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Abstract. Organic aerosol (OA) is a major type of fine particulate matter. OA shows a large variability influenced by 

anthropogenic emissions, vegetation, and meteorological changes. Understanding OA trends is crucial for air quality and 

climate studies, yet changes in OA over time in China are poorly documented. This study applied the Community Atmosphere 

Model version 6 with comprehensive tropospheric and stratospheric chemistry (CAM6-Chem) to investigate long-term OA 

trends in China from 1990 to 2019 and identify the driving factors. The simulations agreed well with ground-based 20 

measurements of OA from 151 observational sites and the CAQRA reanalysis dataset. Although OA trends showed a modest 

5.6% increase, this resulted from a significant -8.1% decrease in primary organic aerosols (POA) and a substantial 32.3% 

increase in secondary organic aerosols (SOA). Anthropogenic emissions of POA and volatile organic compounds (VOCs) 

were the dominant contributors to these trends. While biogenic VOCs (BVOCs) played a secondary role in SOA formation, 

significant changes were observed in specific sub-species: isoprene-derived SOA decreased by -18.8% due to anthropogenic 25 

sulfate reduction, while monoterpene-derived SOA increased by 12.3% driven by enhanced emissions from rising temperatures. 

Our study found through sensitivity experiments a negligible response of monoterpene-derived SOA to changes in 

anthropogenic nitrogen oxides (NOx) emissions as a net effect of changes in multiple pathways. This study highlights the 

complex interplay between POA reduction and SOA growth, revealing notable OA trends in China and the varying roles of 

both anthropogenic and biogenic emissions. 30 
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1. Introduction 

PM2.5 (particulate matter less than or equal to 2.5 micrometers in diameter) is a standard air pollutant and attracts numerous 

research attention during the past decade. Ground level mass concentration of PM2.5 was found to gradually increase during 

2000-2013 and then decreased since 2014 in China (An et al., 2019; Lin et al., 2018; Ma et al., 2016). The trend of PM2.5 is 

believed to be driven primarily by China's emission control policies (Lu et al., 2020; Tong et al., 2020) and regional climate 35 

change over East Asia, which affects the dispersion condition (Xu et al., 2022). Organic aerosol (OA) is an important 

component of PM2.5 as it can contribute up to 77% of total fine mode particles during haze pollution episode (An et al., 2019; 

Zhong et al., 2021). Despite its significance, there have been limited studies involving long-term continuous observations of 

OA. Unlike PM2.5, the observational gaps restrict our understanding of historical trends in OA, making it challenging to access 

air quality changes accurately and formulate effective environmental policies. While a few existing modeling studies have 40 

explored recent changes in OA in China, they often cover only limited time periods or specific years (Chen et al., 2024a; Zheng 

et al., 2023b).  

 

OA consists of primary organic aerosols (POA) and secondary organic aerosols (SOA). POA is largely emitted from 

anthropogenic sources such as vehicle emissions, residential biofuel usage, and industrial activities, as well as biomass burning. 45 

Consequently, POA emissions are usually intensive (Fadel et al., 2021; Kanellopoulos et al., 2021) in urban areas (Liu et al., 

2023) with their impact being primarily localized due to dependence on anthropogenic sources. Control of POA emissions has 

been effective in reducing PM2.5 concentrations, as observed in regions like the Western United States (Pye et al., 2019). In 

China, studies have also reported a significant contribution of POA to PM2.5. Huang et al. (2019) discovered that POA emerges 

as the primary constituent during pollution episodes in the North China Plain (NCP) region (Huang et al., 2019). Zheng et al. 50 

(2023a) found a decrease of 11.8 μg m−3 in OA concentrations at Beijing over 2005-2018, with most of the decrease coming 

from POA. 

 

On the other hand, SOA is mainly produced through complex transformations of volatile organic compounds (VOCs) emitted 

from both anthropogenic and biogenic sources (Hallquist et al., 2009; Qin et al., 2018; Shrivastava et al., 2017; Zhang et al., 55 

2007). These VOCs undergo multiple oxidation processes in the atmosphere, making SOA formation sensitive to chemical 

reactions, as well as meteorological conditions (An et al., 2019; Fan et al., 2020; Hu et al., 2017). In Southern China, biogenic 

VOCs (BVOCs), primarily monoterpenes and isoprene, are significant contributors to SOA formation, particularly during 

summer due to warm temperatures and extensive vegetation (Guenther et al., 2012).  Given that SOA formation is affected by 

both anthropogenic and natural factors, the response of OA to changing emission and climate conditions is likely nonlinear.  60 

 

In the context of global warming, China has made considerable efforts to reduce anthropogenic emissions through a range of 

climate policies (Cai et al., 2017; Cui et al., 2020; Feng et al., 2019; Zheng et al., 2018). These measures have led to reductions 
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in both POA and SOA concentrations. However, biogenic SOA (BSOA) also plays an important role in determining OA trends 

as it may change due to anthropogenic emission change. For example, studies indicate that BSOA produced from isoprene-65 

epoxydiols (IEPOX) has significantly decreased in the Southeast United States due to reductions in anthropogenic SO2 

emissions (Hoyle et al., 2011; Liu et al., 2021b; Qin et al., 2018; Shilling et al., 2013; Shrivastava et al., 2019), and a similar 

response was also reported in China (Dong et al., 2022). Likewise, monoterpene-derived SOA (SOAMT) is sensitive to nitrogen 

oxides (NOx) concentrations, and interactions between NOx and BVOCs can alter the oxidation pathways and ultimately affect 

BSOA formation (Jo et al., 2019; Xu et al., 2021; Zhang et al., 2018). 70 

 

The abovementioned studies suggest that the long-term trends in OA might be a net result of the opposing trends in its sub-

species, driven by multiple anthropogenic and natural factors. Nevertheless, existing modeling studies largely attribute OA 

trends to emission changes without detailed consideration of different sub-species. Moreover, the interactions between BVOCs 

and changing climate conditions complicate predictions of BSOA responses, hindering accurate forecasts of future OA trends. 75 

Diagnostically investigating OA trends and driving factors is therefore crucial to ensure a more comprehensive assessment of 

air quality changes. Given the limited availability of long-term observational data, this study employs a modeling tool along 

with available observation and reanalysis dataset to explore the long-term trends of OA in China from 1990 to 2019, 

considering contributions from different sub-species. This analysis aims to support future air pollution control strategies by 

providing a better understanding of OA and its driving factors, thereby enabling more effective management of air quality in 80 

the face of ongoing climate change.  

2. Data and Methods 

2.1 Model Configuration 

This study uses the Community Atmospheric Model version 6 with comprehensive tropospheric and stratospheric chemistry 

(CAM6-Chem) from the Community Earth System Model version 2.1.0 (CESM2.1.0). The gas-phase chemistry is represented 85 

by the Model for Ozone and Related chemical Tracers (MOZART) chemical mechanism (MOZART-TS2) including 

comprehensive isoprene and monoterpenes chemistry (Schwantes et al., 2020). The aerosol model utilizes the four-mode 

version of the Modal Aerosol Module (MAM4) (Liu et al., 2016) and employs the Volatility Basis Set (VBS) approach 

(Donahue et al., 2006; Hodzic et al., 2016) to simulate SOA formation. VOCs (isoprene, glyoxal, monoterpenes, sesquiterpene, 

benzene, toluene, lumped xylenes, intermediate volatile organic compounds and semi-volatile organic compounds) are 90 

oxidized to produce five different types of volatile SOA gaseous precursors, with volatilities corresponding to effective 

saturation concentrations (C*) of 0.01, 0.1, 1.0, 10.0, and 100.0 μg/m3 at 300 K, respectively (Tilmes et al., 2019). 

Heterogeneous production of isoprene-epoxydiol-derived SOA (SOAIE) is represented within the coupled Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC) (Jo et al., 2019, 2021; Zaveri et al., 2008, 2021) mechanism. The 
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photolysis rate of monoterpene-derived SOA is updated based on our previous work (Liu et al., 2023). Aerosol wet removal 95 

scheme uses the Cloud Layers Unified By Binormals (CLUBB) scheme to unify shallow convective and stratiform clouds, 

coupled with the two-moment cloud microphysics scheme by Gettelman and Morrison (2015) (MG2) for aerosol activation 

and removal (Gettelman and Morrison, 2015). For deep convective clouds, the scheme employs the parameterization by Zhang 

and McFarlane (1995) (ZM95) and relies on empirical parameters for estimating aerosol wet removal processes (Zhang and 

McFarlane, 1995). 100 

 

We conducted long-term simulations covering the period from 1990 to 2019. The horizontal resolution of the simulations is 

set to 0.95° for latitude and 1.25° for longitude, with 32 vertical layers extending to approximately 40 kilometers. The 

simulation has a spin-up time of 1 year and a relaxation time of 50 hours to investigate surface OA trends. Natural emissions 

are calculated online using the Model of Emissions of Gases and Aerosol from Nature version 2.1 (MEGAN2.1), which is 105 

coupled to the CESM model (Emmons et al., 2020; Guenther et al., 2012). Anthropogenic emissions from 1990 to 2019 were 

sourced from the multi-resolution emission inventory for China (MEIC, http://www.meicmodel.org) (Li et al., 2017). 

Intermediate volatile organic compounds (IVOC) and Semi-volatile organic compounds (SVOC) emissions were scaled 

based on POA emissions and non-methane VOC emissions (Chang et al., 2022; Tilmes et al., 2019), with specific formulas 

provided in the supplement. We used the Modern-Era Retrospective analysis for Research and Applications (MERRA2) 110 

reanalysis data (Gelaro et al., 2017) for meteorological constraints.  

 

To distinguish the effects of biogenic emissions and anthropogenic NOx emissions on SOAMT, we conducted additional 

sensitivity simulations by applying scaling factors for monoterpenes and NOx emissions respectively. Monoterpenes emissions 

are higher in summer (Zhang et al., 2018), and 2013 saw the peak monoterpenes emissions (Fig. 8(a)), while NOx 115 

concentrations reached a secondary peak (Fig. 8(b)). Therefore, we have selected July 2013 for sensitivity simulations to better 

capture SOAMT's response to both emission types. A benchmark simulation was conducted and denoted as 100nudging, which 

has the same configuration as the long-term simulation but with a 0.5-hour relaxation time to minimize the impact of 

meteorological fields (Liu et al., 2021a; Tilmes et al., 2019). One type of sensitivity experiment was monoterpenes emission 

experiments, and the two sets of experiments were named 0.5MTERP and 2MTERP. Their model configurations were the 120 

same as those of 100nudging, but the monoterpenes emissions were respectively set to 0.5 and 2 times the 100nudging 

emissions. Their differences relative to 100nudging indicated the impact of monoterpenes emissions disturbance on SOAMT 

formation. The other type of sensitivity experiment was NOx emission experiments, and the two sets of experiments were 

named 0.5NOx and 2NOx. Their model configurations were also the same as those of 100nudging, but the NOx emissions 

were respectively set to 0.5 and 2 times the 100nudging emissions. Their differences relative to 100nudging indicated the 125 

impact of NOx emissions disturbance on SOAMT formation.  

 

http://www.meicmodel.org/
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The model used in this study classifies monoterpenes into four categories: α-pinene, β-pinene, limonene, and myrcene. In the 

following sections, these will be collectively referred to as monoterpenes. In this study we constrained BSOA as the summary 

of SOAMT and SOAIE to focus on these two most important contributors. It shall be mentioned that isoprene and monoterpenes 130 

make the most contribution to BVOCs in China (Ding et al., 2016). Therefore, this study specifically focuses on the impact of 

aerosols derived from these compounds on OA trends. 

2.2 Observations 

We used observations from a number of different sources to evaluate the simulation performance of major aerosol species as 

well as key intermediates. We used ground-based measurements compiled by Miao et al. (2021) and Chen et al. (2024), which 135 

provided mean mass concentrations of surface OA, POA, and SOA in China from 2013 to 2019, along with the corresponding 

station locations (Chen et al., 2024a; Miao et al., 2021). A total of 151 measurements were included by removing duplicate 

values. We also used the high-resolution simulation dataset of PM2.5 composition over China (CAQRA-aerosols) provided by 

the National Natural Science Foundation Air Pollution Complex Major Research Plan Data Integration Project (Project 

Number: 92044303, https://www.capdatabase.cn). The CAQRA-aerosols data were developed using emission inversion and 140 

high-resolution numerical simulation techniques (Kong et al., 2021). The CAQRA-aerosols data provided mass concentrations 

of organic carbon (OC) rather than OA (Kong et al., 2021). The root mean square error of OC on the monthly average 

concentration scale was 12.0 µg/m³, with a mean bias of 0.03 µg/m³ (0.17%) (Kong et al., 2021). We used OA/OC ratios (1.19-

3.04) to convert OC to OA concentrations (Malm and Hand, 2007) to facilitate comparison with simulation results. Since ratios 

vary with site and season, we used the mean value of 1.8 recommended by Malm and Hand (2007) as the conversion factor 145 

(Malm and Hand, 2007). To understand the model performance for simulating air pollutants, we also analyzed them by 

comparing them with the output values at the corresponding times and locations in the model. The 24h average PM2.5 and 

ozone (O3) data from the China Environmental Monitoring Terminal (CEMT) National Urban Air Quality Real-Time 

Distribution Platform (NUAQRDP) (https://air.cnemc.cn:18007/) were used to analyze changes in surface aerosol 

concentrations over the period 2014-2019. 150 

 

Moreover, we used MODIS Level3 Collection 6.1 monthly aerosol optical depth (AOD) data as an indicator for column density 

of fine size aerosols. The 550 nm AOD data were retrieved using the combined Dark Target-Deep Blue algorithm (Levy et al., 

2013), with monthly averaged data covering the years 2000-2019 at a spatial resolution of 1°. Performance of NOx simulation 

was also assessed using nitrogen dioxide (NO2) column concentrations monitored by the OMI (Ozone Monitoring Instrument) 155 

Level-3 on board NASA's AURA satellite (https://disc.gsfc.nasa.gov/datasets?keywords=OMI&page=1), with daily averaged 

data covering the period 2000-2019 at a spatial resolution of 0.25◦. 

https://air.cnemc.cn:18007/
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3. Results and Discussions 

3.1 Evaluation of Model Performance 

Performance of the model was evaluated by comparing simulation results with ground-based observations, the CAQRA-160 

aerosols dataset and satellite products mentioned in Section 2. The results of the baseline simulation were compared with 

observations from multiple sources. Overall, the model can generally reproduce the spatial distributions and mass 

concentrations of OA and its components (Fig.S1). By validation with observations from Miao et al. (2021) and Chen et al. 

(2024), the modelled normalized mean bias (NMB) of surface OA, POA, and SOA were -34.5%, -7.4%, and -64.8%, 

respectively. Although there was a general underestimation of surface OA by the model, the simulations showed close 165 

agreement with measurements, with a coefficient of determination (R2) by 0.8. The capability of CAM-Chem in simulating 

OA over China was generally well consistent with other modeling studies. For example, Qin et al. (2018) utilized the 

Community Multiscale Air Quality (CMAQ) model (v5.0.2) to evaluate BSOA and reported an NMB of -70% (Qin et al., 

2018); Zheng et al. (2023b) employed the Weather Research and Forecasting model (WRF, v3.9)−CMAQ/2D-VBS modeling 

system and observed an NMB of -20% for POA (Zheng et al., 2023b). 170 

 

Our model simulated spatial distribution of OA was in good agreement with the CAQRA-aerosols dataset. Both our model 

and the dataset indicated relatively higher OA concentrations in Eastern China and lower concentrations in Western China 

(Fig.S2). The CAQRA-aerosols dataset showed that OA has strong seasonality in China, with the highest average mass 

concentrations in winter and the lowest in summer. Our model simulations reproduced this seasonal characteristic well (Fig.S3). 175 

The results of both the model and the CAQRA-aerosols dataset indicated a decreasing trend in OA concentrations in China 

(Fig.1(b)). Notably, there was good spatial consistency, with a significant decrease observed in Eastern China, particularly in 

the NCP region (Fig.1(c,f)). This decreasing trend was especially pronounced in Beijing. Given that only the Beijing site had 

continuous ground-based observations over multiple years from Miao et al. (2021) and Chen et al. (2024), we further evaluated 

the long-term simulation results for this site. The simulation values showed good agreement with the observed values, 180 

reflecting a consistent trend over the years (Fig.1(e)). 

 

In terms of PM2.5 simulation, the model slightly underestimated observation by -19.2% (Fig.S6(a)). This might be at least 

partially because of coarse model grid resolution while CEMT observational sites are mostly within urban area. We then 

compared the simulation with observation for the contribution of OA to PM2.5, showing good performance with an NMB of 185 

5.6%. Observed OA/PM2.5 ratio was calculated by paring OA measurements reported in Miao et al. (2021) and Chen et al. 

(2024) with CEMT PM2.5 observations during the same period, which fall into the same CAM6-Chem model grid. Due to lack 

of synergic collected observations of aerosol subspecies, we didn’t validate the contributions from other subspecies but focus 

on OA only. The moderate underestimations of OA and PM2.5 but relatively better performance for simulating OA/PM2.5 ratio 

suggested that although the model may have deficiencies to reproduce the absolute concentrations of OA, it was able to capture 190 
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the contribution from OA correctly. It also implied that there might be systematic bias within the modeling system affecting 

underestimations of aerosol mass concentrations such as coarse grid resolution. Our recent study thoroughly evaluated CAM-

Chem simulation of PM2.5 in China and reported that a finer grid (~0.25°) would substantially lower modeling bias, especially 

over complex terrains during haze episodes (Yue et al., 2023). The fine grid version was not employed in this study as it’s not 

compatible with MOSAIC module yet, and we consider the heterogeneous chemistry of SOA and thermodynamic equilibrium 195 

of nitrate represented by MOSAIC is more important for this study to focus on long-term trend of OA and subspecies.  

 

 

Figure 1: (a) Validation of modelled organic aerosols (OA), primary organic aerosols (POA), and secondary organic aerosols (SOA) 

based on ground-based measurements compiled by Miao et al. (2021) and Chen et al. (2024) (unit: μg m−3). (b) 2013 to 2019 200 
interannual variation of average surface organic aerosol (OA) concentrations in CAM6-Chem (dark grey) and the CAQRA-aerosols 

dataset (green) (unit: μg m−3). The trend lines (dotted line) are based on linear regression fitting. (c) 2013 to 2019 CAM6-Chem 

modelled annual long-term trend of surface OA concentrations (unit: μg m−3 per year). The trend is calculated by linear regression 

on an annual scale over 1990-2019. (d) Validation of modelled OA/PM2.5 based on OA measurements compiled by Miao et al. (2021) 

and Chen et al. (2024) and PM2.5 observations from the National Urban Air Quality Real-time Release Platform of China 205 
Environmental Monitoring Station. (e) Interannual variation of average surface OA, POA and SOA concentrations (μg m−3) at 

Beijing site from 2013 to 2019 in CAM6-Chem (solid line; sim) and ground-based measurements compiled by Miao et al. (2021) and 

Chen et al. (2024) (dashed line; obs). (f) 2013 to 2019 annual long-term trend of surface OA concentrations (unit: μg m−3 per year) 

in the CAQRA-aerosols dataset. The trend is calculated by linear regression on an annual scale over 1990-2019. 
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 210 
Figure 1: (a) Validation of modelled organic aerosols (OA), primary organic aerosols (POA), and secondary organic aerosols (SOA) 

based on ground-based measurements compiled by Miao et al. (2021) and Chen et al. (2024) (unit: μg m−3). (b) 2013 to 2019 

interannual variation of average surface organic aerosol (OA) concentrations in CAM6-Chem (dark grey) and the CAQRA-aerosols 

dataset (green) (unit: μg m−3) and their trend lines (dotted line). (c) 2013 to 2019 CAM6-Chem modelled annual long-term trend of 

surface OA concentrations (unit: μg m−3 per year). The trend is calculated by linear regression on an annual scale over 1990-2019. 215 
(d) Validation of modelled OA/PM2.5 based on OA measurements compiled by Miao et al. (2021) and Chen et al. (2024) and PM2.5 

observations from the National Urban Air Quality Real-time Release Platform of China Environmental Monitoring Station. (e) 

Interannual variation of average surface OA, POA and SOA concentrations (μg m−3) at Beijing site from 2013 to 2019 in CAM6-

Chem (solid line) and ground-based measurements compiled by Miao et al. (2021) and Chen et al. (2024) (dashed line). (f) 2013 to 

2019 annual long-term trend of surface OA concentrations (unit: μg m−3 per year) in the CAQRA-aerosols dataset. The trend is 220 
calculated by linear regression on an annual scale over 1990-2019. 

3.2 Trend and attribution of Surface OA 

In this section we first briefly introduced the general characteristics (e.g., concentrations, main sub-species, spatial distribution) 

of simulated OA, and then investigated the overall change of OA through the study period.  

 225 

Spatial distributions of annual average concentrations of OA and related subspecies are presented in Fig.2. The concentrations 

of OA show prominent regional differences, with its high values (>15 μg m-3) areas concentrated in the NCP and Sichuan 

Basin Area (SBA), while the vast remote areas in Western China such as Tibet and Xinjiang show lower OA concentrations 

(<5 μg m-3). Spatial distribution of total OA at national scale is predominantly determined by POA as shown in Fig.2(b). In 

the densely populated NCP urban area, contribution of POA to OA can reach up to 75%. SOA was relatively lower in 230 

concentration (Fig.2(c)) and was found to have a consistent spatial distribution pattern as POA, indicating a dominate 

contribution from anthropogenic VOCs derived SOA (ASOA) to total SOA. Spatial distributions of POA and SOA are 



 

9 

 

generally well consistent with anthropogenic POA and VOCs emissions which also concentrated over urban clusters as shown 

in Fig.2(d) and (e) respectively. Pearl River Delta (PRD) is found to be unique as it has relatively low POA emissions but high 

anthropogenic VOCs emission, probably due to vehicle exhausts (Lee et al., 2002; Liu et al., 2024). It is also important to 235 

notice that Southern China has a non-negligible level of SOA where biogenically produced BSOA was found to play an 

important role due to extensive vegetation coverages with excessive BVOCs emissions as shown in Fig.2(f). For example, 

contributions of BSOA to OA can reach up to 27% over Yunnan-Guizhou Plateau for climatological summer averages.  

 

 240 

Figure 2:  1990 to 2019 annual average of surface organic aerosols (OA; a; unit: μg m−3), primary organic aerosols (POA; b; unit: 

μg m−3), secondary organic aerosols (SOA; c; unit: μg m−3), anthropogenic POA emissions (d; unit: g m-2 mon-1), anthropogenic 

volatile organic compounds emissions (e; unit: g m-2 mon-1), and biogenic volatile organic compounds emissions (f; unit: g m-2 mon-

1) concentrations. 
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 245 

Figure 2:  1990 to 2019 annual average of surface organic aerosols (OA; a; unit: μg m−3), primary organic aerosols (POA; b; unit: 

μg m−3), secondary organic aerosols (SOA; c; unit: μg m−3). 1990 to 2019 annual average of anthropogenic POA emissions (d; unit: 

g m-2 mon-1), anthropogenic volatile organic compounds emissions (e; unit: g m-2 mon-1), and biogenic volatile organic compounds 

emissions (f; unit: g m-2 mon-1) concentrations. 

 250 

General trends of OA and sub-species were demonstrated in Fig.3, with more details such as time series plots (Fig. S7, S11), 

trends at seasonal scale (Fig. S14, S15, S17) are presented in supplementary materials. All trends are calculated by linear 

regression on annual scale over 1990-2019. In general, trend of surface OA concentrations showed a regional difference as 

decreasing over eastern coastal provinces and increasing over the western inland provinces. For example, the annual average 

surface OA concentrations showed a significant decreasing trend over Yangtze River Delta (YRD) by around -1.4 μg m-3 per 255 

decade (-13.8% per decade). While in SBA, surface OA shows an increasing trend by 0.4 μg m-3 per decade (7.3% per decade). 

Trends in different seasons were consistent with the annual trend mentioned above but with stronger changes, as the increase 

of OA over SBA in summer was more prominent, and so did the decrease over YRD in winter (Fig.S14).  
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 260 

Figure 3: 1990 to 2019 annual average long-term trend of surface organic aerosols (OA; a; unit: μg m−3 per decade), primary organic 

aerosols (POA; b; unit: μg m−3 per decade), secondary organic aerosols (SOA; c; unit: μg m−3 per decade), primary organic aerosols 

emissions (d; unit: g m-2 per decade), anthropogenic volatile organic compounds emissions (e; unit: g m-2 per decade), biogenic 

volatile organic compounds emissions (f; unit: g m-2 per decade). 



 

12 

 

 265 

Figure 3: 1990 to 2019 annual average long-term trend of surface organic aerosols (OA; a; unit: μg m−3 per decade), primary organic 

aerosols (POA; b; unit: μg m−3 per decade), secondary organic aerosols (SOA; c; unit: μg m−3 per decade), primary organic aerosols 

emissions (d; unit: g m-2 per decade), anthropogenic volatile organic compounds emissions (e; unit: g m-2 per decade), biogenic 

volatile organic compounds emissions (f; unit: g m-2 per decade). 

 270 

The overall OA trend is the net result of the long-term changes in its sub-species POA (Fig. 3(b)) and SOA (Fig. 3(c)). POA 

generally showed consistent trends with total OA which decreased in the east by up to -8.9% per decade (-0.24 μg m-3 per 

decade) and increased in the west by up to 13.2% per decade (0.08 μg m-3 per decade). SOA showed a clear upward trend 

throughout the country by 10.8% per decade (0.16 μg m-3 per decade). The spatial distributions of the long-term trends of POA 

and SOA were well consistent with the pattern of changes in emissions as shown in Fig.3(d-f). 275 

 

It’s interesting to notice that the most significant changes in OA were not over the regions with high OA concentrations. The 

different patterns of changes in POA and SOA lead to various changes of OA over three typical urban cluster areas including 

NCP, YRD, and SBA. NCP has the highest level of total OA but a minor trend, probably due to the net effect of a minor 

decrease in POA and an increase in ASOA, both driven by changes in anthropogenic emissions. YRD has the lowest level of 280 

total OA concentration but the most significant decreasing trend, primarily due to the reduction of POA. Zheng et al. (2023a) 

suggested that anthropogenic POA emissions were reduced by -65.7% in YRD over 2005-2019 as a result of air quality 

management (Zheng et al., 2023b). SBA has a relatively high level of OA and also the most significant increasing trend. 
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Changes in emissions suggested that the enhancement was mainly driven by excessive SOA from anthropogenic precursors, 

as shown in Fig.3(e). A more detailed discussion of anthropogenic and biogenic contributions to this increased SOA over SBA 285 

will be provided in later sections. 

 

 

Figure 4: Probability density function (PDF) distributions of simulated five-year average concentrations of surface organic aerosols 

(OA; a), primary organic aerosols (POA; b), and secondary organic aerosols (SOA; c) for the periods 1990-1994 (purple) and 2015-290 
2019 (green), along with the annual mean values and standard deviations for each species in different time periods. 

 

Figure 4: The probability density function (PDF) distributions of the simulated five-year average concentrations of OA (a), POA (b), 

and SOA (c) for the periods 1990-1994 (purple) and 2015-2019 (green). The dashed lines represent the normal distributions fitted 

based on the calculated mean and standard deviation. The calculated mean and standard deviation are also displayed in the figures. 295 
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Given China's vast area, we used probability density function (PDF) to analyze the distribution of OA and its components 

across different concentration ranges for all grid points, complementing the overall trend analysis. Fig.4(c) shows that the PDF 

for SOA concentrations flattened out, with higher probability density values, leading to a significant national increase in SOA 

levels. In contrast, POA trends moved in the opposite direction (Fig.4(b)). While Western China's vast area may impact 300 

arithmetic averages, PDF analysis still shows a significant rise in SOA levels, which is consistent with the annual variations 

calculated using arithmetic averages. To better understand the impact of low OA concentration areas like Xinjiang, Tibet, and 

Qinghai (Fig.2 (a)), we also analyzed trends while excluding these regions (Table S2). The calculated trends indicate that the 

impact of low concentration regions is limited, while the overall trend is dominated by changes in high concentration areas. 

Given China's vast area, we used probability density function (PDF) to analyze the distribution of OA and its components 305 

across different concentration ranges for all grid points, complementing the overall trend analysis. Fig.4(c) shows that the PDF 

for SOA concentrations shifted right, with higher probability density values, leading to a significant national increase in SOA 

levels. In contrast, POA trends moved in the opposite direction (Fig.4(b)). While Western China's vast area may impact 

arithmetic averages, PDF analysis still shows a significant rise in SOA levels, which is consistent with the annual variations 

calculated using arithmetic averages. To better understand the impact of low OA concentration areas like Xinjiang, Tibet, and 310 

Qinghai (Fig.2 (a)), we also analyzed trends while excluding these regions (Table S2). The calculated trends indicate that the 

impact of low concentration regions is limited, while the overall trend is dominated by changes in high concentration areas. 

3.2.1 Attribution of POA trend 

We analyzed the decreasing trend of POA and found that both anthropogenic emissions and biomass burning were responsible 

for it. Anthropogenic emissions contributed 87.4% and dominated the long-term trend, while biomass burning substantially 315 

affected the inter-annual variation (IAV) although it only contributed by 12.5% emission on average. As shown in Fig.5(a) 

and Fig.S7(a), variations in biomass burning are responsible for the large IAV of POA concentrations. Biomass burning usually 

has a strong seasonality, so we analyzed its contribution across different seasons (Fig.5(b)). We found that biomass burning in 

China was most intensive in spring as the relative contribution to total POA emission was 21.4%. Previous studies have also 

reported the significant contributions from biomass burning in China, mainly due to agricultural activities. For example, 320 

extreme crop residue burning events occurred in Northeast China and Northwest China in 2003 which greatly deteriorated air 

quality (Wang et al., 2020; Zhuang et al., 2018).  

 

As the largest source of POA, anthropogenic emissions of POA decreased by -7.8% from 1990 to 2019 and is in good 

agreement with the change of POA concentration. As mentioned in Section 3.3, the change in POA concentration was non-325 

monotonic, which can be explained by the varied changes in anthropogenic POA emissions, as shown in Fig. 5(a). 

Anthropogenic POA emissions were primarily from residential usage of coal and biofuel (78%), followed by a minor 

contribution from industry (18%) (Zheng et al., 2018). It increased by 1.6% per year over 1990-2006 along with the expansion 
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of population and Gross Domestic Product (GDP) (Liu et al., 2022; Xing et al., 2022), and then started to gradually decrease 

by -1.7% per year over 2006-2013 as a result of the emission control policies for industrial sources such as manufacturing 330 

boilers (Zheng et al., 2018). Since 2014, China has started to strictly implemented more efficient and national emission control 

policies which greatly lower the anthropogenic emission. Policies such as "Action Plan for Air Pollution Prevention and 

Control" have been reported to play a pivotal role in emission reduction by imposing restrictions on coal use and implementing 

advanced emission control technologies (Cai et al., 2017; Cui et al., 2020; Feng et al., 2019; Maji et al., 2020). As a result, a 

rapid reduction of anthropogenic POA emission started from 2014, which is attributed to broadly replace residential usage of 335 

coal and biofuel with electricity and gas. These policies significantly lower the total POA emission by -42.8% over 2014-2019 

(Zheng et al., 2018). Since residential POA emission was mainly for cooking and heating purposes, we also analyzed the 

seasonality of anthropogenic POA emission and found winter indeed showed the greatest contribution (Fig.5(b)). In summary, 

the changes in POA concentration and POA emissions during the past 30 years in China could be well explained by the 

implementation of a series of air pollution management activities. 340 

 

 

Figure 5: (a) 1990 to 2019 interannual variation of average surface anthropogenic (blue) and biomass burning (pink) primary 

organic aerosols (POA) emissions (unit: g m-2 mon-1). The yellow dashed line represents the linear regression fit for anthropogenic 

POA emissions over the periods 1990–2006, 2006–2014, and 2014–2019. (b) Seasonal average surface anthropogenic (blue) and 345 
biomass burning (pink) POA emissions (unit: g m-2 mon-1) and the relative contribution of different seasons (%). 

3.2.2 Attribution of SOA trend 

SOA is produced from both anthropogenic and biogenic emissions of VOC. ASOA contributed roughly 74.3% to total SOA 

during the study period, with high concentrations found over urban areas such as North China Plain, Yangtze River Delta, 

Sichuan Basin Area, and Pearl River Delta. Anthropogenic VOC mainly consist of aromatics (AVOC), semi-volatile organic 350 

compounds (SVOC), and intermediate-volatile organic compounds (IVOC). In contrast to POA, which primarily comes from 

residential sector, emission sources of anthropogenic VOC are quite complex and have different changes in China over the 

past decades. AVOC emission is mainly from industry (21%), solvent usage (25%), and transportation (22%) (Zheng et al., 

2018). Both industry and solvent usage gradually increased over the past decades and subsequently lead to enhanced AVOC 



 

16 

 

emission although transportation slightly decreased. Anthropogenic AVOC increased by 115.8% from 1990 to 2019, with most 355 

significant enhancement over urban clusters mentioned above. Although a prominent decrease of AVOC was observed over 

2014-2019, it remains the largest contributor of anthropogenic VOC as shown in Fig.6(b). IVOC increased throughout the 

study period (Fig.7(b)), and their importance in SOA formation grew over time (Fig. S10). However, their relative contribution 

to total anthropogenic VOC emissions remained minor. SVOC primarily originated from the same sources as POA (Chang et 

al., 2022). Although SVOC dominated the formation of ASOA in 1990, accounting for 51.9% of the total ASOA (Fig. S10(c)), 360 

their concentrations decreased after 2006 due to reduced emissions (Fig. 7(b)). Although SVOC emissions declined, the rise 

in AVOC emissions not only offset this reduction but also emerged as the primary driver of the sustained increase in ASOA. 

SOA is produced from both anthropogenic and biogenic emissions of VOCs. ASOA contributed roughly 74.3% to total SOA 

during the study period, with high concentrations found over urban areas such as NCP, YRD, SBA, and PRD. Anthropogenic 

VOCs mainly consist of aromatics (AVOC), semi-volatile organic compounds (SVOC), and intermediate-volatile organic 365 

compounds (IVOC). In contrast to POA, which primarily comes from residential sector, emission sources of anthropogenic 

VOCs are quite complex and have different changes in China over the past decades. AVOC is mainly emitted from industry 

(21%), solvent usage (25%), and transportation (22%) (Zheng et al., 2018). Both industry and solvent usage gradually increased 

over the past decades and subsequently lead to enhanced AVOC emission although transportation slightly decreased. 

Anthropogenic AVOC increased by 115.8% from 1990 to 2019, with most significant enhancement over urban clusters 370 

mentioned above. Although a prominent decrease of AVOC was observed from 2014-2019, it remains the largest contributor 

of anthropogenic VOCs as shown in Fig.6(b). SVOC are mainly emitted from the same sources as POA (Chang et al., 2022), 

which also gradually increased before 2006 but decreased since then. IVOC increased throughout the study period but the 

relative contribution to total anthropogenic VOCs emission was minor. A pilot study suggested that S/IVOC might be the main 

source of SOA in urban areas (Zheng et al., 2023c). 375 

 

 

Figure 6: (a) Interannual variations in modelled average surface concentrations of secondary organic aerosols from anthropogenic 

sources (ASOA) and biogenic sources (BSOA) (unit: μg m-3). (b) Interannual variations in emissions of aromatics (AVOC), semi-

volatile organic compounds (SVOC), and intermediate-volatile organic compounds (IVOC) (unit: g m-2 mon-1).  380 
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BSOA was found to play an important role especially during summer over South China, and recent studies also revealed that 

formation of BSOA is closely affected by anthropogenic pollutants such as sulfate and NOx (Liu et al., 2021b; Pye et al., 

2013). To understand the contribution of BSOA to the long-term trend of total OA over China, we further analyzed the trend 

of SOAIE and SOAMT, which are the two main components of BSOA. During 1990-2019, SOAIE concentrations decreased by 385 

-0.01 μg m-3 per decade (-6.3% per decade). The reduction of SOAIE appears to be primarily driven by the combined effect of 

IEPOX and SO4
2- availability, as the formation mechanism of SOAIE fundamentally relies on the heterogeneous uptake of 

IEPOX onto sulfate aerosols (Dong et al., 2022; Jo et al., 2019, 2021). On one hand, anthropogenic emission of SO2 has been 

greatly lowered by the enforcement of the Energy Conservation and Emission Reduction (ECER) and a corresponding decrease 

in the concentrations of SO4
2- has been observed (Fig.S16(d)). This is responsible for the decrease in SOAIE since 2006. On 390 

the other hand, the precursor IEPOX showed an opposite decreasing trend (Fig.S16(e-f)) as compared to anthropogenic 

emission enhancement of NOx before 2011, since NOx would affect the oxidation pathway of isoprene. We find a nationwide 

reduction of SOAIE over the study period, with an exceptional increase in Yunnan province. The increase of SOAIE over 

Yunnan province shall be due to the combined effect of enhancement in vegetation coverage resulting from ecosystem projects 

in China (Hua et al., 2018) and the increase of SO4
2- transported from Peninsular Southeast Asia (e.g., Vietnam, Thailand) 395 

resulted from development of local industries (Dalsøren et al., 2009; Grandey et al., 2018). In summary, our results suggested 

that the change in SOAIE is affected by SO4
2-, which is consistent with previous studies using different models (Liu et al., 

2021b; Qin et al., 2018).  

 

 400 

Figure 7: (a) 1990 to 2019 annual average of surface SOAIE (isoprene-epoxydiol-derived secondary organic aerosols; unit: μg m−3) 

concentrations. (b) 1990 to 2019 annual average long-term trend of surface SOAIE (unit: μg m−3 per decade) concentrations. (c) 
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Interannual variations of average surface SOAIE (left Y axis), IEPOX (isoprene epoxydiol; right Y axis) and SO4
2- (scaled by a factor 

of 0.06; left Y axis) concentrations during 1990-2019. (d) 1990 to 2019 annual average of surface SOAMT (monoterpene-derived 

secondary organic aerosols; unit: μg m−3) concentrations. (e) 1990 to 2019 annual average long-term trend of surface SOAMT (unit: 405 
μg m−3 per decade) concentrations. (f) Interannual variations of average surface SOAMT subspecies concentrations during 1990-2019 

(unit: μg m−3). 

 

Figure 7: (a) 1990 to 2019 annual average of surface SOAIE (isoprene-epoxydiol-derived secondary organic aerosols; unit: μg m−3) 

concentrations. (b) 1990 to 2019 annual average long-term trend of surface SOAIE (unit: μg m−3 per decade) concentrations. (c) 410 
Interannual variations of average surface SOAIE (left Y axis), IEPOX (isoprene epoxydiol; right Y axis) and SO4

2- (scaled by a factor 

of 0.06; left Y axis) concentrations during 1990-2019. (d) 1990 to 2019 annual average of surface SOAMT (monoterpene-derived 

secondary organic aerosols; unit: μg m−3) concentrations. (e) 1990 to 2019 annual average long-term trend of surface SOAMT (unit: 

μg m−3 per decade) concentrations. (f) Interannual variations of average surface SOAMT and its subspecies concentrations during 

1990-2019 (unit: μg m−3). 415 

 

Monoterpene-derived SOA was sensitive to both NOx level and biogenic emission, so we first analyzed the trend of SOAMT 

and its subspecies and then employed sensitivity simulations to distinguish the influences from chemistry and emission. 

Monoterpenes can be oxidized by different oxidants to form SOAMT, so the change in anthropogenic NOx emission may affect 

the trend of SOAMT by altering the oxidation pathways. We found in the long-term simulation that the net effect of different 420 

oxidation pathways led to an overall increasing trend of SOAMT, as shown in Fig.7(e-f). We defined four subspecies of SOAMT: 

SOAMT_O3, SOAMT_NO3, SOAMT_OH(low NOx), and SOAMT_OH(high NOx), which are produced from O3 oxidation, nitrate radical (NO3) 

oxidation, hydroxyl radical (OH) oxidation under low NOx condition and OH oxidation under high NOx condition, 

respectively. The main contributor to SOAMT concentration in China was SOAMT_O3
 (34.6%, Fig.S17(a)), followed by 

SOAMT_NO3
 (31.2%, Fig.S17(c)), SOAMT_OH(high NOx) (18.1%, Fig.S17(g)) and SOAMT_OH(low NOx) (16.1%, Fig.S17(e)). The 425 

different SOAMT components had regionally different or even opposite long-term trends. SOAMT_NO3
 showed a regionally 

consistent and significant increasing trend (Fig.S17(d)) in line with SOAMT (4.1% per decade) (Fig.7(e)). A slight but solid 

increasing trend in SOAMT_OH(high NOx) is shown in Fig.S17(h), which together with the enhancement of SOAMT_NO3
 



 

19 

 

concentrations dominates the increasing trend in total SOAMT. SOAMT_O3
 (Fig.S17(b)) and SOAMT_OH(low NOx) (Fig.S17(f)) had 

similar trends but the change in SOAMT_OH(low NOx) was relatively smaller. 430 

 

The decreasing trend in SOAMT_O3
 and SOAMT_OH(low NOx) offset the enhancement in the other two SOAMT components. The 

different trends of SOAMT components were affected by the changes in oxidants, which were mainly determined by changes 

in anthropogenic NOx emissions (Fig.8(b)). The surface concentrations of NOx and NO3 increased over 1990-2019, while O3 

and OH increased relatively slowly, which led to differences in the variation of the SOAMT components during the study period. 435 

The total SOAMT has increased since 1990 primarily due to increased monoterpenes emissions because of both a higher 

temperature (Fig.8(a)) and also enhanced vegetation coverage (Guenther et al., 2012; Fu and Liao, 2014). Related studies 

suggested that vegetation coverage was increase over China during the past due to a series of ecological restoration and 

conservation policies (Guo et al., 2022), such as the Grain-for-Green Program (Yin et al., 2018) and Urban Ecological 

Civilization Construction. These policies have effectively promoted vegetation recovery and expansion, while also driving the 440 

continuous increase in urban greening areas. These changes collectively contributed to the rising trend in BVOC emissions 

and subsequent changes in SOA concentrations. 

The decreasing trend in SOAMT_O3
 and SOAMT_OH(low NOx) offset the enhancement in the other two SOAMT components. The 

different trends of SOAMT components were affected by the changes in oxidants, which were mainly determined by changes 

in anthropogenic NOx emissions (Fig.8(b)). The mixing ratio of NOx and NO3 increased over 1990-2019, while O3 and OH 445 

increased relatively slowly, which led to differences in the variation of the SOAMT components during the study period. The 

total SOAMT has increased since 1990 primarily due to increased monoterpenes emissions because of higher temperature 

(Fig.8(a)). Increased temperatures usually promote the BVOCs emissions (Guenther et al., 2012).  

 

 450 
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Figure 8: (a) 1990 to 2019 JJA time series of surface temperature (dark gray solid line; left Y axis; unit: K), relative changing ratio 

of surface concentrations for monoterpenes (orange dashed line; right Y axis; MTERP), isoprene (green dashed line; right Y axis; 

ISOP), monoterpenes emissions (orange solid line; right Y axis; MTERP Emi) and isoprene emissions (green solid line; right Y axis; 

ISOP Emi). (b) 1990 to 2019 JJA time series of relative changing ratio of surface concentrations for nitrogen oxidizes (NOx; red), 

ozone (O3; pale blue), hydroxyl radical (OH; yellow), and nitrate radical (NO3; cyan). All relative changing ratios are calculated as 455 
the concentration in each year divided by the concentration in 1990. 

 

Figure 8: (a) 1990 to 2019 JJA time series of surface temperature (dark gray solid line; left Y axis; unit: K), normalized monoterpenes 

(orange dashed line; right Y axis) and isoprene (green dashed line; right Y axis) mixing ratios (MTERP and ISOP) and normalized 

surface monoterpenes (orange solid line; right Y axis) and isoprene (green solid line; right Y axis) emissions (MTERP Emi and ISOP 460 
Emi). (b) 1990 to 2019 JJA time series of surface normalized nitrogen oxidizes (NOx; red), ozone (O3; pale blue), hydroxyl radical 

(OH; yellow), and nitrate radical (NO3; cyan) mixing ratios. The ratio of the current year value to the 1990 value is used as the 

normalized value. 

 

Since anthropogenic NOx emission change may have a nonlinear effect on SOAMT, we applied sensitivity simulations by 465 

perturbing NOx emissions and biogenic emissions respectively to quantify their contributions. We found that the response of 

SOAMT to NOx emission change was almost negligible when NOx emissions rose to twice the 100nudging or fell to half the 

100nudging in July 2013 (Fig.9(b)), although the major atmospheric oxidizers such as O3, OH, NO3, and NOx showed 

significant changes (Fig.S22). For example, the increase in NOx emissions drove SOAMT_OH(high NOx) and SOAMT_NO3
 to increase, 

but meanwhile, the effect was offset by decreases in SOAMT_OH(low NOx) and SOAMT_O3
. Similarly, under condition of NOx 470 

emission reduction, the SOAMT response was small due to the offsetting relative changes in the SOAMT components. Our 

simulation results suggested that anthropogenic emission change has a very limited net effect on SOAMT over the study period. 

Since anthropogenic NOx emission change may have a nonlinear effect on SOAMT, we applied sensitivity simulations by 

perturbing NOx emissions and biogenic emissions respectively to quantify their contributions. We found that the response of 

SOAMT to NOx emission change was almost negligible when NOx emissions rose to twice the 100nudging or fell to half the 475 

100nudging in July 2013 (Fig.9(b)), although the major atmospheric oxidizers such as O3, OH, NO3, and NOx showed 

significant changes (Fig.S20). For example, the increase in NOx emissions drove SOAMT_OH(high NOx) and SOAMT_OH(low NOx) to 

increase, but meanwhile, the effect was offset by decreases in SOAMT_NO3
 and SOAMT_O3

. Similarly, under condition of NOx 
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emission reduction, the SOAMT response was small due to the offsetting relative changes in the SOAMT components. Our 

simulation results suggested that anthropogenic emission change has a very limited net effect on SOAMT over the study period. 480 

 

Through sensitivity simulations by perturbing monoterpenes emission, however, we found that the responses of SOAMT and 

its components were almost linear. When the monoterpenes emissions increased to twice that of the 100nudging in July 2013, 

the concentrations of SOAMT and its components on the surface of China also increased by two times. Meanwhile, when the 

monoterpenes emission decreased to half of the 100nudging, the concentrations of SOAMT and its components decreased by 485 

half too (Fig.9(a)). Changes in monoterpenes emissions showed a minor impact on atmospheric oxidants (Fig.S23). In brief 

summary, we found that anthropogenic NOx emission change has a very limited impact on SOAMT, while enhanced 

monoterpenes emissions due to a warmer surface temperature dominate the increasing trend over 1990-2019.  

 

 490 

Figure 9: Surface concentrations (unit: μg m-3) of monoterpene-derived secondary organic aerosols (SOAMT) compositions for July 

2013 from the monoterpenes (a) and NOx (b) sensitivity experiments named 100nudging (green bar), 0.5MTERP/NOx (pink bar), 

and 2MTERP/NOx (orange bar). 
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Figure 9: Surface concentrations (unit: μg m-3) of monoterpene-derived secondary organic aerosols (SOAMT) compositions for July 495 
2013 from the monoterpenes (a) and NOx (b) sensitivity experiments named 100nudging (green bar), 0.5MTERP/NOx (pink bar), 

and 2MTERP/NOx (orange bar). 

4. Summary and discussion 

In this study we applied the CAM-chem model along with ground-based measurements and the CAQRA-aerosols dataset to 

investigate the long-term trend of OA in 1990-2019 in China. A slight increase of total OA by 1.8% per decade was found to 500 

be a net effect of decrease in POA by -0.08 μg m-3 per decade (-2.7% per decade) and enhancement of SOA by 0.16 μg m-3 

per decade (10.8% per decade). There are significant regional differences in the change trend of OA, which generally decreased 

in the east (e.g., Yangtze River Delta) and increased in the west (e.g., Sichuan Basin), and this trend was more significant in 

winter, indicating the dominant contribution from primary anthropogenic emission of POA. 

 505 

Further analyzing the causes of POA and SOA trends, we found that the main factors affecting POA trends are biomass burning 

and anthropogenic emissions. Anthropogenic emissions accounted for 87.4% and dominated the long-term trend of POA, but 

biomass burning dominated the IAV. We found that anthropogenic VOCs made a major contribution to total SOA by 74.3% 

and the spatiotemporal characteristics were well consistent with POA. For SOA produced from BVOCs, we found in the 

simulation that BSOA plays an important role over South China especially in summer with contribution up to 47.1%. Total 510 

BSOA decreased by -4.1% over the study period. Isoprene derived SOAIE is greatly affected by heterogeneous reactions 

catalyzed by sulfate, which decreased rapidly since 2006 and resulted in a decline by -18.8% over 1990-2019. On the other 

hand, monoterpene-derived SOAMT increased by 12.3%. We found through sensitivity experiments that anthropogenic NOx 

emissions change had an almost negligible impact on total SOAMT, although the contributions from different oxidation 

pathways changed slightly. The trend in SOAMT was dominated by increased biological emissions due to a warmer climate. 515 
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Our study revealed the change of total OA in China during the past 30 years and the contribution from various driving factors. 

Anthropogenic emission, biomass burning emission, and biogenic emission all showed important and unique impacts on the 

long-term trend of OA, indicating that future air quality management would be recommend to take a comprehensive 

consideration of the abovementioned sources. Especially, we found that anthropogenic contributions to both POA and SOA 520 

substantially decreased since 2014, while biogenic contribution has the potential to increase under a warming climate. BSOA 

plays a minor role on a national scale but may have significant contribution over densely vegetated southern areas of China 

during summer, while a main part of it is hardly affected by anthropogenic emissions but is enhanced by a warming climate. 

This implies that future research may need to pay more attention to biogenic sources. In addition, it should be noticed that our 

current model may have deficiencies in terms of both emission inventory and chemical mechanism for simulating SOA. For 525 

example, current model only considers the heterogeneous production of IEPOX derived SOA, but recent studies show that 

isoprene may also produce SOA through intermediate oxidation gas-phase products hydroxymethylmethyl-α-lactone (HMML) 

and methacrylic acid epoxide (MAE) (He et al., 2018; Zhang, 2023), which are not considered in the current model. This may 

also be partially responsible for the underestimation of SOA mentioned earlier. Therefore, continuous development of the SOA 

chemical mechanisms is recommended to improve the simulation capability of the model. And in addition, more detailed 530 

observations of OA components are needed to further investigate the interactions between biological and anthropogenic 

sources. 

 

Data availability. The long-term CAM6-Chem model data is too large to be published through public FTP or cloud drives. It 

will be made available upon reasonable request. Ground-based measurements for OA, POA, and SOA were obtained from the 535 

supplementary materials of published articles by Miao et al. (2021) and Chen et al. (2024). The publicly available high-

resolution simulation dataset of PM2.5 composition over China (CAQRA-aerosols) was obtained from the Data Integration 

Project of the National Natural Science Foundation's Air Pollution Complex Major Research Plan (Project Number: 92044303) 

via the China Air Pollution Data Center (CAPDC) (https://www.capdatabase.cn). The 24-hour average PM2.5 and O3 data can 

be accessed from the China Environmental Monitoring Terminal (CEMT) National Urban Air Quality Real-Time Distribution 540 

Platform (NUAQRDP) (https://air.cnemc.cn:18007/). MODIS AOD data is available at https://atmosphere-

imager.gsfc.nasa.gov/products/aerosol. NO2 column concentration data can be accessed from the OMI (Ozone Monitoring 

Instrument) Level-3 dataset on NASA's AURA satellite platform 

(https://disc.gsfc.nasa.gov/datasets?keywords=OMI&page=1). 
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