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Figure S1: Linear correlation between the two-dimensional continuous wavelet transform (2D-CWT) results obtained in this study and those 
reported by Booth et al. (2017) for the same dated landslide inventory of the North Fork Stillaguamish River valley (Fig. 3), using the newer 
methods adapted in the pyTopoComplexity (Eq. 1 and Eq. 2) and the older method by Booth et al. (2009), respectively.  
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Figure S2: Evaluation of the two-dimensional continuous wavelet transform (2D-CWT) (Booth et al., 2009; Berti et al., 2013) for estimating 
the age of landslide deposits based on surface complexity, utilizing data from the North Fork Stillaguamish River valley with radiocarbon 
ages in Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis employed the pycwtmexhat.py module from pyTopoComplexity. The spatial 
scale evaluated (i.e., the Fourier wavelength (λ) of the Mexican hat wavelet) ranges from 5 to 75 meters. The gray dashed lines and shading 
represent the best-fit exponential decay function and its 95% confidence interval for the seven dated landslides. Red lines and shading 20 
indicate the best-fit function constrained to pass through the youngest landslide data point (the 2014 ‘Oso’ landslide). The bottom plots 
display the coefficient of determination (R²) and root-mean-square error (RMSE) between radiocarbon age data and the predicted functions. 
Best-fit curves are excluded if forced fitting yields negative R² values. The blue curves represent results for best-fit exponential decay 
functions constrained to pass through the oldest landslide data point (the ‘unnamed-55’ landslide). Shaded bars indicate the optimal spatial 
scale for estimating the surface roughness age of landslide deposits using this method. Only functions with R² > 0.7 and low RMSE are 25 
considered acceptable for estimating the age of landslide deposits.  
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Figure S3: Evaluation of the Fractal Dimension (Wen and Sinding-Larsen, 1997; Pardo-Igúzquiza and Dowd, 2020) for age of landslide 
deposits based on surface complexity, utilizing data from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis utilized the pyfracd.py 30 
module of pyTopoComplexity. The evaluated spatial scale (window size Δ) ranges from 3 to 81 grids, corresponding to 9 feet (~2.74 m) to 
243 feet (~74.07 m) with an input digital terrain model (DTM) featuring 3 feet (~0.9144 m) grid spacing. Other captions follow Fig. S2.  
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Figure S4: Evaluation of the arc-chord ratio (ACR) Rugosity Index (Du Preez, 2015) for age of landslide deposits based on surface 35 
complexity, utilizing data from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis utilized the pyrugosity.py module of 
pyTopoComplexity. The evaluated spatial scale (window size Δ) ranges from 3 to 83 grids, corresponding to 9 feet (~2.74 m) to 249 feet 
(~75.90 m) with an input DTM featuring 3 feet (~0.9144 m) grid spacing. Other captions follow Fig. S2.  
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Figure S5: Evaluation of the conventional Rugosity Index (Jenness, 2004) for age of landslide deposits based on surface complexity, utilizing 
data from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis utilized the pyrugosity.py module of pyTopoComplexity. The evaluated 
spatial scale (window size Δ) ranges from 3 to 83 grids, corresponding to 9 feet (~2.74 m) to 249 feet (~75.90 m) with an input DTM 
featuring 3 feet (~0.9144 m) grid spacing. Other captions follow Fig. S2.  
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Figure S6: Evaluation of the Terrain Position Index (Weiss, 2001) for age of landslide deposits based on surface complexity, utilizing data 
from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis utilized the pytpi.py module of pyTopoComplexity. The evaluated spatial scale 
(window size Δ) ranges from 3 to 83 grids, corresponding to 9 feet (~2.74 m) to 249 feet (~75.90 m) with an input digital terrain model 
featuring 3 feet (~0.9144 m) grid spacing. Other captions follow Fig. S2.  50 
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Figure S7: Evaluation of the absolute value of Terrain Position Index (Weiss, 2001) for age of landslide deposits based on surface complexity, 
utilizing data from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis utilized the pytpi.py module of pyTopoComplexity. The evaluated 55 
spatial scale (window size Δ) ranges from 3 to 83 grids, corresponding to 9 feet (~2.74 m) to 249 feet (~75.90 m) with an input digital terrain 
model featuring 3 feet (~0.9144 m) grid spacing. Other captions follow Fig. S2.  
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Figure S8: Evaluation of conventional topographic complexity metrics for age of landslide deposits based on surface complexity, utilizing 60 
data from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis was conducted using native and GRASS plugins in QGIS software (QGIS 
Development Team, 2024; GRASS Development Team, 2024), which do not permit specification of spatial scale for analysis. The evaluated 
metrics include the roughness index, total curvature, maximum curvature, absolute minimum curvature, curvedness index, unsphericity, and 
standard deviations of slope, profile curvature, plan curvature, tangential curvature, difference curvature, and mean curvature (Shary, 1995; 
Florinsky, 2017). Other captions follow Fig. S2.  65 
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Figure S9: Evaluation of the Terrain Ruggedness Index (TRI) (Riley et al., 1999) for age of landslide deposits based on surface complexity, 
utilizing data from Booth et al. (2017) (Fig. 3 and Fig. S1). This analysis utilized GRASS plugins in QGIS software, allowing for multiscale 
topographic complexity assessment. The evaluated spatial scale (window size Δ) ranges from 5 to 80 grids, corresponding to 15 feet (~4.57 70 
m) to 240 feet (~73.15 m) with an input DTM featuring 3 feet (~0.9144 m) grid spacing. Other captions follow Fig. S2.  
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