

1	Ambient and Intrinsic Dependencies of Evolving Ice-Phase Particles within a Decaying
2	Winter Storm During IMPACTS
3	
4	
5	Andrew DeLaFrance ¹ , Lynn A. McMurdie ¹ , Angela K. Rowe ² , Andrew J. Heymsfield ^{3,4}
6	
7	
8	¹ Department of Atmospheric and Climate Science, University of Washington, Seattle, WA, USA
9	² Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
10	³ National Center for Atmospheric Research, Boulder, CO, USA
11	⁴ US National Science Foundation, Alexandria, VA, USA
12	
13	
14	
15	
16	
17	
18	Corresponding author: Andrew DeLaFrance, adelaf@uw.edu
19	
20	
21	
22	
23	
24	

25	Abstract
26	Mesoscale bands develop within winter cyclones as concentrated regions of locally enhanced
27	radar reflectivity, often producing intensified precipitation rates lasting several hours. Surface
28	precipitation characteristics are governed by the microphysical properties of the ice-phase
29	particles aloft, yet their unique microphysical evolutionary pathways and ambient environmental
30	dependencies in banded regions remain poorly understood, in part due to a paucity of
31	observations within natural clouds. Addressing this need, the Investigation of Microphysics and
32	Precipitation for Atlantic Coast-Threatening Snowstorms recently measured properties of winter
33	cyclones from airborne in situ and remote sensing platforms. Observations collected within a
34	banded region of a decaying-stage northeast United States cyclone revealed a microphysical
35	pathway characterized by precipitation fallout from a weak generating cell layer through an ~ 2
36	km deep subsaturated downdraft region. Sublimation was a dominant evolutionary process,
37	resulting in $> 70\%$ reduction of the initial ice water content (IWC). This vertical evolution was
38	reproduced by a 1D particle-based model simulation constrained by observations, conveying
39	accuracy in the process representation. Four sensitivity simulations assessed evolutionary
40	dependencies based on observationally-informed perturbations of the ambient relative humidity,
41	RH, and vertical air motion, w. Perturbations of $\sim 2\%$ RH significantly varied the resultant IWC
42	loss, as much as 29%, whereas comparable perturbations of w had negligible effects. Intrinsic
43	particle evolution during sublimation demonstrated a notable imprint on vertical profiles of radar
44	reflectivity, but Doppler velocity was more strongly governed by the ambient w profile. These
45	findings contextualize radar-based discrimination of sublimation from other ice-phase processes,
46	including riming and aggregation.

47 **1. Introduction**

48	The microphysical pathways for precipitation evolution within winter storms are uniquely
49	dependent on physical properties of the storm across synoptic to microscales that vary
50	temporally and spatially. Consequently, winter storms exhibit significant heterogeneities in
51	precipitation intensity and distribution. Northeast U.S. winter cyclones commonly develop
52	mesoscale banded regions which can produce intense rain- and snowfall rates within
53	concentrated regions of the storm (Novak et al., 2004, 2008; Ganetis et al., 2018). These
54	mesoscale bands are readily diagnosed from composite radar reflectivity measurements such as
55	the operational NWS Multi-Radar Multi-Sensor product (MRMS; Zhang et al., 2011; Brodzik,
56	2022b). Novak et al. (2006) defined a mesoscale band as having a length > 250 km, width of 20
57	to 100 km, and radar reflectivity > 30 dBZ for at least 2 h. Precipitation rates within these
58	potentially high-impact mesoscale bands are challenging to predict, in part because of the
59	demonstrated variations in microphysical properties and evolutionary processes, including rapid
60	changes in crystal habits (Stark et al., 2013) and degrees of riming (Colle et al., 2014) measured
61	at the surface.
62	Mesoscale banding developed during a significant midlatitude cyclone on 4 February 2022
63	that produced widespread and diverse wintry-mixed precipitation spanning the midwest to
64	northeast U.S. At the surface, the cyclone was defined by a relatively weak, elongated low-
65	pressure center and stationary frontal boundary positioned along the U.S. northeastern coastline
66	(Zaremeba et al., 2024). As described in DeLaFrance et al. (2024b, see Fig. 2a and sec. 2.1), two
67	distinct regions of enhanced composite reflectivity developed northeast of the low-pressure
68	center. One of the regions of enhanced reflectivity was positioned on the warm side of the frontal
69	boundary and lacked well-defined banding structure but produced transitory mixed-phase wintry

70	precipitation including rain, ice pellets, and snow over the southern New England region. A
71	second region developed near the surface stationary front that extended into New Hampshire and
72	Maine and exhibited a well-defined banded structure, but with decreasing composite reflectivity
73	in time. Nonetheless, the reflectivity in this banded region was consistently 6.5 to 9.0 dB greater
74	than in the region that lacked well-defined banding. This relative and persistent enhancement in
75	reflectivity in the banded region despite its apparent decay in time raises interesting questions
76	about the evolutionary pathways for precipitating particles in this region and their implications
77	for surface precipitation.
78	Radar reflectivity measurements have a long history of use in estimating precipitation rates,
79	initially from simple empirically derived relationships between reflectivity and rain rate (e.g.,
80	Marshall and Palmer, 1948) and later extended to snowfall rates (e.g., Boucher and Wieler, 1985;
81	Fujiyoshi et al., 1990; Heymsfield et al., 2016). Ambiguity in precipitation intensity due to
82	varied microphysical particle properties has motivated the adoption of more complex
83	relationships derived from an improved understanding of the unique effects of microphysical
84	processes-based evolution on radar remote sensing measurements. Often these techniques are
85	derived from two or more coincident radar-based measurements (e.g., Grecu et al., 2016; Chase
86	et al., 2022; Dunnavan et al., 2023). Leveraging scattering dependencies based on the physical
87	properties of ice crystals and calculations based on modeled snowflakes of varied complexities
88	have shown promise in characterizing the unique effects of ice-phase microphysical processes
89	from coincident radar-based sources (e.g., Petty and Huang, 2010; Kneifel et al., 2011, 2015;
90	Leinonen and Moisseev, 2015; Leinonen and Szyrmer, 2015). Similarly, leveraging
91	dependencies of intrinsic particle fall velocity on their physical properties (e.g., Mitchell, 1996;
92	Heymsfield and Westbrook, 2010) and incorporating measurements from the radar Doppler

93	spectrum provides further constraint on process-based changes, especially during riming (e.g.,
94	Kalesse et al., 2016; Mason et al., 2018, 2019). Through development of novel methods to detect
95	and quantify the effects of microphysical processes from remote sensing radar measurements,
96	physical properties of the natural particles may be more accurately estimated. However, as these
97	retrieval techniques continue to become increasingly complex and adopt multi-source
98	measurements, validation of retrieved physical properties and inferred microphysical processes
99	using observations from natural clouds remains crucially important.
100	Addressing this observational need, the Investigation of Microphysics and Precipitation for
101	Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign collected measurements
102	from natural precipitating clouds over the northeast and midwest U.S. during 36 science flights
103	over the 2020, 2022, and 2023 winters using a comprehensive suite of remote sensing and in situ
104	instruments (McMurdie et al., 2022a). Eleven science flights were conducted during the 2022
105	deployment with eight of those including coordination between the in situ cloud-sampling P-3
106	and overflying ER-2 aircraft providing coincident remote sensing and in situ measurements
107	within diverse winter storm environments (McMurdie et al., 2022b). These measurements have
108	direct application towards validating remote sensing retrieval of microphysical properties of ice
109	crystals (e.g., Chase et al., 2020, 2022; Matrosov et al., 2022; Finlon et al., 2022; Heymsfield et
110	al., 2023).
111	Elucidating process-based insights from temporally and spatially discontinuous airborne
112	measurements within an evolving and moving cloud system remains challenging. Numerical
113	modeling simulations are one method of connecting independent observations to microphysical
114	processes. However, bulk schemes require a limited representation of particle properties and
115	microphysical processes, thus presenting challenges for the integration of, or comparison with,

116	observations (Morrison et al., 2020). Moreover, three-dimensional dynamic simulations of winter
117	storms are subject to extrinsic uncertainties from design choices including initial conditions,
118	grid-cell resolution, and lead time (e.g., Colle et al., 2023). However, recent advances in
119	Lagrangian particle-based modeling techniques have shown promise in accurately simulating
120	ice-phase precipitation processes, typically at the expense of simplified dynamics and physical
121	domains (e.g., Jensen and Harrington, 2015; Brdar and Seifert, 2018; Bringi et al., 2020;
122	DeLaFrance et al., 2024a).
123	Recently, DeLaFrance et al. (2024b) used one-dimensional particle-based modeling
124	simulations constrained by IMPACTS observations to elucidate process-based insights on the
125	evolution of precipitating particles within the region of the 4 February 2022 winter storm that
126	lacked well-defined banding. Within this region of concurrent vapor deposition, efficient
127	aggregation, and riming, simulated particle evolution revealed that rime accumulations
128	accounted for a dominant 55% of the total ice-phase precipitation mass. Additionally, the riming
129	process produced a unique change in the vertical profile of Doppler velocity, consistent with the
130	coincident remote sensing radar observations. For this riming-dominant evolutionary pathway,
131	sensitivity simulations designed from observationally-informed perturbations of ambient
132	supercooled liquid water concentrations yielded a precipitation rate variability exceeding 60%
133	(DeLaFrance et al., 2024b). These perturbed states further demonstrated substantial variations in
134	reflectivity and Doppler velocity that emphasized differential effects of riming and aggregation
135	processes. These results warrant further investigation on the implications for the dependencies of
136	other ice-phase microphysical processes on their ambient environmental properties; in particular,
137	those associated with the banded region during this same event. With this motivation, this paper
138	aims to address four specific questions,

139	
140	1. What was the microphysical evolutionary pathway of precipitating particles that
141	contributed to enhanced reflectivity along a mesoscale band during this IMPACTS winter
142	storm event?
143	2. What is the role of the ambient environment of the evolving particles in governing
144	precipitation fallout within the banded region?
145	3. What are the quantitative implications of sensitivities in the evolution of ice-phase
146	particles to their ambient environment properties?
147	4. To what extent are radar remote sensing measurements of reflectivity and Doppler
148	velocity modulated by process-based responses to perturbations in ambient
149	environmental properties?
150	
151	To address these questions, we use numerical modeling simulations constrained by
152	IMPACTS observations from the banded region to assess process-based sensitivities and
153	quantify their imprint on radar remote sensing measurements. In the following section, we
154	introduce the IMPACTS instrumentation and observational strategy during the 4 February 2022
155	winter storm. Section 3 provides an observational analysis of the precipitation processes during
156	this event. In Section 4, we establish a control simulation and discuss its observational
157	validation. Section 5 describes four sensitivity simulations to assessing process-based
158	dependencies on the ambient environment. We provide some context for, and discuss the utility
159	of, our findings in Section 6 and offer concluding remarks in Section 7.
160	

162 **2.** Observations from a banded region of enhanced reflectivity during IMPACTS

163 **2.1. The 4 February 2022 winter storm**

- 164 Because of the objective of IMPACTS to sample banded precipitation and that the colder
- 165 region to the north and west of the surface front presented a greater likelihood of snowfall at the
- surface, the banded region near the front was the primary target of the 4 February science flights.
- 167 With passage of this band, diverse winter precipitation characteristics were reported at
- 168 Automated Surface Observing Stations (ASOS; Brodzik, 2022a) in Maine. Between 00:00 UTC
- 169 4 and 00:00 UTC 5 February, Portland, ME (KPWM; Fig. 1a) reported a mixture of rain,
- 170 freezing rain, snow, and ice pellets while Bangor, ME (KBGR; Fig. 1a) experienced a transition
- 171 from rain to snow by 01:25 UTC, which persisted through the duration of the storm. The
- 172 Wiscasset, ME (KIWI; Fig. 1a) station reported a similar diversity in precipitation type as
- 173 KPWM, with a modest peak hourly precipitation rate of 2.5 mm during the 12:00 UTC hour and
- a gradual reduction in intensity thereafter.

175 IMPACTS executed a semi-Lagrangian aircraft sampling strategy consisting of six flight legs 176 in a "lawnmower-style" arrangement oriented orthogonal to the band from approximately 14:00 177 to 18:00 UTC (Fig. 1). In contrast to sampling an evolving and moving storm along a flight leg 178 fixed in space at varied altitudes (i.e., Eulerian), an advantage of Lagrangian sampling is that it 179 attempts to maintain temporal and spatial continuity of the storm and the precipitating particles 180 therein. Towards the objective of Lagrangian sampling, the P-3 aircraft, equipped with in situ 181 cloud probes, flew at a high altitude initially and descended with each subsequent constant 182 altitude leg, while horizontally translating with the storm. The ER-2 was equipped with remote 183 sensing instrumentation and flew in coordination with the P-3 above the storm at constant 184 altitude of approximately 20 km a.m.s.l. To minimize temporal differences between the two

- aircraft owing to their differential air speeds, each aircraft sampled the center points of the flight
 legs at nearly the same time and the center points were positioned near the band's reflectivity
- 187 maxima.

188	On the initial flight leg, the P-3 sampled at a constant altitude of 6.2 km a.m.s.l. intersecting
189	the far western edge of the band. Flight leg 2, at an altitude of 5.5 km a.m.s.l., was positioned
190	northeast to better intersect the region of enhanced radar echo. The remaining legs were
191	positioned northeast of the previous leg at a distance that approximated the storm's advective
192	speed, each at a lower altitude and intersected the melting level on the final flight leg at 3.0 km
193	a.m.s.l. This Lagrangian strategy requires that the storm maintain steady state during sampling.
194	Thus, we suggest that flight legs 2 through 6 provided semi-Lagrangian context for coincident in
195	situ and remote sensing measurements of the cloud and precipitation particles during evolution
196	between 5.5 and 3.0 km a.m.s.l. To constrain our analysis to the ice-phase precipitation processes
197	within this storm, in situ and remote sensing measurements from flight legs 2 through 5 (5.5 to
198	3.6 km a.m.s.l.) are used. Measurements collected between sampling along flight leg 2 (~14:45
199	UTC, Fig. 1a) and flight leg 5 (~17:15 UTC, Fig. 1d) occurred as the maximum composite
200	reflectivity within the banded region weakened from 54.5 to 47.5 dBZ, suggesting a decay of
201	storm intensity, consistent with the reduction in precipitation rates during the same time period.
202	

204

Figure 1: Flight tracks for the ER-2 and P-3 on 4 February 2022 and composite reflectivity
from the NWS MRMS product at the time of aircraft sampling within the region of analysis at
each flight leg as indicated by the colored lines. ASOS surface locations for Portland, ME
(KPWM), Wiscasset, ME (KIWI), and Bangor, ME (KBGR) are shown in panel (a).

210 **2.2. IMPACTS observational assets**

211 The IMPACTS campaign benefited from a comprehensive suite of aircraft-based in situ and

212 remote sensing instrumentation onboard the cloud-penetrating P-3 and overflying ER-2 aircrafts.

213 From these instruments, the in situ measurements of precipitating particle properties and their

- ambient environmental conditions coincident with remote sensing radar are crucial towards
- 215 addressing our research questions.

216	The P-3 aircraft was equipped with several particle probes to derive quantitative measures of
217	the physical properties and concentrations of ice- and liquid-phase populations of particles.
218	Measurements of the ice-phase particle size distributions (PSD) were derived from a vertically
219	oriented High-Volume Precipitation Spectrometer (HVPS) probe (Bansemer et al., 2022). The
220	HVPS is an Optical Array Probe (OAP), which permits sizing of a sampled ice crystal based on a
221	two-dimensional projected image (Lawson et al., 1993) from a 128-element array with a pixel
222	resolution of 150 μ m (Bansemer et al., 2022). Thus, the HVPS is ideally suited to measuring
223	larger ice crystals, ~0.5 to 30.0 mm diameter. Commonly, the HVPS is paired with a Two-
224	Dimensional-Stereo (2D-S) OAP which also has a 128-element array but at a higher resolution of
225	10 μ m and, therefore, is ideally suited for measuring small ice crystals. However, because the
226	2D-S did not operate during the 4 February flight, our analysis uses HVPS measurements to
227	derive in situ PSDs from ice crystals of diameters, D , > 0.5 mm. Measurements of the liquid-
228	phase particle population were derived from the Fast Cloud Droplet Probe (FCDP), a component
229	of the HAWKEYE combination probe, to estimate droplet sizes within a range of 2 to 50 μm
230	based on principles of Mie light scattering (Lawson et al., 2017). The National Center for
231	Atmospheric Research (NCAR) provided processing of the 1 Hz particle probe data (Bansemer
232	et al., 2022).
233	Particle imagery provides crucial evidence of the unique habits and geometric properties of
234	the ice crystals and permits inferences of the microphysical processes by which they evolved.
235	We use imagery collected from the Particle Habit Imaging and Polar Scattering Probe (PHIPS); a

236 novel instrument composed of two cameras separated by 120° with a resolution of 2 μ m within a

- 237 field of view of approximately 3 x 2 mm (Schnaiter, 2022). For ambient environmental context, 238 in situ meteorological properties were measured by instrumentation onboard the P-3 aircraft to 239 derive pressure, temperature, dew point, and water vapor (Yang-Martin and Bennett, 2022). 240 Measurements of the three-dimensional ambient wind field were obtained from the Turbulent Air 241 Motion Measurement System (TAMMS; Thornhill, 2022). The TAMMS instrument is a system 242 of sensors distributed across the aircraft to estimate the horizontal and vertical components of the 243 winds and for configuration on the P-3 aircraft yields an estimated accuracy of 0.2 m s^{-1} for the 244 horizontal and vertical wind speeds (Thornhill et al., 2003; Thornhill, 2022). Supplementing the 245 IMPACTS airborne measurements, ambient meteorological conditions were obtained from 246 operational rawinsondes at NWS launch sites (Waldstreicher and Brodzik, 2022). Additionally, 247 standard NWS operational measurements including ASOS station data and composite radar from 248 the MRMS product were used to assess the surface conditions and provide large-scale context during IMPACTS events. 249 250 251 252 253 254
- 255

256

Figure 2: Vertical cross sections of HIWRAP Ku-band radar (a) reflectivity and (b) Doppler
velocity from the ER-2 flight leg 5 as shown in Fig. 1d. Coincident sampling from the P-3
aircraft occurred at 3.6 km a.m.s.l. and the in situ observational extent assessed by frontal
analysis is indicated by the horizontal green line. The marker in panel (b) locates the KIWI
(Wiscasset, ME) ASOS surface station positioned ~2.5 km west of the flight leg (see Fig. 1a).

263 The 4 February event was sampled by radar from the high-altitude ER-2 aircraft at Ku (13.9 264 Ghz), Ka (35.6 Ghz), and W bands (94 GHz). For radar reflectivity and Doppler velocity, we use 265 measurements collected from the dual-band (Ku and Ka) High-Altitude Wind and Rain Airborne 266 Profiler (HIWRAP; McLinden et al., 2022), which has a vertical resolution of 150 m (Li et al., 267 2016). As an example of one flight leg, Fig. 2 shows the vertical cross section of Ku-band 268 reflectivity, Z_{Ku} , and Doppler velocity, $V_D Ku$, from the HIWRAP radar onboard the ER-2 as it 269 overflew the frontal band on flight leg 5 between ~17:08 and ~17:16 UTC. The P-3 aircraft 270 sampled this location at 3.6 km a.m.s.l. between ~17:05 and ~17:17 UTC. At the center point

over the band, the time difference between the two aircraft was 91 seconds. During flight leg 5,

272	the two aircraft overflew the KIWI ASOS station, which reported a precipitation rate of 1.02 mm
273	h^{-1} at its location ~2.5 km west of the flight leg (Fig. 1a) and on the warm side of the frontal
274	boundary. At KIWI, a radar bright band signature of the melting level occurs near 3 km a.m.s.l.
275	The northward extent of the surface front is marked by the abrupt termination of the melting
276	level to the surface near 50 km along-track distance which is most apparent in the $V_{D_{-Ku}}$ gradient
277	(Fig. 2b) associated with the change in fall velocity of melting ice-phase particles.
278	The banded region was associated with a prominent cloud aloft, extending to about 6 km
279	a.m.s.l. Substantial decreases in Z_{Ku} were apparent immediately above a distinct vertical gradient
280	in Z_{Ku} at 6 km a.m.s.l. (Fig. 2a). This vertical Z_{Ku} gradient exhibited small-scale [$O(1 \text{ km})$]
281	structural variabilities and filaments in Z_{Ku} down to the melting level. Similar small-scale [$O(1)$
282	km)] structural variabilities were present in $V_{D_{Ku}}$ near 6 km a.m.s.l., and within a background of
283	negative $V_{D_{Ku}}$, there were several isolated regions of substantial updrafts. Below 5 km a.m.s.l.,
284	$V_{D_{Ku}}$ became increasingly negative, which indicated either increasing particle fall velocities or a
285	reduction in, or reversal of, ambient updrafts. The vertical cloud structure sampled by the ER-2
286	radar on flight leg 5 is suggestive of a weak generating cell layer near 6 km. a.m.s.l. and
287	precipitation fallstreaks (e.g., Rosenow et al., 2014; Plummer et al., 2014) towards the banded
288	region below.

290

Figure 3: Frontogenesis computed from 1 Hz in situ measurements (dots) with smoothing
using a 60-s rolling mean (horizontal line) to estimate a maximum (vertical lines) along
individual P-3 flight legs 2 to 5. Mean altitudes of the P-3 are stated for each flight leg.

295

296

298	2.3. Observational context of in situ measurements
299	At either edge of the banded region, the horizontal extent of cloud aloft is marked by distinct
300	gradients in Z_{Ku} (Fig. 2a). At the northern edge, a reduction in Z_{Ku} occurs at a region of
301	significant shear in the precipitation fallstreaks, which is expected with a wind shift along a
302	frontal boundary. Therefore, we use the in situ environmental measurements to objectively
303	identify the location of the frontal boundary, establishing flight-leg specific observational
304	domains (i.e., observational regions indicated in Fig. 1) that preserve the intended Lagrangian in
305	situ sampling of the evolving ice-phase particles.
306	The northern extent of the horizontal observational domain is identified by a frontogenesis
307	maximum. We compute frontogenesis from P-3 in situ measurements of horizontal winds, u and
308	v, and potential temperature, θ , using the two-dimensional form of the (Miller, 1948) equation,
309	$F_{2D} = \frac{1}{ \nabla \theta } \left[-\frac{\partial \theta}{\partial x} \left(\frac{\partial u}{\partial x} \frac{\partial \theta}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial \theta}{\partial y} \right) - \frac{\partial \theta}{\partial y} \left(\frac{\partial u}{\partial y} \frac{\partial \theta}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y} \right) \right].$
310	
311	Because of the considerable noise in frontogenesis computed from the 1Hz measurements,
312	we apply a smoothing using a 60-s rolling mean (Fig. 3). We assess the northern extent of the
313	observational domain for each flight leg by identifying a relative maximum in the smoothed
314	frontogenesis. The frontogenesis analysis indicates a frontal boundary with an apparent
315	northward gradient with increasing height, which primarily results from the southwest-to-
316	northeast orientation of the band. In addition, a northward sloping frontal boundary formed from
317	the warmer air mass to the south overrunning the cold surface air mass to the north.
318	At the southern edge of the band, there was a distinct absence of cloud during most of the
319	aircraft sampling along flight legs 2 through 5 (Fig. 1a-d). Thus, we assess the southern edges of
320	the observational domain at the altitude of the P-3 as the cloud edge. At each flight leg, we use

- 321 Z_{Ku} measurements at height of the P-3 aircraft to identify a reduction in Z_{Ku} below 0 dBZ. An
- 322 exception is made for flight leg 3, which intersected a transient cloud (Fig. 1b), where we instead
- 323 identify a relative minimum in Z_{Ku} (~5 dBZ). All further in situ observations used for analysis in
- 324 this study were obtained from within these flight-leg specific cloud-edge-assessed southern
- 325 points and the frontal-boundary-assessed northern points (Fig. 1). Constrained by this approach,
- 326 the evolutionary pathway of particles reaching the surface is identified by observations of the
- 327 particle properties and their ambient environment collected within the cloud aloft at four
- 328 altitudes descending in time.

Figure 4: Particle imagery collected from the PHIPS probe within the banded regions of P-3
 flight legs 2 to 5. Images are intended for representation of the crystal properties only and are not
 to scale. Mean altitudes of the P-3 and ambient temperatures are stated for each flight leg.

334	Particle imagery collected from the PHIPS probe on P-3 flight legs 2 through 5 are shown in
335	Fig. 4. At 5.5 km a.m.s.l. and an ambient air temperature of -12°C, a remarkable diversity of
336	crystal habits was observed including single crystal columns (e.g., 14:42:02 UTC), plates (e.g.,
337	14:42:28 and 14:46:40 UTC), and dendrites as well as polycrystalline structures of plates,
338	dendrites, and sideplanes (e.g., 14:47:45 UTC) and bullet rosettes (e.g., 14:40:53 UTC). Some of
339	the particles at 5.5 km a.m.s.l. showed evidence of sublimation (e.g., 14:42:28 UTC) in the form
340	of rounded corners and a smooth, glossy appearance (Nelson, 1998). With descent on subsequent
341	flight legs, there was increasing evidence of sublimation. However, beginning at flight leg 3 at
342	4.9 km a.m.s.l. where the ambient temperature was -8°C and relative humidity (RH), 83%, there
343	was also evidence of riming with varied degrees of accumulated supercooled liquid water
344	droplets (e.g., 15:34:44 and 15:36:27 UTC). Similarly diverse crystal habits with varied degrees
345	of rime accumulation and sublimation were observed in imagery collected on flight leg 4 (4.2 km
346	a.m.s.l., -4°C, 82% RH) and flight leg 5 (3.6 km a.m.s.l., -2°C, 80% RH).
347	From imagery collected at all heights, relative to the prevalence of single crystals, very few
348	aggregate particles were observed. This near absence of aggregation significantly contrasts with
349	the high prevalence of aggregate particles observed within the southern region of enhanced
350	reflectivity that lacked well-defined banding (DeLaFrance et al., 2024b). However, riming was
351	evident in both regions. The presence of riming among particle populations at flight legs 3
352	through 5 suggests a mixed-phase layer with an upper boundary between 4.9 and 5.5 km a.m.s.l.,
353	but riming occurred heterogeneously throughout the mixed-phase layer. Interestingly,
354	populations of rimed particles were observed in close proximity to sublimated particles (e.g.,
355	15:38:08 and 15:40:04 UTC). Additionally, some particles appear to have experienced riming
356	followed by sublimation at some later time (e.g., 17:10:05 UTC), whereas others appear to only

357	experienced sublimation between formation aloft and 3.6 km a.m.s.l. (e.g., 17:12:09 UTC).
358	Collectively, particle imagery from above the band indicates a dominant microphysical process
359	between 5.5 and 3.6 km a.m.s.l. was sublimation. In Section 3, we use in situ measurements to
360	quantify the evolutionary effects of these observed microphysical processes on the ice-phase
361	particles and provide environmental context through assessment of the ambient cloud properties.
362	
363	3. Properties of evolving ice-phase particles and their ambient environment
364	Precipitation rates at the surface are governed by the particle mass and its rate of fallout from
365	cloud above. To determine the surface implications, we first quantify the initial ice-phase
366	precipitation mass aloft, at 5.5 km a.m.s.l., and its evolution within cloud between 5.5 and 3.6
367	km a.m.s.l. Figure 5 shows the median and interquartile range (IQR, 25 th and 75 th percentile) ice
368	mass PSDs from HVPS measurements of particles with $D > 0.5$ mm from P-3 flight legs 2
369	through 5. Consistent with DeLaFrance et al. (2024b), we assume a mass-dimension relationship
370	following Brown and Francis (1995). The greatest ice mass concentration and largest particle
371	sizes were identified at 5.5 km a.m.s.l. Additionally, we found the most variability expressed by
372	the IQR of PSDs at this height. However, based on the observed diversity among crystal habits at
373	5.5 km a.m.s.l. (Fig. 4), this variability in the observed PSD is not surprising. Although
374	measurements of ice at small particle sizes are unavailable for the 4 February event, particles
375	larger than ~ 0.5 mm overwhelmingly dominate the contribution to the total ice water content
376	(IWC) and, thus, the HVPS measurements provide a valid estimate of the precipitation mass. The
377	median IWC at 5.5 km a.m.s.l. was 0.540 g m ⁻³ and decreased to 0.278 g m ⁻³ at 4.9 km a.m.s.l.,
378	then further decreased to 0.127 g m ⁻³ at 4.2 km a.m.s.l. At 3.6 km a.m.s.l., IWC slightly

- 379 increased to 0.148 g m⁻³; however, there was a notable reduction of ice mass at the largest
- 380 particle sizes, especially relative to 5.5 km a.m.s.l. (Fig. 5a, d).

381

382

Figure 5: Ice mass PSD median (line) and interquartile range (shaded) in situ measurements from the HVPS probe at particle diameters > 0.5 mm within the banded regions of individual P-3 flight legs 2 to 5. Mean altitudes of the P-3 and ambient temperatures are stated for each flight leg.

387

The relative maximum in ice mass at 5.5 km a.m.s.l. is consistent with the notion of icephase particles concentrating aloft along the frontal boundary and maintained within a weak

390 generating cell layer (Fig. 2). Precipitation fallout within the cloud below shows quantitative

391 evidence of sublimation in the IWC loss with descent, while a reduction in particle size,

- 392 especially among large particles, is consistent with the minimal evidence of aggregation in the 393 imaged particles (Fig. 4). The small increase in IWC between 4.2 and 3.6 km a.m.s.l. occurs 394 among particles ~0.5 to 2 mm in size and is most likely a result of accumulated rime mass, 395 despite the concurrent sublimation. Due to intermittency of the FCDP instrument on 4 February, 396 measurements of the supercooled liquid water droplets population in the banded region are 397 available only for flight leg 5 at 3.6 km a.m.s.l. At this height, there was a mean liquid water 398 content (LWC) of 0.02 g m⁻³ and droplet diameter of 17 µm. However, imagery of supercooled 399 liquid droplets and rimed particles suggest that rime accumulation occurred at least as high as 4.9 400 km a.m.s.l (Fig. 4). The prominence of sublimation effects concurrent with riming presents a 401 distinctive evolutionary pathway for losses and accumulations of ice mass and requires a unique 402 ambient environment supportive of these primary processes.
- 403

404

Figure 6: Violin plot distributions of (a) relative humidity and (b) ice supersaturation in situ
 measurements within the banded regions of flight legs 2 to 5. Outliers exceeding the 5th and 95th
 percentiles are not plotted.

409	Subsaturated conditions were found at all heights within the cloud. Figure 6a shows the
410	measured ambient RH with respect to water at each P-3 flight level. The RH was similar through
411	the vertical profile of cloud with median values from 79.7% (3.6 km a.m.s.l.) to 83.0% (4.9 km
412	a.m.s.l.) and the range of variability was typically less than \sim 5-6% across each flight leg
413	segment. Expressed as saturation with respect to ice in Fig. 6b, the cloud demonstrated an
414	increasingly subsaturated ambient environment with descent. At 5.5. km a.m.s.l. (-12°C), the
415	median ice saturation was -8.9% and further decreased to -17.9% at 3.6 km a.m.s.l. (-2°C). It is
416	not readily apparent whether the magnitude of increasing subsaturation at lower heights (warmer
417	temperatures) is representative of the cloud's natural vertical profile at any given time or a result
418	of the temporal evolution between sampling at flight leg 2 and flight leg 5 (~2 h) within a
419	decaying stage storm. Nonetheless, the subsaturated vertical profile is consistent with the
420	evidence of sublimation among particle images at all heights (Fig. 4). However, riming requires
421	the presence of supercooled liquid water droplets which, although are not sustained in a
422	subsaturated environment, require time to evaporate. For example, within the median observed
423	environmental conditions on flight leg 3 at 4.9 km a.m.s.l. (~83% RH, -8°C), droplets with an
424	initial radius, r_0 , of 10 μ m will require ~10 s to evaporate and substantially longer for larger
425	droplets (e.g., \sim 70 s for r ₀ = 30 µm; Roy et al., 2023). Supercooled liquid water droplets were
426	likely formed in locally supersaturated environments, which occur within regions of updrafts
427	(e.g., Rauber and Tokay, 1991).

Figure 7: Violin plot distributions of in situ measurements of vertical wind velocity from the
TAMMS instrument within the banded regions of P-3 flight legs 2 to 5. Outliers exceeding the
5th and 95th percentiles are not plotted.

434	The distribution of ambient vertical wind velocity, w, measurements from the TAMMS
435	instrument on each P-3 flight leg are shown in Fig. 7. Notably, there was a characteristic ambient
436	updraft at 5.5 km a.m.s.l. and abrupt transition to a weak downdraft below. This w profile is
437	consistent with the notion of a weak generating cell layer with precipitation fallout inferred from
438	the appearance along the prominent cloud top and fallstreaks in Z_{Ku} below ~5 km a.m.s.l. from
439	the radar cross section along flight leg 5 (Fig. 2a). At 5.5 km a.m.s.l., the median w was 0.63 m s ⁻
440	¹ , which is weaker than updrafts of 1 to 2 m s ⁻¹ that are common in generating cells within winter
441	cyclones (e.g., Rosenow et al., 2014; Kumjian et al., 2014; Keeler et al., 2016). Between 4.9 and
442	3.6 km a.m.s.l., the ambient median wind field was characterized by weak descent with $w = \sim$ -
443	0.06 to ~ -0.10 m s ⁻¹ . However, within this cloud layer, variabilities in w were observed, and at
444	all heights, updrafts were identified at the upper quartile of measurements. This range of w
445	variability was similarly evident in horizontal gradients of Doppler velocity across flight leg 5,

446	despite an overall descent below ~5 km a.m.s.l. (Fig. 2b). Intermittent updrafts appear to have
447	provided a source of supercooled liquid water within the subsaturated ambient background
448	environment. To support these observational inferences of microphysical processes associated
449	with the band, we use an observationally constrained numerical simulation and quantify the
450	independent process-based effects and their dependencies on properties of the ambient
451	environment for governing the cloud's precipitation mass and rate of fallout.
452	
453	4. Control simulation design and validation
454	Our modeling environment is designed to permit isolation and direct manipulation of
455	microphysical processes and the ambient environmental conditions to elucidate their independent
456	effects on an evolving ice-phase particle population. Model selection and its design follows
457	DeLaFrance et al. (2024b), which simulated the evolution of precipitating particles associated
458	with the southerly displaced region of enhanced reflectivity on 4 February. As in this prior study,
459	we use the Lagrangian particle-based McSnow model, which has a 1D columnar domain (Brdar
460	and Seifert, 2018). The McSnow model's particle-based scheme evolves an initial population of
461	ice-phase particles through explicit processes of deposition (sublimation), aggregation, and
462	riming within a prescriptive ambient environment. Consistent with the present study's objectives,
463	McSnow permits independent user control of these ice-phase processes, their regions of activity
464	or inactivity within the column, and properties of the ambient environment as prescribed inputs.
465	Furthermore, the ice-phase particle population evolves at the scale of the particle, thereby
466	removing assumptions about the evolving PSD, which is readily accessible throughout the
467	column. For comparability with simulations presented in DeLaFrance et al. (2024b), we maintain

468	consistency in the decisions regarding parameterizations and processing, with select exceptions
469	motivated by observed properties that were unique to each region of the storm.
470	The first step is to create a control simulation that reproduces the observed evolution of
471	precipitating particles within their natural ambient environment using inputs derived from in situ
472	measurements between P-3 flight legs 2 through 5. Particles are introduced in the model such
473	that the initial PSD at the upper boundary remains prescribed, which we derive from a Gamma
474	distribution fitted to the median PSD observed at 5.5 km a.m.s.l. at the uppermost P-3 flight leg
475	(Fig. 5a). This initial PSD is characterized by an estimated IWC of 0.540 g m ⁻³ and total number
476	concentration of 7 x 10^3 m ⁻³ ($D > 0.225$ µm). Newly initiated particles have a mass–dimension
477	relationship of $m = 0.00294D^{1.94}$ (cgs) following Brown and Francis (1995) for unrimed crystals
478	but evolve independent of this assumption thereafter. Particle terminal velocity, V_t , is derived
479	following Heymsfield and Westbrook (2010). We specify a column of 500 grid cells, equating to
480	a vertical resolution of 11 m, based on an upper boundary at 5.5 km a.m.s.l. Particles evolve
481	within a prescriptive ambient environment, which is derived from the median value in situ
482	measurements of standard atmospheric properties (i.e., temperature, dew point, RH, pressure) at
483	each flight altitude (Fig. 6), and then linearly interpolating between measurements. Similarly, w
484	is prescribed from linear interpolation between median in situ measurements at each flight
485	altitude (Fig. 7).
486	The in situ observations of inferred microphysical processes motivated several design
487	considerations. Minimal evidence of aggregation throughout the column among particle imagery
488	(Fig. 4) and an overall reduction in particle sizes with descent in cloud suggest a very low
489	process efficiency. With McSnow, upon collision, two particles will remain joined as an
490	aggregate particle dependent on a sticking efficiency parameter, E_{agg} , which scales from 0 to 1

- 491 (e.g., Pruppacher and Klett, 1997). Here, we adopt a sticking efficiency based on the laboratory
- 492 investigations of Connolly et al. (2012) in which they identify a maximum likelihood estimate
- 493 (MLE) and confidence interval (CI) for a temperature-dependent E_{agg} . Whereas in DeLaFrance et
- 494 al. (2024b) it was appropriate to adopt an E_{agg} following the upper range of the CI provided in
- 495 Connolly et al. (2012), here, we find it appropriate to adopt an E_{agg} following the lower range of
- 496 the CI. Therefore, E_{agg} has a value of 0.4 at -15°C and linearly reduces to 0 at -10°C, which is
- 497 maintained to 0°C. Because rimed particles were frequently observed in particle imagery at 4.9
- 498 km a.m.s.l., but not at 5.5. km a.m.s.l. (Fig. 4), we define a mixed-phase layer of cloud below 5.0
- 499 km a.m.s.l. where riming occurs following a stochastic procedure (Brdar and Seifert, 2018) based
- 500 on prescriptive properties of the liquid water population. From the FCDP measurements, we
- 501 specify a LWC of 0.02 g m⁻³ and characteristic droplet radius of 8 µm. Consistent with
- 502 DeLaFrance et al. (2024b), all simulations run for 10 h at a time step of 5 s, and average the final
- 503 5 h, after reaching a steady state, for analysis.

504

506

507 Figure 8: Composite ice mass PSDs from (a) in situ observations within banded regions of P-3 flight legs 2 to 5 (see Fig. 1a-d) and (b) the control model simulation at equivalent heights. 508 Mean altitudes of the P-3 are stated for each flight leg. 509 510

511	To verify the control simulation, we first assess the evolution of the PSD throughout the ice-
512	phase layer of cloud. Specifically, we compare the model-simulated PSD with the median
513	observed PSD at each P-3 flight altitude. Figure 8a composites the flight-leg specific PSDs at D
514	> 0.5 mm, as shown in Fig. 5. The simulated PSD at equivalent heights from the model are
515	shown in Fig. 8b. A primary criterion towards establishing a successful control simulation was a
516	reproduction of the reduced IWC and particle sizes with descent that was expressed in the
517	observations. The control simulation has a vertical evolution of the PSD that demonstrates
518	consistency with observations, providing confidence that the modeled processes are generally
519	representative of the natural processes. At 5.5 km a.m.s.l., the control simulation has an initial
520	IWC of 0.606 g m ⁻³ . Between 4.9, 4.2, and 3.6 km a.m.s.l., IWC decreased to 0.303, 0.214, and
521	0.119 g m ⁻³ , respectively. Some of the unique variabilities among the observations are not
522	captured by the simulation. For example, the relative increase in mass at $D = -0.5$ to 2 mm

523 between 4.2 and 3.6 km a.m.s.l. in observations (Fig. 8a) is likely due to accumulation of rime 524 mass. In the control simulation, the rime fraction, the fractional mass attributable to accumulated 525 rime, reaches 0.33 at 3.6 km a.m.s.l., which is consistent with a subjective assessment of rime 526 accumulation among the particle imagery at this height (Fig. 4, leg 5). In the observed cloud, 527 however, supercooled liquid water (and riming) was heterogeneously distributed throughout the 528 mixed-phase layer, which is not represented in the model. While this limitation introduces some 529 uncertainty in the simulated accumulation of rime mass, the relatively small accumulated rime 530 fraction of 0.33 is consistent with our expectations based on prior simulations within the 531 southerly displaced region of enhanced reflectivity (DeLaFrance et al., 2024b). Within that 532 region of the storm, there was an \sim 500 m deeper mixed-phase layer and higher LWC of 0.05 g m⁻³, compared to 0.02 g m⁻³ within the frontal region, and its similarly-constrained control 533 534 simulation produced a rime fraction of 0.55.

Figure 9: Ku-band radar reflectivity estimated from the control simulation and violin plot distributions of reflectivity from the ER-2 HIWRAP Ku-band radar at the altitude of the P-3 aircraft within the banded regions of P-3 flight legs 2 to 5. Outliers exceeding the 5th and 95th percentiles are not plotted.

540

541	Because we are motivated to identify the imprint of ice-phase microphysical processes and
542	their sensitivities to ambient conditions on radar remote sensing measurements, we further
543	evaluate the control simulation by computing Z_{Ku} from the evolved PSD, which is compared to
544	coincident measurements from the overflying ER-2 HIWRAP. Estimation of radar moments
545	from the simulated PSD follows DeLaFrance et al. (2024b) in applying a T-matrix approach
546	(Leinonen, 2014) to estimate the Ku-band radar backscatter cross section and a two-way path
547	integrated attenuation correction (Williams, 2022). Figure 9 shows the distribution of HIWRAP
548	Z_{Ku} measured at the height of the P-3 aircraft across each flight leg. The observed Z_{Ku} maximized
549	aloft and decreased between 5.5 and 4.2 km a.m.s.l., then slightly increased at 3.6 km a.m.s.l.
550	Throughout the cloud column, the control simulation demonstrates good agreement with median
551	observation values to within ~2-3 dB. The observed PSD and Z_{Ku} evolution with height support a
552	precipitation evolution pathway described by robust production or concentration of ice within the
553	updraft region of the generating cell layer along the frontal boundary aloft (~5.5 km a.m.s.l.) and
554	fallout within the downdraft regions below. This agreeing result establishes confidence in the
555	quasi-idealized 1D control simulation and, crucially, the simulated microphysical processes
556	within their ambient environment, prescriptively constrained by in situ measurements.
557	Microphysical evolution between the generating cell layer at 5.5 km a.m.s.l. and 3.6 km
558	a.m.s.l. was dominated by sublimation, yielding a significant IWC loss. Riming, whether within
559	isolated regions of updrafts or following sublimation (i.e., Fig. 4, 17:10:05 UTC), negated some
560	of the ice mass loss, as supported by the rime fractional mass of 0.33 accumulated at 3.6 km
561	a.m.s.l. in the control simulation. Further, riming likely aided fallout through increases in particle
562	density, and subsequently fall speed. As a result, when assessed as the vertical mass flux at 3.6

km a.m.s.l. (lowest altitude of P-3 observations), the control simulation produced a liquid-563 equivalent rain rate of 0.66 mm h⁻¹. When compared to measurements at KIWI, which reported 564 565 1.02 mm during the 17:00 UTC hour, at the time of aircraft overpass on flight leg 5 (Fig. 2), the 566 control simulation appears to underestimate the precipitation rate. However, the model does not 567 account for liquid-phase precipitation which may have formed below the melting level. 568 Additionally, the surface precipitation rate at KIWI during the following 18:00 UTC hour 569 reduced to 0.76 mm h⁻¹, in better agreement with the simulation. Despite the subsaturated 570 ambient environment, precipitation fallout was maintained through the cloud contributing to a 571 relative enhancement in surface precipitation rate with passage of the band. 572 573 5. Ambient controls on particle evolution

574 The frontal cloud exhibited a heterogeneity expressed in the diversity of ice crystal habits and 575 their apparent process-based evolution (e.g., sublimation and riming, Fig. 4) and similarly, in the 576 ambient RH (Fig. 6a) and the magnitude and direction of vertical winds below ~5 km a.m.s.l. 577 (Fig. 7). Despite the promising agreement between our control simulation and the observations, a 578 limiting assumption of the simulation is the reduction of the natural cloud's heterogeneity to a 579 prescriptive median state ambient environment. We are, therefore, motivated to explore the 580 particle evolution within perturbed ambient environments constrained by the range of variability 581 observed in the natural cloud. In considering precipitation pathways within these perturbed 582 environments, we further aim to elucidate the ambient dependencies of the dominant 583 microphysical process and quantify those effects on surface precipitation. Because the dominant microphysical processes acting on particles upon fallout from the generating cell layer were 584 585 sublimation and sedimentation, we perturb two properties of the ambient environment that

- directly affect these processes and demonstrated a range of variability in the natural cloud, RH and w (i.e., updrafts and downdrafts). From these ambient properties, two groups of sensitivity simulations are designed from the interquartile ranges of in situ measurements (Figs. 6a and 7).
- 589

590

Figure 10: Ice mass PSDs for the control, dry, and moist simulations at (a) 4.9 km a.m.s.l. corresponding to P-3 flight leg 3, (b) 4.2 km a.m.s.l. corresponding to P-3 flight leg 4, and (c) 3.6 km a.m.s.l. corresponding to P-3 flight leg 5. Perturbed-state cloud RH profiles for the dry and moist simulations are derived from the interquartile range of in situ observations (see Fig. 6a).

597

591

5.1. Ambient relative humidity

For simulations which we term "dry" and "moist", the prescriptive cloud moisture input is perturbed by assuming the 25th and 75th percentile values of observed RH (Fig. 6a). For both the dry (25th percentile) and moist (75th percentile) simulations, most perturbations at all heights were < 2% RH, with the largest perturbation being a decrease of 2.6% RH at 4.9 km a.m.s.l. in the dry simulation and increase of 2.9% RH at 3.6 km a.m.s.l. in the moist simulation. Figure 10 shows the simulated PSD for the control, dry, and moist simulations. Although retrievable at any

604	height from the simulation, we found it convenient to assess the PSD at heights equivalent to P-3
605	flight legs 3 through 5. At 5.5 km a.m.s.l. (flight leg 2), where particles are initialized,
606	simulations do not meaningfully differ from each other. Between 4.9 and 3.6 km a.m.s.l. (Fig.
607	10a-c), all simulations reproduce the reduction of IWC with descent; however, the extent of loss
608	among all particle sizes is modulated by ambient RH. Table 1 quantitatively summarizes the
609	IWC at each height for the control and sensitivity simulations. At 3.6 km a.m.s.l., IWC is further
610	reduced from the control simulation by $\sim 26\%$ in the dry simulation and increased by $\sim 29\%$ in the
611	moist simulation. Because of the significant effects of sublimational ice losses identified in the
612	control simulation, it is perhaps unsurprising that small perturbations ($< \sim 2\%$ RH) in the dry and
613	moist simulation yield increasing departures from the control with descent. Nonetheless, these
614	simulations demonstrate a significant dependency on ambient RH for the survival of ice mass
615	falling through the \sim 2 km deep subsaturated cloud layer.

- 616
- 617

height	control	dry	moist	downdraft	updraft
5.5 km	0.606	0.600	0.621	0.619	0.630
a.m.s.l.		[0%]	[+2.5%]	[+2.1%]	[+4.0%]
4.9 km	0.303	0.287	0.337	0.298	0.331
a.m.s.l.		[-5.3%]	[+11.2%]	[-1.7%]	[+9.2%]
4.2 km	0.214	0.168 [-	0.247	0.207	0.207
a.m.s.l.		21.5%]	[+15.4%]	[-3.3%]	[-3.3%]
3.6 km	0.119	0.088 [-	0.154	0.116	0.118
a.m.s.l.		26.1%]	[+29.4%]	<i>[-2.5%]</i>	<i>[-0.1%]</i>

618**Table 1:** Simulated IWC (g m-3) at heights equivalent to the P-3 aircraft on flight legs 2619through 5 for the control, dry, moist, downdraft, and updraft sensitivity simulations. Perturbed-620state cloud RH profiles for the dry and moist simulations are derived from the interquartile range621of in situ observations (see Fig. 6a). Perturbed-state cloud vertical wind profiles for the622downdraft and updraft simulations are derived from the interquartile range of in situ observations

623 (see Fig. 7).

625 5.2. Ambient vertical wind magnitude and direction

626	As with the ambient RH, we introduce two sensitivity simulations termed "downdraft" and
627	"updraft" which perturb the prescriptive ambient w by assuming the 25 th and 75 th percentile
628	values of observations (Fig. 7). Perturbation at all heights for the downdraft (25 th percentile)
629	simulation decreased w by ~0.1 m s ⁻¹ , yielding reduced updrafts in the generating cell layer and a
630	stronger downdraft below. Conversely, perturbations at all heights in the updraft (75 th percentile)
631	simulation similarly increased w by ~0.1 m s ⁻¹ . This resulted in a completely ascending profile
632	throughout the cloud, albeit nearly static ($w = 0.01 \text{ m s}^{-1}$) at 4.2 km a.m.s.l. Even in this
633	perturbed state at the upper quartile of observations, w in the generating cell layer is 0.74 m s ⁻¹ ,
634	whereas updrafts greater than $\sim 1 \text{ m s}^{-1}$ may be more typical of a generating cell layer. Thus,
635	given our observationally-constrained design specific to the 4 February event, our sensitivity
636	simulations assess a relatively small range of possible updraft and downdraft magnitudes within
637	generating cell clouds producing fallout precipitation.
638	Figure 11 shows the evolved PSD for the control, downdraft, and updraft simulations.
639	Compared to RH, the evolved PSD demonstrates a reduced range of variation in response to the
640	w perturbations. Notably, the greatest differences between simulations manifest at small particle
641	sizes ($D \le -1$ mm), which is a result of the differences in the particle's intrinsic V_t as the
642	particles reach 3.6 km a.m.s.l. (Fig. 11c). In general, V_t increases with increasing particle size
643	(e.g., Locatelli and Hobbs, 1974). Thus, small particles have a relatively small intrinsic V_t and
644	when subject to a small perturbation in w (~0.1 m s ⁻¹), experience an outsized net effect relative
645	to larger, faster falling particles. For example, at 3.6 km a.m.s.l. in the control simulation, 0.2
646	mm diameter particles attained a V_t of -0.42 m s ⁻¹ , whereas 2 mm particles had a V_t of -1.39 m s ⁻
647	¹ . Because ice mass is dominated by the larger, faster falling particles, which were minimally

648 affected by *w* perturbations, the IWC in the downdraft and updraft simulation at 3.6 km a.m.s.l.

649 were strikingly similar to the control simulation (within 2.5%).

650

651

Figure 11: Ice mass PSDs for the control, downdraft, and updraft simulations at (a) 4.9 km a.m.s.l. corresponding to P-3 flight leg 3, (b) 4.2 km a.m.s.l. corresponding to P-3 flight leg 4, and (c) 3.6 km a.m.s.l. corresponding to P-3 flight leg 5. Perturbed-state cloud vertical wind profiles for the downdraft and updraft simulations are derived from the interquartile range of in situ observations (see Fig. 7).

The most notable influence of *w* on IWC occurs in the updraft simulation at 4.9 km a.m.s.l

660 (~9% increase, Table 1). This local enhancement is likely due to the enhanced lofting and

661 concentrating of particles which must overcome a larger w in the updraft region immediately

- above the 4.9 km a.m.s.l. evaluation height. However, any resultant enhancement in IWC from
- additional lofting within the updraft region appears to be negated between 4.9 and 3.6 km a.m.s.l.
- by the outsized effect of sublimational ice loss among all particle sizes. While the updraft within
- 665 the generating cell layer is crucial to the production and maintenance of a relatively high IWC

- aloft, perturbations of w in either the updraft or downdraft regions yielded an inconsequential net
- effect on IWC 3.6 km a.m.s.l. However, the sedimentation rate of particles is modified by w
- 668 perturbations. For example, a 2 mm particle's sedimentation rate at 3.6 km a.m.s.l. in the
- 669 downdraft simulation was -1.52 m s⁻¹, whereas in the updraft simulation, the rate slowed to -1.36
- 670 m s⁻¹. The ice-phase contribution to surface precipitation rates is governed by IWC, which has an
- evolutionary sensitivity to ambient RH (Fig. 10), and its sedimentation rate, which is modified
- by *w*. Because of the dependency on radar remote sensing measurements to estimate
- 673 precipitation rates and the diverse process-based outcomes from these ambient perturbations, we
- 674 next quantify these effects on vertical profiles of Z_{Ku} and $V_{D_{-Ku}}$.
- 675
- 676

677

Figure 12: Ku-band radar reflectivity profiles for the (a) dry- and moist-perturbed and (b)
updraft- and downdraft-perturbed sensitivity simulations relative to the control simulation.

5.3. Implications of process-based responses to ambient variabilities on radar remote

682 sensing measurements

During the 4 February event, the enhancement in the composite reflectivity field along the

- band was a sustained, prominent feature that suggested a local enhancement in surface
- 685 precipitation (Fig. 1). However, from vertical radar profiles across the band (e.g., Fig. 2), within

- 686 the ice layer there was a relative maximum in Z_{Ku} at the generating cell layer, which weakened 687 with descent in the fallout layer below. The more substantial maxima in column Z_{Ku} occurred 688 from melting near 3 km a.m.s.l. For the ice-phase precipitation aloft, this signature of Z_{Ku} 689 reduction with descent is a result of sublimational loss and an inefficient aggregation process, 690 which was supported by results of the control simulation. These losses through the cloud have 691 implications for the downward precipitation mass flux, and therefore, precipitation rates at the 692 surface. Thus, by quantifying the effects of process-based evolutionary responses to perturbed ambient environments, we aim to determine the utility of remote sensing radar measurements to 693 694 discern ice-phase microphysical processes and their implications for precipitation mass and its 695 fallout. 696 Vertical profiles of Z_{Ku} estimated from the evolving PSD between 5.5 and 3 km a.m.s.l. are 697 shown in Fig. 12 for the control and sensitivity experiments. All simulations produce a relative 698 maximum in Z_{Ku} immediately below initialization at 5.5 km a.m.s.l. associated with the updraft 699 and concentration of ice mass followed by a continuous reduction in Z_{Ku} with descent thereafter,
- 700 which is consistent with the observations (Fig. 9). A distinct change in the rate of change in Z_{Ku}
- 701 with height occurs at 5 km a.m.s.l. as a result of the initial onset of riming. Below 5 km a.m.s.l.,
- 702 Z_{Ku} in the RH-perturbed environments becomes increasingly differentiated from the control with
- descent (Fig. 12a). At 3.6 km a.m.s.l., Z_{Ku} was reduced in the dry simulation by 1.5 dB (~12 %)
- and increased in the moist simulation by 1.6 dB (~13%) relative to the control (Table 2). To
- provide context for these results, we estimate the liquid-equivalent precipitation rate at 3.6 km
- a.m.s.l. Reducing RH by ~1 to 2% in the dry simulation yielded a precipitation rate decrease of
- 707 ~24%, whereas similarly increasing RH yielded a precipitation rate increase of ~33% (Table 2).
- 708 Thus, modification of precipitation rate owed to differential ice losses by sublimation as a result

- of perturbed RH below the generating cell layer has a direct implication on the rate of change in
- 710 Z_{Ku} with height. Perturbations in w produced a greater range of Z_{Ku} variation aloft, within the
- 711 updraft region, although, by 3.6 km a.m.s.l., the downdraft and updraft simulations are nearly
- 712 indistinguishable from the control (Fig. 12b). Similarly, the precipitation rate at 3.6 km a.m.s.l. is
- not meaningfully affected by perturbation in *w* (Table 2).
- 714

715

height	property	control	dry	moist	downdraft	updraft
5.5 km	reflectivity	18.0	17.8	18.2	18.1	18.4
a.m.s.l.	(dBZ)		[-1.1%]	[+1.1%]	[+0.6%]	[+2.2%]
4.9 km	reflectivity	15.7	15.3	16.1	15.3	16.4
a.m.s.l.	(dBZ)		[-2.5%]	[+2.5%]	[-2.5%]	[+4.5%]
4.2 km	reflectivity	14.3	13.0	15.0	13.9	14.5
a.m.s.l.	(dBZ)		[-9.1%]	[+4.9%]	[-2.8%]	[+1.4%]
3.6 km	reflectivity	12.2	10.7	13.8	11.6	12.4
a.m.s.l.	(dBZ)		<i>[-12.3%]</i>	[+13.1%]	<i>[-4.9%]</i>	[+1.7%]
3.6 km	precipitation	0.66	0.50	0.88	0.65	0.63
a.m.s.l.	rate (mm h ⁻¹)		[-24.2%]	[+33.3%]	[-1.5%]	[-4.5%]

Table 2: Simulated Ku-band radar reflectivity at heights equivalent to the P-3 aircraft on
flight legs 2 through 5 and liquid-equivalent precipitation rate at flight leg 5 for the control, dry,
moist, downdraft, and updraft sensitivity simulations. Perturbed-state cloud RH profiles for the
dry and moist simulations are derived from the interquartile range of in situ observations (see
Fig. 6a). Perturbed-state cloud vertical wind profiles for the downdraft and updraft simulations
are derived from the interquartile range of in situ observations (see Fig. 7).

The insensitivity of precipitation rate to perturbations in *w* indicates that precipitation flux through the subsaturated ice layer is more strongly governed by the IWC preserved throughout the layer than by changes in the sedimentation rate of the ice particles. This principle is similarly expressed by the simulated vertical profiles of $V_{D_{-}Ku}$ (Fig. 13). Whereas, relative to the control simulation, perturbations in RH produced substantial differentiation in Z_{Ku} and, ultimately,

- precipitation rate at 3.6 km a.m.s.l., a much smaller range of differentiation occurs for $V_{D_{-Ku}}$ (Fig.
- 13a). At 3.6 km a.m.s.l., $V_{D_{-}Ku}$ in the dry and moist simulations are within 0.02 m s⁻¹ of the
- 730 control simulation (-1.51 m s⁻¹). Similarly, while the updraft and downdraft simulations appear to
- 731 produce $V_{D_{Ku}}$ profiles that are distinct from the control (Fig. 13b), the magnitude of difference
- throughout the ice layer is explained by the magnitude of perturbation in *w* rather than a change
- in the particles intrinsic V_t through perturbed microphysical evolution.
- 734

736

737

Figure 13: Radar Doppler velocity profiles for the (a) dry- and moist-perturbed and (b)
updraft- and downdraft-perturbed sensitivity simulations relative to the control simulation at Kuband.

741

742 6. Discussion

743 Despite the decaying stage of the winter storm, modest yet locally enhanced surface

744 precipitation rates (~1 mm h⁻¹) were sustained at the banded region by precipitation fallout from

745 the relatively high median IWC (0.540 g m⁻³) in the generating cell layer. Within updraft regions

746	of generating cell layers, airborne observations have revealed enhancements in IWC (e.g., Houze
747	et al., 1981; Plummer et al., 2015) and LWC (e.g., Wolde and Vali, 2001; Evans et al., 2005;
748	Ikeda et al., 2007; Plummer et al., 2014). These generating cell layers are therefore a source
749	region for significant precipitation enhancements in ambient environments supportive of particle
750	growth in the fallout region below. Indeed, prior studies have found that a majority of IWC
751	accumulation occurs below generating cell layers through vapor deposition and aggregation (e.g.,
752	Herzegh and Hobbs, 1980; Plummer et al., 2015); two processes that were notably absent in the
753	fallout region of the banded cloud on 4 February. Thus, contrasting with the precipitation
754	pathways more commonly associated with generating cells, the dominant microphysical process
755	between the generating cell layer and the melting level was sublimation, which yielded a
756	substantial (> 70%) loss of IWC.
757	The primary determinant for the rate of precipitation fallout from the banded cloud
758	contributing to surface enhancements was the amount of ice mass preserved through the
759	subsaturated layer. Sensitivity simulations demonstrated that, within this subsaturated
760	environment, particle evolution and its fallout have strong dependencies on the ambient RH (Fig.
761	10) but weak dependencies on w (Fig. 11) when independently assessed over an equivalent range
762	of observed variation. The intrinsic evolution of particle V_t during sublimation and, subsequently,
763	riming contributes an outsized effect on precipitation fallout relative to perturbations of the
764	ambient w , which affect the sedimentation rate. Nonetheless, the w profile being characterized by
765	a median state updraft in the generating cell layer and intermittent updraft regions within overall
766	descent below were necessary in establishing conditions favorable for the riming that was
767	observed in particle imagery. Although riming was not evident among particles within the
768	generating cell layer at 5.5 km a.m.s.l., rimed particles were prevalent at 4.9 km a.m.s.l. and

769	below, albeit heterogeneously distributed. Provided by a supply of supercooled liquid water in
770	updraft regions, riming is an efficient growth process for precipitation within and below the
771	generating cell (e.g., Houze et al., 1981; Plummer et al., 2014; Kumjian et al., 2014). Rime
772	accumulation appears to have had a prominent effect on IWC. In the control run simulation,
773	approximately 33% of the IWC at 3.6 km a.m.s.l. was attributable to rime accumulation. This
774	contribution may even be underrepresented by the model based on the smaller IWC in the
775	simulation at 3.6 km a.m.s.l. and the increase in IWC from 4.2 to 3.6 km a.m.s.l. in the
776	observations which was not reproduced in the simulation.
777	The resultant microphysical evolutionary pathways for particles within the banded region and
778	the southerly displaced region of enhanced reflectivity (Fig. 1) substantially differ. Riming was
779	prevalent in both regions, but to varied degrees. In the southern region, DeLaFrance et al.
780	(2024b) identified robust particle growth by widespread riming which was enhanced by a highly
781	efficient, concurrent aggregation process. Consequently, despite a similar but reduced magnitude
782	of composite reflectivity (Fig. 1), simulated precipitation rates in the southern region were over
783	two and a half times greater (1.77 mm h^{-1}) than those simulated for the banded region (0.66 mm
784	h ⁻¹). These differences are demonstrative of the implications of process-based modulation of
785	microphysical properties, which remain challenging to constrain in remote sensing retrievals, and
786	underscores the need for ice-phase process discrimination in radar measurements.
787	In the present study, sensitivity simulations were used to quantify the imprint of sublimation
788	on vertical profiles of Z_{Ku} and $V_{D_{-Ku}}$. We found that vertical profiles of Z_{Ku} demonstrate a
789	substantial sensitivity (~12 to 13% dB) to varied rates of sublimational IWC loss from perturbed
790	RH environments (Fig. 12, Table 2) whereas $V_{D_{Ku}}$ is relatively insensitive to these perturbations
791	(Fig. 13). Perturbations in w increase or decrease the magnitude of $V_{D_{Ku}}$, but the rate of $V_{D_{Ku}}$

792	was dominated by the significantly greater median-state magnitude differences between the
793	updraft and downdraft regions. Whereas $V_{D_{ku}}$ was previously shown to be especially sensitive to
794	riming-based variabilities (DeLaFrance et al., 2024b), in the present study, it provided no
795	independent quantitative value towards differentiating effects of sublimation (Fig. 13). Although
796	not evaluated here, this finding likely extends to differentiation of the effects of depositional
797	growth, but for increasing Z_{Ku} with descent. In this scenario, an equivalent sensitivity of Z_{Ku} but
798	not $V_{D_{Ku}}$ to depositional growth is analogous to the effects of aggregation (DeLaFrance et al.,
799	2024b). A similar ambiguity in the process-based distinction between depositional growth and
800	aggregation exists for multi-frequency radar techniques as scattering models have shown
801	dendritic and complex aggregation particles occupy a similar dual- and triple-frequency radar
802	scattering signatures (e.g., Petty and Huang, 2010; Kneifel et al., 2011; Leinonen and Moisseev,
803	2015). Thus, discrimination between either low-density dendritic or complex aggregate particle
804	types or between deposition- or aggregation-dominant growth from remote sensing
805	measurements is likely to remain a challenge.
806	
807	7. Conclusions

Mesoscale band development within winter storms is typically accompanied by enhanced, and often, high-impact, surface precipitation rates over confined regions. The microphysical properties of the ice-phase particles within these banded regions remain poorly represented by numerical models and challenging to constrain in radar remote sensing retrievals, owed in part to an incomplete understanding of the diverse microphysical pathways for banded precipitation evolution. Addressing a need for more observations within natural clouds, the IMPACTS campaign deployed a cloud-penetrating P-3 and overflying ER-2 aircraft to measure

815	properties of a mesoscale banded region of a northeastern U.S. winter storm on 4 February 2022
816	During the \sim 3 h period that IMPACTS executed Lagrangian sampling of the banded region, the
817	storm exhibited an apparent state of decay, weakening in composite radar reflectivity intensity,
818	yet maintaining a banded structure. This paper aimed to characterize the evolutionary pathways
819	for precipitation within the decaying-stage banded region, assess those implications for surface
820	precipitation, quantify sensitivities to ambient environmental properties, and determine the
821	imprint of microphysical process-based evolution on radar remote sensing measurements.
822	Surface precipitation along the band was associated with clouds that formed along a
823	stationary frontal boundary having a weak generating cell layer from ~6 to 5 km a.m.s.l. ($w =$
824	${\sim}0.6~m~s^{\text{-1}})$ and precipitation fallstreaks between ${\sim}5~km$ a.m.s.l. and the melting level, near 3 km
825	a.m.s.l. The fallout region between the generating cell layer and melting level was characterized
826	by a weak downdraft ($w \le \sim -0.1 \text{ m s}^{-1}$) and subsaturated (RH = ~ 80 to 83%) ambient
827	environment. Particle imagery at all heights showed evidence of sublimation; however, riming
828	was also present in heterogeneously distributed regions of a mixed-phase layer extending to ~ 5
829	km a.m.s.l. We observed very little evidence of aggregation.
830	Quasi-idealized 1D model simulations using the Lagrangian particle-based McSnow
831	model were designed from observational constraints with prescriptive ambient environments.
832	The observed reduction in IWC, particle sizes, and Z_{Ku} with descent through the ~2 km deep
833	fallout layer were reasonably reproduced by the control simulation and provided confidence in
834	the modeled representation of precipitating particle evolution within the natural cloud. We
835	designed four sensitivity simulations to elucidate evolutionary dependencies on ambient cloud
836	moisture and vertical air motions based on perturbations in the prescribed RH and w profiles
837	defined by the IQR of variability. From these sensitivity simulations, we quantified sensitivities

838	of part	icle growth and decay to ambient environmental properties and estimated downward mass
839	flux to	determine the implications on precipitation fallout within the banded region. Finally,
840	these s	ensitivity simulations were used to determine the process-based imprint on remote sensing
841	measu	rements of Z_{Ku} and $V_{D_{Ku}}$ within this unique environment of the decay-state banded cloud.
842	Collect	tively, the control simulation and four sensitivity simulations have supported the following
843	conclu	sions:
844		
845	0	Enhanced surface precipitation rates during the passage of the mesoscale band resulted
846		from relatively high IWC formed within a generating cell layer that produced ice-phase
847		precipitation fallout within a descending layer below the generating cells.
848	0	The ambient environment of the frontal cloud supported a dominant ice-phase
849		microphysical evolution by sublimation, and secondarily, riming processes to yield a net
850		IWC loss exceeding 70% within the subsaturated fallout layer.
851	0	Perturbations in ambient RH (~2%) yielded a substantial change in IWC preserved
852		throughout the subsaturated layer (-26% to 29%) and in liquid-equivalent precipitation
853		rate (-24% to 33%); relative to RH, w-based perturbations (~0.1 m s ⁻¹) yielded
854		substantially decreased range of variability in IWC (< 2.5%) and precipitation rate (<
855		4.5%).
856	0	Vertical profiles of Z_{Ku} were strongly dependent on RH-perturbed rates of sublimational
857		IWC loss throughout the cloud, but dependent on w-perturbed sedimentation rates only in
858		the updraft region; vertical profiles of $V_{D_{Ku}}$ demonstrated negligible microphysical
859		process-based sensitivity.

860

861	The 4 February 2022 winter storm event provided a unique natural laboratory for assessing
862	process-based implications for ice-phase precipitation evolutionary pathways within winter
863	storms for several reasons. The winter storm was characterized by two distinct regions of
864	enhanced reflectivity with diverse surface precipitation rates owed to their unique microphysical
865	pathways. These regions were well sampled by aircraft during the IMPACTS field campaign,
866	providing crucial coincident in situ and remote sensing measurements with approximately
867	Lagrangian spatial and temporal context. The southern region of enhanced reflectivity, which
868	lacked well-defined banding, experienced sustained particle growth above the melting level
869	dominated by riming (DeLaFrance et al., 2024b). The banded region to the north was more
870	strongly affected by the decaying stage of the storm from an intrusion of subsaturated air
871	throughout the ice-phase layer of cloud. Consequently, particle growth was unsupported by the
872	ambient environment of the banded region and ice loss through sublimation was a dominant
873	microphysical pathway. For each region, the storm's natural characteristics supported the
874	isolation of a microphysical process (i.e., riming or sublimation) in modeling sensitivity
875	simulations to assess their unique implications for surface precipitation and sensitivities to
876	ambient environmental properties. Results presented in the present study and DeLaFrance et al.
877	(2024b) provide new quantitative insights on the imprint of microphysical processes on radar
878	remote sensing measurements with application towards future retrieval algorithm development,
879	especially among those incorporating Doppler velocity measurements. Additionally, these
880	studies provide a framework of observational constraint and validation in future quasi-idealized
881	Lagrangian and particle-based modeling studies to further quantify the unique implications of
882	process-based microphysical evolution within diverse winter storm environments.

883

884

885 Code and data availability

- 886 IMPACTS data are publicly available through the NASA Distributed Active Archive Center
- (https://doi.org/10.5067/IMPACTS/DATA101, McMurdie et al., 2019). Specific IMPACTS
 datasets used for analysis include NCAR Particle Probes
- 889 (https://doi.org/10.5067/IMPACTS/PROBES/DATA101, Bansemer et al., 2022), Particle Habit
- 890 Imaging and Polar Scattering Probe (<u>http://doi.org/10.5067/IMPACTS/PHIPS/DATA101</u>,
- 891 Schnaiter, 2022), P-3 Meteorological and Navigation Data
- 892 (https://doi.org/10.5067/IMPACTS/P3/DATA101, Yang-Martin and Bennett, 2022), Automated
- 893 Surface Observing System (<u>https://doi.org/10.5067/IMPACTS/ASOS/DATA101</u>, Brodzik,
- 894 2022a), High Altitude Imaging Wind and Rain Airborne Profiler
- 895 (https://doi.org/10.5067/IMPACTS/HIWRAP/DATA101, McLinden et al., 2022), Turbulent Air
- 896 Motion Measurement System (<u>https://doi.org/10.5067/IMPACTS/TAMMS/DATA101</u>,
- 897 Thornhill, 2022), Multi-Radar/Multi-Sensor (MRMS) Precipitation Reanalysis for Satellite
- 898 Validation Product (https://doi.org/10.5067/IMPACTS/MRMS/DATA101, Brodzik, 2022b), and
- NOAA Soundings (<u>https://doi.org/10.5067/IMPACTS/SOUNDING/DATA201</u>, Waldstreicher
 and Brodzik, 2022).
- 901
- 902
- 903

904 Author contributions

- All authors contributed to decisions on methodologies applied throughout the study. AD
- 906 performed the data analysis, modeling simulations, and processing of the model output. All the 907 authors contributed to interpretations and assessed implications of the results. AD prepared the
- 908 manuscript with contributions from all the co-authors.
- 909

910

911 **Competing interests**

- 912 The contact author has declared that none of the authors has any competing interests.
- 913

914915 Acknowledgements

- 916 The authors acknowledge the IMPACTS team for their dedicated efforts in the collection and
- 917 curation of the unique and exceptionally high-quality IMPACTS dataset. The authors also thank
- Aaron Bansemer for several helpful discussions regarding the interpretations and limitations of
- 919 the processed microphysics probe data. Andrew DeLaFrance acknowledges NCAR for resources
- 920 provided to visit its Mesoscale and Microscale Meteorology Laboratory (host Andrew J.
- 921 Heymsfield), supporting the initial study conceptualization and design.
- 922
- 923

924 Financial support

- 925 This research was supported by the National Aeronautics and Space Administration (grant nos.
- 926 80NSSC21K1589, 80NSSC19K0338, and 80NSSC19K0397). Andrew J. Heymsfield is
- 927 supported by the National Science Foundation.
- 928

929	References
930	Bansemer, A., Delene, D., Heymsfield, A., and OBrien, J.: NCAR Particle Probes IMPACTS,
931	Dataset available online from the NASA Global Hydrometeorology Resource Center
932	DAAC, Huntsville, Alabama, USA [data set],
933	https://doi.org/10.5067/IMPACTS/PROBES/DATA101, 2022.
934	Boucher, R. J. and Wieler, J. G.: Radar Determination of Snowfall Rate and Accumulation, J.
935	Appl. Meteorol. Clim., 24, 68–73, https://doi.org/10.1175/1520-
936	0450(1985)024<0068:RDOSRA>2.0.CO;2, 1985.
937	Bringi, V., Seifert, A., Wu, W., Thurai, M., Huang, GJ., and Siewert, C.: Hurricane Dorian
938	Outer Rain Band Observations and 1D Particle Model Simulations: A Case Study,
939	Atmosphere, 11, 879, https://doi.org/10.3390/atmos11080879, 2020.
940	Brodzik, S.: Automated Surface Observing System (ASOS) IMPACTS, Dataset available online
941	from the NASA Global Hydrometeorology Resource Center DAAC, Huntsville,
942	Alabama, USA [data set], https://doi.org/10.5067/IMPACTS/ASOS/DATA101, 2022a.
943	Brodzik, S.: Multi-Radar/Multi-Sensor (MRMS) Precipitation Reanalysis for Satellite Validation
944	Product IMPACTS, Dataset available online from the NASA Global Hydrometeorology
945	Resource Center DAAC, Huntsville, Alabama, USA [data set],
946	https://doi.org/10.5067/IMPACTS/MRMS/DATA101, 2022b.
947	Brown, P. R. A. and Francis, P. N.: Improved Measurements of the Ice Water Content in Cirrus
948	Using a Total-Water Probe, J. Atmos. Ocean. Tech., 12, 410–414,
949	https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2, 1995.
950	Chase, R. J., Nesbitt, S. W., and McFarquhar, G. M.: Evaluation of the Microphysical
951	Assumptions within GPM-DPR Using Ground-Based Observations of Rain and Snow,
952	Atmosphere, 11, 619, https://doi.org/10.3390/atmos11060619, 2020.
953	Chase, R. J., Nesbitt, S. W., McFarquhar, G. M., Wood, N. B., and Heymsfield, G. M.: Direct
954	Comparisons between GPM-DPR and CloudSat Snowfall Retrievals, J. Appl. Meteor.
955	Clim., 61, 1257–1271, https://doi.org/10.1175/JAMC-D-21-0081.1, 2022.
956	Colle, B. A., Stark, D., and Yuter, S. E.: Surface Microphysical Observations within East Coast
957	Winter Storms on Long Island, New York, Mon. Weather Rev., 142, 3126–3146,
958	https://doi.org/10.1175/MWR-D-14-00035.1, 2014.
959	Colle, B. A., Yeh, P., Finlon, J. A., McMurdie, L., McDonald, V., and DeLaFrance, A.: An
960	Investigation of a Northeast U.S. Cyclone Event without Well-Defined Snow Banding
961	during IMPACTS, Mon. Weather Rev., 151, 2465–2484, https://doi.org/10.1175/MWR-
962	D-22-0296.1, 2023.
963	Connolly, P. J., Emersic, C., and Field, P. R.: A Laboratory Investigation into the Aggregation
964	Efficiency of Small Ice Crystals, Atmos. Chem. Phys., 12, 2055–2076,
965	https://doi.org/10.5194/acp-12-2055-2012, 2012.
966	DeLaFrance, A., McMurdie, L. A., Rowe, A. K., and Conrick, R.: Effects of Riming on Ice-
967	Phase Precipitation Growth and Transport Over an Orographic Barrier, J. Adv. Model
968	Earth Syst., 16, e2023MS003778, https://doi.org/10.1029/2023MS003778, 2024a
969	DeLaFrance, A., McMurdie, L. A., Rowe, A. K., and Heymsfield, A. J.: Simulated Particle
970	Evolution Within a Winter Storm: Contributions of Riming to Radar Moments and
971	Precipitation Fallout, Atmos. Chem. Phys., 24, 11191–11206,
972	https://doi.org/10.5194/acp-24-11191-2024, 2024b.
973	Dunnavan, E. L., Carlin, J. T., Schvartzman, D., Ryzhkov, A. V., Bluestein, H., Emmerson, S.,
974	McFarquhar, G. M., Heymsfield, G. M., and Yorks, J.: High-Resolution Snowstorm

975	Measurements and Retrievals Using Cross-Platform Multi-Frequency and Polarimetric
976	Radars, Geophys. Res. Lett., 50, e2023GL103692,
977	https://doi.org/10.1029/2023GL103692, 2023.
978	Evans, A. G., Locatelli, J. D., Stoelinga, M. T., and Hobbs, P. V.: The IMPROVE-1 Storm of 1-
979	2 February 2001. Part II: Cloud Structures and the Growth of Precipitation, J. Atmos.
980	Sci., 62, 3456–3473, https://doi.org/10.1175/JAS3547.1, 2005.
981	Finlon, J. A., McMurdie, L. A., and Chase, R. J.: Investigation of Microphysical Properties
982	within Regions of Enhanced Dual-Frequency Ratio during the IMPACTS Field
983	Campaign, J. Atmos. Sci., 79, 2773–2795, https://doi.org/10.1175/JAS-D-21-0311.1,
984	2022.
985	Fujiyoshi, Y., Endoh, T., Yamada, T., Tsuboki, K., Tachibana, Y., and Wakahama, G.:
986	Determination of a $Z - R$ Relationship for Snowfall Using a Radar and High Sensitivity
987	Snow Gauges, J. Appl. Meteorol., 29, 147–152, https://doi.org/10.1175/1520-
988	0450(1990)029<0147:DOARFS>2.0.CO;2, 1990.
989	Ganetis, S. A., Colle, B. A., Yuter, S. E., and Hoban, N. P.: Environmental Conditions
990	Associated with Observed Snowband Structures within Northeast U.S. Winter Storms,
991	Mon. Weather Rev., 146, 3675–3690, https://doi.org/10.1175/MWR-D-18-0054.1, 2018.
992	Herzegh, P. H. and Hobbs, P. V.: The Mesoscale and Microscale Structure and Organization of
993	Clouds and Precipitation in Midlatitude Cyclones. II: Warm-Frontal Clouds, J. Atmos.
994	Sci., 37, 597-611, https://doi.org/10.1175/1520-
995	0469(1980)037<0597:TMAMSA>2.0.CO;2, 1980.
996	Heymsfield, A., Bansemer, A., Heymsfield, G., Noone, D., Grecu, M., and Toohey, D.:
997	Relationship of Multiwavelength Radar Measurements to Ice Microphysics from the
998	IMPACTS Field Program, J. Appl. Meteorol. Clim., 62, 289–315,
999	https://doi.org/10.1175/JAMC-D-22-0057.1, 2023.
1000	Heymsfield, A. J. and Westbrook, C. D.: Advances in the Estimation of Ice Particle Fall Speeds
1001	Using Laboratory and Field Measurements, J. Atmos. Sci., 67, 2469–2482,
1002	https://doi.org/10.1175/2010JAS3379.1, 2010.
1003	Heymsfield, A. J., Matrosov, S. Y., and Wood, N. B.: Toward Improving Ice Water Content and
1004	Snow-Rate Retrievals from Radars. Part I: X and W Bands, Emphasizing CloudSat,
1005	J.Appl. Meteorol. Clim., 55, 2063–2090, https://doi.org/10.11/5/JAMC-D-15-0290.1,
1006	
1007	Houze, R. A., Rutledge, S. A., Matejka, I. J., and Hobbs, P. V.: The Mesoscale and Microscale
1008	Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. III: Air
1009	Motions and Precipitation Growth in a Warm-Frontal Rainband, J. Atmos. Sci., 38, 639– (40, https://doi.org/10.1175/1520.04(0(1081)028 ≤ 0 (20, TMAMSAS 2.0, CO) 2, 1081
1010	649, https://doi.org/10.11/5/1520-0469(1981)038<0639:1MAMSA>2.0.CU;2, 1981.
1011	in Extratagnical Cuclania Starma during IMDROVE 2. L. Atmag. Sci. 64, 2016, 2042
1012	In Extratropical Cyclonic Storms during IMPROVE-2, J. Atmos. Sci., 64, 5016–5045,
1013	nups://doi.org/10.11/5/JA55999.1, 2007.
1014	Diming: A Single Partiale Growth Model L Atmos Sai, 72, 2560, 2500
1015	kinning: A Single-Particle Growth Model, J. Atmos. Sci., $72, 2309-2390$,
1010	Rups.//doi.org/10.11/J/JAS-D-14-029/.1, 2013. Kalesse H. Szurmer W. Kneifel S. Kallias D. and Luke E. Fingerprints of a Diming Event
1017	On Cloud Radar Doppler Spectra: Observations and Modeling Atmos Chem Phys. 16
1010	2007 3012 https://doi.org/10.5104/acp_16_2007_2016_2016
1017	2577 - 5012, https://doi.org/10.519 -7 /acp-10-2577-2010, 2010.

1020	Keeler I.M. Jewett B.F. Rauber R.M. McFarquhar G.M. Rasmussen R.M. Xue I. Liu
1020	C and Thompson G: Dynamics of Cloud-Ton Generating Cells in Winter Cyclones
1021	Part I: Idealized Simulations in the Context of Field Observations. I. Atmos. Sci. 73
1022	1507 1527 https://doi.org/10.1175/IAS.D.15.0126.1.2016
1023	Varial S. Vulia M. S. and Dannartz D: A Tripla Fraguency Approach to Datriova
1024	Migraphysical Suggestial Description I. Coophys. Des. Atmos. 116, D11202
1025	$\frac{1}{1000}$
1020	$\frac{1}{1000} = 1000000000000000000000000000000000000$
1027	Kneifel, S., von Lerber, A., Hira, J., Moisseev, D., Kollias, P., and Leinonen, J.: Observed
1028	Relations Between Snowfall Microphysics and Triple-Frequency Radar Measurements, J.
1029	Geophys. ResAtmos., 120, 6034–6055, https://doi.org/10.1002/2015JD023156, 2015.
1030	Lawson, P., Gurganus, C., Woods, S., and Bruintjes, R.: Aircraft Observations of Cumulus
1031	Microphysics Ranging from the Tropics to Midlatitudes: Implications for a "New"
1032	Secondary Ice Process, J. Atmos. Sci., 74, 2899–2920, https://doi.org/10.1175/JAS-D-17-
1033	0033.1, 2017.
1034	Lawson, R. P., Stewart, R. E., Strapp, J. W., and Isaac, G. A.: Aircraft Observations of the Origin
1035	and Growth of Very Large Snowflakes, Geophys. Res. Lett., 20, 53–56,
1036	https://doi.org/10.1029/92GL02917, 1993.
1037	Leinonen, J.: High-Level Interface to T-Matrix Scattering Calculations: Architecture,
1038	Capabilities and Limitations, Opt. Express, 22, 1655,
1039	https://doi.org/10.1364/OE.22.001655, 2014.
1040	Leinonen, J. and Moisseev, D.: What do Triple-Frequency Radar Signatures Reveal about
1041	Aggregate Snowflakes?, J. Geophys. ResAtmos., 120, 229–239,
1042	https://doi.org/10.1002/2014JD022072, 2015.
1043	Leinonen, J. and Szyrmer, W.: Radar Signatures of Snowflake Riming: A Modeling Study, Earth
1044	Space Sci., 2, 346–358, https://doi.org/10.1002/2015EA000102, 2015.
1045	Li, L., Heymsfield, G., Carswell, J., Schaubert, D. H., McLinden, M. L., Creticos, J., Perrine, M.,
1046	Coon, M., Cervantes, J. I., Vega, M., Guimond, S., Tian, L., and Emory, A.: The NASA
1047	High-Altitude Imaging Wind and Rain Airborne Profiler, IEEE T. Geosci. Remote, 54,
1048	298-310, https://doi.org/10.1109/TGRS.2015.2456501, 2016.
1049	Locatelli, J. D. and Hobbs, P. V.: Fall Speeds and Masses of Solid Precipitation Particles, J.
1050	Geophys. Res., 79, 2185–2197, https://doi.org/10.1029/JC079i015p02185, 1974.
1051	Marshall, J. S. and Palmer, W. M. K.: The Distribution of Raindrops With Size, J. Meteorol., 5,
1052	165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.
1053	Mason, S. L., Chiu, C. J., Hogan, R. J., Moisseev, D., and Kneifel, S.: Retrievals of Riming and
1054	Snow Density from Vertically Pointing Doppler Radars, J. Geophys. ResAtmos., 123,
1055	13807-13834, https://doi.org/10.1029/2018JD028603, 2018.
1056	Mason, S. L., Hogan, R. J., Westbrook, C. D., Kneifel, S., Moisseev, D., and von Terzi, L.: The
1057	Importance of Particle Size Distribution and Internal Structure for Triple-Frequency
1058	Radar Retrievals of the Morphology of Snow, Atmos. Meas. Tech., 12, 4993-5018,
1059	https://doi.org/10.5194/amt-12-4993-2019, 2019.
1060	Matrosov, S. Y., Korolev, A., Wolde, M., and Nguyen, C.: Sizing Ice Hydrometeor Populations
1061	Using the Dual-Wavelength Radar Ratio, Atmos. Meas. Tech., 15, 6373-6386,
1062	https://doi.org/10.5194/amt-15-6373-2022, 2022.
1063	McLinden, M., Li, Lihua, and Heymsfield, Gerald M.: High Altitude Imaging Wind and Rain
1064	Airborne Profiler (HIWRAP) IMPACTS, Dataset available online from the NASA

1065	Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama, USA [data
1066	set], https://doi.org/10.5067/IMPACTS/HIWRAP/DATA101, 2022.
1067	McMurdie, L. A., Heymsfield, G., Yorks, J. E., and Braun, S. A.: Investigation of Microphysics
1068	and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Collection,
1069	Dataset available online from the NASA Global Hydrometeorology Resource Center
1070	DAAC, Huntsville, Alabama, USA [data set],
1071	https://doi.org/10.5067/IMPACTS/DATA101, 2019.
1072	McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G.,
1073	Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., Novak, D. R., Lang,
1074	T. J., Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian, M. R., Greybush, S.
1075	J., Heymsfield, A. J., Finlon, J. A., McDonald, V. L., and Nicholls, S.: Chasing
1076	Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-
1077	Threatening Snowstorms (IMPACTS) Campaign, B. Am. Meteorol. Soc., 103, E1243-
1078	E1269, https://doi.org/10.1175/BAMS-D-20-0246.1, 2022a.
1079	McMurdie, L. A., Finlon, J. A., Heymsfield, G. M., and Yorks, J. E.: Investigation of
1080	Microphysics and Precipitation for Atlantic Coast Threatening Snowstorms (Impacts):
1081	The 2022 Deployment, in: IGARSS 2022 - 2022 IEEE International Geoscience and
1082	Remote Sensing Symposium, Kuala Lumpur, Malaysia, 4461–4464,
1083	https://doi.org/10.1109/IGARSS46834.2022.9883693, 2022b.
1084	Miller, J. E.: On the Concept of Frontogenesis, J. Meteorol., 5, 169–171,
1085	https://doi.org/10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2, 1948.
1086	Mitchell, D. L.: Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation
1087	Particle Terminal Velocities, J. Atmos. Sci., 53, 1710–1723,
1088	https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2, 1996.
1089	Morrison, H., Van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y.,
1090	Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J.,
1091	Prat, O. P., Reimel, K. J., Shima, S., Van Diedenhoven, B., and Xue, L.: Confronting the
1092	Challenge of Modeling Cloud and Precipitation Microphysics, J. Adv. Model Earth Syst.,
1093	12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020.
1094	Nelson, J.: Sublimation of Ice Crystals, J. Atmos. Sci., 55, 910–919,
1095	https://doi.org/10.1175/1520-0469(1998)055<0910:SOIC>2.0.CO;2, 1998.
1096	Novak, D. R., Bosart, L. F., Keyser, D., and Waldstreicher, J. S.: An Observational Study of
1097	Cold Season-Banded Precipitation in Northeast U.S. Cyclones, Weather Forecast., 19,
1098	993–1010, https://doi.org/10.1175/815.1, 2004.
1099	Novak, D. R., Waldstreicher, J. S., Keyser, D., and Bosart, L. F.: A Forecast Strategy for
1100	Anticipating Cold Season Mesoscale Band Formation within Eastern U.S. Cyclones,
1101	Weather Forecast., 21, 3–23, https://doi.org/10.1175/WAF907.1, 2006.
1102	Novak, D. R., Colle, B. A., and Yuter, S. E.: High-Resolution Observations and Model
1103	Simulations of the Life Cycle of an Intense Mesoscale Snowband over the Northeastern
1104	United States, M. Weather Rev., 136, 1433–1456,
1105	https://doi.org/10.1175/2007MWR2233.1, 2008.
1106	Petty, G. W. and Huang, W.: Microwave Backscatter and Extinction by Soft Ice Spheres and
1107	Complex Snow Aggregates, J.Atmos. Sci., 67, 769–787,
1108	https://doi.org/10.1175/2009JAS3146.1, 2010.
1109	Plummer, D. M., McFarquhar, G. M., Rauber, R. M., Jewett, B. F., and Leon, D. C.: Structure
1110	and Statistical Analysis of the Microphysical Properties of Generating Cells in the

1111	Comma Head Region of Continental Winter Cyclones, J. Atmos. Sci., 71, 4181–4203,
1112	https://doi.org/10.11/5/JAS-D-14-0100.1, 2014.
1113	Pruppacher, H. R. and Klett, J. D.: Microphysics Of Clouds And Precipitation, 2nd rev. and enl.
1114	ed., Kluwer Academic Publishers, Dordrecht; Boston, 954 pp., 1997.
1115	Rauber, R. M. and Tokay, A.: An Explanation for the Existence of Supercooled Water at the Top
1116	of Cold Clouds, J. Atmos. Sci., 48, 1005–1023, https://doi.org/10.1175/1520-
1117	0469(1991)048<1005:AEFTEO>2.0.CO;2, 1991.
1118	Rosenow, A. A., Plummer, D. M., Rauber, R. M., McFarquhar, G. M., Jewett, B. F., and Leon,
1119	D.: Vertical Velocity and Physical Structure of Generating Cells and Convection in the
1120	Comma Head Region of Continental Winter Cyclones, J. Atmos. Sci., 71, 1538–1558,
1121	https://doi.org/10.1175/JAS-D-13-0249.1, 2014.
1122	Roy, P., Rauber, R. M., and Di Girolamo, L.: A Closer Look at the Evolution of Supercooled
1123	Cloud Droplet Temperature and Lifetime in Different Environmental Conditions with
1124	Implications for Ice Nucleation in the Evaporating Regions of Clouds, J. Atmos. Sci., 80,
1125	2481-2501, https://doi.org/10.1175/JAS-D-22-0239.1, 2023.
1126	Schnaiter, F. M.: Particle Habit Imaging and Polar Scattering Probe (PHIPS) IMPACTS, Dataset
1127	available online from the NASA Global Hydrometeorology Resource Center DAAC,
1128	Huntsville, Alabama, USA [data set],
1129	https://doi.org/10.5067/IMPACTS/PHIPS/DATA101, 2020.
1130	Stark, D., Colle, B. A., and Yuter, S. E.: Observed Microphysical Evolution for Two East Coast
1131	Winter Storms and the Associated Snow Bands, M. Weather Rev., 141, 2037–2057,
1132	https://doi.org/10.1175/MWR-D-12-00276.1, 2013.
1133	Thornhill, K. L.: Turbulent Air Motion Measurement System (TAMMS) IMPACTS, Dataset
1134	available online from the NASA Global Hydrometeorology Resource Center DAAC,
1135	Huntsville, Alabama, USA [data set],
1136	https://doi.org/10.5067/IMPACTS/TAMMS/DATA101, 2022.
1137	Thornhill, K. L., Anderson, B. E., Barrick, J. D. W., Bagwell, D. R., Friesen, R., and Lenschow,
1138	D. H.: Air Motion Intercomparison Flights during Transport and Chemical Evolution in
1139	the Pacific (TRACE-P)/ACE-ASIA, J. Geophys. ResAtmos., 108, 2002JD003108,
1140	https://doi.org/10.1029/2002JD003108, 2003.
1141	Waldstreicher, J. and Brodzik, S.: NOAA Sounding IMPACTS, Dataset available online from
1142	the NASA Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama,
1143	USA [data set], https://doi.org/10.5067/IMPACTS/SOUNDING/DATA201, 2022.
1144	Williams, C. R.: How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar
1145	Return Signals?, Remote Sens., 14, 1305, https://doi.org/10.3390/rs14061305, 2022.
1146	Yang-Martin, M. and Bennett, R.: P-3 Meteorological and Navigation Data IMPACTS, Dataset
1147	available online from the NASA Global Hydrometeorology Resource Center DAAC.
1148	Huntsville, Alabama, USA [data set], https://doi.org/10.5067/IMPACTS/P3/DATA101,
1149	2022.
1150	Zaremba, T. J., Rauber, R. M., Heimes, K., Yorks, J. E., Finlon, J. A., Nicholls, S. D., Selmer, P.,
1151	McMurdie, L. A., and McFarquhar, G. M.: Cloud-Top Phase Characterization of
1152	Extratropical Cyclones over the Northeast and Midwest United States: Results from
1153	IMPACTS, J. Atmos. Sci., 81, 341–361, https://doi.org/10.1175/JAS-D-23-0123.1, 2024.
1154	Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Van Cooten, S.,
1155	Kelleher, K., Kitzmiller, D., Ding, F., Seo, DJ., Wells, E., and Dempsey, C.: National
1156	Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans,

1157B. Am. Meteorol. Soc., 92, 1321–1338, https://doi.org/10.1175/2011BAMS-D-11-115800047.1, 2011.