Supporting Information

Figure S1: Example of typical time profiles of α -phellandrene and products detected with PTR-ToF-MS (NO⁺ and H₃O⁺ ionization modes) for the experiment of 06/03/2021. The N₂O₅ injection period is shown by the yellow area.

Figure S2: Time profiles of a selection of gas-phase HOM monomers and dimers produced by the oxidation of α -phellandrene by NO₃ radical (experiment 06/02/2021). The N₂O₅ injection period is shown by the yellow area.

Figure S3: Odum parametrization describing the dependence of the SOA yields with the aerosol content (in $\mu g/m^3$) for α - and β -phellandrenes (this study), α - and γ -terpinenes (Fouqueau et al., 2020) and terpinolene (Fouqueau et al., 2022).

	Table S1: Products detected by PTR-ToF-MS in H_3O^+ and NO^+ ionization modes for the oxidation by NO ₃ radical of α - and β -
	phellandrenes: raw formula, molecular weight, detected mass, ionization process (H ⁺ as proton adduct; NO ⁺ as NO ⁺ adduct; CT as
15	charge transfer), and behavior.

Molecule		H ₃ O ⁺ ionization mode			NO ⁺ ionization mode						
Raw formula	M (g mol ⁻¹)	m/z	Process	Behavior	m/z	Process	Behavior				
α-phellandrene											
C ₃ H ₆ O	58	59.0383	H^+	Primary- Secondary	88.0268	NO^+	Primary- Secondary				
$C_3H_4O_2$	72	73.0133	H^{+}	Secondary	102.0035	NO^+	Secondary				
C7H10O2	126	127.0457	H^+	Secondary	/	/	/				
C ₇ H ₁₂ O ₂	128	129.0452	H^{+}	Secondary	/	/	/				
$C_5H_{10}O_4$	134	/	/	/	164.0281	\mathbf{NO}^+	Secondary				
C ₇ H ₁₀ O ₃	142	/	/	/	172.0275	СТ	Secondary				
C ₆ H ₁₂ O ₄	148	149.0441	H^{+}	Secondary	148.0484	СТ	Secondary				
C ₁₀ H ₁₆ O	152	153.0848	H^{+}	Primary	/	/	/				
$C_{10}H_{16}O_2$	168	169.0742	H^{+}	Primary	168.0816	СТ	Primary				
$C_{10}H_{16}O_3$	184	185.0637	H^{+}	Secondary	/	/	/				
$C_{10}H_{15}NO_4$	213	214.0419	H^{+}	Primary	243.0469	NO^+	Primary				

C ₁₀ H ₁₅ NO ₅	229	230.0278	H^{+}	Primary	259.0345	NO^+	Primary				
C ₁₀ H ₁₅ NO ₆	245	/	/	/	245.0431	СТ	Secondary				
β-phellandrene											
C ₃ H ₆ O	58	59.0365	H^+	Primary	88.0198	NO^+	Primary				
C ₇ H ₁₂ O ₂	128	129.0438	H^{+}	Secondary	128.0340	СТ	Secondary				
C5H10O4	134	/	/	/	164.0050	NO^+	Secondary				
C ₃ H ₃ NO ₅	133	/	/	/	163.9707	NO^+	Secondary				
C ₉ H ₁₄ O	138	139.0622	H^{+}	Primary	/	/	/				
C ₆ H ₁₂ O ₄	148	149.0394	H^{+}	Primary	/	/	/				
C ₁₀ H ₁₆ O	152	153.0670	H^{+}	Primary	/	/	/				
$C_{10}H_{16}O_2$	168	169.0610	H^{+}	Primary	168.0551	СТ	Primary				
C ₉ H ₁₃ O ₃	170	171.0396	H^{+}	Secondary	/	/	/				
C ₁₀ H ₁₅ NO ₄	213	214.0263	H^{+}	Primary	/	/	/				
C ₁₀ H ₁₅ NO ₅	229	230.0278	H^{+}	Detected	/	/	/				

Figure S4: Proposed mechanism for the reaction β-phellandrene+NO₃. First-generation products are colored in blue, and second-generation ones are colored in red.

20

Figure S5: Average mass spectra of gas-phase HOMs for the NO₃-oxidation of α -phellandrene (average performed over 10 min following the start of the oxidation - experiment 02/06/2021). Labels display raw formulas of detected species, excluding the nitrate reagent ion cluster, but the *m*/*z* values (x-axis) include the nitrate mass (61.9883 *m*/*z*). Product signals are normalized to the reagent ion signals.

25

Figure S6: Average mass spectra measured of gas-phase HOMs for the NO₃-oxidation of β -phellandrene (average performed over 10 min following the start of the oxidation – experiment 03/24/2021). Labels display raw formulas of detected species, excluding the nitrate reagent ion cluster, but the *m*/*z* values (x-axis) include the nitrate mass (61.9883 *m*/*z*). Product signals are normalized to the reagent ion signals.

30

Number of Carbon atoms

Figure S7. Distribution of the products detected in the aerosol phase as a function of the number of carbon atoms, for α - and β -phellandrenes.