

Review of Atmospheric moisture tracking with WAM2layers v3 by Peter Kalverla , Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent

This study describes version3 of the WAM2layers model which is a Eulerian offline moisture tracking model. WAM2layers v3 is rewritten in Python from previous model code and shared following FAIR principles. This manuscript describes the model code and setup in detail, discusses model limitations and potential future developments and provides two use cases.

The manuscript gives a detailed and well-structured overview of the model principles and how it is implemented in python. Further, the efforts to share the code in a user-friendly way and to reach out to the community are a good example of code sharing and development. While the new model version is a good role model of maintaining research software, the description of model limitations and potential shortcomings is sometimes only vaguely formulated. Further, the readability of the introduction should be improved and the use cases' outcomes better explained. As this study provides a substantial contribution to modelling science, and especially the moisture tracking community where previous versions of the model have been used in many studies, I recommend it for publication in GMD after addressing the following line-by-line comments:

Dear reviewer, thank you for the comprehensive review! Your detailed comments provide valuable insight into how the manuscript comes across and highlight several areas where it can and should be improved. A more detailed response is included below with your own comments for easy reference.

Figure 1: Can you add a representation of the tagged moisture to the conceptual figure? A visualisation of the different moisture fluxes and/or moisture budgets could help to follow the equations.

You are right to highlight Figure 1, as it was mostly created as an appetizer, but could instead be used to help the reader understand different aspects of the model. To this end we propose to split the figure in two subfigures, one illustrating the domain configuration, the other zooming in on a single cell for the illustration of the different fluxes.

27-51: The introduction contains a long description of different types of moisture tracking models. This part is difficult to read and not very relevant for this study. As these types are also summarised in the referenced studies, the detailed discussion could be removed from this manuscript.

Thanks for pointing this out. Our attempt to place WAM2layers in a broader context has escalated a bit. We agree that it makes sense to cut down the text.

65-83: This list does not contain much information. Could this information be provided in a more informative way? E.g in a table, where the references are listed?

The wide usage of WAM2layers is one of the key motivating factors for this manuscript, and we deem it important to mention previous use cases. That said, we do agree that putting this information in a table (perhaps next to figure 2) will prevent it from interrupting the flow of the main text.

97: "This facilitates..." What does "this" refer to?

It refers to the "generic description" of the governing equations. This was included to make it clear that the two-layer concept of WAM2layers is not immediately evident from these equations. We can reformulate this to make it clear that the two-layer concept emerges only later in the manuscript.

229-230: "This distributes cloud and rain/snow water across all levels, which is not perfect, but better than not counting it at all." Water is not distributed equally in the vertical column, with the majority residing in the lower troposphere. This is neglected if the cloud, rain and snow water is distributed equally across all levels. Does it make a difference for moisture tracking if the cloud and rain/snow water distribution is weighted by the relative water content of each layer? Further, "better than not counting it at all" is very vague. Can you be more precise in your statement?

What you suggest here is in fact what is being done, but we understand that this was not clear from the description. A better phrasing would be "This proportionally adds missing cloud water to all levels." Moreover, in the preceding text and equation, we should distinguish more clearly here between the calculated column water vapour and the ERA5 total column water. The correction factor thus obtained is applied to each level individually (see multiplication factor S_k), which means it is weighted by the relative water content of that layer. We can consider writing S_k as numerator and put the ERA5 factor outside the fraction

267: "WAM2layers v3.1" I think this is the first time that you mention v3.1. Is there a difference to v3?

We use semantic versioning in our code, which consists of three numbers, vX.Y.Z, where X is a major, Y is minor, and Z is patch release. When we mention v3 (without specific minor/patch number), we refer to the major version only, i.e. that encompasses 3.1.0 and 3.2 etc.. Within a major version we strive for backwards compatible changes, such that the manuscript (and dependent code) will still be valid, even if new features are added. We will

clarify this in the manuscript. In the introduction we already discuss previous versions, so it makes sense to add it there.

282: “the data is first interpolated to a finer time step” What is the new temporal resolution with “a finer time step”?

This is configurable and may depend on the domain of interest. More details are discussed in section 3.4. However, we could mention a rough number here and point to section 3.4 such that readers will not have this question stuck in their minds.

291: “Sijt represents the total column water” But not Qtc, correct? Can you make it clearer that this is a “different” total column water than Qtc?

Correct, we agree this is confusing. We could change the description here to something like “represents the calculated column total, whether or not corrected for cloud/rain/snow liquid water as per eq (19).”. With respect to the naming of Qtc: In preparing this manuscript we switched from Q to S to denote the grid-cell integrated water vapour. Following this rationale it makes sense to rename the ERA5 total column water as well, but it seems we forgot that one. In response to comment on line 229 we’ve renamed it to S_T_ERA5. The updated formulation there should also help to clarify the point raised here.

318: “the vertical transport terms are directed from the upper to the lower layer, i.e., positive downward” This statement is repeated many times. Can you check if it is really needed each time?

“Positive downward” is mentioned three times, but in different circumstances. The first occurrence relates to a note about the direction of precipitation and evaporation in ERA5; the second to the resolution of the vertical flux in the general case of n layers; the last to the specific equation in our two-layer model.

In principle, the third is implied by the second and could be omitted. However, we have seen several misunderstandings about this in the past, and we ourselves have also been quite confused at times. Therefore, we see value in iterating this point. That said, we will omit the “i.e. positive downward” from the quoted sentence, and reformulate the rest to stress our focus, e.g. “the only remaining vertical transport term, which is shared by both layers”.

358: “boundary of the domain”: It was not immediately clear to me, which domain this is – model domain or the tagging domain? Further, what do you consider as a significant boundary transport (compare also comment on Fig. 6)?

The term domain is used for the entire area over which WAM2layers is applied. In this case this is the area shown in Fig.6: [50 W, 30 N, 60 N, 30 W]. The definitions of ‘domain’ and ‘tagging region’ will be clarified in an updated Fig. 1. The follow-up question is answered in the response to the comment on Fig. 6 (i.e., next comment).

Figure 6: “By then, 42 % of moisture was tracked to its source; 3.4 % of was still in the domain’s atmosphere, and 54 % was associated with transport across the domain boundaries.” 42% tracked to the sources seems like a low number. Does this use case represent the typical performance of WAM2layers, and is this the expected tracking efficiency? Having 54% of moisture that is transported across the domain boundaries, what do you consider a significant transport across the boundaries (compare lines 358-359)?

The amount of moisture transported across a domain is not per se a good indicator for ‘the performance of WAM2layers’, but rather related to the choice of the domain size and associated research questions. It is true that some moisture tracking models estimate moisture contributions in general to be more local or more remote, but we consider that discussion out of scope here. If one would like to get an indication of the main sources, 42% precipitation tracked back surface evaporation could be sufficient as the 54% of moisture that is transported across the domain boundaries likely constitutes a large combination of many small sources (<0.1 mm). If one has the study goal to identify, for instance, 80% of the moisture sources, one could conclude that the domain is too small and that the case should be rerun with a larger domain. Long story short, ‘significant’ is case-dependent. We will rephrase to make this clearer.

372-374: “The spatial pattern of the sources corresponds to the sources determined by Insua-Costa et al. (2022) and Staal and Koren (2023).” How do the WAM2layer sources compare in terms of tracked moisture? You mention that a model intercomparison study is currently done, and I acknowledge that such a question can be investigated in more detail in an intercomparison study. But as the high loss/diffusion (?) of moisture is striking in this use case, this question comes immediately to my mind when you compare the WAM2layers patterns to other studies.

Insua-Costa et al. (2022) and Staal and Koren (2023) also estimated significant remote contributions:

Region	<i>Insua-Costa et al. (2022)</i>	<i>Staal and Koren (2023)</i>
<i>Europe and North Africa</i>	<i>51%</i>	<i>50%</i>
<i>North Atlantic</i>	<i>11%</i>	<i>24%</i>

<i>Mediterranean and Black Sea</i>	6%	3%
<i>North and Baltic Sea</i>	3%	3%
<i>Tropics</i>	15%	3%
<i>North America</i>	10%	14%
<i>Other remote</i>	4%	3%

Our domain excludes the regions ‘Tropics’, ‘North America’ and ‘Other remote’ and does not fully cover the other regions either, because we miss Scandinavia, Eastern Europe until 50 E and the Western part of the North Atlantic. The equivalent boundary transport if they would have had the same domain in the cases of Insua-Costa et al. (2022) and Staal and Koren (2023) would have been >>29% and >>20%, respectively. Without having a more detailed comparison we do not think it should be concluded that WAM2layers is necessarily much more diffusive than other moisture tracking models and leave such a comparison to the more comprehensive intercomparison study that is underway. We will add a short discussion in the revised manuscript without going into too much detail.

Figure 7: “Of the tagged moisture 7.8 % recycled within the source region.” How is recycling defined in this forward tracking mode?

This follows the definition of regional evaporation recycling (van der Ent and Savenije, 2011), but for clarity we will change this to: “of the tagged evaporation 7.8 % precipitated within the source region.”

465: What are “quick” regional moisture recycling calculations?

Understandably this is not immediately clear, however, we also did not want to add too much detail here, because the feature is currently not incorporated. With the current version one can also do single grid cell regional moisture recycling calculations, but it would require to specify a new tagging region for each tracking experiment. If, however, one makes the assumption that tracked moisture that leaves a grid cell never returns, it is possible to calculate the recycling within each grid cell in a single experiment, making the computations much quicker. We propose to change the sentence to: “such calculations for moisture recycling within a single grid cell for all grid cells of the domain at once (van der Ent and Savenije, 2011; De Hertog et al, 2024)”, which is hopefully more descriptive, but leaves the details in the references nonetheless.

Minor comments:

43: “or something in between”: Can you be more precise?

Outdated; after a comment on this paragraph that line has been removed.

161: "...starting isobaric coordinates to yields..." something is missing here

Remnant of old text, will be removed

164 " the horizontal transport in terms in (2) can be written" delete in terms

Thanks for spotting

204: water → humidity?

Better indeed. Too bad this breaks the alliteration...

242: "mask of values between 0 and 1" Do you mean mask of values of 0 or 1?

No, we mean between. A value of 0.5 could be useful e.g. at country borders, where half the grid cell is inside the domain of interest. We will clarify that.

302: "where subscript t denotes the column totals" This should be introduced when t is used for the first time.

Thanks for pointing us to the inconsistent use. We will use capital T here and also in the total column water correction (currently tc). That would more clearly differentiate this subscript with the superscript t for time.

349: remove "a such that"

Thanks

350: "These limits are not 100 % watertight" Colloquial expression

We will reformulate that

369: "the, Ourthe" remove comma

Thanks

379: "similar moisture source patterns" do you mean "moisture sink patterns"?

Yes, thank you.

402: " WAM2layers ships with " Colloquial expression

"Includes" is indeed better

430: "get a better grip on it" Colloquial expression → it is not clear what you exactly mean with "a better grip"

We're not sure either.. We will reformulate that to put more emphasis on trying to quantify numerical diffusion.

435: “we should be careful not to throw the baby out with the bathwater.” Colloquial expression → can you spell this out, or reconsider if this statement is needed?

We will reformulate this