
Response to Reviewer 1 Comments 
 
We truly grateful for the reviewers for the valuable and constructive comments, which are very 

useful for the improvement of the manuscript. We have revised the manuscript carefully 

according to the reviewers’ comments. Point–to–point responses are given below. The original 

comments are black in color, while our responses are in blue. The revised parts in the 

manuscript are marked in red. All the page number and line number are referred to the revised 

manuscript. 

 

General comments: 

Point 1: It’s hard for me to identify the main topic of this paper. While the primary focus 

appears to be explaining the opposing trends in the 98th and 2nd percentiles of ozone in the 

MLYRP (part of eastern China), the paper includes many other analyses that are irrelevant to 

this topic. For instance, Section 3.4 (Interannual differences in surface O3 formation sensitivity) 

and Section 3.6 (Key meteorological and anthropogenic factors inducing O3 pollution) should 

be removed (they haven’t found anything new in these sections either). The entire paper should 

be reframed. Additionally, Section 3.5 presents the same analysis and draws the same 

conclusions as Sections 3.1–3.3 but for a larger area (eastern China). The inclusion of Section 

3.5 seems redundant. Why don’t the authors focus on eastern China throughout the manuscript? 

Response 1: We apologize for the confusion generated by the previous version of the 

manuscript and sincerely hope that our logic is now easier to follow with this new version. We 

have followed the reviewer’s comments and reorganized the manuscript to avoid diverting the 

reader’s attention. Firstly, we have deleted sections 3.4 (Interannual differences in surface O3 

formation sensitivity) and 3.6 (Key meteorological and anthropogenic factors inducing O3 

pollution) in the previous manuscript. Then, sections 3.1–3.3 and 3.5 was reframed, and the 

entire updated manuscript focuses on eastern China throughout the manuscript.  

The new manuscript mainly includes four parts. First, we report long–term records of 

surface O3 and related parameters observed at urban air quality monitoring sites and by 

satellites in eastern China, characterizing the trends of low, typical, and peak surface O3 

concentrations during the warm season (May–September) from 2017 to 2022. Then, a Multiple 

Linear Regression (MLR) model is used to evaluate the anthropogenic and meteorological 

contributions to the 98th and 2nd O3 percentile trends. Next, secondary formaldehyde (HCHO) 

and NO2 are employed to diagnose the diurnal variations in O3 formation sensitivity and 

investigate the reasons for peak O3 concentration trends in the context of current NOx reduction. 



Finally, we discuss the reasons for the potential increase in low O3 concentrations and the 

sensitivity of peak and low O3 trends during the study period. Please refer to our new 

manuscript for details. 

In addition, following the referee’s suggestion, the manuscript was edited by Elsevier 

Language Editing Services (please see the following Elsevier certificate). 

 
Fig. R1 Certificate of Elsevier language editing services 

 

Point 2: To understand the drivers of ozone trends, the authors use Multiple Linear Regression 

(MLR) to separate meteorological influences. There are several issues with their analysis: (a) 

The predicted variable, O3 concentration, should also be normalized in the MLR. Normalizing 

Y first would eliminate the need for natural background O3 in equation (2). (b) Line 27, Page 

6, the statement that O3 from natural sources is stable is incorrect. Biogenic VOCs and soil 

NOx emissions are highly sensitive to temperature. (c) Lines 19–21, 23–24, Page 10, the 

authors seem to confuse the terms “interannual fluctuation” and “trend.” The trend observed is 

actually a low–frequency signal after removing the high–frequency signals (interannual 

fluctuation). In this part, it is only acceptable to conclude that the anthropogenic component 

drives the trend, but it is apparent that meteorological parameters dominate the interannual 

fluctuation (as it roughly reproduces the peaks and troughs). All of this needs to be corrected. 

Response 2: We thank the reviewer for pointing out this issue. (a) We corrected the problem 

(the predicted variable, O3 concentration, should also be normalized in the MLR. Normalizing 

Y first would eliminate the need for natural background O3 in equation 2) in the MLR model, 

and rearranged this subsection to conclude that, although anthropogenic emissions are the main 

driver of the opposing trends in peak and low O3 concentrations in eastern China, the effect of 



the change of meteorological component on 2nd or 98th O3 percentiles trends cannot be ignored. 

(b) The statements in Line 27, Page 6 have been deleted, and (c) Lines 19–21, 23–24, Page 10 

have been corrected.  

In the new manuscript, we used the same stepwise MLR modeling approach as (Zhai et 

al., 2019; Li et al., 2018; Li et al., 2020; Liu et al., 2023). Following Liu et al. (2023) and Li et 

al. (2020), the MLR model fitted the deseasonalized and detrended 10 d mean 98th or 2nd O3 

percentile time series to the deseasonalized and detrended 10 d mean meteorological variables. 

The deseasonalized and detrended time series data were constructed by removing the 50 d 

moving average data from the 10 d moving average data. The stepwise MLR model has the 

following form: 

1
( ) ( )

n

k k
k

Y t R X t


                                                       (1) 

Where ( )Y t  is the deseasonalized and detrended daily surface 98th or 2nd O3 percentile 

time series, R is the regression constant, k  is the regression coefficient, and kX  is the 

deseasonalized and detrended daily meteorological variable considered as a possible O3 

covariate. Stepwise regressions were performed, adding and removing terms based on their 

independent statistical significance to obtain the best model fit.  

Daily meteorological variables were obtained from the ERA5 reanalysis data (Download 

from https://cds.climate.copernicus.eu, last access: January 7, 2024), included temperature 

(T, °C), surface relative humidity (RH, %), total cloud cover (TCC), total precipitation (TP, 

mm), mean sea level pressure (MSLP, hPa), wind speed of U, V components (U, V, m/s), 

boundary layer height (BLH, m), and vertical velocity at 850 hPa (V850, m/s).  

First, we used the MLR model to remove the effects of meteorological variability from 

the 2017 to 2022 98th or 2nd O3 percentile trends. We apply Eq. (1) to the meteorological 

anomalies kX  during May–September 2017–2022, obtained by removing the 6–year means of 

the 50 d moving averages from the 10 d mean time series. The anomalies calculated in this 

process were deseasonalized but not detrended. This yields the meteorology–driven 98th or 2nd 

O3 percentile anomalies ( )mY t  
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Secondly, to avoid overfitting, only the three most important meteorological parameters 

were selected based on their individual contributions to the regressed 98th or 2nd O3 percentiles, 

along with the requirement that they be statistically significant above the 95% confidence level 



in the MLR model (Li et al., 2018). The fit results and selected meteorological variables varied 

by city but were regionally consistent (Table R1 and Table R2). The 98th or 2nd O3 percentile 

anomalies ( )aY t  obtained by deseasonalizing, but not detrending, the 98th or 2nd O3 percentile 

time series in a similar manner as for the meteorological variables (by removing the 6–year 

means of the 50 d moving averages). The residual anomaly ( )rY t after removing the 

meteorology–driven 98th or 2nd O3 percentile anomalies from the MLR model is given by 

( ) ( ) ( )r a mY t Y t Y t                                                      (3) 

Finally, the residual is an anomalous component that cannot be explained by the MLR 

meteorological model and is referred to as meteorologically corrected data by (Zhai et al., 

2019). It consists of noise due to the limitations of the MLR model and other factors and can 

be mainly attributed to long–term trends in anthropogenic emission changes over a 6–year 

period. The trend in the regressed 98th or 2nd O3 percentile reflected the meteorological 

contribution, and the residual was then used to reflect the presumed anthropogenic contribution. 

For the updated MLR model, please refer to section 2.4 in the manuscript. 

Table R1. Meteorological drivers of 2% O3 percentile and Pearson correlation coefficient 
between observed and modeled 2% O3 percentile in each city of eastern China during May–

September 2017–2022 

 Meteorological variable   Meteorological variable  
1st 2st 3st R 1st 2st 3st R 

Taian T RH U 0.35 Beijing U RH T 0.23 
Puyang T BLH RH 0.50 Tianjing U T RH 0.32 
Rizhao U V T 0.46 Baoding U RH TP 0.27 
Jining RH T V 0.54 Lanfang U T V 0.23 

Xinxiang U RH V 0.41 Shijiazhuang RH BLH U 0.27 
Jiaozuo T RH U 0.39 Handan RH V BLH 0.20 

Heze RH T V 0.47 Qinghuangdao V U RH 0.32 
Linyi RH U TP 0.40 Cangzhou BLH T MSLP 0.28 

Kaifeng RH U T 0.49 Xingtai RH BLH U 0.17 
Zhengzhou BLH RH U 0.47 Hengshui T V RH 0.28 
Luoyang BLH RH V 0.16 Tangshan U V RH 0.20 

Zaozhuang RH T U 0.46 Jinan V BLH RH 0.59 
Lianyungang RH V850 U 0.37 Qingdao V BLH RH 0.26 

Shangqiu RH T V 0.48 Zibo V BLH RH 0.59 
Xuzhou RH BLH V 0.48 Dongying U V V850 0.36 
Xuchang BLH RH U 0.53 Yantai V BLH U 0.33 
Suqian RH T MSLP 0.40 Weifang BLH T U 0.34 
Huaibei RH U BLH 0.59 Weihai RH U MSLP 0.36 

Pingdingshan BLH RH U 0.57 Dezhou RH V BLH 0.40 
Bozhou RH V T 0.49 Liaocheng BLH V RH 0.48 

Zhoukou RH U T 0.49 Binzhou BLH T V 0.23 
Luohe RH U MSLP 0.45 Shaoxing RH BLH T 0.59 
Suzhou RH U BLH 0.50 Jinhua RH TP V 0.60 
Huaian RH V TP 0.42 Taizhou V RH U 0.54 

Yancheng V RH BLH 0.37 Ningbo RH V TP 0.48 



Nanyang RH U BLH 0.67 Wuhan RH V BLH 0.61 
Zhumadian RH TP BLH 0.52 Changsha RH V BLH 0.71 

Fuyang RH V U 0.64 Jinghzou RH V BLH 0.55 
Bengbu RH BLH U 0.36 Yueyang RH BLH V 0.60 
Huainan RH BLH U 0.56 Zhuzhou RH V BLH 0.73 
Xinyang RH TP T 0.63 Xiangtan RH V BLH 0.72 
Suizhou RH BLH U 0.63 Yichang RH U V850 0.64 
Shanghai RH V TP 0.55 Yiyang RH V BLH 0.67 
Nanjing V RH T 0.40 Changde V BLH RH 0.59 

Wuxi RH V BLH 0.57 Jingmen V RH U 0.63 
Changzhou V RH TP 0.49 Huangshi RH U V850 0.72 

Suzhou RH V T 0.52 Huanggang RH U V850 0.77 
Nantong V RH U 0.62 Xianning RH U MSLP 0.74 

Yangzhou V RH T 0.52 Xiaogan RH V850 BLH 0.68 
Zhenjiang V RH T 0.55 Quzhou V RH U 0.68 
Taizhou V RH T 0.59 Lishui RH V T 0.70 

Luan RH V T 0.24 Wenzhou RH V U 0.63 
Hangzhou RH V BLH 0.53 Jiujiang V RH MSLP 0.58 

Jiaxing RH V T 0.45 Nanchang V RH V850 0.67 
Huzhou  V RH U 0.61 Jingdezhen BLH V850 T 0.59 
Hefei RH TP V 0.37 Shangrao V850 BLH RH 0.65 
Wuhu V TP U 0.46 Yingtan BLH V850 RH 0.64 

Maanshan V U TP 0.45 Yichun V850 U T 0.63 
Tonglin V T TP 0.50 Fuzhou RH V BLH 0.72 
Anqing V T TP 0.56 Jian BLH U RH 0.57 

Chuzhou RH V BLH 0.44 Xinyu BLH V U 0.62 
Chizhou RH V BLH 0.47 Pingxiang V850 BLH T 0.61 

Xuancheng T RH U 0.27 - - - - - 

Table R2. Meteorological drivers of 98% O3 percentile and Pearson correlation coefficient 
between observed and modeled 98% O3 percentile in each city of eastern China during May–

September 2017–2022 

 Meteorological variable   Meteorological variable  
1st 2st 3st R 1st 2st 3st R 

Taian T TP TCC 0.71 Beijing MSLP BLH V 0.30 
Puyang T V850 TP 0.79 Tianjing V MSLP BLH 0.27 
Rizhao T U TCC 0.67 Baoding MSLP V BLH 0.28 
Jining T TP V850 0.77 Lanfang MSLP BLH V 0.32 

Xinxiang T TCC BLH 0.74 Shijiazhuang MSLP BLH V 0.24 
Jiaozuo T TP TCC 0.81 Handan T MSLP U 0.31 

Heze T V850 TP 0.78 Qinghuangdao TCC U MSLP 0.36 
Linyi T TP TCC 0.73 Cangzhou V BLH MSLP 0.35 

Kaifeng T V850 TP 0.78 Xingtai MSLP BLH V 0.25 
Zhengzhou T V850 TP 0.78 Hengshui V MSLP BLH 0.38 
Luoyang U TCC V 0.28 Tangshan TCC MSLP T 0.27 

Zaozhuang T TP TCC 0.81 Jinan T TP V850 0.77 
Lianyungang TCC U TP 0.68 Qingdao U BLH RH 0.45 

Shangqiu T TP V850 0.71 Zibo T TP V850 0.70 
Xuzhou T TCC TP 0.74 Dongying T RH V 0.66 
Xuchang T V850 TCC 0.70 Yantai U T RH 0.44 
Suqian RH TCC TP 0.74 Weifang T TP U 0.68 
Huaibei TCC T TP 0.74 Weihai U T RH 0.44 

Pingdingshan T V850 U 0.66 Dezhou T TP V850 0.75 
Bozhou TCC T TP 0.67 Liaocheng T V850 TP 0.77 

Zhoukou T TCC RH 0.73 Binzhou T TP V 0.66 
Luohe T V850 RH 0.75 Shaoxing T V TP 0.66 



Suzhou TCC T TP 0.71 Jinhua T V TP 0.59 
Huaian T TCC TP 0.72 Taizhou U V T 0.62 

Yancheng TP V850 U 0.56 Ningbo T V U 0.69 
Nanyang T TCC RH 0.74 Wuhan TCC RH V850 0.75 

Zhumadian TCC BLH TP 0.67 Changsha RH TCC V 0.76 
Fuyang RH TCC MSLP 0.74 Jinghzou RH V850 T 0.84 
Bengbu T TCC TP 0.72 Yueyang RH TCC U 0.82 
Huainan TCC RH MSLP 0.68 Zhuzhou RH V T 0.73 
Xinyang RH TCC U 0.74 Xiangtan RH V TCC 0.78 
Suizhou RH TCC MSLP 0.75 Yichang RH TCC V850 0.79 
Shanghai T U RH 0.72 Yiyang RH TCC V850 0.80 
Nanjing TCC V850 V 0.61 Changde TCC V850 T 0.74 

Wuxi TP TCC U 0.66 Jingmen RH V850 T 0.76 
Changzhou TCC TP BLH 0.60 Huangshi RH TCC V 0.76 

Suzhou T TP U 0.63 Huanggang TCC RH U 0.72 
Nantong T RH BLH 0.75 Xianning RH V850 T 0.80 

Yangzhou TCC TP V850 0.61 Xiaogan RH TCC U 0.72 
Zhenjiang TCC TP MSLP 0.61 Quzhou RH V850 T 0.74 
Taizhou TCC V850 U 0.61 Lishui RH U V 0.65 

Luan TCC MSLP T 0.61 Wenzhou U RH V 0.65 
Hangzhou TP TCC T 0.69 Jiujiang TCC V850 RH 0.80 

Jiaxing T TP U 0.70 Nanchang RH V850 T 0.72 
Huzhou  TP TCC T 0.67 Jingdezhen RH V850 TCC 0.75 
Hefei TCC TP V 0.59 Shangrao TCC V850 T 0.76 
Wuhu TCC TP V 0.65 Yingtan TCC V850 T 0.78 

Maanshan TCC TP MSLP 0.66 Yichun V850 TCC T 0.75 
Tonglin TCC MSLP V 0.63 Fuzhou V850 T TCC 0.82 
Anqing TCC V TP 0.58 Jian TCC T V 0.66 

Chuzhou TCC TP MSLP 0.58 Xinyu V850 TCC V 0.75 
Chizhou TCC V MSLP 0.63 Pingxiang V850 TCC V 0.75 

Xuancheng TCC V MSLP 0.58 - - - - - 
 

 

Point 3: The authors conclude that the continuous NOx reduction during 2017–2022 is the 

reason for the differences in tendencies in the O3 98th and 2nd percentile trends. However, if 

you look carefully at Figure 5, which presents the anthropogenic impact for each year on the 

98th and 2nd percentile trends, respectively, you will find that the anthropogenic impact shows 

a similar pattern for both trends until mid–2021. It appears that something that occurred after 

2021 is the main reason for the divergence. More investigation is clearly needed. Also, how is 

this opposing trend sensitive to the period studied? 

Response 3: Thanks for your constructive comments! We have corrected the problem in the 

MLR model according to Point 2, and the updated results is shown in Fig.R2. The trends for 

the monthly mean observed, meteorological, and anthropogenic 98th O3 percentiles 

concentrations during May–September 2017–2021 are -0.363 ppb/year, -0.119 ppb/year (-

33%), and -0.244 ppb/year (-67%), respectively (Table R3), and the trends for the monthly 

mean observed, meteorological, and anthropogenic 2nd O3 percentiles concentrations are 0.027 

ppb/year, -0.044 ppb/year (-163%), 0.071 ppb/year (263%), respectively. However, the trends 



of monthly mean observed, meteorological and anthropogenic of 98th O3 percentiles during 

May–September 2017–2022 are -0.178 ppb/year, 0.005 ppb/year (3%) and -0.183 ppb/year (-

103%), respectively, and the trends of the observed, meteorological and anthropogenic of 2nd 

O3 percentiles during May–September 2017–2022 are 0.115 ppb/year, 0.008 ppb/year (7%) 

and 0.107 ppb/year (93%), respectively. 

Although anthropogenic emissions dominated variations in O3 trends (May–September 

2017–2022 and May–September 2017–2021), meteorological effects on O3 trends cannot be 

ignored, particularly in 2022. Shadowed by mid–latitude atmospheric circulation, tropical sea–

air coupling, and local land–air feedback processes, a record–breaking super–heatwave event 

occurred in most cities in eastern China in the summer of 2022, and some cities broke their 

highest temperature records (Zhang et al., 2023; Zhang et al., 2022). The most important 

meteorological variables in the MLR model were daily maximum temperature and RH (Tables 

R1 and R2). The temperature in eastern China showed that the monthly mean nighttime 

(daytime) temperature in June–August 2022 was 1.0 ℃ (1.1 ℃), 0.8 ℃ (1.4 ℃) and 2.2 ℃ 

(2.8 ℃) higher than the monthly mean nighttime (daytime) temperature in June–August 2021, 

respectively (Fig. R3). The monthly mean nighttime (daytime) RH in eastern China in 2022 

was 3.2% (3.1%), 1.9% (4.5%), and 9.4% (11%) lower than the monthly mean nighttime 

(daytime) RH in June–August 2021, respectively. Li et al. (2024) revealed that a sustained 

heatwave of extremely hot and dry summers in 2022 accelerate photochemical O3 production 

by increasing anthropogenic and biogenic emissions and exacerbate O3 accumulation by 

inhibiting dry deposition due to water–starved vegetation, resulting in an increase in O3 

pollution by more than 30% in urban areas. Our results also showed an increase in the 

meteorological components in the 98th and 2nd O3 percentiles in 2022 relative to the 

meteorological components in the 98th and 2nd O3 percentiles in 2021 (Fig.R2). Therefore, 

extremely hot and dry weather in 2022 will increase the peak and low O3 concentrations in 

eastern China, which is probably the main reason for the difference between the May and 

September 2017–2021 and May–September 2017–2022 meteorological component trends. The 

above discussion was added to the manuscript, please refer to Page 13 Line 28–32 and Page 14 

Line 1–19 in the manuscript. 

In addition, the high relative humidity in 2020 and 2021, as well as the impact of COVID–

19 pandemic also had a significant impact on the peak and low O3 trend, which is analyzed in 

detail in Point 4. 



 
Fig.R2 Trends of observed (blue lines), meteorological (red lines), and anthropogenic (red 

lines)  (a) 98th and (b) 2nd O3 percentiles component in eastern China during May–September 

2017–2022. The labels at the top of each panel represent the trend in observed, meteorological, 

and anthropogenic components. 

 
Fig.R3 Trends of observed (a) 98th and (b) 2nd O3 percentiles (blue lines), meteorological (a) 

98th and (b) 2nd O3 percentiles component (red lines) in MLR simulations, and the 

anthropogenic (a) 98th and (b) 2nd O3 percentiles component (magenta lines) in eastern China 

during May–September 2017–2022. The labels at the top of each panel represent the trend in 

observed, meteorological, and anthropogenic components. 



Table R3. Observed, Meteorologically, and anthropogenically driven trends of 2% and 98% 

O3 percentiles in eastern China from 2017 to 2022 and from 2017 to 2021. 

 

May–September 2017–2022 trends May–September 2017–2021 trends 

2% 98% 2% 98% 

Obs. Mete. Anth. Obs. Mete. Anth. Obs. Mete. Anth. Obs. Mete. Anth. 

Total 0.115 0.008 0.107 -0.178 0.005 -0.183 0.027 -0.044 0.071 -0.363 -0.119 -0.244 

May 0.322 0.017 0.305 -0.020 -0.661 0.641 -0.438 -0.257 -0.181 -3.702 -0.968 -2.734 
June 0.205 -0.032 0.237 -4.437 -1.894 -2.543 -0.364 -0.169 -0.195 -2.645 0.124 -2.769 
July 0.768 -0.177 0.945 -1.745 -1.100 -0.645 0.665 -0.247 0.912 -2.974 -2.370 -0.604 

August 0.371 0.084 0.287 -0.687 -0.156 -0.531 -0.003 -0.260 0.257 -1.473 -0.908 -0.565 
September 1.290 0.319 0.971 1.999 1.136 0.863 0.884 -0.126 1.010 1.352 0.814 0.538 

 

Point 4: The authors have not directly answered why the 2nd percentile O3 increased over 2017–

2022. The 2nd percentile should be related to nighttime O3, while the entire manuscript 

discusses the O3 photochemical formation regime, which is a daytime indicator. More 

investigation is needed on the nighttime process, such as NO titration of O3, loss of O3 with 

VOCs, etc. 

Response 4: We agree with this suggestion. Because vertical profiles of O3 precursors at night 

are not available due to MAX–DOAS observational limitations, we discuss the possible 

increase in 2nd O3 percentile based on surface observations and MLR modelling results. It has 

been analysed in Point 3 that the extreme hot and dry in 2022 increases the 98th and 2nd O3 

percentile concentrations, which is mainly a meteorological effect.  

If we look carefully at Fig.R2, which presents the anthropogenic impact for each year on 

the 98th and 2nd percentile trends, respectively, we will find that the observed increase in 2nd O3 

percentile was mainly concentrated after 2020, up to 0.44 ppb/year. The meteorological 

components did not change significantly in 2020 and 2021 but considerably increased in 2022, 

with a trend of 0.17 ppb/year 2020–2022. This rapid increase in 2nd O3 percentile is mainly 

caused by anthropogenic emissions, with a trend of 0.27 ppb/year 2020–2022. Owing to the 

impact of the COVID–19 pandemic, the decrease in NOx concentrations was most significant 

in 2020–2022 (Fig.3b), and the substantial reduction in NOx concentrations weakened the O3 

titration of NO, resulting in an increase in nighttime O3 concentrations, which was also 

confirmed by the significant negative correlation between the trend of the 98th NO2 percentile 

and the trend of the 2nd O3 percentiles during May–September 2017–2022 (Fig.4b). A recent 

study showed that nighttime O3 depletion in China is mainly caused by the wet–scavenging 

effect and O3 titration from fresh NO emissions (Li et al., 2023). The wet–scavenging effect 



was similar to the effect of precipitation, the higher the ambient humidity, the more conducive 

it was to O3 depletion. The RH at night increased slowly in eastern China during May–

September of 2017–2021 (Fig.R3b), and the nighttime RH in 2020 and 2021 was higher than 

that in other years. Moreover, a general wetting trend has been detected in eastern China during 

the summer in recent years (Hu et al., 2021). RH had the most significant effect on 2nd O3 

percentile trends according to MLR results (Table R1). Therefore, the meteorological 

component had an inhibitory effect on the increase in the 2nd O3 percentile trends during May–

September 2017–2021. However, owing to the significant emission reduction of NOx 

concentrations, the titration of NOx was weakened, and the decrease in O3 depletion at night 

led to an increase in the overall 2nd O3 percentile trends.  

In conclusion, owing to the impact of the COVID–19 pandemic (significant decrease in 

NOx concentrations) and unfavorable meteorological conditions (high relative humidity) in 

2020 and 2021 in eastern China, the 98th O3 percentile concentration in 2020 and 2021 was 

lower (compared to the 98th O3 percentile concentration in 2018 and 2019), while the 2nd O3 

percentile concentration showed a rapid upward trend. In addition, the extremely hot and dry 

meteorological conditions in 2022 will increase the 98th and 2nd O3 percentile concentrations, 

weakening the decreasing trend in peak O3 concentrations and increasing the upward trend at 

low O3 concentrations. The above discussion was added to the manuscript, please refer to Page 

14 Line 31–34 and Page 15 Line 1–18 in the manuscript. 

 



Fig.R4. Trends of surface (a) O3, (b) NO2, (c) O3 exceedance days and O3 exceedance hours in 

eastern China during May–September 2017–2022. The red, magenta, and blue solid lines in (a) 

and (b) indicate the trends for the 98th, 50th, and 2nd percentiles, respectively. The labels on (a) 

and (b) represent the trends in O3 and NO2 for May–September 2017–2022, units: ppb/year. 

The labels on (c) represent the trends in O3 exceedance days and O3 exceedance hours for May–

September 2017–2022. The percentage change is indicated in brackets. 

 
Fig.R5. Scatterplots showing the relationships between the (a) trend of mean NO2 

concentrations and the trend of 98th O3 percentiles, (b) trend of 98th NO2 percentiles and trend 

of 2nd O3 percentiles in each city of eastern China during May–September 2017–2022. The 

correlation coefficients are shown in the top left of each panel, N=number of cities.  

 

 

Point 5: In Section 3.4, although this section should be removed according to my comment #1, 

conflicts between Figure 9 and Figure S9 are noted. The area proportions presented in Figure 

9 are not consistent with the spatial patterns in Figure S9. For example, Figure 9d suggests a 

NOx–limited region up to 75% of the total MLYRP in August of 2022, while Figure S9 shows 

a NO x–limited area smaller than the VOC–limited area. Please check your analysis. 

Response 5: Thanks for pointing out the conflicts among the figures! We carefully examined 

the reasons for the conflicting images, which were mainly attributed to differences in data 

processing. Fig.R6 is based on daily FNR to determine the area proportion of the VOC–limited 

regime, Transition regime, and NOx–limited regime areas, while Fig.R7 is based on monthly 

mean FNR to determine the area proportion of the VOC–limited regime, Transition regime, 

and NOx–limited regime areas. Fig.R6 shows the trends of TROPOMI observed area 

proportion for VOC–limited regime, Transition regime, and NOx–limited regime over Huaihe 

river basin during May–September 2018–2022. Here we first determined the O3 formation 



sensitivity based on the daily FNR observed by TROPOMI (FNR <2.1 for VOC–limited regime, 

FNR>3.2 for NOx–limited regime), and then calculated the area proportion of the daily VOC–

limited regime, Transition regime, and NOx–limited regime areas. Finally, the monthly average 

of the area proportion of daily VOC–limited regime, Transition regime, and NOx–limited 

regime areas was taken and the trend was calculated, as shown in Fig.R6, the light red dots in 

(b–d) represent the daily values, and the solid red dots are monthly mean values.  Fig.R7 shows 

the spatial and temporal variations of monthly mean FNR from May–September 2018–2022. 

the monthly mean FNR was calculated firstly based on TROPOMI observed daily FNR, then 

threshold value 2.1 and 3.2 was used for monthly mean FNR to determine the O3 formation 

sensitivity. This section was removed according to Point 1. 

 
Fig.R6. (a) Variation of monthly mean O3 (~13:30) with monthly mean TROPOMI FNR in 

HRB during May–September 2022. The solid line represents third–order polynomial fitting. 

The vertical line represents the maximum value of the fitted curve, and the vertical shadow 

represents the range of the curve slope from −3 to +3 (transition regime). Trends of TROPOMI 

observed area proportion for (b) VOC–limited regime, (c) Transition regime, and (c) NOx–

limited regime over HRB during May–September 2018–2022. The light red dots in (b–d) 

represent the daily values, and the solid red dots are monthly mean values. 

 



 
Fig.R7. Spatial and temporal variations of monthly mean FNR from May–September 2018–

2022. The date is shown at the top of each panel. 

 

Specific comments: 

1. Section 2.3, could the authors elaborate more on how trustworthy is the TROPOMI O3 

profile retrieval? 

Based on Point 1, we have deleted section 3.4 (Interannual differences in surface O3 

formation sensitivity), and the O3 profile observed by TROPOMI was not employed in the 

manuscript. Thus, we also removed the description of the TROPOMI O3 profile retrieval in the 

manuscript. 

 

2. Lines 20–22, Page 8, could the authors say more about why 5th, 50th, and 95th could represent 

background, typical, and polluted conditions. 

Different percentiles may be related to different influences, such as background 

concentration levels, emission changes, climate change, and regional transport effects (Lefohn 

et al., 2010). In principle, the lowest daily O3 concentrations usually occur before sunrise due 

to nighttime titration of NO, and the low percentile (2nd) usually characterizes baseline or 

background conditions because increases in the low O3 percentile tend to be associated with 

increases in baseline or background O3 concentrations. Similar conclusions were also obtained 

from both models and observations (Jacob et al., 1999; Cynthia Lin et al., 2000). O3 pollution 



in eastern China generally occurs in the late afternoon on clear days in the warm season (Wang 

et al., 2022), when the ambient O3 concentration is highest, so the high percentile (98th) 

characterizes the conditions of the pollution events. The middle percentiles (25th, 50th and 75th) 

usually follow the same trend as the mean values and therefore represent typical conditions 

(Cooper et al., 2012; Li et al., 2022). We have added this statement to the manuscript, please 

refer to Page 8 Line 6–17 in the manuscript. 

 

3. Lines 5–6, Page 12: Why is the primary HCHO contribution much higher than the secondary 

HCHO at these sites, differing from previous findings cited in the paper? Please provide some 

explanation. 

Atmospheric primary HCHO concentrations are mainly derived from motor vehicle 

exhaust, petrochemical industry, solvent use, and combustion emissions (Ma et al., 2019). 

Hefei, Huaibei, and Tai'an are located in the NCP, which is the region with the highest primary 

emissions of air pollutants in China (Li et al., 2017), The rapid industrialization and 

urbanization in these developing cities has influenced the primary and secondary HCHO 

concentrations, and HCHO mainly stems from initial atmospheric pollutants (Lu et al., 2024). 

Although the articles cited in our manuscript show that secondary HCHO concentrations are 

much higher than that of primary HCHO, the primary HCHO has also been found to be much 

higher than secondary HCHO in other cities in China, such as Shenyang (Ma et al., 2019), 

Lanzhou (Lu et al., 2024), Chengdu (Bao et al., 2022), Nanjing (Hong et al., 2018). Primary 

HCHO concentrations in Hefei, Huaibei and Tai'an usually reach their maximum in the 

morning and evening, and vehicle emissions may be the main source of primary HCHO, as 

industrial emissions do not show a significant diurnal pattern (Hong et al., 2018). We have 

added this statement to the manuscript, please refer to Page 12 Line 9–14 in the manuscript. 

 

Technical corrections: 

1. Replace “unbalanced emission reduction in ozone precursors” with NOx reduction 

throughout the text? 

We have followed this suggestion and carefully checked the manuscript for similar expressions. 

2. Line 28, Page 1, remove “experiment”. 

Thanks for pointing out the unsuitable expression. We have followed this suggestion and 

corrected the mistake accordingly.  

3. Line 25, Page 2, Zhai et al. (2019) is a PM2.5 study, not ozone study. Please remove. Also in 

Line 3, Page 4. 



Thanks for pointing out the inappropriate quote, we have corrected the relevant mistakes and 

carefully checked the manuscript for similar errors. 

4. Line 5, Page 3, it should be Li et al. (2020a). 

Thanks for pointing out the unsuitable expression, we have corrected the relevant mistakes.  

5. Line 22, Page 3, it should be “diagnose”. 

Thanks for pointing out the unsuitable expression, we have corrected the relevant mistakes.  

6. Line 24, Page 8, do not use “one-sided understanding”. 

We have followed this suggestion and carefully checked the manuscript for similar expressions.  

7. In Figure 5, the authors seem to fit the observed monthly O3 and use the fitted lines to connect 

monthly values. Please replace these with straight lines directly connecting the dots. 

Thanks for your suggestion. We have followed this suggestion and replotted the figure. Please 

refer to Fig.6 in the manuscript. 

8. References, journal names should be included. 

Thanks for your suggestion. We have followed this suggestion and reorganized the format of 

the references. 

 

Reference: 
Bao, J., Li, H., Wu, Z., Zhang, X., Zhang, H., Li, Y., Qian, J., Chen, J., and Deng, L.: Atmospheric carbonyls in 
a heavy ozone pollution episode at a metropolis in Southwest China: Characteristics, health risk assessment, 
sources analysis, J. Environ. Sci-China, 113, 40-54, 10.1016/j.jes.2021.05.029, 2022. 
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Response to Reviewer 2 Comments 
 
Thank you for your decision and constructive comments on my manuscript. We have revised 

the manuscript carefully according to the reviewers’ comments. Point–to–point responses are 

given below. The original comments are black in color, while our responses are in blue. The 

revised parts in the manuscript are marked in red. All the page number and line number are 

referred to the revised manuscript. 

 

Major concerns: 

Point 1: How to interpret the variations of low ozone concentrations / background ozone for 

the targeted region as it’s surrounded by polluted areas? 

Response 1: In principle, the lowest daily O3 concentrations usually occur before sunrise due 

to nighttime titration of NO, and the low percentile (2nd) usually characterizes baseline or 

background conditions because increases in the low O3 percentile tend to be associated with 

increases in baseline or background O3 concentrations. Similar conclusions were also obtained 

from both models and observations (Jacob et al., 1999; Cynthia Lin et al., 2000). Li et al. (2014) 

reported that concentrations below the 5th, between 25th and 75th, and above 95th represent 

background, typical, and polluted concentrations, respectively. Thus, in our manuscript, low 

O3 concentration levels were determined by the 2nd percentiles of hourly O3 concentrations in 

each month for cities in eastern China (Li et al., 2022; Cooper et al., 2012; Gaudel et al., 2020). 

Based on the 2nd O3 percentile concentrations, we explore the driving forces of the low O3 

trends in eastern China in recent years. Firstly, the Multiple Linear Regression (MLR) model 

is used to evaluate the anthropogenic and meteorological contributions to the 98th and 2nd O3 

percentile trends. Then, we discuss the impacts of meteorological factors and anthropogenic 

emissions on low O3 concentrations, including the impact of the COVID–19 pandemic, and 

sustained heatwave of extremely hot and dry summer in eastern China in 2022, respectively, 

and detailed information can be found in the discussion section of the manuscript.  

 

Point 2: How to identify the ozone formation sensitivity based on FNR (ratio of formaldehyde 

and NO2). 

Response 2: This method belongs to one of the photochemical indicator diagnostics of O3 

formation sensitivity (Chu et al., 2024), and the FNR is the ratio of the volume concentration 

of HCHO to NO2. HCHO is a transient product reflecting the oxidation of various VOCs, 

serving as a proxy for VOCs emissions, as used in previous studies (Zheng et al., 2018; Zhang 



et al., 2019). The ratio of NO2 to NO in NOx is relatively constant, and the NO2 concentration 

can represent the evolution process of atmospheric NOx. Therefore, HCHO and NO2 can be 

taken as representatives of VOCs and NOx, respectively. This photochemical indicator was 

originally derived from the photochemical indicator HCHO/NOy (the ratio of HCHO and NOy 

volume concentrations). Jin et al. (2017) suggested that FNR is better suited than HCHO/NOy 

for determining O3 formation sensitivity because both HCHO and NO2 have short lifetimes 

(about a few hours), and their ratios can better represent the competition between OH radicals 

and the reaction between VOCs and NO2. 

This photochemical indicator has been widely used not only in the analysis of ground–

based observations, but also in satellite observations, and Martin et al. (2004) were the first to 

propose the diagnosis of O3 formation sensitivity based on satellite observations of FNR. 

Currently, this method has been refined and extended to various O3 monitoring instrument 

products (Ren et al., 2022; Chang et al., 2016), such as OMI (Ozone Monitoring Instrument), 

TROPOMI (Tropospheric Monitoring Instrument) and GEMS (Geostationary Environment 

Monitoring Spectrometer). 

The reliability of surface FNR in the diagnosis of O3 formation sensitivity was recently 

assessed by Liu et al. (2021). Based on a joint analysis of multiple in situ observations and 

model simulations, the validity of FNR in diagnosing O3 formation sensitivity was determined 

based on the relative changes in O3 generation rates with respect to several indicators. Lin et 

al. (2022) further extended the FNR to the vertical distribution and diagnosed the O3 formation 

sensitivity at different altitude using vertical profile of NO2 and HCHO observed by Multi-

Axis Differential Absorption Spectrometer (MAX–DOAS), and the methodology employed in 

our manuscript is consistent with that of Lin et al (2022). 

The advantage of this method is that O3 formation sensitivities can be quickly determined 

from photochemical indicators. However, the threshold value of FNR is always the core 

problem in the application of this method, and its threshold value will change with different 

environmental conditions, especially the thresholds in different regions tend to differ greatly. 

Therefore, there are differences in the thresholds reported in different literatures. 

Three steps are involved in determining the FNRsec threshold. First, the surface–hourly 

averaged secondary HCHO and NO2 VMRs during May–September based on MAX–DOAS 

observations were normalized by dividing their respective mean values because of the large 

differences in surface HCHO and NO2 concentrations (Ren et al., 2022). The ratio of the hourly 

averaged O3 VMRs to the hourly averaged normalized NO2 VMRs (SNO2) and the ratio of the 

hourly averaged O3 VMRs to the hourly averaged normalized secondary HCHO VMRs (SHCHO) 



were calculated. Finally, third–order polynomials were used to fit SNO2 and SHCHO (Fig. R1). 

When SNO2 is significantly larger than SHCHO, O3 formation is more sensitive to NOx (larger 

FNRsec), which is the NOx–limited regime, and vice versa. For example, in Hefei, SNO2 and 

SHCHO intersected at FNRsec=0.21. FNRsec less than 0.16 and greater than 0.29 correspond to 

VOC–limited regime and NOx–limited regime, respectively, where the relative difference 

between SNO2 and SHCHO is more than 25% (Lin et al., 2022), and the range of FNRsec from 

0.16 to 0.29 represents a transition regime. 

In addition, following the referee’s suggestion, the manuscript was edited by Elsevier 

Language Editing Services (please see the following Elsevier certificate). 

 
Fig.R1. Three–order fitting of slopes of O3 VMRs versus normalized NO2 VMRs and slopes 

of O3 VMRs versus normalized secondary HCHO VMRs in different FNRsec values in Hefei, 

Huaibei, and Tai’an during May–September based on MAX–DOAS observations. The 

intersect at FNRsec indicated by the black solid line. The vertical shadow indicates the relative 

difference between the slopes of O3 VMRs versus normalized NO2 VMRs and slopes of O3 

VMRs versus secondary HCHO VMRs within 25% (transition regime). The labels at the top 

right of each panel represent the intersect FNRsec values and the thresholds for the NOx–limited 

regime (high) and VOC–limited regime (low) in Hefei, Huaibei, and Tai’an, respectively. 

 



 
Fig. R2 Certificate of Elsevier language editing services 

 
Detailed comments： 

1． Page 1, Line 27: in the main text, you mainly work on “HRB”, instead of the whole eastern 

China. Maybe specifying HRB, instead of eastern China makes more sense. 

Thanks for your suggestion. This study attempts to reveal the surface low and peak O3 

trends in eastern Chinese cities in recent years, and to explore the driving forces behind these 

trends. The surface observations show that the decreased trend in low O3 concentrations and 

increased trend in peak O3 concentrations are widespread in urban agglomerations in eastern 

China. In the original manuscript, we first analyzed the trend of low and peak O3 values in the 

HRB, which were then extended to eastern China. In fact, we conducted MAX–DOAS 

measurements in three cities in eastern China, namely Hefei, Huaibei and Tai 'an (Fig.R3). 

First, the three cities are located at similar longitudes with large differences in latitude, 

transitioning sequentially from south to north. Secondly, the O3 concentrations of the three 

cities differed greatly, with Tai' an having a higher surface mean MDA8 O3 concentration (82.9 

ppb), Hefei having a lower surface mean MDA8 O3 concentration (65.5 ppb), and Huaibei 

having an intermediate surface mean MDA8 O3 concentration (74.3 ppb). Therefore, Hefei, 

Huaibei and Tai 'an can be taken as representative of the 105 cities in eastern China to conduct 

O3 precursor observations. In the new manuscript, we have deleted the analysis of the HRB 

and reorganized the manuscript. 

The new manuscript mainly includes four parts. First, we report long–term records of 

surface O3 and related parameters observed at urban air quality monitoring sites and by 

satellites in eastern China, characterizing the trends of low, typical, and peak surface O3 



concentrations during the warm season (May–September) from 2017 to 2022. Then, a Multiple 

Linear Regression (MLR) model is used to evaluate the anthropogenic and meteorological 

contributions to the 98th and 2nd O3 percentile trends. Next, secondary formaldehyde (HCHO) 

and NO2 are employed to diagnose the diurnal variations in O3 formation sensitivity and 

investigate the reasons for peak O3 concentration trends in the context of current NOx reduction. 

Finally, we discuss the reasons for the potential increase in low O3 concentrations and the 

sensitivity of peak and low O3 trends during the study period. Please refer to our new 

manuscript for details. 

 
Fig.R3. Spatial distributions of surface mean MDA8 O3 concentrations during May–

September 2017–2022. The red arrow indicates the name of each city, which are equipped with 

ground–based MAX–DOAS observations 

 

2. Page 1, Line 29: can you elaborate more on the “typical” ozone concentrations? 

Thanks for your suggestion. We have followed this suggestion and elaborated more on the 

“typical” O3 concentrations. “The decline in typical O3 concentrations is notably slower than 

that of peak O3 concentrations, approximately -0.02 ppb/year (-0.0% per year) during the same 

period.”. Please refer to Page 1 Line 31–32 in the manuscript. 

 

3. Page 1, Line 31: please rephrase the sentence. “Anthropogenic emissions” is not the “cause” 

of the ozone trends, maybe “driving force” is better. 

Thanks for pointing out the unsuitable expression. We have followed this suggestion and 

corrected it. Please refer to Page 1 Line 33 in the manuscript. 



 

4. Page 2, Line 3: change “on spatial scales” to “spatially”. 

Thanks for pointing out the unsuitable expression. We have followed this suggestion and 

removed relevant expressions base on the new abstract. 

 

5. Page 3, Line 5: duplicate reference of Li et al., 2020a 

Thanks for pointing out the inappropriate quote, we have corrected it.  

6. Page 5, line 18: have you applied consistent AMF (air mass factor) between MAX–DOAS 

and TROPOMI for NO2 VCDs? 

We did not apply consistent AMF (air mass factor) between MAX–DOAS and TROPOMI for 

NO2 VCDs. NO2 VCDs observed by TROPOMI was downloaded directly from 

https://search.earthdata.nasa.gov/search (last access: 1 July, 2024). The AMF calculation for 

MAX–DOAS is a two–step process that first retrieve the atmospheric aerosol vertical profile 

and then inputs the aerosol vertical profile into the radiative transfer model SCIATRAN, to 

compute the atmospheric photon paths that are used to convert the NO2 slanting column 

concentration into a vertical column concentration (Xing et al., 2017). 

 

7. Page 5, Line 21: why the differences of sensitivity peaks between TROPOMI and MAX-

DOAS lead to different HCHO VCD retrievals? 

TROPOMI is a space–borne instrument to observe the atmospheric trace gas column 

concentration from the top down, while MAX–DOAS is a ground–based spectrometer to 

observe the atmospheric trace gas column concentration from the bottom up. TROPOMI 

sensitivity peaks in the upper troposphere, which rapidly drops in the atmospheric layers lower 

than 3 km (Vigouroux et al., 2020), while MAX–DOAS shows an opposite sensitivity that is 

maximal at the surface and generally becomes negligible above 3 km (De Smedt et al., 2021; 

Wang et al., 2019).  The HCHO concentrations usually concentrated below 2 km over the 

polluted city (Fig.R4). Therefore, TROPOMI may underestimate the HCHO concentration 

below 3 km, resulting in a smaller retrieved HCHO VCD. Similar comparative results are also 

seen in other cities around the world (De Smedt et al., 2021). 



 
Fig.R4. Mean profiles of NO2 and HCHO concentrations in (a) Hefei, (b) Huaibei, and (c) 

Tai’an during the whole observation period from May to September. 

 

8. Page 5, Line 24-26: so, what’s the conclusion? Are MAX-DOAS data not reliable compared 

to MEE, as the correlation coefficients are not that high (0.66~0.74)? Please specify it. 

The MAX–DOAS data are reliable. Although the correlation coefficients are not that high 

(0.66~0.74), were also comparable to the comparisons reported in previous studies (Lin et al., 

2022; Wang et al., 2020). The differences between MAX–DOAS and MEE observations arise 

from these two components. First, there was a difference in the detection geometries, as the 

urban NO2 concentration observed by MAX–DOAS was the result of scanning along a certain 

direction, whereas the urban NO2 concentration observed by MEE was sampled in situ. Second, 

there were some differences in their locations, and the urban NO2 concentration of the MEE 

was the average of several in–situ observation stations (10, 3, and 3 in Hefei, Huaibei, and 

Tai'an, respectively), whereas we only used one MAX–DOAS in each city. We have added this 

statement to the manuscript, please refer to Page 5 Line 4–10. 

 

9. Page 6, line 27: this is not true for summer, as VOCs can be dominated by biogenic sources. 

Thanks for pointing out the unsuitable expression. We have followed this suggestion and 

removed relevant expressions. 

 

10. Page 6, Line 28: how about transport from surrounding areas? Especially in HRB, the 

transport cannot be neglected as it’s surrounded by the YRD and Jing-Jin-Ji regions. Please 

elaborate more. 

The effect of transport is included in the meteorological factors, and we considered the effect 

of horizontal transport (wind speed of u and v components) as well as vertical exchange rates 



(vertical velocity at 850 hPa) in MLR fitting. The results also show that horizontal winds and 

vertical exchange rates are also a key meteorological factor affecting O3 concentrations in 

many cities in eastern China (Table R1 and R2). The effect of horizontal winds can be seen in 

two aspects, one is that strong winds blow away high concentrations of O3 and its precursors, 

and the other is that they bring high concentrations of O3 and its precursors. We also discuss 

this result in detail in the Discussion section of the manuscript as well. Please refer to Page 14 

Line 20–30. 

Table R1. Meteorological drivers of 2% O3 percentile and Pearson correlation coefficient 
between observed and modeled 2% O3 percentile in each city of eastern China during May–

September 2017–2022 

 Meteorological variable   Meteorological variable  
1st 2st 3st R 1st 2st 3st R 

Taian T RH U 0.35 Beijing U RH T 0.23 
Puyang T BLH RH 0.50 Tianjing U T RH 0.32 
Rizhao U V T 0.46 Baoding U RH TP 0.27 
Jining RH T V 0.54 Lanfang U T V 0.23 

Xinxiang U RH V 0.41 Shijiazhuang RH BLH U 0.27 
Jiaozuo T RH U 0.39 Handan RH V BLH 0.20 

Heze RH T V 0.47 Qinghuangdao V U RH 0.32 
Linyi RH U TP 0.40 Cangzhou BLH T MSLP 0.28 

Kaifeng RH U T 0.49 Xingtai RH BLH U 0.17 
Zhengzhou BLH RH U 0.47 Hengshui T V RH 0.28 
Luoyang BLH RH V 0.16 Tangshan U V RH 0.20 

Zaozhuang RH T U 0.46 Jinan V BLH RH 0.59 
Lianyungang RH V850 U 0.37 Qingdao V BLH RH 0.26 

Shangqiu RH T V 0.48 Zibo V BLH RH 0.59 
Xuzhou RH BLH V 0.48 Dongying U V V850 0.36 
Xuchang BLH RH U 0.53 Yantai V BLH U 0.33 
Suqian RH T MSLP 0.40 Weifang BLH T U 0.34 
Huaibei RH U BLH 0.59 Weihai RH U MSLP 0.36 

Pingdingshan BLH RH U 0.57 Dezhou RH V BLH 0.40 
Bozhou RH V T 0.49 Liaocheng BLH V RH 0.48 

Zhoukou RH U T 0.49 Binzhou BLH T V 0.23 
Luohe RH U MSLP 0.45 Shaoxing RH BLH T 0.59 
Suzhou RH U BLH 0.50 Jinhua RH TP V 0.60 
Huaian RH V TP 0.42 Taizhou V RH U 0.54 

Yancheng V RH BLH 0.37 Ningbo RH V TP 0.48 
Nanyang RH U BLH 0.67 Wuhan RH V BLH 0.61 

Zhumadian RH TP BLH 0.52 Changsha RH V BLH 0.71 
Fuyang RH V U 0.64 Jinghzou RH V BLH 0.55 
Bengbu RH BLH U 0.36 Yueyang RH BLH V 0.60 
Huainan RH BLH U 0.56 Zhuzhou RH V BLH 0.73 
Xinyang RH TP T 0.63 Xiangtan RH V BLH 0.72 
Suizhou RH BLH U 0.63 Yichang RH U V850 0.64 
Shanghai RH V TP 0.55 Yiyang RH V BLH 0.67 
Nanjing V RH T 0.40 Changde V BLH RH 0.59 

Wuxi RH V BLH 0.57 Jingmen V RH U 0.63 
Changzhou V RH TP 0.49 Huangshi RH U V850 0.72 

Suzhou RH V T 0.52 Huanggang RH U V850 0.77 
Nantong V RH U 0.62 Xianning RH U MSLP 0.74 



Yangzhou V RH T 0.52 Xiaogan RH V850 BLH 0.68 
Zhenjiang V RH T 0.55 Quzhou V RH U 0.68 
Taizhou V RH T 0.59 Lishui RH V T 0.70 

Luan RH V T 0.24 Wenzhou RH V U 0.63 
Hangzhou RH V BLH 0.53 Jiujiang V RH MSLP 0.58 

Jiaxing RH V T 0.45 Nanchang V RH V850 0.67 
Huzhou  V RH U 0.61 Jingdezhen BLH V850 T 0.59 
Hefei RH TP V 0.37 Shangrao V850 BLH RH 0.65 
Wuhu V TP U 0.46 Yingtan BLH V850 RH 0.64 

Maanshan V U TP 0.45 Yichun V850 U T 0.63 
Tonglin V T TP 0.50 Fuzhou RH V BLH 0.72 
Anqing V T TP 0.56 Jian BLH U RH 0.57 

Chuzhou RH V BLH 0.44 Xinyu BLH V U 0.62 
Chizhou RH V BLH 0.47 Pingxiang V850 BLH T 0.61 

Xuancheng T RH U 0.27 - - - - - 

Table R2. Meteorological drivers of 98% O3 percentile and Pearson correlation coefficient 
between observed and modeled 98% O3 percentile in each city of eastern China during May–

September 2017–2022 

 Meteorological variable   Meteorological variable  
1st 2st 3st R 1st 2st 3st R 

Taian T TP TCC 0.71 Beijing MSLP BLH V 0.30 
Puyang T V850 TP 0.79 Tianjing V MSLP BLH 0.27 
Rizhao T U TCC 0.67 Baoding MSLP V BLH 0.28 
Jining T TP V850 0.77 Lanfang MSLP BLH V 0.32 

Xinxiang T TCC BLH 0.74 Shijiazhuang MSLP BLH V 0.24 
Jiaozuo T TP TCC 0.81 Handan T MSLP U 0.31 

Heze T V850 TP 0.78 Qinghuangdao TCC U MSLP 0.36 
Linyi T TP TCC 0.73 Cangzhou V BLH MSLP 0.35 

Kaifeng T V850 TP 0.78 Xingtai MSLP BLH V 0.25 
Zhengzhou T V850 TP 0.78 Hengshui V MSLP BLH 0.38 
Luoyang U TCC V 0.28 Tangshan TCC MSLP T 0.27 

Zaozhuang T TP TCC 0.81 Jinan T TP V850 0.77 
Lianyungang TCC U TP 0.68 Qingdao U BLH RH 0.45 

Shangqiu T TP V850 0.71 Zibo T TP V850 0.70 
Xuzhou T TCC TP 0.74 Dongying T RH V 0.66 
Xuchang T V850 TCC 0.70 Yantai U T RH 0.44 
Suqian RH TCC TP 0.74 Weifang T TP U 0.68 
Huaibei TCC T TP 0.74 Weihai U T RH 0.44 

Pingdingshan T V850 U 0.66 Dezhou T TP V850 0.75 
Bozhou TCC T TP 0.67 Liaocheng T V850 TP 0.77 

Zhoukou T TCC RH 0.73 Binzhou T TP V 0.66 
Luohe T V850 RH 0.75 Shaoxing T V TP 0.66 
Suzhou TCC T TP 0.71 Jinhua T V TP 0.59 
Huaian T TCC TP 0.72 Taizhou U V T 0.62 

Yancheng TP V850 U 0.56 Ningbo T V U 0.69 
Nanyang T TCC RH 0.74 Wuhan TCC RH V850 0.75 

Zhumadian TCC BLH TP 0.67 Changsha RH TCC V 0.76 
Fuyang RH TCC MSLP 0.74 Jinghzou RH V850 T 0.84 
Bengbu T TCC TP 0.72 Yueyang RH TCC U 0.82 
Huainan TCC RH MSLP 0.68 Zhuzhou RH V T 0.73 
Xinyang RH TCC U 0.74 Xiangtan RH V TCC 0.78 
Suizhou RH TCC MSLP 0.75 Yichang RH TCC V850 0.79 
Shanghai T U RH 0.72 Yiyang RH TCC V850 0.80 
Nanjing TCC V850 V 0.61 Changde TCC V850 T 0.74 

Wuxi TP TCC U 0.66 Jingmen RH V850 T 0.76 



Changzhou TCC TP BLH 0.60 Huangshi RH TCC V 0.76 
Suzhou T TP U 0.63 Huanggang TCC RH U 0.72 
Nantong T RH BLH 0.75 Xianning RH V850 T 0.80 

Yangzhou TCC TP V850 0.61 Xiaogan RH TCC U 0.72 
Zhenjiang TCC TP MSLP 0.61 Quzhou RH V850 T 0.74 
Taizhou TCC V850 U 0.61 Lishui RH U V 0.65 

Luan TCC MSLP T 0.61 Wenzhou U RH V 0.65 
Hangzhou TP TCC T 0.69 Jiujiang TCC V850 RH 0.80 

Jiaxing T TP U 0.70 Nanchang RH V850 T 0.72 
Huzhou  TP TCC T 0.67 Jingdezhen RH V850 TCC 0.75 
Hefei TCC TP V 0.59 Shangrao TCC V850 T 0.76 
Wuhu TCC TP V 0.65 Yingtan TCC V850 T 0.78 

Maanshan TCC TP MSLP 0.66 Yichun V850 TCC T 0.75 
Tonglin TCC MSLP V 0.63 Fuzhou V850 T TCC 0.82 
Anqing TCC V TP 0.58 Jian TCC T V 0.66 

Chuzhou TCC TP MSLP 0.58 Xinyu V850 TCC V 0.75 
Chizhou TCC V MSLP 0.63 Pingxiang V850 TCC V 0.75 

Xuancheng TCC V MSLP 0.58 - - - - - 
 

11. Page 7, Line 7: so, the perturbations of background ozone are neglected when considering 

the observed O3 anomalies. It’s not true as transport can contribute to this term. 

We thank the reviewer for pointing out this issue. We are also aware of this issue, so we have 

corrected the MLR model in the manuscript. The updated MLR model first de–seasonalizes 

the O3 concentration time series to remove meteorological variability in O3 concentration. 

Following Liu et al. (2023) and Li et al. (2020), the MLR model fitted the deseasonalized and 

detrended 10 d mean 98th or 2nd O3 percentile time series to the deseasonalized and detrended 

10 d mean meteorological variables. The deseasonalized and detrended time series data were 

constructed by removing the 50 d moving average data from the 10 d moving average data. 

The stepwise MLR model has the following form: 

1
( ) ( )

n

k k
k

Y t R X t


                                                       (1) 

Where ( )Y t  is the deseasonalized and detrended daily surface 98th or 2nd O3 percentile 

time series, R is the regression constant, k  is the regression coefficient, and kX  is the 

deseasonalized and detrended daily meteorological variable considered as a possible O3 

covariate. Stepwise regressions were performed, adding and removing terms based on their 

independent statistical significance to obtain the best model fit.  

Daily meteorological variables were obtained from the ERA5 reanalysis data (Download 

from https://cds.climate.copernicus.eu, last access: January 7, 2024), included temperature 

(T, °C), surface relative humidity (RH, %), total cloud cover (TCC), total precipitation (TP, 

mm), mean sea level pressure (MSLP, hPa), wind speed of U, V components (U, V, m/s), 

boundary layer height (BLH, m), and vertical velocity at 850 hPa (V850, m/s).  



First, we used the MLR model to remove the effects of meteorological variability from 

the 2017 to 2022 98th or 2nd O3 percentile trends. We apply Eq. (1) to the meteorological 

anomalies kX  during May–September 2017–2022, obtained by removing the 6–year means of 

the 50 d moving averages from the 10 d mean time series. The anomalies calculated in this 

process were deseasonalized but not detrended. This yields the meteorology–driven 98th or 2nd 

O3 percentile anomalies ( )mY t  

1
( ) ( )

n
m k k

k
Y t R X t


                                                   (2) 

Secondly, to avoid overfitting, only the three most important meteorological parameters 

were selected based on their individual contributions to the regressed 98th or 2nd O3 percentiles, 

along with the requirement that they be statistically significant above the 95% confidence level 

in the MLR model (Li et al., 2018). The fit results and selected meteorological variables varied 

by city but were regionally consistent (Table R1 and Table R2). The 98th or 2nd O3 percentile 

anomalies ( )aY t  obtained by deseasonalizing, but not detrending, the 98th or 2nd O3 percentile 

time series in a similar manner as for the meteorological variables (by removing the 6–year 

means of the 50 d moving averages). The residual anomaly ( )rY t after removing the 

meteorology–driven 98th or 2nd O3 percentile anomalies from the MLR model is given by 

( ) ( ) ( )r a mY t Y t Y t                                                      (3) 

Finally, the residual is an anomalous component that cannot be explained by the MLR 

meteorological model and is referred to as meteorologically corrected data by (Zhai et al., 

2019). It consists of noise due to the limitations of the MLR model and other factors and can 

be mainly attributed to long–term trends in anthropogenic emission changes over a 6–year 

period. The trend in the regressed 98th or 2nd O3 percentile reflected the meteorological 

contribution, and the residual was then used to reflect the presumed anthropogenic contribution. 

For the updated MLR model, please refer to section 2.4 in the manuscript. 

 

12. Page 8, Line 2: HRB is surrounded by very polluted area, and it can be affected by pollution 

transport. It's hard to define "background" here, and the background concentrations can change 

interannually. 

We agree with this suggestion, and this is one of the errors in the separation of primary and 

secondary sources of HCHO by Regression Model. We have extensively reviewed previous 

studies, and most of the literature has set the background concentration of HCHO at 1 ppb (Sun 

et al., 2021; Hong et al., 2018; Lin et al., 2022). In addition, according to the ground–level 



measurements of HCHO at a rural site in the eastern China by Ma et al. (2016) and Wang et al. 

(2015), the background level of HCHO near the surface was approximately 1.0 ppb. Therefore, 

we used this background concentration (1 ppb) in our regression model. Moreover, The fitting 

results of the regression model are also comparable to those in the previous literature (Hong et 

al., 2018), so we consider the separation of the primary and secondary sources of HCHO in the 

manuscript to be reliable. 

 

13. Page 10, line 5: how about the variations in the background? 

We have corrected the MLR model in the manuscript (refer to 11). The natural background O3 

concentration is deducted before the stepwise multiple regression. Following Liu et al., (2023) 

and Li et al. (2020), the natural background O3 concentration obtained by the 6–year means of 

the 50 d moving averages from the 10 d mean time series. The new manuscript focuses on the 

drivers of trends in peak (98th) and low (2nd) O3 concentrations. 

 

14. Page 10, line 28: do you include nighttime O3 data in the MLR model? Why? 

It is included nighttime O3 data in the MLR model. This study attempts to reveal the surface 

low, typical, and peak O3 trends in eastern Chinese cities in recent years, and to explore the 

driving forces behind these trends. The 2nd and 98th percentiles of hourly O3 concentrations in 

each month for cities in eastern China were calculated to determine their long–term trends at 

low and peak concentration levels, respectively (Li et al., 2022; Cooper et al., 2012; Gaudel et 

al., 2020). In principle, the lowest daily O3 concentrations usually occur before sunrise due to 

nighttime titration of NO, and the low percentile (2nd) usually characterizes baseline or 

background conditions because increases in the low O3 percentile tend to be associated with 

increases in baseline or background O3 concentrations. 

 

15. Page 11, Line 2: “(0.108 ppb/year, +114%)”, what’s this for? 

It is the contribution of anthropogenic components on 2nd O3 percentiles trends. We updated 

the MLR model in the manuscript, rearranged section 3.2, and removed this description. 

 

16. Page 11, line 27-28: This is weird. When Sno2 is much larger than Shcho (low FNR), it should 

be VOC-limited, instead of NOx-limited. 

As shown in Fig.R1, the red and blue line represents the SNO2 and SHCHO, respectively. When 

SNO2 is much larger than SHCHO, the FNR is higher, and the O3 formation is more sensitive to 

NOx, which is NOx–limited regime. 



17. Figure 6: How do you calculate the slope of the ratio of O3 to Sno2, and the slope of the ratio 

of O3 to Shcho? Are you using the ground measurements for all years? Does each point represent 

the fitted slope each day? I’m curious the temporal intervals between datapoints shown here. 

First, the surface–hourly averaged secondary HCHO and NO2 VMRs during May–September 

based on MAX–DOAS observations were normalized by dividing their respective mean values 

because of the large differences in surface HCHO and NO2 concentrations. The ratio of the 

hourly averaged O3 VMRs to the hourly averaged normalized NO2 VMRs (SNO2) and the ratio 

of the hourly averaged O3 VMRs to the hourly averaged normalized secondary HCHO VMRs 

(SHCHO) were calculated. Finally, third–order polynomials were used to fit SNO2 and SHCHO 

(Fig.R1). SHCHO and SNO2 were calculated using data from the warm season (May–September) 

for all years of MAX–DOAS observations, and each point in Fig.R1 in the manuscript 

represents the slope for each hour, and the temporal intervals is one hour between datapoints 

shown in Fig.R1 in the manuscript. We have added this statement to the manuscript, please 

refer to Page 11 Line 22–27 in the manuscript. 

 

18. Figure 6: I’m curious will the FNR threshold change year by year based on this 

methodology? How will the interannual variation of the threshold affect your analyses? Please 

elaborate more. 

Differences in the thresholds of the FNR at different times or regions are due to differences in 

the sources of the corresponding indicator species, whose thresholds vary with environmental 

conditions (Liu et al., 2021). We calculated the FNR thresholds separately according to 

different years, and it can be found that the differences in FNR thresholds in different years are 

very small (FigR5–R7), and the differences in FNR thresholds are mainly between different 

cities. Therefore, the interannual variation in the threshold have little effect on the results in 

our manuscript. 

 



Fig.R5. Three–order fitting of slopes of O3 VMRs versus normalized NO2 VMRs and slopes 

of O3 VMRs versus normalized secondary HCHO VMRs in different FNRsec values in Hefei, 

during (a) May–September 2021–2022, (b) May–September 2021, and (c) May–September 

2022. 

 
Fig.R6. Three–order fitting of slopes of O3 VMRs versus normalized NO2 VMRs and slopes 

of O3 VMRs versus normalized secondary HCHO VMRs in different FNRsec values in Huaibei, 

during (a) May–September 2020–2021, (b) May–September 2020, and (c) May–September 

2021. 

 
Fig.R7. The same as Fig.R5 but in Tai’an. 
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