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Abstract. Due to considerable reductions in nitrogen oxides (NOx), ozone trends and variations in eastern China remain 

inadequately understood. Long–term observations of ozone precursors were conducted to explore the factors influencing ozone 

trends in this region. Combined with satellite and surface measurements, we evaluated the trends in low (2nd percentile), typical 

(50th percentile), and peak (98th percentile) ozone concentrations in detail. Observations indicate a significant decrease in peak 

ozone concentrations (-0.5% per year), alongside an increase in low ozone concentrations (0.3% per year) across eastern China 30 

during May–September from 2017 to 2022. The decline in typical ozone concentrations is notably slower than that of peak 

ozone concentrations, approximately -0.02 ppb/year (-0.0% per year) during the same period. Anthropogenic emissions 

primarily drive trends in low and peak ozone concentrations in eastern China, though meteorological effects also play a role. 

Ozone formation sensitivity shifts from VOC–limited or transitional regimes in the morning (8:00–11:00), when ozone 
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concentrations rise sharply, to NOx–limited regimes around peak concentrations (~14:00). The reduction in NOx concentrations 

is identified as a key factor driving the decline in peak ozone concentrations, aiming to further reduce ozone exceedance days. 

Thus, controlling NOx concentrations emerges as crucial for mitigating peak ozone levels. Moreover, the increase in low ozone 

concentrations can also be attributed to both anthropogenic emissions and meteorological factors. Our findings underscore the 

beneficial impacts of NOx reduction on managing peak ozone levels. Regular changes in ozone formation sensitivity 5 

throughout the day should be considered when formulating effective ozone control policies. 

1 Introduction 

In recent decades, China's rapid industrialization and urbanization have yielded substantial economic benefits but have 

also brought about serious environmental challenges (Li et al., 2018; Song et al., 2023; Wang et al., 2023c). Air pollutants, 

notably ozone (O3, in warm seasons) and fine particulate matter (PM2.5, in cold seasons), have been primary targets of China's 10 

air quality improvement efforts (Zhang and Cao, 2015; Xing et al., 2024; Xing et al., 2022; Wang et al., 2020; Bauwens et al., 

2022). To combat this severe air pollution, the Chinese government initiated the Clean Air Action Plan in 2013 (State Council 

of China, 2013), resulting in significant reductions in most air pollutant concentrations. PM2.5 annual average concentrations 

were reduced by 30% to 50% from 2013 to 2018 (Zhai et al., 2019), while nitrogen oxides (NOx) and carbon monoxide (CO) 

emissions dropped by 21% and 23%, respectively, from 2013 to 2017 (Zheng et al., 2018). However, O3 concentrations showed 15 

a yearly increase of 3.3 ± 4.7 µg/m3/year from 2015 to 2019 (Mousavinezhad et al., 2021). Subsequently, the second phase of 

the Clean Air Action Plan was launched in 2018 (State Council of China, 2018), focusing on additional controls for O3 

emissions. Driven by both anthropogenic activities and meteorological patterns, the upward trend in O3 levels in eastern China 

persisted through at least 2019 (Li et al., 2020a), making the study of O3 formation, sources, and trends in densely populated 

areas a topic of increasing global concern (Wang et al., 2023a). 20 

Ozone forms rapidly in polluted air through the photochemical oxidation of volatile organic compounds (VOCs) in the 

presence of NOx (NOx = NO + NO2) (Li et al., 2022; Cooper et al., 2012). Ambient O3 concentrations are influenced by various 

factors, including precursor levels (Wang et al., 2022b; Ding et al., 2023), local meteorological conditions (Han et al., 2020), 

regional transport (Lang et al., 2021; Wang et al., 2023b), and deposition (Wu et al., 2023). Elevated O3 levels can have 

significant impacts on human health, ecosystems, and climate change, leading to substantial economic losses (Guan et al., 25 

2021; Gao et al., 2022). The formation sensitivity of O3 (VOC–limited, transition, and NOx–limited regimes) in a region 

depends on the relative abundance of VOCs and NOx and their competition for OH radicals, highlighting the importance of 

controlling both VOCs and NOx to manage O3 production and removal effectively (Ren et al., 2022b). While NOx 

concentrations have significantly declined in eastern China since 2013 (Lin et al., 2019), anthropogenic VOC emissions 

continued to increase until 2019 (Zheng et al., 2018; Bauwens et al., 2022). 30 

Numerous studies have investigated the drivers of the increasing O3 trend in China over the past decade, particularly from 

2013 to 2017 (Li et al., 2020a; Lu et al., 2020; Liu et al., 2023). Changes in meteorological conditions and anthropogenic 
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emissions have been identified as the primary causes, with both observations and models concluding that anthropogenic 

impacts dominate the increasing trend of summer O3 in China. For instance, Li et al. (2020a) found that the increase in surface 

O3 in the North China Plain (NCP) from 2013 to 2019 was more influenced by changes in emissions (1.2 ppb/year) than 

meteorological changes (0.7 ppb/year). Additionally, the decrease in PM2.5, mainly achieved by reducing the scavenging of 

hydroxyl (HO2) radicals on the aerosol surface, has been found to be crucial for the increase in O3 (Li et al., 2018). However, 5 

the implications of the heterogeneous uptake of HO2 radicals remain debated. These studies have largely focused on a single 

O3 indicator, and due to the recent NOx reduction, the reasons for the variations in O3 trends in eastern China, particularly the 

low and peak O3 trends, are not fully understood. This poses a significant challenge for controlling O3 pollution and developing 

effective strategies for sustained air quality improvement. 

This study aims to address two key issues by combining extensive ground–based and satellite observations: (1) to reveal 10 

the surface low, typical, and peak O3 trends in eastern Chinese cities in recent years, and (2) to explore the driving forces 

behind these trends. First, we report long–term records of surface O3 and related parameters observed at urban air quality 

monitoring sites and by satellites in eastern China, characterizing the trends of low, typical, and peak surface O3 concentrations 

during the warm season (May–September) from 2017 to 2022. Then, a Multiple Linear Regression (MLR) model is used to 

evaluate the anthropogenic and meteorological contributions to the 98th and 2nd O3 percentile trends. Next, secondary 15 

formaldehyde (HCHO) and NO2 are employed to diagnose the diurnal variations in O3 formation sensitivity and investigate 

the reasons for peak O3 concentration trends in the context of current NOx reduction. Finally, we discuss the reasons for the 

potential increase in low O3 concentrations and the sensitivity of peak and low O3 trends during the study period. 

2 Materials and methodology 

2.1 Surface measurements 20 

The densely populated areas in eastern China mainly include the NCP and the Middle and Lower Yangtze River Plain 

(MLYRP), which are both vast and economically developed. It is one of the most polluted areas in China (Mousavinezhad et 

al., 2021). In this study, O3 trends in 105 cities in eastern China were investigated, the spatial distribution of 105 cities in 

eastern China is shown in Fig.1a. Real–time hourly observed urban O3, NO2, and CO concentrations in 105 cities in eastern 

China from 2017 to 2022 were obtained from the open website of Ministry of Ecology and Environment of China (MEE; 25 

https://www.mee.gov.cn; last access: January 7, 2024), archive at https://quotsoft.net/air/ (last access: January 7, 2024). As of 

August 31, 2018, MEE reported concentrations in µg/m3 under standard conditions (273 K, 1013 hPa). The reference status 

changed to 298 K and 1013 hPa on September 1, 2018. To facilitate analysis of the long–term series, the mass concentrations 

(µg/m3) of O3, NO2, and CO at each site were converted to volume mixing ratios (VMRs, ppb) to eliminate the effect of these 

changes on trend calculations. Data quality control methods and the calculation of daily maximum 8–hour O3 (MDA8 O3) 30 

concentrations were implemented according to the statistical requirements of the Technical Regulations for Environmental Air 
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Quality Evaluation (Trial) (HJ633–2013). According to the Technical Regulations of China Ambient Air Quality Index (Trial) 

(HJ633–2012), an MDA8 O3 concentration greater than 160 µg/m3 is defined as O3 exceedance days, otherwise it is O3 normal 

day. Note that all times mentioned in this study refer to local time. 

2.2 MAX–DOAS measurements 

Three typical cities in the 105 cities in the eastern China were selected to be representative to conduct Multi–Axis 5 

Differential Optical Absorption Spectroscopy (MAX–DOAS) observations, namely Hefei, Huaibei and Tai 'an. First, the three 

cities are located at similar longitudes with large differences in latitude, transitioning sequentially from south to north (Fig. 

1a). Secondly, the O3 concentrations of the three cities differed greatly, with Tai' an having a higher surface mean MDA8 O3 

concentration (82.9 ppb), Hefei having a lower surface mean MDA8 O3 concentration (65.5 ppb), and Huaibei having an 

intermediate surface mean MDA8 O3 concentration (74.3 ppb). The three observation stations in Hefei (31.827 °N, 117.233 °E), 10 

Huaibei (33.962 °N, 116.805 °E), and Tai' an (36.205 °N, 117.094 °E) are all set up in urban areas, and the observation periods 

were from 22 December, 2020, to 15 May 2023, 12 April, 2019, to 27 May 2022, and 15 July, 2021, to 15 May 2023, 

respectively. 

The MAX–DOAS employed in this study consisted of a telescope, two spectrometers (UV: 303–370 nm; VIS: 390–550 

nm, temperature stabilized at ~20 °C), and a computer as the control and data acquisition unit. The telescope elevation angles 15 

were set to 1–6, 8, 10, 15, 30, and 90° and controlled by stepper motors. MAX–DOAS measures spectral information to retrieve 

aerosols and trace gas profiles. The system was operated only during the daytime (08:00–17:00 local time) with a temporal 

resolution of 15 min and a spatial resolution of 100 m. Because this study focused on surface O3 formation sensitivity, only 

the lowest level data of NO2 and HCHO VMRs (ppb) were used. Detailed information regarding the MAX–DOAS instrument, 

measurement procedures, data inversion algorithms, and data quality control can be found in previous studies (Liu et al., 2022b; 20 

Wang et al., 2020; Xing et al., 2022). 

Ground–based MAX–DOAS and tropospheric monitoring instrument (TROPOMI) observations were compared to ensure 

reliability of the data used in this study. Because the satellite overpass was at approximately 13:30, the mean MAX–DOAS 

results between 13:00 and 14:00 were used for comparison. TROPOMI observations were averaged over a range of 0.2° from 

the ground–based MAX–DOAS station. Comparisons of NO2 and HCHO tropospheric vertical column densities (VCD) from 25 

the MAX–DOAS and TROPOMI observations are shown in Fig. S1 and S2. In general, the MAX–DOAS and TROPOMI 

observations were in good agreement. The Pearson correlation coefficient of monthly average NO2 VCD is 0.99 (P<0.01), 0.96 

(P<0.01) and 0.96 (P<0.01) in Hefei, Huaibei and Tai' an, respectively, and the Pearson correlation coefficient of monthly 

average HCHO VCD is 0.88 (P<0.01), 0.77 (P<0.01) and 0.68 (P<0.01) in Hefei, Huaibei and Tai' an, respectively. Generally, 

the NO2 and HCHO VCD observed by TROPOMI were smaller than those observed by MAX–DOAS, and the difference may 30 

be caused by fitting errors, a priori model bias, cloud and aerosols, and spatio–temporal resolution (De Smedt et al., 2021; 

Dimitropoulou et al., 2020). In addition, the bottom NO2 concentrations observed by MAX–DOAS were also compared with 
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urban surface NO2 concentrations measured by MEE (Fig.S3), and the results were also comparable to the comparisons 

reported in previous studies (Lin et al., 2022; Wang et al., 2020), with Pearson correlation coefficient of 0.74 (P<0.01), 0.66 

(P<0.01), and 0.73 (P<0.01) for Hefei, Huaibei, and Tai' an, respectively. Thus, the MAX–DOAS data are reliable. The 

differences between MAX–DOAS and MEE observations arise from these two components. First, there was a difference 

in the detection geometries, as the urban NO2 concentration observed by MAX–DOAS was the result of scanning along 5 

a certain direction, whereas the urban NO2 concentration observed by MEE was sampled in situ. Second, there were 

some differences in their locations, and the urban NO2 concentration of the MEE was the average of several in–situ 

observation stations (10, 3, and 3 in Hefei, Huaibei, and Tai'an, respectively), whereas we only used one MAX–DOAS 

in each city. 

2.3 Satellite observations 10 

TROPOMI is an imaging spectrometer onboard the European Space Agency's Copernicus Sentinel 5 Precursor satellite 

launched in October 2017 with a daily overpass of approximately 13:30. TROPOMI has a spatial resolution of 3.6 × 7.2 km 

(before 6 August 2019) and 3.6 × 5.6 km (after 6 August 2019). A more detailed description of TROPOMI can be found in 

Veefkind et al. (2012). The TROPOMI NO2 (“S5P_OFFL_L2__NO2…”) and HCHO (“S5P_OFFL_L2__HCHO…”) 

tropospheric VCD products during May–September 2018–2022, TROPOMI O3 profiles (“S5P_OFFL_L2__O3__PR…”) 15 

during May–September 2022 were used in this study (Download from https://search.earthdata.nasa.gov/search; last access: 

January 7, 2024) (Van Geffen et al., 2020; De Smedt et al., 2018). The recommended quality control (QC, in the range of 0–1) 

filter was applied to exclude HCHO and O3 profiles retrieval values with QC marks less than 0.5, and NO2 retrieval values 

with QC marks less than 0.75. In addition, the TROPOMI observed HCHO VCD and NO2 VCD were regridded to 0.05×0.05° 

(approximately 5×5 km) in this study. 20 

2.4 Stepwise Multiple Linear Regression Model                                                                                                                             

To quantify the importance of meteorological drivers, numerous previous studies have used stepwise MLR to derive the 

relationships between meteorological factors and observed surface O3 concentrations in China (Liu et al., 2023; Li et al., 2020a; 

Li et al., 2018; Han et al., 2020; Zhang et al., 2023b). These studies demonstrated the importance of stepwise MLR in 

quantifying the contribution of meteorological and anthropogenic components to O3 concentrations. We used the same stepwise 25 

MLR modeling approach as (Zhai et al., 2019; Li et al., 2018; Li et al., 2020a; Sun et al., 2022; Liu et al., 2023). Stepwise 

regressions were performed, adding and removing terms based on their independent statistical significance to obtain the best 

model fit. Daily meteorological variables were obtained from the ERA5 reanalysis data (Download from 

https://cds.climate.copernicus.eu, last access: January 7, 2024), included temperature (T, °C), surface relative humidity 

(RH, %), total cloud cover (TCC), total precipitation (TP, mm), mean sea level pressure (MSLP, hPa), wind speed of U, V 30 
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components (U, V, m/s), boundary layer height (BLH, m), and vertical velocity at 850 hPa (V850, m/s). Details of the 

meteorological parameters are presented in Table S1.  

First, we used the MLR model to remove the effects of meteorological variability from the 2017 to 2022 98th or 2nd O3 

percentile trends. The meteorological anomalies kX  during May–September 2017–2022 was obtained by removing the 6–

year means of the 50 d moving averages from the 10 d mean time series. The anomalies calculated in this process were 5 

deseasonalized but not detrended. This yields the meteorology–driven 98th or 2nd O3 percentile anomalies ( )mY t  

1

( ) ( )
n

m k k
k

Y t R X t


                                     (1) 

Where R is the regression constant, is the regression coefficient. Secondly, to avoid overfitting, only the three most 

important meteorological parameters were selected based on their individual contributions to the regressed 98th or 2nd O3 

percentiles, along with the requirement that they be statistically significant above the 95% confidence level in the MLR model 10 

(Li et al., 2018). The fit results and selected meteorological variables varied by city but were regionally consistent (Table S2 

and Table S3). The 98th or 2nd O3 percentile anomalies ( )aY t  obtained by deseasonalizing, but not detrending, the 98th or 2nd 

O3 percentile time series in a similar manner as for the meteorological variables (by removing the 6–year means of the 50 d 

moving averages). The residual anomaly ( )rY t after removing the meteorology–driven 98th or 2nd O3 percentile anomalies 

from the MLR model is given by 15 

( ) ( ) ( )r a mY t Y t Y t                                       (2) 

Finally, the residual is an anomalous component that cannot be explained by the MLR meteorological model and is 

referred to as meteorologically corrected data by Zhai et al. (2019). It consists of noise due to the limitations of the MLR model 

and other factors and can be mainly attributed to long–term trends in anthropogenic emission changes over a 6–year period. 

The trend in the regressed 98th or 2nd O3 percentile reflected the meteorological contribution, and the residual was then used to 20 

reflect the presumed anthropogenic contribution. 

2.5 Regression Model for source separation in primary and secondary HCHO 

Tracer–driven linear regression models have been widely used to separate primary and secondary sources of HCHO (Lin 

et al., 2022; Sun et al., 2021; Hong et al., 2018; Liu et al., 2024; Bao et al., 2022; Heue et al., 2014; Macdonald et al., 2012). 

CO is emitted directly into the atmosphere through combustion processes (e.g., incomplete combustion in vehicle engines) and 25 

can be used as a tracer for primary HCHO emissions (Garcia et al., 2006). O3 reacts with NO emitted from automobiles to 

form NO2. Therefore, odd amounts of oxygen (Ox = O3 + NO2) are often used as tracers of photochemical processes in urban 

atmospheres (Wood et al., 2010). In this study, CO and Ox were selected as tracers to separate the primary and secondary 

sources of ambient HCHO, as expressed in Eq. 3: 

k
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                                   (3) 

Where , , and  are regression coefficients. where [HCHO], [CO], and [Ox] are the ambient HCHO, CO, and Ox 

VMRs, respectively.  

The relative contributions of the primary, secondary, and atmospheric background HCHO to the total ambient HCHO 

were calculated from the tracer VMRs and the corresponding regression coefficients: 5 

                                  (4) 

                                  (5) 

                                  (6) 

Where   denotes the contribution of primary sources of HCHO (e.g., vehicular and industrial emissions),  

denotes the contribution of secondary sources of HCHO (photochemical oxidation), and  denotes the background HCHO. 10 

According to previous studies in Central and Eastern China (Ma et al., 2016; Wang et al., 2015), the background level of 

HCHO was limited to 1 ppb. Therefore, the regression parameter  was fixed at 1 ppb in this study (Hong et al., 2018; Lin 

et al., 2022). We first perform hourly averaging of HCHO data from MAX–DOAS observations to match CO and Ox data 

from MEE observations. Primary and secondary HCHO will then be separated for all available HCHO data from May to 

September in the MAX–DOAS measurement period. The fitted parameters of the MLR for the measured and modelled HCHO 15 

are shown in Fig.S4, it is comparable to the comparisons reported in previous studies (Lin et al., 2022; Sun et al., 2021). As 

other factors (e.g., meteorological conditions) can also affect the atmospheric HCHO concentration, regression models are 

difficult to obtain very consistent results. 

3 Results and discussions 

3.1 Trends of O3 and its precursors in eastern China 20 

Figure 1 presents the spatial distribution of the surface mean MDA8 O3 VMRs at all available urban sites (105 cities in 

total) in eastern China during May–September of 2017–2022. High MDA8 O3 VMRs were concentrated in the western cities 

of eastern China, with the highest values in Jiaozuo, up to 86.4 ppb. High O3 VMRs indicate intensive anthropogenic emissions 

of O3 precursors from these cities, most of which are located in the NCP, one of the most polluted areas in China (Li et al., 

2018). Fig. 1b and c show the average VCDs of NO2 and HCHO observed by TROPOMI during May–September 2018–2022, 25 

respectively. High NO2 and HCHO levels were clustered mainly in the NCP and MLYRP. In this study, the 2nd, 50th, and 98th 
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percentiles of the hourly O3 and NO2 concentrations for cities in eastern China were calculated to determine long–term trends 

at low, typical, and peak concentration levels, respectively (Cooper et al., 2012; Li et al., 2022; Gaudel et al., 2020). Different 

percentiles may be related to different influences, such as background concentration levels, emission changes, climate change, 

and regional transport effects (Lefohn et al., 2010). Li et al. (2014) reported that concentrations below the 5th, between 25th 

and 75th, and above 95th represent background, typical, and polluted concentrations, respectively. In principle, the lowest 5 

daily O3 concentrations usually occur before sunrise due to nighttime titration of NO, and the low percentile (2nd) usually 

characterizes baseline or background conditions because increases in the low O3 percentile tend to be associated with 

increases in baseline or background O3 concentrations. Similar conclusions were also obtained from both models and 

observations (Jacob et al., 1999; Cynthia Lin et al., 2000). O3 pollution in eastern China generally occurs in the late 

afternoon on clear days in the warm season (Wang et al., 2022a), when the ambient O3 concentration is highest, so the 10 

high percentile (98th) characterizes the conditions of the pollution events. The middle percentiles (25th, 50th and 75th) 

usually follow the same trend as the mean values and therefore represent typical conditions (Cooper et al., 2012; Li et 

al., 2022). Using these indicators to investigate long–term changes in O3 and NO2 helps gain a more detailed understanding 

through analyses. 

As shown in Fig.2, the 98th O3 percentile in eastern China showed a significant decreasing trend (about -0.39 ppb/year, -15 

0.5% per year) during May–September 2017–2022, and the corresponding O3 exceedance days (-1.1% per year) and 

exceedance hours (-1.6% per year) are also dropped. This is in stark contrast to previous studies, which have widely observed 

a rapid increase in average surface O3 concentrations in Chinese cities, while ignoring changes in their peak concentrations 

(Lu et al., 2020; Liu et al., 2023; Li et al., 2018; Li et al., 2021; Chan et al., 2017). The decline rate of 50th O3 percentile is 

considerably slower than that of 98th O3 percentile during May–September 2017–2022, about -0.02 ppb/year (-0.0% per year). 20 

Unexpectedly, the 2nd O3 percentile in eastern China showed an increasing trend (about 0.06 ppb/year, 0.3% per year) during 

May–September 2017–2022, the increase in 2nd O3 concentrations may be due to the decrease in O3 titration from fresh NO 

emissions as NOx emissions decrease (Li et al., 2023). It can be confirmed in Fig. 2b that all the three NO2 percentiles (2nd, 

50th, and 98th) show a significant decreasing trend during May–September 2017–2022, with relative decreasing tends of -2.1%, 

-1.8%, and -1.8% per year, respectively. Notably, NO2 declines more rapidly in 2020 and 2021, mainly because of the impact 25 

of the COVID–19 pandemic, which has been discussed in detail in previous studies (Liu et al., 2022a). Satellite observations 

also found a significant decrease in NO2 concentration in eastern China (Fig.3a), with a decrease rate of about 0.09

 (-1.8% per year). Since 2013, there have decreased in NOx emissions in China owing to a series of air 

pollution prevention and control policies (Lin et al., 2019; Wang et al., 2019). 

We further examined the trends in the 98th and 2nd O3 percentiles across cities in eastern China from May to September 30 

2017–2022 (Fig. 4). Generally, the trend in low O3 concentrations in most cities showed an increase, with the 2nd O3 percentile 

ranging from -0.2 to 0.5 ppb/year (-1.6–5.6% per year). Conversely, peak O3 concentrations exhibited a decreasing trend, with 

the 98th O3 percentile ranging from -1.1 to 0.2 ppb/year (-1.0–0.3% per year). The trend in typical O3 concentrations in eastern 

15 2×10 mol/cm /year
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China from May to September 2017–2022 ranging from -0.4 to 0.3 ppb/year (-0.8–0.8% per year), with about one third of the 

cities increasing and two thirds decreasing. The decline in peak O3 concentrations and the rise in low O3 concentrations were 

notably more pronounced in the NCP compared to the MLYRP. The highest increase in low O3 concentrations was observed 

in Handan at 0.5 ppb/year, while the lowest decrease in peak O3 concentrations was seen in Baoding at 1.1 ppb/year. 

Additionally, we investigated the relationship between the trend in mean NO2 concentrations and the trend in the 98th O3 5 

percentiles from May to September 2017–2022, revealing a significant positive correlation with a Pearson correlation 

coefficient of R=0.42 (P<0.01; Fig. 5). In contrast, the trend in the 98th NO2 percentile during the same period showed a 

significant negative correlation with the trend in the 2nd O3 percentiles, with a Pearson correlation coefficient of R=-0.41 

(P<0.01). Therefore, the substantial reduction in NOx emissions may have had divergent impacts on low and peak O3 levels, 

contributing to the observed decrease in low O3 concentrations and increase in peak O3 concentrations across urban areas in 10 

eastern China. 

Due to the absence of long–term ground–based VOCs observations, satellite–observed HCHO VCD were utilized to 

indicate VOCs variations in eastern China from May to September 2018–2022. HCHO is a transient product reflecting the 

oxidation of various VOCs, serving as a proxy for VOCs emissions, as used in previous studies (Zheng et al., 2018; Zhang et 

al., 2019). The TROPOMI satellite observations showed a significant upward trend in HCHO VCD in eastern China during 15 

May–September from 2018 to 2022, approximately 0.11  (0.7% per year) (Fig. 3b). Generally, HCHO 

VCD exhibits seasonal variability (Li et al., 2021), with higher temperatures and sufficient radiation enhancing photochemical 

reactions of VOCs and biogenic VOC emissions, thereby promoting HCHO formation (Ren et al., 2022b). In China, 

anthropogenic VOCs emissions continued to increase until 2019 (Zheng et al., 2018), after which measures were implemented 

to control them. However, biogenic VOC emissions have been rising in recent years, particularly during extreme heat events 20 

such as those experienced in the MLYRP in 2022, leading to a significant increase in biogenic VOCs emissions (Zhang et al., 

2022; Zhang et al., 2023a). Importantly, reductions in anthropogenic VOCs have not been sufficient to offset the overall 

increasing trend in VOCs emissions across eastern China (Li et al., 2020b). 

3.2 Anthropogenic and meteorological contributions to O3 trends 

The MLR model was applied to assess the significance of the anthropogenic and meteorological components on the 98th 25 

and 2nd O3 percentile trends. It is worth noting that the aim of this section is not to accurately assess the contribution of each 

meteorological factor and precursor concentration to O3 trends but to explore trends in the 98th and 2nd O3 percentile 

concentrations due to variations in meteorological conditions and anthropogenic emissions in eastern China and to determine 

the magnitude of the 98th and 2nd O3 percentile trends. Based on the daily output of the MLR model, the monthly mean 

meteorological and anthropogenic components of the 98th and 2nd O3 percentiles from May to September 2017–2022 were 30 

calculated, and the relative contributions of the meteorological and anthropogenic components to the 98th and 2nd O3 percentile 

trends were quantified. Based on the MLR model, the three key meteorological factors with the most significant effects on the 

15 2×10 mol/cm /year
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98th and 2nd O3 percentiles were selected (Li et al., 2018; Li et al., 2020a). The meteorological components of the 98th and 2nd 

O3 percentile concentrations were then simulated using the MLR model driven by the three selected key meteorological factors, 

and the coefficients of each factor and the Pearson correlation coefficients (R) of the fitted MLR model were obtained. The R 

for each city of eastern China was in the range of 0.16 to 0.77 for 2nd O3 percentiles (Table S2) and 0.24 to 0.84 for 98th O3 

percentiles (Table S3), respectively. RH and T were the most important factors affecting the 98th and 2nd O3 percentile 5 

concentrations, followed by TCC, BLH, U, V, and V850 (Tables S2 and S3). These results are consistent with the current 

understanding of the meteorological effects of O3 (Weng et al., 2022; Li et al., 2020a; Ding et al., 2023).  

Figure 6 shows the trends in the monthly mean observed 98th and 2nd O3 percentile concentrations, meteorological 98th 

and 2nd O3 percentile components in the MLR simulations, and the residual anthropogenic 98th and 2nd O3 percentile 

components during May–September 2017–2022. The trend of the monthly mean 98th O3 percentile meteorological component 10 

obtained by the MLR model from May to September 2017–2022 was considerably smaller than that of the anthropogenic 

component, with almost no trend between 2017 and 2022 (0.005 ppb/year). Meteorological influences explained only 3% 

(0.005 ppb/year) of the observed 98th O3 percentile trend during May–September 2017–2022, with the remaining -103% (-

0.183 ppb/year) determined by anthropogenic influences. However, if we count the monthly mean 98th O3 percentiles trends 

from May–September 2017–2021, we find a more significant downward trend in 98th O3 percentiles (-0.363 ppb/year), with a 15 

contribution of -0.119 ppb/year (-33%) from the meteorological component and -0.244 ppb/year (-67%) from the 

anthropogenic component (Table 1). The differences in the O3 trend statistics for 2017–2022 and 2017–2021 are mainly due 

to the meteorological conditions in 2022, which will be analyzed in detail in the discussion section. Separating the observed 

2017–2022 98th O3 percentiles trends by month shows that the seasonal May–September trend of -0.178 ppb/year over eastern 

China (Table 1) is driven by June, July and September. The observed trends were -0.020 ppb/year for May, -4.437 ppb/year 20 

for June, -1.745 ppb/year for July, -0.687 ppb/year for August, and 1.999 ppb/year for September. This month–to–month 

difference was driven mainly by meteorology. As derived from the MLR model, the meteorologically driven 98th O3 percentile 

trends for July and September were -1.100 and 1.136 ppb/year, respectively, which are larger than those of the anthropogenic 

trend (-0.645 ppb/year for July and 0.863 ppb/year for September). 

The trend of the mean 2nd O3 percentiles meteorological component (0.008 ppb/year, 7.0%) was also smaller than that 25 

of the anthropogenic component (0.107 ppb/year, 93.0%) from May–September 2017–2022. It is worth noting that the 

increasing trend of 2nd O3 percentiles during May–September 2017–2021 was significantly smaller than that during May–

September 2017–2022 (0.027 vs. 0.115 ppb/year). The contribution of meteorological components to 2nd O3 percentile trends 

during May–September 2017–2021 was -0.044 ppb/year (-163.0%), while the anthropogenic component trend of 2nd O3 

percentiles was 0.071 ppb/year (263.0%) (Table 1). This indicates that meteorological factors are not conducive to the 30 

increasing trend of low O3 concentrations during May–September 2017–2021, and that the increasing trend of low O3 

concentration is mainly controlled by anthropogenic influences. In addition, the observed 2017–2022 2nd O3 percentile trend 

by month was 0.322 ppb/year in May, 0.205 ppb/year in June, 0.768 ppb/year in July, 0.371 ppb/year in August, and 1.290 

ppb/year in September. The observed 2017–2022 2nd O3 percentile trends by month were driven by July and September, while 
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the sign of the 2nd O3 percentile trends, driven by meteorological and anthropogenic components, was reversed in July (-0.177 

vs. 0.945). Therefore, although anthropogenic emissions are the main driver of opposing trends in peak and low O3 

concentrations in eastern China, the effect of changes in meteorological components on the 2nd and 98th O3 percentile trends 

cannot be ignored.  

3.3 Diurnal differences in surface O3 formation sensitivity 5 

To elucidate the reasons for changes in peak, typical, and low O3 concentrations in the presence of emission reductions 

in O3 precursors (a substantial decrease in NOx emissions and a slight increase in VOCs emissions), it is critical to accurately 

determine the O3 formation sensitivity to its precursors, especially at a high temporary resolution. Secondary HCHO and NO2 

were selected as the representative VOCs and NOx respectively (Xue et al., 2022; Hong et al., 2022; Hong et al., 2018; Lin et 

al., 2022; Ren et al., 2022a). Surface NO2 and HCHO VMRs retrieved from ground–based MAX–DOAS observations were 10 

used to diagnose the surface O3 formation–sensitive regime. The thresholds for the VOC–limited, transition, and NOx–limited 

regimes were determined based on the correlation between the O3 concentrations and the changes in O3 precursor 

concentrations under different FNR (defined as the ratio of HCHO VMRs to NO2 VMRs; FNR = HCHO/NO2). Here, we used 

FNRsec (defined as the ratio of secondary HCHO to NO2; FNRsec = HCHOsec/NO2) as an indicator of O3 formation sensitivity. 

 Compared with conventional FNR, FNRsec eliminate background and primary HCHO interference, improve the accuracy 15 

of diagnosing O3 formation sensitivity, and contribute to a better understanding of O3 formation sensitivity (Lin et al., 2022; 

Xue et al., 2022). Most of FNRsec values (~98%) varied between 0.03~1.5 during the whole observations, and excessively low 

FNRsec values can be attributed to deficiencies in the HCHO source assignment in the MLR model. Therefore, FNRsec values 

greater than 1.5 or less to 0.03 were filtered out for quality control. 

Three steps are involved in determining the FNRsec threshold. First, the surface–hourly averaged secondary HCHO and 20 

NO2 VMRs during May–September based on MAX–DOAS observations were normalized by dividing their respective mean 

values because of the large differences in surface HCHO and NO2 concentrations (Su et al., 2017; Ren et al., 2022a). The ratio 

of the hourly averaged O3 VMRs to the hourly averaged normalized NO2 VMRs (SNO2) and the ratio of the hourly averaged 

O3 VMRs to the hourly averaged normalized secondary HCHO VMRs (SHCHO) were calculated. Finally, third–order 

polynomials were used to fit SNO2 and SHCHO (Fig.7). 25 

As shown in Fig.7, the third–order fitting of SNO2 increased almost linearly with the FNRsec values, similar to SHCHO. When 

SNO2 is significantly larger than SHCHO, O3 formation is more sensitive to NOx, which is the NOx–limited regime, and vice versa. 

For example, in Hefei, SNO2 and SHCHO intersected at FNRsec=0.21. FNRsec less than 0.16 and greater than 0.29 correspond to 

VOC–limited regime and NOx–limited regime, respectively, where the relative difference between SNO2 and SHCHO is more 

than 25% (Lin et al., 2022), and the range of FNRsec from 0.16 to 0.29 represents a transition regime. For Huaibei and Tai'an, 30 

the transition regime range was 0.24–0.44 and 0.14–0.24, respectively. The FNRsec threshold for O3 formation sensitivity varies 

in different cities, which may be due to differences in O3 precursor emissions. 
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Figure 8 shows the diurnal variations in O3 and its precursors at three stations (Hefei, Huaibei, and Tai'an) in eastern 

China, from south to north. O3 and NO2 VMRs showed diametrically opposite trends from 08:00 to 13:00, with O3 

concentrations rapidly increasing (about 8.2, 7.4, and 8.6 ppb/hour in Hefei, Huaibei, and Tai' an, respectively) and NO2 

concentrations gradually decreasing (about -0.90, -0.86, and -1.49 ppb/hour in Hefei, Huaibei, and Tai' an, respectively). 

Ambient HCHO concentrations depend on the primary emissions and photo–oxidation of VOCs (Xue et al., 2022). We 5 

separated the primary and secondary sources of HCHO using the CO and Ox VMRs, and their diurnal variations are shown in 

Fig.8 d–f. The primary source contributed the most to ambient HCHO concentration. Atmospheric primary HCHO 

concentrations are mainly derived from motor vehicle exhaust, petrochemical industry, solvent use, and combustion emissions 

(Ma et al., 2019). Hefei, Huaibei, and Tai'an are located in the NCP, which is the region with the highest primary emissions of 

air pollutants in China (Li et al., 2017), The rapid industrialization and urbanization in these developing cities has influenced 10 

the primary and secondary HCHO concentrations, and HCHO mainly stems from initial atmospheric pollutants (Lu et al., 

2024). The HCHO from primary emissions was highest between 08:00 and 10:00 (about 2.63, 2.50, and 4.30 ppb in Hefei, 

Huaibei, and Tai’ an, respectively), then gradually decreased, reaching the lowest concentration around 15:00, about 1.78, 1.54, 

and 1.82 ppb in Hefei, Huaibei, and Tai’ an, respectively, and then gradually rising. High primary HCHO concentrations in the 

morning and evening may have been due to emissions from traffic (Hong et al., 2018; Zhang and Cao, 2015). Secondary 15 

HCHO concentrations were lowest in the morning, about 0.58, 0.84, and 0.65 ppb in Hefei, Huaibei, and Tai’ an, respectively, 

with the enhancement of photochemical reactions and the resumption of human activities, the secondary HCHO concentrations 

gradually increased from 08:00 to 12:00, and the first peak usually occurred at 11:00–14:00. The proportion of secondary 

HCHO VMRs in the total HCHO VMRs also increased rapidly, and the proportion of secondary HCHO VMRs in the total 

HCHO VMRs gradually stabilized after 12:00, about 24%, 31%, and 22% in Hefei, Huaibei, and Tai’ an, respectively. Similar 20 

diurnal variation trends were found in Shenyang (Xue et al., 2022), Nanjing (Hong et al., 2018), Guangzhou (Lin et al., 2022), 

Shenzhen (Zhang and Cao, 2015), Rome (Possanzini et al., 2002) and Toyama (Taguchi et al., 2020), etc. It is worth noting 

that the secondary HCHO VMRs in Hefei, Huaibei, and Tai' an increased significantly between 16:00 and 17:00, however, the 

specific reasons remain to be further investigated. In general, NO2 concentrations were higher and secondary HCHO 

concentrations were lower in the early morning, with the enhancement of photochemical reactions (08:00–13:00), NO2 25 

concentrations decreased rapidly and secondary HCHO concentrations increased gradually. 

The significant diurnal variation in O3 precursors contributes to the transition of O3 formation sensitivity, as indicated by 

the FNRsec, demonstrating a distinct single–peak pattern. As shown in Fig. 8 (j–l), FNRsec increases sharply from 08:00 to 

13:00, corresponding with considerable increases in O3 VMRs. In cities like Hefei, Huaibei, and Tai'an, O3 formation 

sensitivity starts in the VOC–limited regime (below the shaded area) at 08:00–09:00, gradually transitioning to the transition 30 

regime by 10:00–11:00. By 12:00–14:00, O3 formation in Huaibei predominantly enters the NOx–limited regime before 

shifting back to the transition regime after 15:00. Similarly, in Hefei and Tai'an, the NOx–limited regime prevails from 12:00 

to 16:00, shifting towards the transition regime after 17:00. Overall, O3 formation sensitivity is VOC–limited or transition–

regime dominant during periods of rapid O3 concentration increases (08:00–12:00), shifting to transition or NOx–limited 
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regimes when O3 concentrations peak (12:00–14:00). We further investigated the diurnal characteristics of FNRsec on O3 

exceedance days (MDA8 O3 > 160 µg/m3). Compared to the entire observation period, FNRsec on O3 exceedance days exhibits 

a faster transition from 08:00 to 13:00 and prolonged persistence in the NOx–limited regime.  

The diurnal variation in the O3 VMRs was very similar to that of FNRsec, particularly from 08:00 to 13:00, both of which 

increased sharply. The exponential function was applied to fit the relationship between the O3 concentration and FNRsec values 5 

from 08:00 to 13:00 in Hefei, Huaibei, and Tai' an (Fig.9), and all three cities showed significant positive correlations, with 

Pearson correlation coefficients of 0.53 (P<0.01), 0.40 (P<0.01), and 0.52 (P<0.01) in Hefei, Huaibei, and Tai’ an, respectively. 

Moreover, the exponential fitting is better on the O3 exceedance days, and the correlation coefficients are higher, 0.69 (P<0.01), 

0.59 (P<0.01), and 0.61 (P<0.01) in Hefei, Huaibei, and Tai’ an, respectively. This indicates that the dependence of the O3 

production rate on its precursors rapidly shifts with increasing O3 concentration, particularly on O3 exceedance days. These 10 

changes also suggest that the dependence of O3 on its precursors is extremely complex, and the precise control of O3 pollution 

requires the identification of O3 formation sensitivity mechanisms with high temporal resolution and targeted control of O3 

precursor concentrations. 

Owing to the limitations of the observational data, the analysis of diurnal transitions in surface O3 formation sensitivity 

is limited to three cities in eastern China. Here, other cities in eastern China were further investigated using satellite 15 

observations, and we construct conventional FNR using TROPOMI observed NO2 and HCHO VCD from May to September 

2018–2022. In order to avoid the misjudgment of O3 formation sensitivity caused by arbitrary selection of FNR thresholds, A 

third–order polynomial model was applied to investigate the empirical relationship between TROPOMI FNR and surface O3 

VMRs, which has been widely used in other studies (Ren et al., 2022b). Since the TROPOMI observed surface O3 VMRs can 

be obtained after November 2021 in China, we only collected the relationship between TROPOMI FNR and surface O3 VMRs 20 

from May to September, 2022. The third–order polynomial fitting relationship between surface O3 VMRs and TROPOMI FNR 

is shown in Fig. 10a, assuming that the peak of the curve (with a slope of 0) marks the transition from the VOC–limited regime 

to the NOx–limited regime, the transition regime is defined as a range of slopes between -3 and +3 (Ren et al., 2022b). Through 

the third–order polynomial model, the TROPOMI FNR threshold in eastern China was determined, which are FNR <2.1 for 

VOC–limited regime, FNR>3.2 for NOx–limited regime.  25 

Figure 11 shows the occurrence probabilities of the VOC–limited regime, transition limited regime, and NOx–limited 

regime spatial distributions derived from TROPOMI observations in eastern China during May–September, 2018–2022. Since 

the TROPOMI satellite usually transits around 13:30, it can represent the spatial distribution of midday O3 formation sensitivity 

in eastern China. Apparently, the midday O3 formation sensitivity of most cities in eastern China is under NOx–limited regime, 

only several cities in the northern part of the NCP and Yangtze River Delta are mainly controlled by VOC–limited regime. In 30 

addition, Fig. 10b–d shows the trend of the area proportion of VOC–limited regime, transition regime, and NOx–limited regime 

in the eastern China, in which the area proportion of VOC–limited regime and transition regime decreases at a rate of 0.62% 

and 0.18% per year, respectively. While the NOx–limited regime area proportion increased at a rate of 0.80% per year. More 

importantly, although there is a significant monthly variation in the area proportion of O3 formation sensitivity, it is usually 
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below 50% in May and September, and below 25% in June–August, that is, NOx–limited regime dominates the midday O3 

formation sensitivity in eastern China. Due to China's strict control of NOx emissions in recent years, the surface O3 formation 

sensitivity in many areas of China has shown a transition from the VOC–limited regime to the transition regime or NOx–

limited regime.  

In conclusion, significant diurnal transitions in surface O3 formation sensitivity primarily stem from fluctuations in O3 5 

precursors. Early morning conditions (08:00–09:00) are mainly VOC–limited regime, shifting to a NOx–limited regime by 

midday (12:00–14:00). In addition, the area proportion of VOC–limited regime was also declining, while the NOx–limited 

regime area proportion was increasing. Consequently, the substantial reduction in NOx emissions across eastern China has led 

to pronounced opposite trends in the low (increased) and peak (decreased) surface O3 concentrations, and the surface O3 

formation sensitivity to VOCs is generally weakened year by year. Accordingly, the O3 improvement benefits of VOCs 10 

emission reduction may become weaker, while the O3 improvement benefits of NOx emission reduction become larger. 

Furthermore, the long–distance transport of VOCs has a diminished impact on O3 concentrations due to chemical losses from 

OH radical oxidation during transport, highlighting NOx emission reductions as pivotal for intercity and even long–distance 

efforts to mitigate regional O3 pollution (Wang et al., 2023b). 

4 Discussions 15 

Previous analyses have shown that the trend of low O3 concentrations in eastern China is increasing, whereas the trend 

of peak O3 concentrations is decreasing. The opposite trend is mainly driven by anthropogenic emissions. Significant NOx 

emission reductions dominate the reduction in peak O3 concentrations in eastern China, owing to the diurnal transition in 

surface O3 formation sensitivity. The discussion focuses on the reasons for the differences in the O3 trend statistics for 2017–

2022 and 2017–2021, and the reasons for the possible increase in nighttime O3. 20 

As described in section 3.2, the trends for the monthly mean observed, meteorological, and anthropogenic 98th O3 

percentiles concentrations during May–September 2017–2021 are -0.363 ppb/year, -0.119 ppb/year (-33%), and -0.244 

ppb/year (-67%), respectively (Table 1), and the trends for the monthly mean observed, meteorological, and anthropogenic 2nd 

O3 percentiles concentrations are 0.027 ppb/year, -0.044 ppb/year (-163%), 0.071 ppb/year (263%), respectively. However, the 

trends of monthly mean observed, meteorological and anthropogenic of 98th O3 percentiles during May–September 2017–2022 25 

are -0.178 ppb/year, 0.005 ppb/year (3%) and -0.183 ppb/year (-103%), respectively, and the trends of the observed, 

meteorological and anthropogenic of 2nd O3 percentiles during May–September 2017–2022 are 0.115 ppb/year, 0.008 ppb/year 

(7%) and 0.107 ppb/year (93%), respectively. Although anthropogenic emissions dominated variations in O3 trends (May–

September 2017–2022 and May–September 2017–2021), meteorological effects on O3 trends cannot be ignored, particularly 

in 2022. Shadowed by mid–latitude atmospheric circulation, tropical sea–air coupling, and local land–air feedback processes, 30 

a record–breaking super–heatwave event occurred in most cities in eastern China in the summer of 2022, and some cities broke 

their highest temperature records (Zhang et al., 2023a; Zhang et al., 2022). The most important meteorological variables in the 
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MLR model were daily maximum temperature and RH (Tables S2 and S3). The temperature in eastern China showed that the 

monthly mean nighttime (daytime) temperature in June–August 2022 was 1.0 ℃ (1.1 ℃), 0.8 ℃ (1.4 ℃) and 2.2 ℃ (2.8 ℃) 

higher than the monthly mean nighttime (daytime) temperature in June–August 2021, respectively (Fig. 12). The monthly 

mean nighttime (daytime) RH in eastern China in 2022 was 3.2% (3.1%), 1.9% (4.5%), and 9.4% (11%) lower than the monthly 

mean nighttime (daytime) RH in June–August 2021, respectively. Li et al. (2024) revealed that a sustained heatwave of 5 

extremely hot and dry summers in 2022 accelerate photochemical O3 production by increasing anthropogenic and biogenic 

emissions and exacerbate O3 accumulation by inhibiting dry deposition due to water–starved vegetation, resulting in an 

increase in O3 pollution by more than 30% in urban areas. Our results also showed an increase in the meteorological 

components in the 98th and 2nd O3 percentiles in 2022 relative to the meteorological components in the 98th and 2nd O3 

percentiles in 2021 (Fig.6). Therefore, extremely hot and dry weather in 2022 will increase the peak and low O3 concentrations 10 

in eastern China, which is probably the main reason for the difference between the May and September 2017–2021 and May–

September 2017–2022 meteorological component trends. 

Overall, Meteorological conditions affected O3 concentrations in three ways. The first is the effect on the photochemical 

reaction rates (Bloomer et al., 2009), which are affected by rising temperatures and increasing solar radiation intensity, leading 

to higher O3 concentrations. Second, the effect on O3 precursors, high temperature promotes an increase in VOCs emissions 15 

from land surface vegetation (Churkina et al., 2017), which further leads to an increase in the O3 concentration. However, 

favorable meteorological conditions, such as high wind speed and precipitation, can reduce the O3 precursor concentrations 

(Mousavinezhad et al., 2021), thereby reducing the O3 concentration. Finally, transmission and regional transport also affect 

the distribution of O3 in cities (Lang et al., 2021). However, the frequency of extreme weather events such as the super-

heatwave event in 2022 is increasing (Jin et al., 2021; Zhang et al., 2015) in eastern China. In the context of the current 20 

warming climate, heat waves of extremely hot and dry conditions can elevate O3 concentrations by increasing photochemical 

rates and promoting natural emissions (e.g., soil emissions of NOx and vegetation emissions of VOCs), and meteorological 

components may have an increasing influence on O3 trends. 

Figure 6b shows that the observed increase in 2nd O3 percentile was mainly concentrated after 2020, up to 0.44 ppb/year. 

The meteorological components did not change significantly in 2020 and 2021 but considerably increased in 2022, with a trend 25 

of 0.17 ppb/year 2020–2022. This rapid increase in 2nd O3 percentile is mainly caused by anthropogenic emissions, with a trend 

of 0.27 ppb/year 2020–2022. Owing to the impact of the COVID–19 pandemic, the decrease in NOx concentrations was most 

significant in 2020–2022 (Fig.2b), and the substantial reduction in NOx concentrations weakened the O3 titration of NO, 

resulting in an increase in nighttime O3 concentrations, which was also confirmed by the significant negative correlation 

between the trend of the 98th NO2 percentile and the trend of the 2nd O3 percentiles during May–September 2017–2022 (Fig.5b). 30 

A recent study showed that nighttime O3 depletion in China is mainly caused by the wet–scavenging effect and O3 titration 

from fresh NO emissions (Li et al., 2023). The wet–scavenging effect was similar to the effect of precipitation, the higher the 

ambient humidity, the more conducive it was to O3 depletion. The RH at night increased slowly in eastern China during May–

September of 2017–2021 (Fig.12b), and the nighttime RH in 2020 and 2021 was higher than that in other years. Moreover, a 
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general wetting trend has been detected in eastern China during the summer in recent years (Hu et al., 2021), which is largely 

related to the increase in summer Precipitation and decrease in summer Potential Evapotranspiration. RH had the most 

significant effect on 2nd O3 percentile trends according to MLR results (Table S2). Therefore, the meteorological component 

had an inhibitory effect on the increase in the 2nd O3 percentile trends during May–September 2017–2021. However, owing to 

the significant emission reduction of NOx concentrations, the titration of NOx was weakened, and the decrease in O3 depletion 5 

at night led to an increase in the overall 2nd O3 percentile trends.  

Owing to the limitations of the observational data, the analysis of surface O3 precursors and O3 formation sensitivity is 

limited to three cities in eastern China. Although other cities in eastern China were further investigated using satellite 

observations, TROPOMI only provides observation results for column concentrations at approximately 13:30 each day, which 

did not allow us to obtain diurnal variations in the O3 formation sensitivity. Further observations must be extended to other 10 

cities to investigate the relationship between O3 and its precursors more comprehensively. 

In conclusion, owing to the impact of the COVID–19 pandemic (significant decrease in NOx concentrations) and 

unfavorable meteorological conditions (high relative humidity) in 2020 and 2021 in eastern China, the 98th O3 percentile 

concentration in 2020 and 2021 was lower (compared to the 98th O3 percentile concentration in 2018 and 2019), while the 2nd 

O3 percentile concentration showed a rapid upward trend. In addition, the extremely hot and dry meteorological conditions in 15 

2022 will increase the 98th and 2nd O3 percentile concentrations, weakening the decreasing trend in peak O3 concentrations and 

increasing the upward trend at low O3 concentrations. 

5 Conclusions 

In this study, we investigated urban–scale O3 trends in densely populated areas of eastern China using multiple data 

sources. Through long–term records of surface O3 and related parameters at 105 urban air quality monitoring sites in eastern 20 

China from May to September of 2017 to 2022, we found opposite trends for low and peak surface O3 concentrations. Statistical 

results showed that low O3 concentrations increased significantly (0.06 ppb/year, 0.3% per year), while peak O3 concentrations 

decreased considerably (-0.39 ppb/year, -0.5% per year). Anthropogenic emissions were the main driver of both trends, 

although meteorological effects also played a role. 

Based on long–term MAX–DOAS observations in Hefei, Huaibei, and Tai'an, we found that surface O3 formation 25 

sensitivity in the early morning (8:00–9:00) was mainly controlled by VOC concentrations, shifting to an NOx–limited regime 

by midday (12:00–14:00). Moreover, O3 formation sensitivity is in the VOC–limited regime or transition regime during periods 

of sharp increases in O3 concentrations (8:00–11:00) and usually in the transition or NOx–limited regime when O3 

concentration peaks (11:00–14:00). Therefore, the decline in peak O3 concentrations was attributed to the significant reduction 

in NOx concentrations. To further suppress peak O3 concentrations and reduce the number of O3 exceedance days, controlling 30 

NOx emissions should not be neglected. The increase in low O3 concentrations can also be attributed to anthropogenic 

emissions and meteorological effects. Extremely hot and dry conditions can elevate O3 concentrations by increasing 
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photochemical rates, promoting natural emissions, and depressing nighttime O3 depletion by impairing the wet–scavenging 

effect. Additionally, a substantial reduction in NOx concentrations weakened O3 titration from fresh NO emissions and 

increased nighttime O3 concentrations. 

Our results highlight the positive impact of NOx reduction in controlling peak O3 levels. In response to the current severe 

O3 pollution in China, it is crucial to consider the regular transitions in O3 formation sensitivity throughout the day when 5 

formulating O3 prevention and control policies. When O3 concentrations are about to peak, strict control of NOx emissions is 

necessary. This study provides novel insights into the spatiotemporal variability of O3 formation sensitivity in eastern China 

and will be further expanded at different altitude levels in our future studies. 
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Figures: 

 
Fig.1. Spatial distributions of O3 and its precursors in eastern China. (a) Spatial distributions of surface mean MDA8 O3 
concentrations during May–September 2017–2022. The red arrow indicates the name of each city, which are equipped with 5 
ground–based MAX–DOAS observations. Spatial distributions of tropospheric mean (b) NO2 and (c) HCHO VCD during 
May–September 2018–2022. 
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Fig.2. Trends of surface (a) O3, (b) NO2, (c) O3 exceedance days and O3 exceedance hours in eastern China during May–
September 2017–2022. The red, magenta, and blue solid lines in (a) and (b) indicate the trends for the 98th, 50th, and 2nd 
percentiles, respectively. The labels on (a) and (b) represent the trends in O3 and NO2 for May–September 2017–2022, units: 
ppb/year. The labels on (c) represent the trends in O3 exceedance days and O3 exceedance hours for May–September 2017–5 
2022. The percentage change is indicated in brackets. 
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Fig.3. Trends of TROPOMI observed (a) NO2 VCD, and (b) HCHO VCD averaged over eastern China during May–September 
2018–2022. The labels at the top of each panel represent the trends in NO2 VCD, and HCHO VCD, respectively. The percentage 
change is indicated in brackets. The light red dots in (a,b) represent the daily values, and the solid red dots are monthly mean 
values.  5 
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Fig.4. Trends of peak and low O3 concentrations in eastern China. Trend of (a) 2% and (b) 98% O3 percentiles, units: ppb/year, 
percentage variations in (c) 2% and (d) 98% O3 percentile, units: %/year.  
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Fig.5. Scatterplots showing the relationships between the (a) trend of mean NO2 concentrations and the trend of 98th O3 
percentiles, (b) trend of 98th NO2 percentiles and trend of 2nd O3 percentiles in each city of eastern China during May–
September 2017–2022. The correlation coefficients are shown in the top left of each panel, N=number of cities.  
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Fig.6. Trends of observed (blue lines), meteorological (red lines), and anthropogenic (magenta lines) (a) 98th and (b) 2nd 10 
O3 percentiles component in eastern China during May–September 2017–2022. The labels at the top of each panel 
represent the trend in observed, meteorological, and anthropogenic components. 
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Fig.7. Three–order fitting of ratios of O3 VMRs versus normalized NO2 VMRs and ratios of O3 VMRs versus normalized 
secondary HCHO VMRs in different FNRsec values in Hefei, Huaibei, and Tai’an during May–September based on MAX–
DOAS observations. The intersect at FNRsec indicated by the black solid line. The vertical shadow indicates the relative 
difference between the ratios of O3 VMRs versus normalized NO2 VMRs and ratios of O3 VMRs versus secondary HCHO 5 
VMRs within 25% (transition regime). The labels at the top right of each panel represent the intersect FNRsec values and the 
thresholds for the NOx–limited regime (high) and VOC–limited regime (low) in Hefei, Huaibei, and Tai’an, respectively. 
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Fig.8. Diurnal variation of surface (a–c) O3 and NO2 VMRs, (d–f) HCHO VMRs contributed by primary and secondary sources, 
(g–i) the ratio of secondary HCHO to total HCHO VMRs, (j–l) FNRsec during the whole observation, and (m–o) FNRsec during 
O3 exceedance day in Hefei, Huaibei, and Tai’an during May–September, respectively. The vertical bars in (a–f) represent the 
one standard deviation. The dot within the box indicates the mean value, the positions of box plots represent the 5th, 25th, 50th, 5 
75th, 95th percentiles, respectively. The horizontal shadow in (j–o) represents the transition regime, the top of the shadow 
represents the NOx–limited regime, and the bottom of the shadow represents the VOC–limited regime.  



30 
 

 
Fig.9. The relationship between the O3 VMRs and FNRsec during (a–c) the whole observation, and (d–f) the O3 exceedance 
day from 08:00 to 13:00 in Heifei, Huaibei, and Tai’an, respectively. The black line represents the exponential fitting 

(         B xf x A e   ). The fitting functions and correlation coefficients for exponential fit are shown at the top left of each 

panel, N=number of samples. 5 
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Fig.10. (a) Variation of monthly mean O3 VMRs (~13:30) with monthly mean TROPOMI FNR in eastern China during May–
September 2022. The solid line represents third–order polynomial fitting. The vertical line represents the maximum value of 
the fitted curve, and the vertical shadow represents the range of the curve slope from −3 to +3 (transition regime). Trends of 
TROPOMI observed area proportion for (b) VOC–limited regime, (c) Transition regime, and (c) NOx–limited regime over 5 
eastern China during May–September 2018–2022. The light red dots in (b–d) represent the daily values, and the solid red dots 
are monthly mean values. 
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Fig.11. Occurrence probabilities of the (a) VOC–limited regime, (b) transition limited regime, and (c) NOx–limited regime 
spatial distributions in eastern China derived by TROPOMI observations during May–September 2018–2022.  
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Fig.12. Daytime (7:00–19:00) and nighttime (19:00–07:00) (a) T and (b) RH trends in ERA5 reanalysis data in eastern China 
during May–September 2017–2022 and May–September 2017–2021. The labels at the top right of each panel represent the 
trend of T and RH in eastern China during May–September 2017–2022 and May–September 2017–2021. 10 
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Table 1.Observed, Meteorologically, and anthropogenically driven trends of 2% and 98% O3 percentiles in eastern China 
from 2017 to 2022 and from 2017 to 2021. 

 

May–September 2017–2022 trends May–September 2017–2021 trends 

2% 98% 2% 98% 

Obs. Mete. Anth. Obs. Mete. Anth. Obs. Mete. Anth. Obs. Mete. Anth. 

Total 0.115 0.008 0.107 -0.178 0.005 -0.183 0.027 -0.044 0.071 -0.363 -0.119 -0.244 

May 0.322 0.017 0.305 -0.020 -0.661 0.641 -0.438 -0.257 -0.181 -3.702 -0.968 -2.734 

June 0.205 -0.032 0.237 -4.437 -1.894 -2.543 -0.364 -0.169 -0.195 -2.645 0.124 -2.769 

July 0.768 -0.177 0.945 -1.745 -1.100 -0.645 0.665 -0.247 0.912 -2.974 -2.370 -0.604 

August 0.371 0.084 0.287 -0.687 -0.156 -0.531 -0.003 -0.260 0.257 -1.473 -0.908 -0.565 

September 1.290 0.319 0.971 1.999 1.136 0.863 0.884 -0.126 1.010 1.352 0.814 0.538 
 


