{(m_l - o_l)}$; Mean absolute error = $\overline{|(m_l - o_l)|}$

where m_i and o_i are the wind speed or concentrations of model and observation at time i, respectively, and \overline{m} and \overline{o} are their average over December 2018.

	Gas phase processes Aqueous phase processes		Other processe	
northern Taiwan	8.4 %	21.5 %	70.1 %	
Chu-Miao area	11.2 %	28.5 %	60.3 %	
central Taiwan	13.2 %	30.5 %	56.3 %	
Yun-Chia-Nan area	16.5 %	27.6 %	55.9 %	
Kao-Ping area	19.8 %	23.7 %	56.6 %	

75 Table S6: Mean contribution of sulfate formation in each air pollution zone (altitude below 200m a.s.l.).

Table S7: Statistics of PM_{2.5} sensitivity coefficient of NOx (*S_{NOx,PM2.5}*) and NH₃ (*S_{NH3,PM2.5}*) in each air pollution zone (altitude below 200m a.s.l.) under the current condition (at NOx emission ratio of 0.9).

	$S_{NOx,PM_{2.5}}$			S _{NH3} , PM _{2.5}		
	Mean	Q1	Q3	Mean	Q1	Q3
Northern Taiwan	0.15	0.12	0.19	0.12	0.11	0.14
Chu-Miao area	0.20	0.18	0.22	0.17	0.16	0.19
Central Taiwan	0.23	0.20	0.25	0.19	0.18	0.21
Yun-Chia-Nan area	0.33	0.30	0.36	0.19	0.18	0.20
Kao-Ping area	0.34	0.31	0.41	0.19	0.17	0.21

Mean: Arithmetic mean; Q1: 25th percentile; Q3: 75th percentile.

80

Figure S1: (a) WPS domain configuration. (b) CMAQ d04 domain. Red points are MOENV
stations. Blue points are PM components measurement stations. Purple point is Shalu station, having both EPA data and PM components data.

Figure S2: The comparison of wind field and PM_{2.5} between MOENV ground observation and CMAQ surface layer.

Figure S3: (a) Average PM_{2.5} concentration (μ g m⁻³). (b) The composition fraction and PM_{2.5} concentrations for different regions (different shading colors) at less than 200 m altitude above sea level. (From north to south, the regions are northern Taiwan (pink), Chu-Miao (purple), central Taiwan (red), Yun-Chia-Nan (blue), and Kao-Ping (orange)). The component is shown in legend. The colorbar is the height above sea level. Conditions: average data from 1-31 December 2018 for the surface layer.

Figure S4: Sulfate, ammonium, nitrate, and PM_{2.5} concentrations of control run (blue line, left yaxis) and difference between control and NoAqChem run (pink line, right y-axis). The left and right y-axes have the same scale but different ranges. Conditions: average data of central Taiwan for the surface layer.

Figure S5: The comparison of PM_{2.5} between observation and CMAQ surface layer in central Taiwan (r: correlation coefficient).

Figure S6: (a) Average cloud water within the planetary boundary layers. (b) Surface layer average sulfate source contributions in central Taiwan.

Figure S7: (a) PM_{2.5}, (b) sulfate, (c) nitrate, and (d) ammonium average concentration as a function
of NOx (x-axis) and NH₃ (y-axis) emission ratios. Conditions: average data of central Taiwan from
1-14 December 2018 for the surface layer.

Figure S8: The difference of (a) nitrate and (b) PM_{2.5} sensitivity coefficient map between NOx and NH₃ under the current condition (at NOx emission ratio of 0.9). Red regimes represent NOx-sensitive, blue regimes represent NH₃-sensitive, and white regimes represent neutral with values

115 sensitive, blue regimes represent NH₃-sensitive, and white regimes represent neutral with values between -0.05 and 0.05. Conditions: average data from 1-31 December 2018 for the surface layer.

Figure S9: Average in-cloud (a) SO₂, (b) sulfate, (c) H₂O₂, and (d) ozone concentration as a function of NOx (x-axis) and NH₃ (y-axis) emission ratios. Conditions: average data of western
Taiwan land regions in domain 4 from 1-14 December 2018 for the cloud grid points.

Figure S10: Average in-cloud (a) SO₂, (b) sulfate, (c) H₂O₂, and (d) ozone concentration as a function of NOx (x-axis) and NH₃ (y-axis) emission ratios. Conditions: average data of sea regions west of 121°E in domain 4 from 1-14 December 2018 for the cloud grid points.

125

Figure S11: (a) HNO₃ concentration and (b) nitrate sensitivity coefficient of NO_x (*S_{NOx,NO3}*) as a function of NO₂ ratio.

Reference

Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate 130 Change, Wiley, 2006.