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Abstract. 20 

Evapotranspiration (ET) is an important variable for analysing ecosystems, biophysical processes, and drought-related changes 21 

in the soil-plant-atmosphere system. In this study, we evaluated freely available ET products from satellite remote sensing 22 

(i.e., MODIS, SEVIRI, and GLEAM) as well as modelling and reanalysis (i.e., ERA5-land and GLDAS-2) together with in-23 

situ observations at eight Integrated Carbon Observation System (ICOS) stations across central Europe between 2017 and 24 

2020. The land cover at the selected ICOS stations ranged from deciduous broad-leaved, evergreen needle-leaved, and mixed 25 

forests to agriculture. Trends in ET were analysed together with soil moisture (SM) and water vapor pressure deficit (VPD) 26 

during four years including a severe summer drought in 2018, but contrasting wet conditions in 2017. The analyses revealed 27 

the increased atmospheric aridity and decreased water supply for plant transpiration under drought conditions, showing that 28 

ET was generally lower and VPD higher in 2018 compared to 2017. Across the study period, results indicate that during 29 

moisture limited drought years, ET is strongly decreasing due to decreasing SM and increasing VPD. However, during normal 30 

or rather wet years, when SM is not limited, ET is mainly controlled by VPD, and hence, the atmospheric demand.  31 

The comparison of the different ET products based on time series, statistics, and extended triple collocation (ETC) shows in 32 

general a good agreement with ETC correlations between 0.39 and 0.99 as well as root-mean-square errors lower than 1.07 33 
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mm/day. The greatest deviations are found at the agricultural-managed sites Selhausen (Germany) and Bilos (France), with 34 

the former also showing the highest potential dependencies (error cross-correlation) between the ET products. Our results 35 

indicate that ET products differ most at stations with spatio-temporal varying land cover conditions (varying crops over 36 

growing periods and between seasons). This complex heterogeneity complicates the estimation of ET, while ET products agree 37 

at evergreen needle-leaved stations with less temporal changes throughout the year and between years. The ET products from 38 

SEVIRI, ERA5-land, and GLEAM performed best when compared to ICOS observations with either lowest errors or highest 39 

correlations.  40 

1 Introduction 41 

Land-atmosphere dynamics and interactions are of key importance for understanding exchange processes in the global water, 42 

energy, and carbon cycles (Zhou et al., 2016). For a holistic and well-founded ecosystem survey, the uptake, consumption, and 43 

release of matter and energy need to be monitored. Especially in times of climate change, availability of terrestrial water, 44 

agricultural productivity assuring food security, as well as forest health guaranteeing, for instance, carbon uptake and 45 

biodiversity preservation, are mainly monitored by soil moisture (SM) and water vapor pressure deficit (VPD; as measure for 46 

atmospheric aridity) (Novick et al., 2016; Zhou et al., 2019; Liu et al., 2020). Many studies focus on these two variables when 47 

analysing drought-related terrestrial ecosystem productivity and its spatio-temporal changes (Fu et al., 2022; Zhang et al., 48 

2021). Since precipitation (P) ‘and evaporation are the two key components of the global water cycle’ (Miralles et al., 2011), 49 

another important proxy for analysing water stress and its effects on ecosystems is evapotranspiration (ET). As the sum of 50 

evaporation from land, vegetation and water surfaces as well as transpiration from vegetation, ET directly links the terrestrial 51 

energy, water, and carbon cycles (Zhang et al., 2016; Zhou et al., 2016), 52 

 and integrates meteorological conditions along SM (Bayat et al., 2022). Hence, ET is an important variable for quantifying 53 

biophysical processes, ecosystem functioning, land surface energy and water budgets, as well as improving weather and 54 

climate model predictions (Bayat et al., 2024; Zhang et al., 2016; Zhou et al., 2016). For example, Zhou et al., (2019) reported 55 

negative SM-VPD coupling, meaning low SM and high VPD, due to land-atmosphere feedbacks, since high VPD stimulates 56 

ET, which reduces SM. Although there is a debate that ET alone does not determine SM, and other factors such as precipitation 57 

should also be considered, as reduced P for constant ET can lead to lower SM (Rahmati et al., 2023), ET should in any case 58 

be one of the essential variables to inform about ecosystem-atmosphere dynamics and interactions along with SM and VPD 59 

(Bayat et al., 2021).  60 

ET is controlled by biological (e.g., plant growth and plant stomatal regulation) and physical (e.g., temperature) processes. For 61 

example, vegetation controls interannual changes and affects spatio-temporal patterns and trends in ET (Zhang et al., 2016). 62 

ET can be theoretically linked to the independent physical control factors demand (humidity, temperature) and supply 63 

(precipitation). Depending on environmental and meteorological conditions, ET is primarily influenced by one of these three 64 

factors. For instance, across central Europe, ET is mainly driven by the available energy due to reduced solar radiation during 65 
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cloudy skies (Zhang et al., 2016). However, Seneviratne et al., (2010) stated that decreasing SM leads to decreasing ET due to 66 

the less accessible SM for plant water uptake and increasing soil suction.  67 

During summer 2018, Europe experienced an unprecedented drought event comparable to previous extreme droughts, such as 68 

in 2003 and 2010, with a temperature anomaly of +2.8 K (Rakovec et al., 2022) and an abnormally reduced SM and increased 69 

VPD (Fu et al., 2022). This extreme drought was characterized by a unique geographical distribution, focused on regions at 70 

higher latitudes (central and northern Europe), a rapid change from a wet spring to a dry summer, and an intense heatwave in 71 

the spring of 2018 (Bastos et al., 2020). As a result, it caused severe tree stress in central Europe, with low leaf water potential, 72 

leaf discolouration, and premature shedding, leading to significant tree mortality and heavy drought-legacy effects in 2019, 73 

leaving trees vulnerable to further damage from pests and pathogens (Schuldt et al., 2020). 74 

The significance of ET can also be seen in relation to the precise parametrization of SM and its memory in Land Surface 75 

Models (LSMs) (Rahmati et al., 2024). Due to its importance and influence on the entire soil-plant-atmosphere system (SPAS), 76 

tracking ET in time and space, meaning at seasonal to multi-year scales and for wide areas, is necessary and calls for a satellite 77 

remote sensing approach (complementary to current modelling and reanalysis approaches). Although it is not directly 78 

measurable from remote sensing acquisitions, optical, thermal, infrared, or microwave observations are used to derive ET 79 

based on surface energy balance, physical and empirical models (Bayat et al., 2021, 2024; Rahmati et al., 2020; Zhang et al., 80 

2016). Still, research comparing the performance of remote sensing with model and reanalysis data under drought conditions 81 

is lacking, and an analysis on how main ET drivers (SM and VPD) impact these ET products is also needed. Bridging this gap 82 

is paramount to assess which products and in which conditions are more suitable to track ET, especially under the increasingly 83 

frequency and severity of droughts due to climate change. 84 

Several sub-global studies exist for comparing various ET products, e.g., over China (Meng et al., 2024; Xu et al., 2024), 85 

across the U.S. (Carter et al., 2018; Xu et al., 2019), over Africa (Trambauer et al., 2014), and across Europe (Ahmed et al., 86 

2020; Stisen et al., 2021). However, due to the complexity of ecosystems, findings from specific regions (e.g., China, U.S., 87 

Africa) cannot be generalized for other regions (e.g., Europe). Further, European studies focused either only on spatial product 88 

comparisons, evaluating the performance of hydrological models (e.g., Stisen et al., 2021), on former time periods (e.g., 2003-89 

2013) at basin scale (Liu et al., 2023), on analysing drought impacts on ET dynamics using solely a single ET product (e.g., 90 

Sepulcre-Canto et al., 2014; Ahmed et al., 2020), and on evaluating new ET products (e.g., Hu et al., 2023). For example, the 91 

focus in the study of Stisen et al., was the evaluation of the spatial pattern performance in different hydrological models for 92 

ET estimation. For this, four remote sensing based ET products were compared among each other between 2002-2014, and 93 

they found high agreements in spatial patterns across continental Europe (Stisen et al., 2021). Further, Ahmed et al., 94 

investigated the drought impact of 2018 on the MODerate Resolution Imaging Spectroradiometer (MODIS) ET across 95 

European ecosystems and found that ET decreased up to 50% compared to a 10-year reference period, with agricultural areas 96 

and mixed natural vegetation being most affected (Ahmed et al., 2020). However, there is a lack of studies comparing various 97 

ET products among each other and with in-situ measurements across central Europe, especially during severe drought years 98 

(e.g., 2018), as well as evaluating the potential of remote sensing for tracking seasonal ET dynamics. But the evaluation of the 99 
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varying employed retrieval techniques (e.g., eddy covariance, land surface schemes, Penman-Monteith equation) of commonly 100 

used ET products and how well these techniques perform under drought conditions is paramount in order to capture ET 101 

dynamics correctly. 102 

In this study, we first compare the most common ET products from field measurements, modelling, and remote sensing across 103 

central Europe for the period 2017 to 2020. The focus hereby is on the evaluation and quality assessment of the individual 104 

products regarding the estimation of absolute ET values and their time-dynamics. Second, we compare ET products in the 105 

context of SM and VPD, disentangling the relative role of all three variables within the SPAS under severe drought conditions 106 

in 2018 in comparison to the rather wet year 2017. This is to analyse how the ET products catch drought conditions and to 107 

what extent they can be used as indicator for drought events.  108 

2 Materials and Methods 109 

2.1 Study area 110 

The focus is on eight Integrated Carbon Observation System (ICOS) (Rebmann et al., 2018) stations within central Europe 111 

between 2017 and 2020, where field-scale in-situ eddy-covariance (EC) ET measurements are available (see Fig. 1). 112 

 113 

Figure 1: Location of the eight investigated Integrated Carbon Observation System (ICOS) stations in central Europe, and their classification 114 
according to the respective dominant land cover class. DBF = deciduous broad-leaved, ENF = evergreen needle-leaved, MF = mixed forest. 115 
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The study comprises two deciduous broad-leaved (DBF) — the German Hohes Holz (DE-HoH) and Hainich (DE-Hai), two 116 

evergreen needle-leaved (ENF) — the German Wuestebach (DE-Ruw) and Finnish Lettosuo (FI-Let), and two mixed forest 117 

(MF) stations — the Czech Landzhot (CZ-Lnz) and the Swiss Laegern (CH-Lae), as well as two agriculture stations — the 118 

German Selhausen (DE-Rus) and the French Bilos (FR-Bil). At every station, a footprint of 3 km radius is analysed to account 119 

for differences in spatial resolutions among employed datasets (see Sec. 2.2 and Tab. 1). As displayed in Figure 2 and Table 120 

S1 (supplement), the land cover types and their homogeneity within the 3 km × 3 km footprint around every station was 121 

analysed based on the Corine land cover (CLC) 2018 classification from the Copernicus Land Monitoring Service at 100 m 122 

spatial resolution (European Environment Agency, 2019). 123 

 124 

Figure 2: Overview of land cover classes according to the Corine Land Cover (CLC) 2018 (European Environment Agency, 2019) within 125 
the 3 km × 3 km footprint around every investigated ICOS station. Percentages inside the circles indicate the dominant land cover classes, 126 
respectively. The percentages of all land cover classes at every station can be found in the supplement (see Tab. S1). 127 

According to this classification, two stations can be considered as homogeneous with one dominant land cover class, i.e., 86.7 128 

% of coniferous forest at DE-Ruw, and 82.4 % of broad-leaved forest at DE-Hai. Station DE-Rus is mainly (63.1 %) covered 129 

by non-irrigated arable land. Further, two stations show a two-part split land cover with two almost equally dominant classes. 130 

At DE-HoH, 45.6 % are covered by non-irrigated arable land and 45.5 % are covered by broad-leaved forest. At FR-Bil, 131 

although it is officially labelled as ENF station, 44.4 % are covered by transitional woodland shrub, while 41.4 % are covered 132 

by coniferous forest, a managed Pine forest plantation (Loustau et al., 2022). Hence, due to this heterogeneity and the fact that 133 
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14.2 % of non-irrigated arable land (see Tab. S1) are mostly directly located near the station (see Fig. 2), we ranked it as 134 

agricultural station in order to account for the frequently changing land cover conditions and spatial heterogeneity. All other 135 

stations are rather heterogeneous with a mix of more than two different land cover classes (see Tab. S1 and Fig. 2). However, 136 

it is worth noting that the CLC 2018 classification is based on data from 2017 to 2018. Hence, changes in the land cover, e.g., 137 

such as differences between summer and winter months, deforestation, weather extremes (storms, floods), or varying 138 

agricultural crop cultivation, at each station between 2017 to 2020 are not included here. 139 

Figure 3 illustrates the meteorological conditions (precipitation P and air temperature TAir) at every station during the 140 

investigation period. Note that the in-situ P measurements contain missing values at stations DE-HoH, CZ-Lnz, and CH-Lae 141 

in 2020. The overall lowest TAir is found at the northernmost ICOS station FI-Let, varying between -12.6 °C (absolute 142 

minimum) and 22.75 °C (absolute maximum) in the years 2017 to 2020, with an interannual average of 5.67 °C. In contrast, 143 

the highest average TAir (between 2017 and 2020) of 14.1 °C is found at the southernmost ICOS station FR-Bil, which also 144 

has the highest average P value of 3.04 mm/day. The lowest P is found at DE-HoH with an average of 1.26 mm/day, which is 145 

similar to the other stations in the mid-latitudes. The overall highest TAir and lowest P at every station are always found in 2018 146 

with an average of 1.7°C higher TAir and annual 0.76 mm higher P, compared to the second hottest and driest year in each case. 147 

Exceptions can be found at the station FR-Bil, where the highest TAir are recorded in 2019 and lowest P in 2017, and DE-Ruw, 148 

as well as CH-Lae, where the lowest average annual P are recorded in 2020, respectively. 149 

Based on the standardized precipitation-evapotranspiration index (SPEI) (Beguería et al., 2023) (see Fig. S1), which describes 150 

drought based on the amount and duration of water deficit (Yu et al., 2023), distinctly dry and wet years are identified for each 151 

ICOS station. While all stations show abnormally dry periods, especially for 2018, only stations FI-Let and FR-Bil show 152 

abnormally wet periods at the end of 2017 and 2019. These two are the northernmost and southernmost stations (see Fig. 1). 153 
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 154 

Figure 3: Daily in-situ measured precipitation (P) [mm/day] and air temperature (TAir) [°C] at investigated ICOS stations. TAir was cleaned 155 
for daily and weekly dynamics using a Savitzky-Golay (Savitzky and Golay, 1964) filter with a window size of 31 days. 156 

2.2 Data base 157 

In the first part of this study, different ET products (see Tab. 1) are inter-compared in order to evaluate the potential of remote 158 

sensing for tracking seasonal ET dynamics. The in-situ ET data, recorded at the ICOS stations at field-scale, are mass balance-159 

based measurements of sensible heat (H) and latent heat (LE) fluxes through the covariance of heat and moisture fluxes, 160 

respectively. The LE [W/m2] can then be converted to ET by dividing it by the latent heat of vaporization (2.434 [MJ/kg] at 161 

20 °C air temperature) (Allen et al., 1998). The ICOS network has undertaken a large effort to ensure high-quality LE 162 

measurements, which are comparable among different ICOS stations (Rebmann et al., 2018). Besides in-situ EC ET 163 

measurements, we employ optical/thermal remote sensing products from NASA’s (National Aeronautics and Space 164 

Administration) Moderate-resolution Imaging Spectroradiometer (MODIS) sensor on Terra (Running et al., 2017), ESA’s 165 

Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard of the Meteosat Second Generation (MSG) satellites, 166 
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and the Global Land Evaporation Amsterdam Model (GLEAM) (Martens et al., 2017). Further, also reanalysis and modelling 167 

products from the land component of the Earth system modelling product European Re-Analysis (ERA5-land) from the 168 

European Centre for Medium-Range Weather Forecasts (ECMWF) (Muñoz Sabater, 2019), and from NASA’s Global Land 169 

Data Assimilation System Version 2 (GLDAS-2) (Beaudoing, 2019) are used (see Tab. 1). It should be noted that the GLEAM 170 

product is based on various remote sensing observations and reanalysis datasets from, e.g., NASA’s SMOS (soil moisture and 171 

ocean salinity) mission, MODIS, GLDAS-Noah, and ERA-Interim (Martens et al., 2017). The MODIS product with nominal 172 

spatial resolution of 500 m is aggregated to the 3 km footprint, while the SEVIRI, ERA5-land, GLDAS-2, and GLEAM 173 

products are maintained at their original spatial resolutions of 3 km, 9 km and 25 km, respectively. All datasets are temporally 174 

aggregated to daily time series.  175 

Table 1: Overview of investigated ET products presenting the data source, the original spatial and temporal resolution as well as the retrieval 176 
basis and method of each product. 177 

PRODUCT 

(NAME) 
SOURCE 

ORIGINAL 

SPATIAL / 

TEMPORAL 

RESOLUTION 

RETRIEVAL 

BASIS 

RETRIEVAL 

METHOD 

ICOS (Level 2) 
ICOS (ICOS RI et al., 

2024) 

Point scale / Half-

hourly 
In-situ 

measurements 

Eddy covariance 

technique 

MODIS 

(MOD16A2) 

NASA (Running et al., 

2017) 
500m / 8-daily 

Remote 

Sensing 
Penman-Monteith 

ERA5-land 
ECMWF (Muñoz 

Sabater, 2019) 
9 km / hourly Reanalysis 

ECMWF’s IFS, H-

TESSEL land 

surface scheme 

SEVIRI 

(METv3) 
ESA (Bayat et al., 2022) 3 km / half-hourly 

Remote 

Sensing 

SVAT, (H-) 

TESSEL land 

surface scheme 

GLDAS-2 

(GLDAS_NOAH

025_3H_2.0) 

NASA (Beaudoing, 

2019) 
25 km / 3-hourly 

Land Surface 

Model 

(NOAH) L4 

Penman-Monteith 

GLEAM (v3) 

University of Amsterdam 

(Miralles et al., 2011; 

Martens et al., 2017) 

25 km / daily 
Remote 

Sensing 
Priestley-Taylor 

In Table 1, the retrieval methods for each ET product are given. MODIS and GLDAS-2 are based on physically-based methods 178 

employing the Penman-Monteith equation (Penman, 1948; Monteith, 1965), while GLEAM is based on the Priestley-Taylor 179 

equation (Priestley and Taylor, 1972), and ERA5-land uses the ECMWF integrated forecasting system (IFS) and is derived 180 

from the ERA5 product where the land surface model is based on the hydrology Tiled ECMWF Surface Scheme for Exchange 181 
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Processes over Land (H-TESSEL) (Hersbach et al., 2020). Further, SEVIRI employs a soil-vegetation-atmosphere-transfer 182 

(SVAT) approach also based on the physics of the TESSEL and H-TESSEL land surface scheme (Balsamo et al., 2009; Bayat 183 

et al., 2024; Ghilain et al., 2011). The Priestley-Taylor equation does not consider the impact of VPD or canopy conductance 184 

(Wang and Dickinson, 2012), while within the Penman-Monteith equation VPD and relative humidity (RH) are used according 185 

to the function of Fisher et al., (2008) in order to account for soil water stress when calculating the actual soil evaporation. 186 

Further, the canopy conductance is retrieved from stomatal and cuticular conductance depending on LAI and the wet surface 187 

fraction, with the stomatal conductance constrained by VPD and minimum air temperature and the cuticular conductance fixed 188 

to a constant of 0.01 [mm/s] (Running et al., 2019; Wang and Dickinson, 2012). Hence, the Penman-Monteith equation is more 189 

accurate and often outperforms the Priestley-Taylor equation but, in turn, requires more ‘parameters that are difficult to 190 

characterize’ (Fisher et al., 2008). Within the TESSEL and H-TESSEL schemes, canopy conductance is formulated according 191 

to the modified Jarvis function and based on the stomatal conductance (retrieved from net assimilation and Kirchhoff’s 192 

resistance/conductance analogy) and cuticular conductance (fixed between 0 to 0.25 [mm/s] according to vegetation types), 193 

while SM at four layers, and therefore also deeper soil layers, are accounted when defining the soil water stress on soil 194 

evaporation (ECMWF, 2018). Lastly, for this study, it is interesting to note that GLEAM and ERA5-land employ the ECMWF 195 

atmospheric reanalysis data (Li et al., 2022), while GLDAS-2 is based on MODIS land surface parameters (Rui and Beaudoing, 196 

2022). These product interdependencies should be kept in mind during interpretation of results. 197 

In the second part of this study, the ET products are compared in relation to two dominant parameters of the SPAS, namely 198 

SM and VPD. While VPD comes from in-situ measurements of the Fluxnet network (point precise), SM comes from NASA’s 199 

Soil Moisture Active Passive (SMAP) mission, the multi-temporal dual channel algorithm (MT-DCA) L-band (1.4 GHz) 200 

dataset (9 km spatial resolution) (Konings et al., 2016; Feldman et al., 2021). We employed the SMAP SM in this study instead 201 

of using available in-situ measurements of the Fluxnet network, since the latter were of poor quality at several stations and 202 

years, and we wanted to build our analyses on one continuous dataset. The SMAP MT-DCA dataset is quality controlled and 203 

filtered for, e.g., snow, frozen ground, and water bodies (Feldman et al., 2021). 204 

2.3 Methods 205 

2.3.1 Extended triple collocation 206 

For the comparison of different ET products in sec. 3.1., the extended triple collocation (ETC) method (McColl et al., 2014) 207 

is employed. The ETC technique not only provides the root-mean-square-error 𝜎𝜀 [mm/day] of the classical triple collocation 208 

(TC) method (Stoffelen, 1998) among three independent measurement systems, but also provides the correlation 𝜌𝑡,𝑋 [-] among 209 

them, giving the sensitivity of the measuring systems. The most important advantage of the TC and ETC techniques is that 210 

one can calculate 𝜎𝜀 and 𝜌𝑡,𝑋 without considering any of the systems as the necessary reference. The product with the lowest 211 

𝜎𝜀 and highest 𝜌𝑡,𝑋 identifies the one with the lowest uncertainty. As input to the ETC, the daily ET time series are filtered for 212 

the growing season (April to October) of each year. With the aim of evaluating the performance of the remote sensing products 213 
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(SEVIRI, MODIS, GLEAM), we compare them individually with ERA5-land and in-situ measurements (ICOS) on the one 214 

hand, and with GLDAS-2 and ICOS on the other hand. Sanity checks for Gaussian distributions and large sample sizes of 215 

~853 values per product ensure precise and representative ETC analyses. Additionally, since one of the requirements for 216 

thorough ETC analyses is the independence among evaluated datasets (McColl et al., 2014), the error cross-correlation (ECC) 217 

values (Gruber et al., 2016) are calculated in order to evaluate product dependencies. In case the ECC lies between -0.5 and 218 

0.5, the datasets can be regarded as independent from each other. The ECC for each product comparison (with ET product ∈ 219 

[i,j,k,l]) is calculated from the error cross covariance 𝜎𝜀𝑖𝜀𝑗
 between two products as well as the random error variance 𝜎𝜀𝑖

2  of 220 

each dataset, respectively (Gruber et al., 2016): 221 

𝐸𝐶𝐶𝑖𝑗 =
𝜎𝜀𝑖𝜀𝑗

𝜎𝜀𝑖
2 𝜎𝜀𝑗

2  ,           (1) 222 

with 223 

𝜎𝜀𝑖𝜀𝑗
= 𝜎𝑖𝑗 −

𝜎𝑖𝑘𝜎𝑗𝑙

𝜎𝑘𝑙
 ,          (2) 224 

and 225 

𝜎𝜀𝑖
2 = 𝜎𝑖

2 −
𝜎𝑖𝑗𝜎𝑖𝑘

𝜎𝑗𝑘
 .          (3) 226 

2.3.2 Anomalies 227 

For the comparison of different SPAS parameters in sec. 3.2., the seasonal imprint is removed from the signals in order to 228 

focus on exceptional events in the time series. For that, we calculated the 30-day anomaly time series for each parameter. To 229 

do so, the daily average over all four years was calculated first. The resulting daily average was then smoothed using a 230 

Savitzky-Golay (Savitzky and Golay, 1964) filter with a window size of 61 days. Lastly, for every day between 2017 to 2020, 231 

the difference between the day of interest and the 30-day average of the filtered daily average before that day has been 232 

calculated. 233 

2.3.3 Binning 234 

To analyse the effects of water supply and demand on ET, we binned daily ET values into a grid of 30 by 30 SM and VPD 235 

conditions, with SM ranging between 0.0001 vol.% and 40 vol.%, and VPD ranging between 0.0001 hPa and 25 hPa, both in 236 

31 steps (to create a grid of 30 by 30). While SM is indicative of the available water supply, VPD is an indicator of atmospheric 237 

water demand. The co-regulation of ET by SM and VPD is complex as it depends on stomatal and surface conductance, which 238 

in turn are dependent on SM and VPD, as well as vegetation and soil properties (Carminati and Javaux, 2020; Zhang et al., 239 

2021; Vargas Zeppetello et al., 2023). To understand the main directionality of ET changes relative to SM, we calculated the 240 
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average slopes of ET relative to SM (equivalent to 
𝛥𝐸𝑇

𝛥𝑆𝑀
 ). The same applies when we examine the directionality of the ET 241 

changes with respect to VPD (
𝛥𝐸𝑇

𝛥𝑉𝑃𝐷
). These analyses are done in order to get an indication of the dominating control on ET.  242 

3 Results 243 

3.1 Differences in examined ET products 244 

In Figure 4, times series of the employed ET products (see Tab. 1) are shown at all investigated ICOS stations (see Fig. 1) for 245 

the period 2017 to 2020. Apart from the seasonal dynamics of ET, with highest values in the summer months (June, July, 246 

August) and low values but with more frequent changes in the winter months (November, December, January), the overall 247 

good consistency between the different ET products can be noted.  248 

 249 

Figure 4: Comparison of seasonal dynamics of ET [mm] products for the period 2017-2020 at investigated ICOS stations. All time series 250 
were cleaned for daily and weekly dynamics using a Savitzky-Golay (Savitzky and Golay, 1964) filter with a window size of 31 days. 251 
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The highest variability among products and ET dynamics can be observed during summer months, with greatest differences at 252 

stations DE-Hai and DE-Ruw when comparing all products to the ICOS measurements. Here, the ground-based ET shows 253 

always lower values across all years for DE-Hai, and in 2018 and 2019 for DE-Ruw. Additionally, for each year, the ICOS ET 254 

rises a few weeks later than the other products at both stations but decreases together with all other ET products. At station 255 

CZ-Lnz, ERA5-land shows the overall lowest ET values during the growing period (April to October). Further, the highest ET 256 

values are found at station FR-Bil for the GLDAS-2 product with most pronounced differences to all other products in 2018, 257 

while overall lowest values across all years and ET products are displayed at DE-Rus. At the latter, ET values never exceed 4 258 

mm/day. From this daily time series analyses, the largest differences among ET products can be seen at the DBF station DE-259 

Hai, MF station CZ-Lnz, and agriculture station DE-Rus. At DE-Hai, the ICOS ET is overestimated by all other products, at 260 

CZ-Lnz, the ERA5-land product is lower compared to all other ET products, especially in the summer months, and at DE-Rus, 261 

the MODIS and often also the ICOS product are overestimated by the ERA5-land and SEVIRI products. Hence, no clear 262 

pattern at all stations and between different land cover classes can be found. 263 

For more detailed analyses, daily time series of ET products are averaged to 8-daily sums in order to account for the coarse 264 

temporal resolution of the MODIS product (see Tab. 1). In Figure 5, the 8-daily ET products are compared with each other at 265 

the two agriculture stations. The same illustrations for the forest stations can be found in the supplement (see Figs. S2-S4). 266 

These figures show the scatter plots between ET products giving the probability density function (PDF) of points (by colour) 267 

below (left panels) and above (right panels) the matrix diagonal, as well as the PDF curves for each site and product in the 268 

diagonal of the matrix. They support the previously stated good consistency between ET products but outline the exact 269 

differences on 8-days scale in more detail. The highest density of values can be observed between 0 to 10 mm/8-days at all 270 

stations except at DE-Ruw and FR-Bil. This comes from the rather low ET values during the autumn, winter, and spring 271 

seasons due to the overall reduced solar radiation combined with decreased vegetation cover during cold months. However, at 272 

stations DE-Ruw (see Fig. S3, right panels) and FR-Bil (see Fig. 4, left panels), the density of values is shifted towards higher 273 

ET (0 to 20 mm/8-days). These are two out of the three stations covered by coniferous forest. While FR-Bil has a two-part 274 

split land cover in the footprint (shrub and coniferous forest), DE-Ruw is almost homogeneously covered by coniferous forest 275 

(see Fig. 2), and both stations show higher ET values during autumn and spring seasons compared to all other stations due to, 276 

e.g., the lack of leaf off conditions during that periods. The third station covered by coniferous forest (FI-Let), however, shows 277 

the density of values between 0 to 10 mm/8-days (see Fig. S3, left panels), similar to DBF and MF stations. This is the 278 

northernmost station, typically covered with snow between November and March.  279 

Further, the over- or underestimation of values between two products can be seen, such as the overestimation of ICOS 280 

compared to all other ET products at DE-Hai for higher ET values, affirmed by the PDF for ICOS peaking at the highest 281 

density (see Fig. S2, left panels). There is also an overestimation of MODIS compared to all other products at DE-Rus (see 282 

Fig. 5, right panels) and CH-Lae (see Fig. S4, left panels) when ET values are higher. DE-Rus is the only homogeneously 283 

covered agricultural station with potentially most changes in land cover classes during the seasons and years, showing the 284 

greatest differences in ET products due to the overall higher complexity of agricultural plants and more frequent alterations. 285 
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While the PDF of MODIS at DE-Rus peaks at the highest density and gives the smallest range of ET values across all stations, 286 

a bimodal distribution of densities is displayed at CH-Lae. This bimodal distribution of densities is also noticeable at other 287 

products and stations but stronger always for MODIS. 288 

 289 

Figure 5: Comparison of seasonal dynamics of ET [mm/8-days] products for the period 2017-2020 at investigated ICOS stations DE-Rus 290 
(right panels above the diagonal of the matrix) and FR-Bil (left panels below the diagonal of the matrix). All time series were averaged to 8-291 
daily sums at MODIS dates, and cleaned for daily and weekly dynamics using a Savitzky-Golay (Savitzky and Golay, 1964) filter with a 292 
window size of 31 days. 293 

This visual interpretation is also supported by statistics in supplement Figures S5-S7. In general, the highest coefficient of 294 

determination, R2 [-], among all products can be found at station CH-Lae, while the overall lowest root-mean square errors, 295 

RMSE [mm/8-days], are retrieved at both ENF stations (DE-Ruw, FI-Let). DE-Ruw is also the station with, in general, lowest 296 

percentage bias, PBIAS [%], among all ET products. In detail, the highest R2 of 0.94 is found between GLEAM and GLDAS-297 

2 at CH-Lae, while the lowest RMSE of 2.3 mm/8-days and the lowest PBIAS of -0.05 % is found between GLEAM and 298 

https://doi.org/10.5194/egusphere-2024-3386
Preprint. Discussion started: 19 November 2024
c© Author(s) 2024. CC BY 4.0 License.



14 

 

ERA5-land again at CH-Lae. The lowest R2 of 0.62 and highest PBIAS of 91 % is found between ICOS and MODIS at the 299 

agricultural station DE-Rus, while the highest RMSE of 8.8 mm/8-days is found between MODIS and ERA5-land again at 300 

DE-Rus. In summary, the statistics indicate an overall worse consistency among products at the rather mixed agricultural 301 

station (DE-Rus) and better consistency at ENF stations. 302 

In order to evaluate the performance of each ET product in more detail, the ETC method (McColl et al., 2014) is employed. 303 

Here, we use the ETC approach to compare the three remote sensing products individually first with ERA5-land and ICOS, 304 

and then with GLDAS-2 and ICOS. The preceding calculation of ECC values among all products (see Fig. S8) is conducted 305 

to ensure the independence of the examined products, which is required by ETC analysis (see Sec. 2.3.1). Overall, ECC values 306 

are always around zero or within the acceptable range of -0.5 to 0.5. Only at station DE-HoH between GLDAS-2 and GLEAM, 307 

at CZ-Lnz between ERA5-land and GLEAM, at CH-Lae between ERA5-land and MODIS as well as for all product 308 

comparisons at DE-Rus (except between ERA5-land and SEVIRI), ECC values outside the acceptable range can be found (see 309 

Fig. S8). The high ECC values at DE-HoH, CZ-Lnz, and DE-Rus between GLEAM and GLDAS-2 or ERA5-land is not 310 

surprising, since the GLEAM product is based on various remote sensing and reanalysis datasets, with among others GLDAS 311 

and ERA5 (see Sec. 2.2). Hence, at most stations ET products can be regarded as statistically independent from each other. 312 

Only some potential product dependencies, especially at the agricultural station DE-Rus, should be kept in mind during the 313 

interpretation of ETC results. 314 

In Figure 6, the ETC statistics for the applied product combinations at all stations are shown. While the x- and y- axes represent 315 

the estimated root-mean-square-error 𝜎𝜀, the arcs give the correlation 𝜌𝑡,𝑋. Hence, numbers (representing the eight stations) 316 

close to zero on the x- and y-axes and close to one on the arcs give the best ETC results, meaning lowest uncertainty of the ET 317 

product (represented by colours) compared to the other two products, respectively. It can be seen that all 𝜎𝜀 values are below 318 

1.07 mm/day due to the overall high consistency among ET products, with correlations between 0.39 < 𝜌𝑡,𝑋 < 0.99. However, 319 

products with highest 𝜌𝑡,𝑋 necessarily do not have the lowest 𝜎𝜀. Hence, the discrepancy between products varies but does not 320 

dominate differences in the sensitivity among products. The highest 𝜎𝜀  is found at station FR-Bil for GLDAS-2, when 321 

comparing GLDAS-2 with GLEAM and ICOS. The lowest 𝜌𝑡,𝑋 of 0.33 is found at station DE-Ruw for ICOS as the results of 322 

the ETC among GLDAS, MODIS, and ICOS. Despite the high ECC values at DE-Rus (see Fig. S8) and hence, potential 323 

product dependencies, ETC results at this station are inconspicuous with comparable errors and correlations. Overall, ERA5-324 

land, SEVIRI, and GLEAM perform better at all stations with either lowest errors or highest correlations within their ETC 325 

triplets. In summary, compared to ERA5-land and ICOS, the remote sensing products (SEVIRI, MODIS, GLEAM) show 326 

similar uncertainties as ERA5-land, but at most stations ERA5-land outperforms GLEAM and MODIS (see Fig. 6, upper row). 327 

Further, compared to GLDAS-2 and ICOS, the remote sensing products in most cases outperform GLDAS-2 and ICOS, 328 

showing the lowest uncertainties, i.e. lower errors and higher correlations (see Fig. 6, lower row). During all analyses, ICOS 329 

shows generally the highest uncertainties. Potential explanation is the discrepancy in spatial resolutions (see Tab. 1) as will be 330 

discussed in more detail in sec. 4. 331 
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 332 

Figure 6: Estimated root-mean-square-error (𝝈𝜺) [mm/day] (on the x- and y- axes) and correlation (𝝆𝒕,𝑿) [-] (on the arcs) among ET products 333 
at all stations based on the extended triple collocation (ETC) method from McColl et al., (2014). Numbers represent the eight stations and 334 
colours the different ET products. 1st row: ETC between SEVIRI, MODIS, and GLEAM datasets respectively with ERA5-land and ICOS. 335 
2nd row: ETC between SEVIRI, MODIS, and GLEAM datasets respectively with GLDAS-2 and ICOS. 336 

3.2 Drought impacts on ET products 337 

As shown in Figures 3 and S1, 2018 was an exceptional dry year across central Europe. In this section, the impact of the 338 

drought in 2018 on ET is investigated by comparing it to SM and VPD, the two main parameters that are used for monitoring 339 

drought-related terrestrial ecosystem productivity (see Sec. 1). For that, we will compare 2018 always to the rather wet year 340 

2017 to identify significant changes. 341 

In Figure 7, the time series of ICOS ET, SMAP SM, and in-situ measured VPD for 2017 and 2018 are compared to their 342 

respective calculated anomalies (see Sec. 2.3.2) for DBF (DE-HoH, DE-Hai) and ENF (DE-Ruw, FI-Let) stations. While ET 343 

and VPD show a distinct seasonal pattern at all stations with highest values during summer months, SM shows a less clear 344 

seasonal pattern with more inter- and intra-annual variations. At both DBF stations and the ENF station DE-Ruw, the highest 345 

SM values are generally found during the winter months. In contrast, at ENF station FI-Let, an almost constantly increasing 346 

SM in 2017 can be observed with a distinct drop from in January 2018 and subsequent distinct increase in April 2018. The SM 347 

also stays at high values throughout the entire summer until mid of October in 2018, besides a smaller decrease from end of 348 
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May until August. However, these SM values may be an artefact of snow cover or frozen ground at the northernmost station 349 

and should be treated carefully, although the MT-DCA is quality controlled and filtered for that (see Sec. 2.2).  350 

 

Figure 7: Time series of daily ICOS ET [mm/day], SMAP SM [vol.%], and in-situ VPD [hPa] for 2017 and 2018 at DBF (DE-HoH, DE-351 
Hai), and ENF (DE-Ruw, FI-Let) stations compared to their respective anomalies (see Sec. 2.3.2). All time series were cleaned for daily and 352 
weekly dynamics using a Savitzky-Golay (Savitzky and Golay, 1964) filter with a window size of 31 days. 353 

From these time series, in general lower ET and higher VPD values can be found in 2018 compared to 2017, reflecting the 354 

drought conditions with higher atmospheric aridity and decreased water supply for plant transpiration and soil evaporation in 355 

2018. At the MF (CZ-Lnz, CH-Lae) and agriculture (DE-Rus, FR-Bil) stations, the same trends can be observed but with minor 356 

differences in VPD maxima between 2017 and 2018, and sometimes higher ET peaks in 2018 at stations CZ-Lnz and FR-Bil 357 

(see Fig. S9). The overall lowest SM values can also be found in 2018, except at station FI-Let. At the DBF stations and station 358 

DE-Ruw, constantly low SM values over several months from mid of April to mid of October are shown without any significant 359 

increase during this time in 2018 (see Fig. 7). The same is true at MF station CH-Lae and the agricultural stations. At station 360 

CZ-Lnz, SM is varying monthly at low values between ~5 vol.% and 18.6 vol.% (see Fig. S9). When analysing the anomaly 361 

time series (seasonal detrending; see Sec. 2.3.2) of each parameter and station, in general higher ET and VPD anomalies and 362 

lower SM anomalies are found in 2018 compared to 2017, except at station FI-Let with higher SM anomalies in 2018 compared 363 

to 2017 (see Figs. 7 & S9).  364 

These anomalies are subsequently used in Figure 8 to visualize the kernel densities of SM, VPD, and ET anomalies of all 365 

stations for 2017 and 2018. In Figure 8, only the vegetation periods from April to October within each year are analysed. It 366 

can be seen that in 2018 (drought year), the SM and ET anomalies peak at lower, negative values compared to 2017, where 367 

they peak around zero, while the VPD anomalies peak at higher, positive values compared to 2017. Also, the respective 368 
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anomaly medians are lower for SM and ET, and higher for VPD in 2018. The calculated 𝑝-values of always ≤ 0.045 prove the 369 

shift in yearly median values at the 5 % significance level. 370 

 371 

Figure 8: Kernel density estimates of daily SMAP SM, in-situ VPD, and ICOS ET anomalies (see Sec. 2.3.2) during April to October of 372 
2017 and 2018 across all investigated stations. The dashed lines represent the seasonal median of respective parameters and years. The 𝒑-373 
values of a two-sided Wilcoxon rank-sum test indicate the acceptance (> 0.05) or rejection (< 0.05) of the null hypothesis regarding 374 
continuous distributions with equal medians at the 5 % significance level. 375 

When comparing the anomalies for different ET products (see Fig. 9), a similar shift towards lower values for 2018 compared 376 

to 2017 can be found for MODIS and ERA5-land products. For SEVIRI, GLDAS-2, and GLEAM a shift towards higher 377 

anomalies in 2018 is found with medians at slightly higher values compared to 2017. However, while the ICOS 𝑝-value of 378 

0.045 being close to the 5 % significance level of equal medians, the ones of SEVIRI, GLDAS-2 and GLEAM are more 379 

significant around zero. GLEAM anomalies peak at the same value for both years but with higher positive anomalies for 2018 380 

at values greater than 0.6. In general, Gaussian distributions around zero are evident for both years at all anomalies of ET 381 

products. Only at MODIS, a clear bimodal distribution in ET anomalies of 2018 with a first peak around -0.4 and a subsequent 382 

second smaller peak at 0.55 can be found. This is also the ET product with the smallest anomaly range from -1.5 to 2.5. All 383 

other ET products vary at least between -3 and 3. For the ET products ERA5-land, GLDAS-2, and GLEAM, a non-linear 384 

decrease in 2018 can be found with almost stagnating anomalies around one. For the ICOS and SEVIRI data, this trend is first 385 

visible at values greater than one. In contrast, the density curves of ET anomalies for 2017 are smoother for all products, 386 

showing a clear Gaussian distribution. Again, the calculated 𝑝-values of ≤ 0.02 prove the shift in yearly median values at the 387 

5 % significance level, except for the MODIS product (𝑝-value < 0.1). The MODIS product is also the ET product with the 388 

lowest temporal resolution of eight days (see Tab. 1). When analysing all other ET products at the same 8-daily resolution (see 389 

Fig. S10) similar bimodal distributions in 2018 can be found for ERA5-land, SEVIRI, and GLEAM. GLDAS-2 shows even a 390 

trimodal distribution with the highest density of ET anomalies around -4.5, a second peak around 1.4, and a third peak around 391 

6.3. Although no clear bimodal distribution can be seen for ICOS even at 8-daily resolution, the distribution smoothly increases 392 

from -15 to -4 and then non-linearly decreases with at least three smaller plateaus (see Fig. S10). And even for 2017, the 393 

Gaussian distributions are not that smooth as for the daily analyses. More detailed analyses revealed that there is a distinct 394 

drop in 8-daily anomaly time series, leading to this bimodal distribution. Between April and August almost only positive ET 395 
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anomalies are found, while during September and October almost only negative anomalies are found. The same trend is, of 396 

course, also visible for the daily time series but due to the preserved daily and intra-weekly dynamics, the difference between 397 

positive and negative anomalies during both periods (April-August, September-October) is not that distinct. These small-scale 398 

dynamics are excluded in the 8-daily analyses. However, the differences in ET anomalies between 2017 and 2018 are greater 399 

for the 8-daily anomaly analyses (see Fig. S10) compared to the daily anomaly analyses (see Fig. 9), indicating that drought 400 

impacts on ET are more pronounced at larger time scales (more than a week, monthly) than on smaller time scales (less than 401 

a week, daily). In summary, the reason for the bimodal distribution in ET anomalies within the MODIS products originates 402 

from the lower temporal resolution. 403 

 404 

Figure 9: Kernel density estimates of daily ET anomalies (see Sec. 2.3.2) for all investigated ET products during April to October of 2017 405 
and 2018 across all investigated stations. The dashed lines represent the seasonal median of respective parameters and years. The 𝒑-values 406 
of a two-sided Wilcoxon rank-sum test indicate the acceptance (> 0.05) or rejection (< 0.05) of the null hypothesis regarding continuous 407 
distributions with equal medians at the 5 % significance level. 408 

For analysing the dependencies between ET, SM and VPD, respective ET products in SMAP SM and in-situ measured VPD 409 

bins (see Sec. 2.3.3) are visualized for the wet year 2017 (see Fig. 10) and the dry year 2018 (see Fig. 11) across all stations. 410 

ET for all stations and both years are similarly distributed across the SM and VPD phase space.  411 

For the rather wet year 2017, a general decreasing trend in ET values along increasing VPD and increasing SM can be found 412 

for all ET products except SEVIRI. Here, a decreasing trend along increasing VPD but decreasing SM is visible as indicated 413 

by the arrow within the inset plot (see Fig. 10). Overall, ET varies more with VPD than SM. Only ET from ICOS and to some 414 
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extend ERA5-land and GLEAM have highest values at intermediate VPD and SM, and lower ET at low SM. Especially ET 415 

products SEVIRI and GLDAS-2 do not display any reductions at low SM. 416 

 417 

Figure 10: ET [mm] relative to SMAP SM [vol.%] and in-situ VPD [hPa] for all investigated ET products and averaged over all investigated 418 
ICOS stations in 2017. The inset plots provide the corresponding median slope in SM and VPD changes.  419 

For the dry year 2018, only MODIS and GLDAS-2 still show a decreasing trend along increasing VPD for increasing SM. All 420 

other products indicate decreasing ET for increasing VPD and decreasing SM (see. Fig. 11). At SEVIRI, the slope in SM 421 

direction is twice as low in 2018 compared to 2017 but almost the same for VPD, meaning greater decrease in ET along SM 422 

during the dry year. A similar trend is observable at MODIS with half of the slope along SM in 2018 compared to 2017, 423 

meaning half as strong increase in ET values with SM during the drought affected year 2018. Lastly, at GLDAS-2, the slope 424 

along SM bins is increased by a factor of almost seven in addition to a reduced slope in VPD of ~0.1 hPa in 2018, meaning 425 

stronger increase in ET values at increasing SM at simultaneously decreasing VPD during the drought year. Further, ET values 426 

are in general lower in 2018 compared to 2017, but in 2018, bins at higher VPD values with low ET can be found across the 427 

entire SM range (see Fig. 11). 428 

In summary, for both years, ET is generally higher at high VPD, i.e., higher atmospheric water demand, and much lower below 429 

a VPD of 5 hPa. In figures 10 and 11, we do not really see very clear reductions of ET with decreasing SM. Hence, ET varies 430 
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more with VPD than SM. The influence of SM on ET is only noticeable when comparing the wet (2017) and dry (2018) years 431 

with each other, as the change along SM (
𝛥𝐸𝑇

𝛥𝑆𝑀
) is significantly higher during the drought affected year.  432 

 433 

Figure 11: ET [mm] relative to SMAP SM [vol.%] and in-situ VPD [hPa] for all investigated ET products and averaged over all investigated 434 
ICOS stations in 2018. The inset plots provide the corresponding median slope in SM and VPD changes. 435 

  436 
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4 Discussion 437 

4.1 Differences in examined ET products 438 

When evaluating the performance of all ET products from remote sensing, reanalysis, modelling and ground-based eddy 439 

covariance measurements, analyses of their time series revealed that the ICOS ET almost always show a time lag of about few 440 

weeks during spring ET rise compared to all other products (see Fig. 4). This could be explained by the discrepancy in spatial 441 

resolutions, with the ICOS product providing local point-scale measurements compared to the other larger-scale remote sensing 442 

and modelling ET products. This spatial mismatch alters the vegetation impact within the ET signal. Another reason is the 443 

dependency of models on indicators for phenological changes in vegetation. For example, many models use the leaf-area index 444 

(LAI) to track phenology dynamics, which influence ET simulations (Adeluyi et al., 2021). Further, the overall lowest ET 445 

values were found for all products at the agricultural station DE-Rus, while highest values were found at the southernmost 446 

station FR-Bil, where the highest average precipitation was recorded between 2017 to 2020 (see Fig. 3). Reason for that are 447 

for one, reduced transpiration of agricultural sites throughout the year compared to forested sites, and second, the humid 448 

Atlantic climate at the southernmost station. The 8-day analyses showed that MODIS gives higher values compared to all other 449 

ET products at two stations, while ICOS is higher than all other ET products at one station. Further, the highest density of 450 

values was found between 0 to 10 mm/8-days due to the seasonal imprint with reduced ET across Europe during months with 451 

reduced solar radiation and vegetation cover (November-March). Only at the two coniferous forest stations (DE-Ruw, FR-452 

Bil), the highest density of values is between 0 to 20 mm/8-days with lower ET values only during winter months (December-453 

February). However, this does not apply to the third coniferous station FI-Let, which is the northernmost station with less 454 

dense forests and more snow fall between November and March, which influences the estimation of ET. Hence, the lack of 455 

leave-off conditions and the reduced amount of days with snow cover influences the amount of ET. Conducted statistics 456 

confirmed the noticeable differences among ET products and ICOS stations, which indicated an overall lower agreement 457 

among products at the rather mixed agricultural station (DE-Rus) and better consistency at ENF stations (DE-Ruw, FI-Let). 458 

Hence, products differ most at stations with complex land cover conditions, where varying crops and growing seasons 459 

(changing phenology) make the estimation of ET more difficult, while evergreen needle-leaved stations with less changes 460 

throughout the year and between years are easier to define (temporal homogeneity). 461 

For more detailed product performance analyses, the extended triple collocation (ETC) method (McColl et al., 2014) revealed 462 

highest uncertainties for the ICOS product, and lowest uncertainties for SEVIRI and GLEAM as well as ERA5-land. The 463 

highest error was estimated for GLDAS-2, when analysing with GLEAM and ICOS, while the lowest sensitivity (correlation) 464 

was found for ICOS, when analysing with GLDAS-2 and MODIS (see Sec. 4.1). Hence, the remote sensing products (SEVIRI, 465 

GLEAM) and the reanalysis product (ERA5-land) differed most from the in-situ field-scale (ICOS) and modelling (GLDAS-466 

2) products. One reason for the mismatch between the ICOS product and SEVIRI, GLEAM and ERA5-land is surely the spatial 467 

mismatch between the point-scale ground-based EC tower measurements and the remote sensing (3 km) or reanalysis (9 km) 468 

products. However, in order to capture vegetation stress, ecosystem health, and fine-scale variability in ET globally, adequate 469 
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spatial (and temporal) resolutions are necessary. Further, ET measurements based on the eddy covariance method tend to 470 

underestimate sensible heat (H) and latent heat (LE) fluxes (Petropoulos et al., 2015), are often temporally too short and 471 

spatially too sparse to sample drought conditions correctly (Zhao et al., 2022), and suffer from challenges to close the energy 472 

balance (Yu et al., 2023). Several studies (Twine et al., 2000; Petropoulos et al., 2015; Barrios et al., 2024) reported an error 473 

range of EC measurements of ~10-30 % due to, e.g., a ‘systematic closure problem in the surface energy budget’ (Twine et 474 

al., 2000). In order to identify potential product dependencies, which may impact the ETC results, the estimated error cross-475 

correlations (ECC) were calculated, with high ECC between GLDAS-2 and GLEAM (at DE-HoH), between ERA5-land and 476 

GLEAM (at CZ-Lnz), and all products and GLEAM (at DE-Rus). These need to be accounted for when analysing the 477 

differences among ET products. Although in this study, we have analysed different land cover classes within a 3 km footprint 478 

around every ICOS station at daily resolution to account for the different resolutions, the SEVIRI product provides ET data 479 

every 30 minutes at moderate spatial resolution (3 km), and showed to capture ET dynamics on small as well larger temporal 480 

scales comparable or even better than other examined products, as also reported by previous studies, e.g., (Hu et al., 2015; 481 

Petropoulos et al., 2015; De Santis et al., 2022). None of the other examined products can provide similar spatio-temporal 482 

coverage, due to either lower temporal resolution (MODIS) or coarser spatial resolution (ERA5-land, GLDAS-2, GLEAM). 483 

Only the ICOS data provide similar temporal resolution to SEVIRI but at point-scale, which disqualifies it for global analyses. 484 

Although there exist other ET products from remote sensing and modelling, e.g., (Jiménez et al., 2011; Mueller et al., 2013; 485 

Fisher et al., 2020; De Santis et al., 2022; Yu et al., 2023), the examined ET products in this study are appropriate when 486 

addressing global analyses since other products have either a more coarse spatial or temporal resolution (Yu et al., 2023), or 487 

are limited to clear sky conditions (De Santis et al., 2022), which prohibits continuous time series of ET measurements. We 488 

also analysed data from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 489 

launched by NASA in June 2018 (Fisher et al., 2020) at the beginning of our analyses. However, we found several problems 490 

with this product and worse performance compared to other ET products, meaning a clear overestimation using the 491 

ECO3ETPTJPL product, as reported also by previous studies, e.g., (Liu et al., 2021; De Santis et al., 2022; Wu et al., 2022). 492 

In our research with ECOSTRESS, data was unavailable at CZ-Lnz and FI-Let. Another ECOSTRESS ET product, the 493 

ECO3ETALEX (based on the DisALEXI model), has shown better performance, but it is more suited for agricultural 494 

applications, and it is limited to the United States (Cawse-Nicholson and Anderson, 2021). ECOSTRESS level 3 ET data come 495 

at the advantage of a high spatial resolution (70 m), but its temporal resolution is irregular due to the ISS orbit and the 496 

dependency on the product type and study region limited our preliminary analyses. For these reasons, we decided not to include 497 

it in our research. 498 

4.2 Impact of droughts on ET products 499 

Since remote sensing-based ET products are not purely observational, the performance of an ET product is highly dependent 500 

on the employed retrieval model for ET estimation. This is in turn dependent on how the model deals with limitations in SM 501 

or VPD and responses under drought conditions. Many studies reported decreasing ET during droughts due to reduced SM 502 
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supply and hence, decreasing evaporation, but also decreasing transpiration since plants close their stomata to prevent water 503 

loss (Novick et al., 2016; Zhao et al., 2022). However, during drought conditions with increasing air temperatures, ET can also 504 

increase due to the higher atmospheric moisture demand (increasing VPD). Further, the generic statement that ET decreases 505 

due to decreasing SM often ignores the fact that plants have access to SM from greater soil depths, which are not immediately 506 

affected by meteorological droughts, or have different strategies for drought resistance (Gupta et al., 2020; Feldman et al., 507 

2024). Hence, the dynamics of ET to drought conditions remain highly variable (Zhao et al., 2022). Novick et al., (2016) 508 

pointed out that SM and VPD may become more decoupled in the future and models need to resolve limitations in SM and 509 

VPD independently from each other in order to capture the response of ecosystems to water stress correctly (Novick et al., 510 

2016; Zhao et al., 2022). How models react to limitations in SM and VPD varies significantly which impacts resulting ET. 511 

Analyses performed in this study revealed that during the rather wet year 2017, ET varied more with VPD than with SM, with 512 

almost no dependency of ET on SM in SEVIRI and GLDAS-2 products. Here, our results indicate that ET is more controlled 513 

by atmospheric demand rather than atmospheric supply as reported also by Zhou et al., (2019). However, it is suggested by 514 

previous work and the Budyko framework (Budyko and Miller, 1974) that ET should exhibit some level of dependence on SM 515 

(Porporato et al., 2002; Zhang et al., 2021). One reason could be that forests at selected ICOS stations might have substantial 516 

access to deeper SM (root zone) that exceeds the measurement depths of the SMAP satellite (first 25 cm) (Feldman et al., 517 

2022). When analysing the controls of SM and VPD on ET during the dry year 2018 however, all ET products, except MODIS 518 

and GLDAS-2, showed that ET decreases with increasing VPD and decreasing SM. For SEVIRI, even a twice as large decrease 519 

in ET along SM during the drought year could be observed compared to the rather wet year. This declining trend of ET during 520 

dry years when ET is limited by moisture and VPD is increasing due to increasing air temperatures is in line with previous 521 

studies (Jung et al., 2010; Seneviratne et al., 2010; Zhou et al., 2019). Further, results show that VPD and SM are negatively 522 

coupled during extreme events as reported also by (Zhou et al., 2019). However, MODIS and GLDAS-2 products showed an 523 

increase of ET with increasing SM and with decreasing VPD during 2018 (see Fig. 11). These are the two products that are 524 

based on the Penman-Monteith equation (see Tab. 1), and that were outperformed by SEVIRI, ERA5-land and GLEAM in the 525 

ETC analyses (see Fig. 6). For MODIS, one reason for the worse performance was found to be the coarse temporal resolution 526 

of 8-days, since at this time scale the temporal variability of ET is significantly different lacking all diurnal and day-to-day ET 527 

dynamics. The underperformance of MODIS compared to in-situ EC measurements was also reported by (De Santis et al., 528 

2022), who found that MODIS overestimated in-situ ET measurements at stations in Italy, as well as (Yu et al., 2023), who 529 

investigated several stations with different land covers and varying climatic zones across the U.S. They concluded that daily 530 

or monthly ET products performed best compared to EC tower measurements (Yu et al., 2023). Due to the temporal resolution, 531 

MODIS is the only product showing a bimodal distribution of ET anomalies with a 𝑝-value above the 5 % significance level 532 

(see Fig. 9). In this study, we could show that differences in ET anomalies between 2017 and 2018 are greater for the 8-daily 533 

anomaly analyses (see Fig. S10) compared to the daily anomaly analyses (see Fig. 9), indicating that drought impacts on ET 534 

are more pronounced at larger time scales (more than a week, monthly) than on smaller time scales (daily, less than a week). 535 
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Hence, the temporal scale for ET analyses is crucial in order to select which temporal component of the ET dynamics should 536 

be considered for a respective application. 537 

Further, although GLEAM is built on the less parameterized Priestly-Taylor equation compared to the Penman-Monteith 538 

equation since it does not consider VPD or canopy conductance on soil water stress, the GLEAM ET product showed to deliver 539 

better ETC results and statistics in this study. A comparable or even better performance of the Priestley-Taylor equation 540 

compared to the Penman-Monteith was also reported in previous studies, e.g., (Akumaga and Alderman, 2019; Bottazzi et al., 541 

2021). Reasons could be the uncertainties of input variables within the Penman-Monteith equation, e.g., for stomatal or canopy 542 

resistance, which are often unknown, approximated (Widmoser, 2009), or parameterized based on the wrong variable (Hu et 543 

al., 2015), or due to the overestimation of specific parameters, such as the net radiation, or other aerodynamic factors as 544 

reported by (Hao et al., 2018). Similar, Hu et al., (2015) stated that MODIS tends to overestimate water stress during thawing 545 

of frozen soil in Spring or over irrigated land, which leads to an underestimation of soil evaporation. Moreover, several studies 546 

pointed out that the Penman-Monteith equation needs to be adapted for climate/weather extremes and vegetation limited cases, 547 

e.g., (Widmoser, 2009; Hao et al., 2018; McColl, 2020).  548 

5 Conclusion and Outlook 549 

In this study, eight different ET products with varying temporal and spatial resolutions as well as varying ET retrieval methods 550 

are analysed across central Europe for the period of 2017 to 2020. Despite the spatial mismatch (in-situ vs. remote sensing) 551 

and the spatial heterogeneity of the analysed landscapes (see Fig. 2), all products showed a concurrent seasonal pattern and 552 

overall low uncertainties during ETC analyses. It was shown that ET varied from year to year for different forest and 553 

agricultural stations due to changing seasonal weather and vegetation conditions over the years. Analyses revealed that 554 

temporal and spatial homogeneity helps with the consistency and interpretability of the ET estimates. This is, products were 555 

most consistent with each other at stations with less complex land cover conditions and changes throughout the seasons (the 556 

evergreen needle-leaved stations DE-Ruw and FI-Let). Despite the good match in seasonal patterns, differences in ET products 557 

were noticeable. The remote sensing products, SEVIRI, MODIS, and GLEAM, performed equivalently well or even better 558 

than the in-situ measured (ICOS), modelled (GLDAS-2) or reanalysis (ERA5-land) products. Extended triple collocation 559 

(ETC) and SM-VPD binned ET analyses revealed that SEVIRI and ERA5-land (the two products based on the (H-) Tessel 560 

land surface scheme) perform best. They provide low uncertainties when compared with other products and reasonable SM 561 

and VPD controls on absolute ET. GLEAM also shows a good performance, although this result should be taken with caution 562 

since potential product dependencies with ERA5-land and GLDAS-2 may have affected the ETC results. When analysing the 563 

behaviour of ET in context of SM and VPD during the rather wet year 2017 and dry year 2018, it was found that in 2017, ET 564 

is highly dependent on VPD and less on SM. Hence, with sufficient moisture supply, ET is mainly controlled by atmospheric 565 

demand and the vegetation transpiration. In contrast, in 2018, limited moisture supply because of decreasing SM and increasing 566 

VPD, which were in turn due to increasing air temperatures, led to a decline in ET, in line with previous studies. Further, 567 
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during the dry year 2018, SM and VPD were more negatively coupled which could also had an impact on the ET decline. 568 

These behaviours were consistently found in all ET products, except for GLDAS-2 and MODIS, the two products whose 569 

retrieval approaches are based on the Penman-Monteith equation. Hence, although GLEAM is based on the less parameterized 570 

Priestley-Taylor equation compared to the Penman-Monteith equation, it is outperforming GLDAS-2 and MODIS within this 571 

study set-up, which supports the idea to adapt the Penman-Monteith equation as reported by previous studies, e.g., (Widmoser, 572 

2009; Hao et al., 2018; Akumaga and Alderman, 2019; McColl, 2020; Bottazzi et al., 2021). In summary, when considering 573 

all conducted analyses together (spatial and temporal resolutions, product dependencies, ETC results, SM and VPD controls 574 

on ET), the remote sensing products SEVIRI and GLEAM as well as reanalysis product ERA5-land seems to provide most 575 

reasonable results compared all other ET products, with SEVIRI providing a higher temporal and spatial resolution compared 576 

to GLEAM and ERA5-land.  577 

This study served as a pathfinder to compare freely available ET products at highly monitored EC towers across central Europe. 578 

Whether these reported findings hold true across space and for other drought events has to be analysed further with focus on 579 

spatially larger regions and longer time series. Additionally, potential add-on studies could include the examination and 580 

comparison of ET dynamics from optical/thermal remote sensing observations with microwave remote sensing data, e.g, the 581 

Sentinel-1 backscatter, in order to evaluate the potential of active microwave remote sensing for drought monitoring, e.g., 582 

(Mueller et al., 2022; Jagdhuber et al., 2023). In order to identify relevant conditions and causal strengths with lagged and 583 

contemporaneous causal dependencies between different variables, like ET, the Sentinel-1 backscatter and other important 584 

SPAS parameters, like air temperature, relative humidity, and water potentials, the use of emerging powerful tools for causal 585 

discovery could prove useful (Runge et al., 2019; Díaz et al., 2022). Previous studies already outlined the potential of 586 

identifying causal relations between Earth system parameters (i.e., precipitation, ET, SM, air temperature) by using the wavelet 587 

coherency analysis (WCA) (Graf et al., 2014; Rahmati et al., 2020), or the PC algorithm Momentary Conditional Independence 588 

(PCMCI) method (Runge et al., 2019, 2023). 589 

 590 

 591 

Data availability. 592 

The SMAP MT-DCA V5 soil moisture dataset is available at https://zenodo.org/records/5619583, last access: 11 May 2022. 593 

The SPEI dataset is available at https://spei.csic.es/database.html, last access: 18 November 2023. The evapotranspiration 594 

products are available as follows: ICOS data are available at https://www.icos-cp.eu/, last access: 20 November 2023. SEVIRI 595 

data are available at https://datalsasaf.lsasvcs.ipma.pt/PRODUCTS/MSG/MDMETv3/, last access: 21 November 2023. 596 

MODIS data are available at https://lpdaac.usgs.gov/products/mod16a2v061/, last access: 20 November 2023. ERA5-land data 597 

are available at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview, last access: 20 November 2023. 598 

The GLDAS-2 data are at https://ldas.gsfc.nasa.gov/gldas/model-output, last access: 22 November 2023. The GLEAM data 599 

are available at https://www.gleam.eu/, last access: 23 August 2024. The Corine land cover classes are available at 600 
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