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Supplementary Figures

Figure S1 - Example of grounding line mapping

Figure S2 - Sentinel-1 amplitude images related to Storstrømmen drainage events

Figure S3 - Documentation of additional transient dynamic events in upstream Storstrømmen (Decemerb 2018 and May 2019)

Figure S4 - Documentation of transient dynamic event in upstream L. Bistrup5

Figure S5 - Sentinel-1 amplitude images related to the L. Bistrup drainage event

Figure S6 - Grounding line location time series for L. Bistrup
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Figure S1. Sentinel-1 double-difference interferogram exemplifying the mapping of grounding lines for Storstrømmen (top) and L. Bistrup

(bottom). The phase of the double-difference interferogram is sensitive to changes in the displacement field between the two interferograms

(in this case spanning the temporal baselines 10th - 16th April 2018 and 16th - 22nd April 2018) in the radar line-of-sight, and a denser fringe

pattern indicates a larger displacement change. Assuming no changes in horizontal ice flow between the two interferograms, the dense fringe

pattern observed here is caused by a difference in the tide amplitude between the two interferograms, which leads to a difference in vertical

uplift. The upstream limit of these tidally induced fringes is interpreted as a proxy for the glacier grounding line.
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Figure S2. Sentinel-1 amplitude images revealing ice surface changes related to the transient dynamic events documented in Figure 3

in the main text. The imaged region is the same as in Figure 3. (a)-(b) Amplitude images from October 25th and 31st 2018 and (c) the

amplitude difference between these acquisitions - an increase in amplitude is observed over an ice-dammed lake just upstream from where

flow acceleration is observed (Figure 3 panels (a)-(c)), indicating a potential drainage of the lake. (d)-(e) Amplitude images from December

15th and 27th 2022 and (f) the difference between these acquisitions - amplitude increases are observed over multiple of the supraglacial

lakes in this region, coinciding with the transient flow changes shown in Figure 3 panels (d)-(f), indicating that one or more of these lakes

may have drained.
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Figure S3. Sentinel-1 double-difference interferograms showing dynamical effects related to an apparent drainage event in upstream

Storstrømmen during December 2018 (a)-(c) and May 2019 (d)-(f). The box in panel (a) indicates the ground-projected line-of-sight di-

rection and incidence angle of Sentinel-1 track 74 (used for all the measurements in (a)-(f)). Panels (g) and (h) show PROMICE ice velocity

magnitude anomalies for two 24-day periods spanning the identified events. The solid magenta line indicates the Storstrømmen grounding

line.
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Figure S4. (a)-(d) Sentinel-1 double-difference interferograms showing dynamical effects related to an apparent drainage event upstream

of L. Bistrup glacier during winter 2019. The box in panel (a) indicates the ground-projected line-of-sight direction and incidence angle of

Sentinel-1 track 170 (used for all the measurements in (a)-(d)). Panels (e) and (f) show PROMICE ice velocity magnitude anomalies for two

24-day periods spanning the identified event. The solid magenta line indicates the L. Bistrup grounding line.
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Figure S5. Sentinel-1 amplitude images revealing ice surface changes related to the transient dynamic events documented in Figure S4 above.

(a)-(c) Amplitude images from February 5th, 11th, and 17th 2019. (d)-(f) Amplitude difference maps for these acquisitions - an increase in

amplitude is observed over an ice-dammed lake just upstream from where flow acceleration is observed in Figure S4, suggesting a potential

drainage of the lake (green dashed rectangle).
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Figure S6. Time series of grounding line location for L. Bistrup (evaluated along the dashed transect in Figure 1). Grounding line locations

are measured with double-difference interferometry using images from Sentinel-1 (2015-2024) and ERS-1/2 (1992-1996, data obtained from

Mouginot et al. (2018)). Note that we exclude the 1992-1996 measurements from the linear fit, as L. Bistrup underwent a surge during this

time. The short-term variability of the grounding line location is much higher for L. Bistrup than for Storstrømmen: the standard deviation of

the de-trended grounding line location (excluding 1992-1996 data) is 338 m for L. Bistrup, compared to 119 m for Storstrømmen (see also

Figure 1c in the main text for comparison).

7


