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Introduction  18 

This supporting information collects the parameter values derived from fits of Equations 3 and 4 to all ODV time 19 
series analyzed in this work in Tables S1 to S5. Figures S1 to S7 illustrate some of these fits and provide additional 20 
data presentations. Text S1 to S7 present additional discussion aspects of the observation-based model and model 21 
uncertainties.   22 
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Table S1. Parameter values (with 95% confidence limits) derived from fits of Equation 1 to time series of ODVs 23 
time series from the isolated rural CASTNET sites. 24 

Site     a b c yearmax RMSD 
(ppb) (ppb yr-1) (ppb yr-2) (ppb) 

Glacier NP 54.9 ± 1.1  0.09 ± 0.16 -0.010 ± 0.011 2004 ± 9 1.2 
Yellowstone NP 65.9 ± 2.9 -0.31 ± 0.67 +0.007 ± 0.032 --- 1.7 
Craters of the Moon NM 62.5 ± 3.8  0.16 ± 0.67 -0.009 ± 0.038   2009 ± 51 2.4 
Lassen Volcanic NP 72.4 ± 2.7 -0.05 ± 0.35 -0.016 ± 0.025 1999 ± 11 3.1 
Great Basin NP 71.5 ± 2.1  0.14 ± 0.51 -0.020 ± 0.028 2004 ± 13 2.0 
Canyonlands NP 70.3 ± 2.0  0.17 ± 0.46 -0.024 ± 0.024 2003 ± 10 1.7 
Grand Canyon NP 72.5 ± 1.3  0.07 ± 0.21 -0.026 ± 0.014 2001 ± 4 1.4 
Chiricahua NM 70.1 ± 1.7  0.19 ± 0.29 -0.020 ± 0.018 2005 ± 8 1.8 
All sites 67.7 ± 1.9  0.09 ± 0.33 -0.018 ± 0.020 2003 ± 10 5.9 
All sites - normalized 71.3 ± 0.8  0.07 ± 0.13 -0.015 ± 0.008 2002 ± 4 2.4 
 25 

  26 
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Table S2. Parameter values from fits of Equation 3 to time series of percentiles of maximum MDA8 ozone 27 
concentration distributions recorded in the California air basins and calculated from the ozone sondes launched from 28 
Trinidad Head CA. RMSD gives the root-mean-square deviations between the observed ozone concentrations and 29 
the derived fits. 30 

Data set a (ppb) A (ppb) RMSD (ppb) 
Maximum 

San Diego AB 52.6 ± 13.4  58.6 ± 9.7 16.8 
SoCAB 66.6 ± 13.4  95.8 ± 9.7 16.7 
SFB AB 75.5 ± 9.6  25.1 ± 6.9 11.9 
North Coast AB 65.4 ± 7.7  4.6 ± 6.0 12.0 
Ozone sondes 76.5 --- --- 

98th percentile 
San Diego AB 58.6 ± 5.7  41.0 ± 4.1 7.1 
SoCAB 60.8 ± 8.9  87.7 ± 6.4 11.1 
SFB AB 70.2 ± 6.5  21.1 ± 4.7 8.0 
North Coast AB 58.1 ± 5.7  4.3 ± 4.5 8.9 
Ozone sondes 76.5 --- --- 

90th percentile 
San Diego AB 54.2 ± 3.5  32.5 ± 2.5 4.4 
SoCAB 53.0 ± 5.6   76.6 ± 4.1 7.0 
SFB AB 54.8 ± 5.1 18.5 ± 3.7 6.3 
North Coast AB 47.6 ± 3.9  4.1 ± 3.0 6.1 
Ozone sondes 52.3 --- --- 

75th percentile 
San Diego AB 49.5 ± 2.9 27.9 ± 2.1 3.7 
SoCAB 50.0 ± 5.7 65.0 ± 4.1 7.1 
SFB AB 45.6 ± 3.5 14.4 ± 2.5 4.3 
North Coast AB 42.4 ± 3.2  3.0 ± 2.5 5.0 
Ozone sondes 45.8 --- --- 

median 
San Diego AB 45.8 ± 3.0 21.5 ± 2.2 3.7 
SoCAB 46.4 ± 5.9 50.8 ± 4.3 7.4 
SFB AB 38.8 ± 2.8 10.9 ± 2.0 3.5 
North Coast AB 37.6 ± 2.7  1.3 ± 2.1 4.2 
Ozone sondes 39.3 --- --- 

25th percentile 
San Diego AB 43.2 ± 3.2 14.9 ± 2.3 4.0 
SoCAB 45.6 ± 7.1 34.4 ± 5.1 8.8 
SFB AB 33.8 ± 2.1  8.6 ± 1.5 2.6 
North Coast AB 33.1 ± 2.7  0.5 ± 2.1 4.2 
Ozone sondes 31.8 --- --- 

10th percentile 
San Diego AB 40.4 ± 2.8 10.1 ± 2.0 3.5 
SoCAB 46.1 ± 6.9 18.0 ± 5.0 8.6 
SFB AB 29.1 ± 2.0  7.7 ± 1.4 2.5 
North Coast AB 29.3 ± 2.4  -0.7 ± 1.9 3.7 
Ozone sondes 25.7 --- --- 

Minimum 
San Diego AB 31.5 ± 4.1 4.4 ± 3.2 6.4 
SoCAB 43.1 ± 4.4 0.1 ± 3.4 6.9 
SFB AB 22.7 ± 3.0  5.2 ± 2.4 4.7 
North Coast AB 20.7 ± 3.3  -2.8 ± 2.6 5.1 
Ozone sondes 5.8 --- --- 

  31 
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Table S3. Parameter values from all fits of Equation 3 to time series of ODVs recorded in the southwestern US. 32 
RMSD gives the root-mean-square deviations between the observed ODVs and the derived fits. 33 

Site(s) a (ppb) A (ppb) Nptsa RMSD 
(ppb) 

years 

CASTNET 
CASTNET - normalized 68.5 ± 1.5 2.8 ± 1.9 212 2.3 1990-2021 

Southwestern US - rural 
AZ rural 66.6 ± 1.9   5.4 ± 2.5 116 2.3  1990-2021 
Southern UT, Mesquite NV 64.8 ± 3.6   6.5 ± 5.6 66 2.6  1995-2021 
Four Corners area rural 69.6 ± 4.3 -2.7 ± 6.6 126 4.0  1996-2021 
Southern NM rural 69.4 ± 5.5 -1.3 ± 8.0 76 4.7  1992-2021 
CO rural 69.0 ± 3.1 -1.9 ± 4.4 97 4.0  1986-2021 

Southwestern US - urban 
Phoenix 69.0 ± 1.7 9.4 ± 2.3 658 4.8  1990-2021 
Phoenix max 75.2 ± 4.9 10.2 ± 5.4 32 2.9  1990-2021 
Tucson 63.9 ± 1.4   7.5 ± 1.2 264 3.4  1975-2021 
Tucson max 66.2 ± 2.9   9.7 ± 2.4 38 2.3  1980-2021 
Las Vegas 68.0 ± 2.6 11.6 ± 3.8 230 3.1  2000-2021 
Las Vegas max 69.6 ± 6.6 15.4 ± 9.9 22 2.3  2000-2021 
Reno 66.3 ± 2.2   4.9 ± 2.4 169 3.8  1982-2021 
Reno max 67.1 ± 4.8   6.8 ± 4.1 39 3.8  1982-2021 
Salt Lake City 66.6 ± 1.9 11.8 ± 1.7 351 5.2  1977-2021 
Salt Lake City max 68.9 ± 4.3 15.0 ± 3.2 43 3.8 1979-2021 
Albuquerque-Santa Fe 66.2 ± 1.8   4.0 ± 1.7 275 3.8  1981-2021 
Albuquerque-Santa Fe max 68.4 ± 3.0 5.3 ± 2.4 41 2.5  1981-2021 
Denver 69.0 ± 2.1 8.0 ± 1.7 412 6.2  1974-2021 
Denver max 74.7 ± 2.1 9.4 ± 1.4 47 4.3  1974-2021 

a Npts gives the number of ODVs included in each fit  34 
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Table S4. Parameter values from fits of Equation 4 to time series of maximum ODVs recorded in southwestern US, 35 
Texas and two other urban areas, TX, New York City, with the a parameter held at that derived for all ODVs in the 36 
respective urban area. RMSD gives the root-mean-square deviations between the observed maximum ODVs and the 37 
derived fits. 38 

Site(s) a (ppb) AWF (ppb) WF 
(ppb) 

RMSD 
(ppb) 

years 

Southwestern US - urban 
Phoenix max 69.0 12.9 ± 3.6 1.6 ± 2.5 3.0 1990-2021 
Tucson max 63.9 10.5 ± 1.6 1.4 ± 1.6 2.2 1980-2021 
Las Vegas max 68.0 16.1 ± 6.6 0.8 ± 3.3 1.8 2000-2021 
Reno max 66.3   7.0 ± 1.3 0.6 ± 1.4 3.8 1982-2021 
Salt Lake City max 66.6 15.6 ± 2.0 1.6 ± 2.5 3.7 1977-2021 
Albuquerque-Santa Fe max 66.2   6.0 ± 1.5 1.4 ± 1.7 2.5 1981-2021 
Denver max 69.0 11.0 ± 1.7 4.0 ± 2.5 4.0 1974-2021 

Other urban areas 
Houston max 53.9 54.4 ± 3.2 1.8 ± 2.0 3.6 1995-2021 
Dallas max 57.7 43.0 ± 2.5 2.6 ± 1.2 1.7 2000-2021 
El Paso max 64.6 14.2 ± 2.1 3.2 ± 2.8 4.3 1977-2021 
New York City max 52.2 39.7 ± 2.3 3.1 ± 1.2 3.7 2000-2021 
Atlanta max 49.1 54.4 ± 9.9 1.2 ± 6.1 5.4 1995-2021 

 39 

 40 

Table S5. Parameter values from all fits of Equation 3 to time series of ODVs recorded in nine Texas regions and 41 
neighboring states. RMSD gives the root-mean-square deviations between the observed ODVs and the derived fits. 42 

Site(s) a (ppb) A (ppb) Nptsa RMSD 
(ppb) 

years 

CASTNET 
CASTNET - normalized 68.5 ± 1.5 2.8 ± 1.9 212 2.3 1990-2021 

Texas Regions 
Dallas region 57.7 ± 3.1   34.6 ± 4.5 422 5.9  1995-2021 
Houston region 53.9 ± 3.2   43.2 ± 4.2 478 6.7  1995-2021 
El Paso region 64.6 ± 1.8 11.5 ± 1.7 366 4.9  1976-2021 
San Antonio region  58.4 ± 4.1 26.6 ± 6.3 138 3.9  2000-2021 
Beaumont-PA-LC 54.7 ± 3.4 28.0 ± 5.1 230 4.0  2000-2021 
So Coast Texas 52.1 ± 4.1  27.5 ± 6.0 63 2.5  2000-2021 
SW Texas 49.8 ± 4.9 18.2 ± 6.9 72 3.1  2000-2021 
Tyler-LV-SP 50.8 ± 4.6 37.3 ± 6.8 89 3.5  2000-2021 
Western rural region 64.9 ± 5.8  3.2 ± 8.1 50 3.5  1989-2017 

Other Western States 
Oklahoma 56.6 ± 2.8 25.1 ± 4.4 365 4.0  2000-2021 
Louisiana 54.3 ± 2.3 29.9 ± 3.3 519 4.2  2000-2021 
Arkansas 48.2 ± 4.7 37.5 ± 7.6 141 4.5  2000-2021 
Kansas 56.6 ± 4.2 20.2 ± 6.6 174 4.3  2000-2021 
Nebraska 56.5 ± 4.0   7.4 ± 3.6 146 6.6  1980-2021 
Montana 58.6 ± 1.6 1.25b 99 4.7  1979-2021 
North Dakota 59.6 ± 0.9 1.25b 181 3.6  1982-2021 
South Dakota 62.2 ± 1.7 1.25b 80 4.4  1990-2021 
Wyoming 64.2 ± 0.6 1.25b 227 2.8  1999-2021 

a Npts gives the number of ODVs included in each fit 43 
b Fit with A parameter value held fixed at this value  44 
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Table S6. Two-letter state abbreviations 45 
State State State 

Alabama AL Kentucky KY North Dakota ND 
Alaska AK Louisiana LA Ohio OH 
Arizona AZ Maine ME Oklahoma OK 
Arkansas AR Maryland MD Oregon OR 
California CA Massachusetts MA Pennsylvania PA 
Colorado CO Michigan MI Rhode Island RI 
Connecticut CT Minnesota MN South Carolina SC 
Delaware DE Mississippi MS South Dakota SD 
District of Columbia DC Missouri MO Tennessee TN 
Florida FL Montana MT Texas TX 
Georgia GA Nebraska NE Utah UT 
Hawaii HI Nevada NV Vermont VT 
Idaho ID New Hampshire NH Virginia VA 
Illinois IL New Jersey NJ Washington WA 
Indiana IN New Mexico NM West Virginia WV 
Iowa IA New York NY Wisconsin WI 
Kansas KS North Carolina NC Wyoming WY 
  46 
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 48 

Figure S1. Comparison of distribution of ozone concentrations measured between 0.6 and 1 km altitude by sondes 49 
launched from Trinidad Head from May through September, 1997-2017 (left bar in two left graphs) and 50 
distributions of (top) a and A parameter values and (bottom) year 2015 US background ozone contribution and US 51 
anthropogenic ozone enhancement derived from the temporal evolution of maximum MDA8 ozone concentrations 52 
measured in 4 coastal California air basins. Figure 2 of the manuscript illustrates that MDA8 evolution. Error bars 53 
on the median and 90th percentile lines indicate estimated uncertainties. The inset map identifies the 4 air basins, 54 
with the black lines indicating the air basin boundaries.   55 
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 56 

Figure S2. Map of southwestern US rural monitoring sites; the symbols are color-coded according to site elevation 57 
as annotated. Lines indicate outlines of southwestern US states (black), urban areas (gold) and interstates and 58 
selected other major highways (violet). ODV time series from rural areas whose sites are analyzed together as 59 
separate data sets are included in Figure S3. Locations of specific CASTNET sites as well as the Four Corners area 60 
are annotated.  61 
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 62 

Figure S3. Time series of ODVs recorded in four southwestern US rural areas shown in Figure S2. Symbols 63 
indicate different sites as annotated. The southern NM sites are identified as western and eastern by different 64 
colors. Green dashed curves indicate fits of Equation 3 to all ODVs, with the parameters derived in the fit 65 
annotated. The black solid curves with dashed extensions indicate the fit to the baseline data from Figure 1, 66 
normalized to the respective a parameter values. The light dashed lines indicate the 70 ppb ozone NAAQS.  67 
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 68 

Figure S4. (upper graphs) Time series of ODVs recorded in two of the Texas regions shown in Figure 7 of the 69 
manuscript. Grey symbols in each graph indicate all recorded Texas ODVs. Colored symbols indicate the 70 
ODVs from each respective area. Upper curves indicate fits of Equation 3 to all ODVs in the area; the 71 
parameters derived in these fits are annotated. Lower curves with dashed extensions indicate the fit to the 72 
baseline data from Figure 1, but here normalized to the respective a parameter values. (lower graphs) Time 73 
series of ODVs recorded in Oklahoma and the four northern rural states. For Oklahoma upper curve indicates fit 74 
of Equation 3 to all ODVs in the state for 2000-2021; the parameters derived in this fit is annotated. Lower 75 
curve with dashed extension indicates the fit to the baseline data from Figure 1, normalized to the a parameter 76 
value derived for Oklahoma.For the northern states the curves indicate fits of Equation 3 to all ODVs recorded 77 
in each state; in these fits the A parameter value is fixed at 1.25 ppb. The derived a parameter values are 78 
annotated. In all graphs, the light dashed lines indicate the 70 ppb ozone NAAQS.  79 



 

 11 

 80 

Figure S5. Analysis of time series of ODVs recorded in four neighboring states. Grey symbols in each graph 81 
indicate all recorded ODVs in the states. Upper curves indicate fits of Equation 3 to all ODVs in the respective 82 
states. The parameters derived in these fits are annotated. Lower curves with dashed extensions indicate the fit to the 83 
baseline data from Figure 1, normalized to the respective a parameter values. Colored symbols in Arkansas indicate 84 
the ODVs from a single site that appear to be outliers, and are excluded from the fit.   85 
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 86 
Figure S6. Comparison of percentage of ODVs greater than 70 ppb recorded at all sites in individual states over two 87 
5-year periods: 2017-2021 (hatched and dark blue bars) and a period 20 years earlier - 1997-2001 (light-colored 88 
bars). Individual states are indicated by their two letter abbreviations (defined in Table S6). States are arbitrarily 89 
divided between eastern and western regions. Southwestern states, Texas and California are indicated by solid dark 90 
blue bars. Five states, all in the western region, reported no ODVs greater than 70 ppb. Format is the same as Figure 91 
9 of the manuscript.  92 
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 93 

Figure S7. Analysis of time series of ODVs recorded in two eastern urban areas – Atlanta GA and New York City 94 
NY. In Georgia ODVs from three groups of sites are indicated with different symbols. Grey symbols in lower graph 95 
indicate all recorded ODVs in NY. In the GA graph, upper solid curve indicates fit of Equation 3 to all Atlanta 96 
ODVs and the dotted curve indicates fit of Equation 4 to maximum Atlanta ODVs indicated by outlined circles. In 97 
NY graph, upper solid curve indicates fit of Equation 4 to the ODVs recorded at the sites representing the maxima in 98 
New York City. The parameters derived in the fits to Equation 4 are annotated. Lower curves with dashed 99 
extensions indicate the fit to the baseline data from Figure 1, normalized to the respective a parameter values. The 100 
light dashed lines indicate the 70 ppb ozone NAAQS.  101 
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S1.  Uncertainty of observation-based and chemical transport model results 102 

Equation 3 provides excellent fits to long-term ozone changes in diverse US regions. As written, Equation 3 has 103 
5 adjustable parameters (a, b, c, A, t); however 3 of these are constants whose values have been determined in 104 
previous analyses. Parrish et al. (2020) determined values for b = 0.20 ± 0.06 ppb yr-1 and c = 0.018 ± 0.006 ppb yr-2 105 
that were the same within derived confidence limits throughout northern midlatitudes. Parrish et al. (2021a) show 106 
that these results are consistent with results from 28 published quantifications of changes in average surface ozone 107 
concentrations at remote and rural western US locations that are thought to represent background ozone transported 108 
into North America. Parrish et al. (2017; 2022) determined a value of t = 21.8 ± 0.8 years from the time dependence 109 
of ODVs in 7 southern California air basins. This same value (within confidence limits) fit ODV time series 110 
throughout the western and northern US (Parrish et al., 2022) and in the northeastern US (Parrish and Ennis, 2019). 111 
Substitution of these values for b, c and t into Equation 3 leaves only 2 unknown parameters: a and A. Section 4 of 112 
the paper shows that the resulting Equation 3 with varying a and A parameter values provides excellent fits to all 113 
percentiles of the distributions of the maximum MDA8 ozone concentrations in 4 urban and rural California air 114 
basins (Figure 2), and also to ODV time series recorded at rural and remote western US CASTNET sites (Figure 1), 115 
at urban and rural sites throughout the southwestern US and Texas (Figures 5, 6 and 8), and in surrounding and more 116 
distant US states (Figures S3-S5 and S7). Previous work (Parrish et al, 2017; 2022; Parrish and Ennis, 2019) 117 
demonstrate that same equation (or one closely related) provides excellent fits to ODV time series recorded urban 118 
and rural sites along the entire US West Coast, in the northern rural states and in the northeastern US.  119 

It is widely accepted that photochemical ozone production involves a very complex set of physical and chemical 120 
processes, and that complexity causes ambient ozone concentrations to exhibit a highly non-linear dependence upon 121 
precursor concentrations (see e.g., Monks et al., 2015). The excellent fits of a 2 parameter equation to a great 122 
number of long-term ozone concentration time series recorded in a widely diverse range of environments 123 
demonstrates that there is an underlying simplicity to the evolution of ozone concentrations throughout the US, 124 
notwithstanding the complexity of ozone photochemistry. Fully understanding the origins of this simplicity may 125 
provide a very useful challenge for CTMs studies.  126 

In previous papers we have discussed inconsistencies between results of observation-based and chemical 127 
transport model (CTM) simulations, and among results from different CTM simulations. Section 3.4 and Figure 6 of 128 
Parrish et al. (2017) show seven CTM-derived US background ODV estimates for southern California air basins that 129 
varied from ~45 to ~65 ppb, with one outlier of 92 ppb; the observational-derived value of 62 ppb agrees well with 130 
one of those model results, although it is larger than most others. In their Section 4.2 Parrish and Ennis (2019) 131 
compare results from three CTMs with those from our observational-based approach in five US regions; these 132 
comparisons show significant spatial correlation between approaches (r2 values for different CTMs with the 133 
observational-based results vary from 0.31 to 0.90), but the CTMs are, on average, systematically lower by 4 to 13 134 
ppb. Zhang et al. (2020) find disagreements of similar magnitude between CTMs; US background ozone estimates 135 
from two state-of-the-art global models differed by 5 ppb on average and up to 15 ppb episodically. These 136 
disagreements have led to the increasing recognition that CTMs are not yet able to provide accurate estimates of 137 
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atmospheric ozone concentrations without incorporating additional information from observations; see, e.g., Skipper 138 
et al. (2021) and Hosseinpour et al. (2023).  139 

The following Sections S2-S7 discuss several issues regarding the assumptions and uncertainty of our 140 
observation-based approach. 141 

S2.  Relationship of US background ODV to ozone exceedance days 142 

(Note: A previous version of some of this material was originally included in the Supplement to Parrish et al., 2022 - 143 
https://www.tandfonline.com/doi/suppl/10.1080/10962247.2022.2050962?scroll=top&role=tab)  144 

One important question lacks a definitive answer: Are the four days that record the highest MDA8 ozone 145 
concentrations, i.e., the days that determine the ODV at present, the same four days that correspond to the highest 146 
US background, i.e., the days that would determine the ODV in the absence of anthropogenic precursor emissions? 147 
In other words, do the present highest ozone days also correspond to the days with the largest background ozone? 148 
Photochemical models provide a direct answer, but given the uncertainty associated with modeled background 149 
ozone concentrations on specific days (estimated as >10 ppb by Jaffe et al., 2018) this answer is likely not reliable. 150 
From our observational perspective, we cannot directly answer this question; however observation-based analyses 151 
can illuminate this question. It is useful to consider a heuristic example based on artificial data that illustrates some 152 
important considerations when considering this issue.  153 

Figure S8 represents an imaginary world that has no meteorological variability; every day is exactly like every 154 
other, except that there are gradual seasonal changes. The upper graph shows how MDA8 ozone might vary 155 
seasonally at a particular measurement site (black curves decreasing in amplitude over time due to emission 156 
controls.) With no US anthropogenic precursor emissions, ozone would equal the US background ozone (blue curve, 157 
assumed to average 40 ppb with a sinusoidal variation of 20 ppb amplitude), and would vary smoothly over the year, 158 
repeating identically each year. The US background ODV (i.e., the quantity we estimate in our work, which here is 159 
assumed constant) would then be given by the blue symbol very near the peak of the blue curve. 160 

US anthropogenic ozone precursor emissions in 2000 are assumed to increase the background ozone by an 161 
amount given by the red curve (average 35 ppb with a sinusoidal variation of 40 ppb amplitude). The blue and red 162 
curves are 3 months out of phase, in approximate accord with observed Northern Hemisphere background free-163 
tropospheric ozone concentrations that peak in the spring (April/May) and many urban areas that peak in mid to late 164 
summer. The total ozone measured in 2000 would then be given by the highest black curve, and the site ODV given 165 
by the highest black symbol. Subtraction of the US background ODV from the site ODV gives the US 166 
anthropogenic ODV enhancement in 2000 as indicated by the red arrow.  Notably, that quantity (60 ppb) is smaller 167 
than the US anthropogenic contribution to the ODV in 2000 (~71 ppb, given by orange arrow). This illustration lies 168 
at the heart of a common misunderstanding: the US background ODVs reported in this work are not the same as the 169 
current contributions of background ozone to current ODVs, because the maxima of background ozone and 170 
anthropogenic enhancements are offset from each other in the time of year when they occur. Nevertheless, when 171 
considering progress in reducing US anthropogenic precursor emissions, the US background ODV is still germane 172 
for considerations of compliance with the NAAQS. 173 
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Now we assume that the US anthropogenic 174 
ozone production decreases exponentially with a 175 
time constant of 20 years. Consequently, the total 176 
measured ozone (black curves) decreases year-by-177 
year, with the ODVs (black symbols) also 178 
decreasing, and simultaneously shifting to earlier in 179 
the year, and approaching the US background 180 
ODV (i.e., the blue symbol).  181 

As shown in the lower graph of Figure S8, the 182 
changes in site ODVs (black symbols in both 183 
graphs) are well fit by an exponential decay, as 184 
given by Equation 3 of the manuscript. The derived 185 
parameter a = 60.0 ± 0.4 ppb agrees with the 60 186 
ppb maximum of the blue curve, and the parameter 187 
A = 59.8 ± 0.3 ppb agrees with the 60 ppb 188 
magnitude of the year 2000 US anthropogenic 189 
ODV enhancement (red arrow in figure).  190 

An important conclusion from this illustrative 191 
example is that confusion can arise if a clear 192 
distinction is not made between the US 193 
anthropogenic ODV enhancement in 2000 (i.e., the 194 
red arrow), the anthropogenic contribution to the 195 
site ODV (i.e., the orange arrow) and the 196 
anthropogenic ozone production (i.e., the red 197 
curve, which varies during the year). 198 

One implication of this example is that episode 199 
days (i.e., those exhibiting the highest ozone) in 200 
earlier decades are not seasonally coincident with 201 
present episode days, and neither of those sets of 202 
episode days is seasonally coincident with future 203 
episode days. This is due to the growing relative 204 
importance of background ozone (which is larger 205 
in spring and early summer) as the magnitude of 206 
local and regional photochemical production, 207 
which is larger later in the summer, decreases. In actuality, episode days in southern California air basins have been 208 
observed to systematically move toward the spring from later in the summer; Parrish et al. (2017) show that when 209 
monitoring began in the South Coast Air Basin of California (i.e., the Los Angeles urban area) in the early 1970s, 210 
the average ozone episode day occurred in late July, but had progressively moved to early July by 2015. This 211 

Figure S8: Schematic variation of ozone at a measurement 
site. (top) Blue and red curves give the assumed constant 
US background ozone and the US anthropogenic ozone 
production in the year 2000, respectively. The black 
curves are the total observed ozone in the year 2000 and at 
progressively later 4-year intervals. The US background 
ODV is given by the blue symbol, and the site ODVs are 
given by the black symbols at the peak of their respective 
curves. The year 2000 US anthropogenic ODV 
enhancement and anthropogenic ODV contribution are 
given by the red and orange arrows, respectively. (bottom) 
Temporal evolution of site ODVs from upper graph, fit to 
Equation 3 of the manuscript, with derived parameters 
annotated. 
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seasonal shift of episode days adds considerable uncertainty to photochemical modeling for State Implementation 212 
Plan (SIP) development. The meteorological conditions (including the background ozone contribution) on the days 213 
that will require the greatest emission control efforts to lower the MDA8 ozone to the NAAQS is uncertain. The 214 
common assumption that those days correspond to the present maximum episode days is not valid, since days with 215 
higher background ozone concentrations may require even greater emission reductions to reach the NAAQS, even if 216 
they now are not the days when the highest ozone is observed. 217 

It should also be noted that an observation-based analysis has indicated a significant positive correlation between 218 
maximum observed ozone concentrations and high background ozone concentrations. Parrish et al. (2010) show that 219 
MDA8 ozone measured at surface sites in California’s Northern Sacramento Valley correlates positively (correlation 220 
coefficients as large as +0.53 at valley sites and +0.71 at an elevated surface site) with baseline ozone concentrations 221 
measured by sondes launched from the upwind location at Trinidad Head on the northern California coast. This 222 
analysis suggests that the days that determine the ODV will progressively tend to be the days of highest US 223 
background ozone concentration as anthropogenic ozone contributions are further reduced. 224 

It has been argued (e.g., see Section 1.8 of US EPA, 2020) that the highest US ozone concentrations occur during 225 
periods of low background ozone contributions. This argument is based on the reasoning that the largest background 226 
ozone contributions occur on spring days with strong convective mixing when ozone generated in the stratosphere or 227 
during long-range transport of Asian or natural precursors in the upper troposphere are more readily mixed to the 228 
surface. In contrast, the highest US ozone concentrations are thought to occur during multiday episodes under 229 
stagnant conditions when an air mass remains stationary over a region abundant in anthropogenic ozone precursor 230 
sources. However, this reasoning does not apply to the southwestern US, because surface ozone concentrations are 231 
strongly correlated with higher ambient temperatures, and higher temperatures are correlated with deeper 232 
atmospheric boundary layers (ABL) in this area. Examination of the climatology of ABL heights over western North 233 
America shows that in summer, when most ozone NAAQS violations occur, boundary layers tend to be deepest (see 234 
figure 5 of von Engeln and Teixeira, 2013). Deeper boundary layers develop due to greater vertical mixing driven by 235 
strong surface heating (i.e., entrainment). A recent paper (Langford et al., 2022) emphasizes that layers with 236 
elevated ozone concentrations above Las Vegas were commonly entrained into the ABL and thereby contributed to 237 
mean MDA8 regional background ozone concentrations of 50–55 ppb; note that our paper analyzes ODVs, which 238 
represent ~98th percentile MDA8 concentrations, and, as expected, the US background ODVs that we quantify are 239 
substantially larger than the 50–55 ppb mean background ozone discussed by Langford et al. (2022).  240 

Photochemical modeling in support of air quality policy development has generally focused on days exhibiting 241 
the largest MDA8 ozone concentrations. This choice is based on the implicit assumption that such days represent the 242 
meteorological conditions under which it will be most difficult to reduce the MDA8 to the NAAQS. Importantly, the 243 
US background ODV that is the focus of our analysis may not occur on those same days. Photochemical modeling 244 
on days with larger US background ODVs will be very informative, but such days are difficult to specifically 245 
identify. 246 
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S3.  Approximation of long-term change of US anthropogenic ODV enhancements by an exponential decrease 247 

An exponential function is chosen to approximate the long-term decrease of US anthropogenic ODV enhancements 248 
because it a) is consistent with our physical understanding of the drivers of urban and rural ozone concentrations, b) 249 
is a continuous function, c) is mathematically as simple as possible (i.e., has the fewest possible unknown 250 
parameters), and d) successfully accounts for a large fraction of the variance in recorded ODV time series 251 
throughout the US.  252 

Any functional form selected for interpretation of an ODV time series must be consistent, first, with a 253 
background contribution below which ODVs cannot be reduced by U.S. precursor emission controls alone, and 254 
second, with ODVs that have been enhanced above that background due to a pollution contribution, an enhancement 255 
that has continually decreased due to decades-long precursor emission reduction efforts. Equation 3 of the 256 
manuscript is designed to follow this physical picture. More generally, examination of ozone observations in US 257 
urban areas reveals similar trends throughout the country, with general decreases in all areas. A simple intuitive 258 
argument suggests that an exponential decrease in the pollution ozone contribution is to be expected. When emission 259 
controls are initiated, early progress can be rapid, since there are large emission sources that evolved initially with 260 
no plans for their control. As an illustrative example, when emission controls are first initiated it might be possible 261 
to reduce the pollution ozone contribution by half in the first 15 years of control efforts. After that period reducing 262 
emissions will be harder, since the most easily controlled emissions have been addressed. During the next 15 years, 263 
it might be possible to again reduce the remaining pollution ozone contribution by half (i.e., reduction of 25% of the 264 
original). A similar argument can be applied to each successive 15-year period. If this example were realistic, then 265 
the emission reductions would follow an exponential function, with t = 21.6 years, close to the value of t = 21.8 ± 266 
0.8 years reported by Parrish et al. (2022). Simply put, the expected increasing difficulty of reducing emissions by 267 
an absolute amount implies an approximately exponential decrease in the impact of those emissions.  268 

Despite the large variability of tropospheric ozone on a wide spectrum of temporal scales, the underlying long-269 
term changes in ODVs are expected to be continuous, since they are determined by slowly varying drivers such as 270 
changes in anthropogenic precursor emissions, land use (which affects natural precursor emissions), and climate. 271 
Exceptions might include rapid societal changes, such as occurred during the COVID-19 epidemic response, and 272 
volcanic eruptions; however, no discontinuous long-term changes have been encountered in all of the US ODV time 273 
series we have analyzed. Thus, the choice of the exponential function, which is continuous, is again indicated.  274 

The exponential term of Equation 3 - A exp(-t/t) - with two parameters is the simplest possible functional form 275 
that can capture the behavior of the pollution enhancement. Each ODV is a three-year average; hence a three-decade 276 
ODV time series provides only 10 independent data. The ODVs have significant short-term variability (e.g., Guo et 277 
al., 2018), so an attempt to quantify systematic, long-term changes from available ODV time series requires fitting 278 
to no more than a simple mathematical function for that quantification. That is, to yield precise determinations of the 279 
values of the function’s parameters the function must have as few unknown parameters as possible. A linear 280 
function, also with two parameters - slope and intercept - is often utilized for time series fits; it is as mathematically 281 
simple as an exponential function, but a linear fit to a decreasing trend will eventually become negative, and 282 
therefore cannot generally be consistent with a positive background contribution. A linear decrease that ends when it 283 
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intersects a background function, such as a constant or the function given by the first three terms of Equations 3 and 284 
4 of the manuscript, requires only two parameters, but the resulting function is not continuous. Likewise, piece-wise 285 
linear fits are not continuous, and generally require at least four parameters to specify. Any other function that might 286 
be applied (e.g., a polynomial fit) would require more than two parameters. From a simplicity and continuity 287 
perspective, the chosen exponential function is uniquely suited for quantifying a decreasing ODV time series.  288 

Finally, experience has shown that an exponential function gives excellent fits to the last two to five decades of 289 
ozone observed in US urban areas. In their section 2.4 Parrish et al. (2017) present a multivariate fit of Equation 3 290 
(but with a constant background term) to maximum ODV time series in seven southern California air basins over 35 291 
years; the r2 value for that fit is 0.984. In a similar analysis Parrish and Ennis (2019) find an r2 value of 0.89 for a 292 
shorter (17 year) period of time series of maximum ODVs recorded in eight northeastern states. Section S6 below 293 
discusses similar analyses for ODV time series analyzed in this manuscript, and again find large r2 values – 0.94 for 294 
eight Texas regions and 0.79 for the maximum ODV time series in eight southwestern US urban areas. These large 295 
r2 values demonstrate that an exponential function accurately captures a large fraction (approximately equal to the 296 
respective r2 values) of the variance in the ODV time series in all US regions that we have investigated. These 297 
considerations demonstrate that an exponential function is a very effective choice for analysis of long-term ozone 298 
time series. 299 

S4.  Differing rates of decrease of anthropogenic precursor emissions are not directly treated 300 

Equation 3 includes only a single term to account for the influence of decreasing anthropogenic emissions on ODVs; 301 
that term depends on a single exponential time constant, t. However, different anthropogenic emission sectors may 302 
have differing time evolution of emissions, which may be expected to be reflected in the temporal evolution of 303 
ODVs. In effect, t in Equation 3 is assumed to represent an average, overall response of ODVs to decreasing 304 
anthropogenic emissions.  305 

In this and previous work we discuss the impact of two anthropogenic emission sectors that have not decreased. 306 
First, southern California has regions of very intensive agricultural activity - the Imperial Valley in the Salton Sea 307 
Air Basin, the San Joaquin Valley Air Basin, and the Salinas Valley in the North Central Coast Air Basin; Parrish et 308 
al. (2017; 2022) note that derived a parameter values are biased high by ~ 5 to 12 ppb in these locations, and thus 309 
cannot be interpreted as direct determinations of the US background ODV. Second, the development of Equation 4 310 
provides an approximate treatment of the increasing influence of wildfires on ODVs; a small wildfire influence (WF 311 
up to 4 ppb) could be discerned in the region studied in this work, and a larger influence (~10-15 ppb) was 312 
approximately quantified in urban areas of the Pacific Northwest (Parrish et al., 2022).  313 

There are additional anthropogenic emission sectors that may not have decreased over time, and hence could 314 
possibly bias our estimate of US background ODVs. These sources include emissions associated with oil and gas 315 
(O&G) exploration, drilling and production, which have increased over the past two decades in some regions of the 316 
Western US. In addition, nonroad equipment, such as construction equipment, lawn and garden equipment, and VCP 317 
emissions (Coggon et al., 2021) may be important in urban areas, and they have not received as much regulatory 318 
attention as anthropogenic emissions. The Supplement Section S5 of Parrish et al. (2022) analyzes time series of 319 



 

 20 

ozone observations in the Bakken O&G basin located in North Dakota, and examines correlations of derived a and A 320 
parameter values in West Coast urban areas. That discussion found no indications of a significant bias arising from 321 
these emissions sectors.  322 

S5.  Value of exponential decrease time constant, t, determined in Southern California, applied to the entire 323 
southwestern US 324 

We have not found it possible to precisely determine the three parameters (a, A and t) of Equation 3 from a fit to 325 
most available US ODV time series. The analysis in the manuscript assumes that t in the southwestern US and 326 
Texas (as well as other states considered) is the same value as derived for southern California (t = 21.8 ± 0.8 years). 327 
This assumption follows from the perspective of other states closely following the lead of California in emission 328 
control efforts, and is supported by the excellent fits provided by Equation 3 to ODV time series throughout the US, 329 
as discussed above in Section S4.  330 

Generally, it is not possible to precisely determine the three parameters (a, A and t) of Equation 3 from a fit to 331 
most available US ODV time series. Here, however we conduct two iterative, multivariate regression analyses, 332 
similar to that described in Section 2.4 of Parrish et al. (2017) and applied by Parrish and Ennis (2019) to the 333 
northeastern US. Simultaneous fits to several ODV time series improve the precision of the parameter 334 
determinations, allow alternate derivation of some parameter values, and provide alternate estimates of confidence 335 
limits for the derived parameter values. Two separate analyses, each analyzing eight ODV time series, are presented. 336 
The first analysis fits Equation 3 to ODV time series from the first eight Texas regions listed in Table S5 and 337 
illustrated in Figures 8 and S4; the western rural region is omitted due to its small range of recorded ODVs. An 338 
ODV time series for each region is obtained by averaging all ODVs collected in that region for each year of the 339 
temporal ranges indicated in Table S5. A separate exponential time constant, tHo, is derived for the Houston region, 340 
and a single parameter value for t is derived for the other seven regions. Values of these two t values and 16 total 341 
separate a and A parameter values for each of the eight regions are optimized in an iterative process that minimizes 342 
the sum of the squares of the deviations between the fit and the original mean ODV time series. The second analysis 343 
fits Equation 4 to the maximum ODV time series in the seven southwestern US urban areas discussed in Section 4.3 344 
and plotted as light red solid circles in Figures 5 and 6, and the maximum El Paso ODV time series plotted in Figure 345 
8. A similar iterative process attempts to optimize single common parameter values for t and the wildfire 346 
proportionality constant (i.e., the factor of 0.03 in Equation 4) for all areas, and separate a and A parameter values of 347 
each of the eight regions. For both analyses the 18 derived parameter values are given in Table S7, and Figure S9 348 
compares the fits of Equations 3 and 4 to the original ODV time series, both for the original fits discussed in the 349 
manuscript (upper graphs) and for the multivariate analyses (lower graphs).  350 

The three derived t values (18.4 to 19.1 years) are up to 16% smaller than the southern California value of 21.8 ± 351 
0.8 years, and are outside the 95% confidence limit of the California value. However, it is very difficult to force 352 
convergence of the Texas multivariate fit, and not possible for the southwestern US analysis due to anti-correlations 353 
between parameters. Notably, the agreement between the a and A parameter values between the original analysis 354 
(assuming derived t = 21.8 ± 0.8 years) and the multivariate analysis (83% overall) is usually within the confidence 355 
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limits of the original analysis, and these multivariate fits provided only very modest improvements over the original 356 
fits in the overall r2 and RMSD values (compare final two rows in Table S7). Given this overall agreement, we are 357 
confident in our application of the southern California value of t throughout the entire region studied in this work.  358 

Table S7. Parameter values derived from multi-variate fits described in Section S3. All units are ppb ozone unless 359 
otherwise noted, except for the dimensionless parameter, r2. 360 

Texas region Original 
fitsa 

Multi-var 
fit 

SW US urban area Original 
fitsb 

Multi-var 
fitc 

t (years) 21.8 ± 0.8  18.9 ± 0.9   t (years) 21.8 ± 0.8 18.4 ± 0.7 
tHo (years) 21.8 ± 0.8  19.1 ± 2.2 prop. const. (year-1) 0.03 0.116 ± 0.19 
Dallas - A 34.6 ± 4.5 30.3 ± 1.7 Phoenix – AWF  12.9 ± 3.6 12.8 ± 1.9 
Dallas - a 57.7 ± 3.1   61.6 ± 1.3 Phoenix - a  69.0 ± 1.7   70.5 ± 1.7   
Houston - A 43.2 ± 4.2 39.1 ± 1.7 Tucson - AWF  10.5 ± 1.6 10.6 ± 1.3 
Houston - a 53.9 ± 3.2 57.9 ± 1.3 Tucson - a  63.9 ± 1.4 63.1 ± 1.6 
El Paso - A 11.5 ± 1.7 9.2 ± 0.6 Las Vegas - AWF  16.1 ± 6.6 16.8 ± 3.3 
El Paso - a 64.6 ± 1.8  66.6 ± 1.0 Las Vegas - a 68.0 ± 2.6  67.6 ± 2.1 
San Antonio - A 26.6 ± 6.3 25.0 ± 2.2 Reno - AWF  7.0 ± 1.3 6.8 ± 1.2 
San Antonio - a 58.4 ± 4.1 60.4 ± 1.4 Reno - a  66.3 ± 2.2 66.1 ± 1.6 
Beau.-PA-LC - A 28.0 ± 5.1 25.5 ± 2.2 Salt Lake City - AWF 15.6 ± 2.0 14.9 ± 1.0 
Beau.-PA-LC - a 54.7 ± 3.4 57.2 ± 1.4 Salt Lake City - a 66.6 ± 1.9 66.3 ± 1.5 
So Coast Texas - A 27.5 ± 6.0 25.6 ± 2.2 Albuquer.-SF - AWF 6.0 ± 1.5 6.9 ± 1.1 
So Coast Texas - a 52.1 ± 4.1 54.2 ± 1.4 Albuquer.-SF - a 66.2 ± 1.8 64.7 ± 1.5 
SW Texas - A 18.2 ± 6.9 16.7 ± 2.1 Denver - AWF 11.0 ± 1.7 13.4 ± 0.8 
SW Texas - a 49.8 ± 4.9  51.6 ± 1.4 Denver - a 69.0 ± 2.1  64.5 ± 1.5 
Tyler-LV-SP - A 37.3 ± 6.8 33.8 ± 2.2 El Paso - AWF 14.2 ± 2.1 15.1 ± 0.9 
Tyler-LV-SP - a 50.8 ± 4.6 54.2 ± 1.4 El Paso - a 64.6 ± 1.8 62.3 ± 1.5 

r2 d 0.934 0.936 r2 d 0.770 0.794 
RMSD d 2.65 2.61 RMSD d 3.42 3.24 
a Fits described in Section 4 of the paper. Values are reproduced from Table S5. 361 
b Fits described in Section 4 of the paper. Values are reproduced from Tables S3 and S4. 362 
c Multivariate fit did not converge; these results were obtained after a large number of iterations of the fitting 363 

routine. 364 
d r2 and RMSD are the parameters for the linear regression fit between the actual ODVs and the fit function, as 365 

shown in Figure S10.  366 
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 367 

Figure S9. Comparison of observed ODVs with those from fits. The Texas regional and southwestern US urban 368 
time series are on the left and right, respectively. The fits to individual time series from the paper are at the top and 369 
the simultaneous multivariate fits to all of the time series are at the bottom. Black lines give the linear fit to all points 370 
with the intercept held at zero; the slopes of all lines are within 0.0013 of unity, the value expected for a perfect fit. 371 
The iterative process was not able to locate a unique minimum for the sum of the squares of the deviations for the 18 372 
parameter fit to the southwestern US urban time series; this is attributed to poor constraints on all 18 parameters in 373 
the that data set.  374 

S6.  Effect of not considering the US Exceptional Event Rule 375 

In this work we utilize the ODVs tabulated in the data archive of the US EPA to quantify the maximum ozone 376 
concentrations impacting surface monitoring sites, and to determine whether a site is approaching or exceeding the 377 
NAAQS. It should be noted that if measurement data are influenced by exceptional events, such as wildfires (e.g., 378 
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Jaffe et al., 2013) or stratospheric ozone intrusions (e.g., Langford et al., 2017), those data can, in principle, be 379 
removed from the MDA8 monitoring record, as uncontrollable “exceptional events”, thereby affecting the ODV 380 
archive. More details of the Exceptional Events Rule can be found on the US EPA website: https://www.epa.gov/air-381 
quality-analysis/treatment-air-quality-data-influenced-exceptional-events-homepage-exceptional. If a significant 382 
number of ODVs were affected by excluded data, then the ODV archive would not faithfully reflect the actual time 383 
series of maximum ozone concentrations, or the true relationship of the ozone concentrations at a site to the 384 
NAAQS. Data are excluded when the US EPA concurs with a state’s exceptional event demonstration.  385 

The US EPA apparently does not maintain a data base of exceptional event concurrences, but so far as we can 386 
determine from an internet search, at the time of this writing, the US EPA has concurred with only one ozone 387 
exceptional event demonstration in the western US states examined in this paper since the implementation of the 388 
2016 Exceptional Events Rule. That event was on September 2 and 4, 2017 when wildfires in the Pacific Northwest 389 
impacted the National Renewable Energy Laboratory (NREL) ozone monitoring site operated in the greater Denver 390 
urban area. As a result of this concurrence the ODV at that site would be reduced by 1 ppb for the years 2017 (from 391 
80 to 79 ppb) and 2019 (from 77 to 76 ppb). In 2017, but not in 2019, this site recorded the maximum ODV in the 392 
Denver area, so the urban maximum ODV would be reduced by 1 ppb in 2017, but not affected in 2019. There was a 393 
second exceptional event concurrence by the US EPA under an earlier Exceptional Event Rule. That event was on 394 
June 14, 2012 when a stratospheric intrusion elevated ozone at two sites in the Upper Green River basin of western 395 
Wyoming (State of Wyoming; 2013; Kaldunski et al., 2017) enough that the recorded MDA8 ozone concentrations 396 
of 76 and 77 ppb exceeded the 2008 ozone NAAQS.  397 

In summary, archived ODVs can be reduced by US EPA exceptional event concurrences; however, to date 398 
concurrences have been extremely limited, and therefore have not significantly affected the analysis presented in 399 
this paper. However, future concurrences may possibly affect application of the present analysis approach to coming 400 
years. 401 
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