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Abstract. This study presents the state-of-the-art quality control (QC) process for sea level height (SLH) time 16 

series observed at the Ieodo Ocean Research Station (I-ROS) in the central East China Sea, a unique in-situ 17 

measurement in the open sea for over two decades with a 10-minute interval. The newly developed QC procedure 18 

called the Temporally And Locally Optimized Detection (TALOD) method has two notable differences in 19 

characteristics from the typical ones: 1) spatiotemporally optimized local range check based on the high-resolution 20 

tidal prediction model TPXO9, 2) considering the occurrence rate of a stuck value over a specific period. Besides, 21 

the TALOD adopts an extreme event flag (EEF) system to provide SLH characteristics during extreme weather. 22 

A comparison with the typical QC process, satellite altimetry, and reanalysis products demonstrates that the 23 

TALOD method can provide reliable SLH time series with few misclassifications. Through budget analysis, it 24 

was determined that the sea level rise at I-ORS is primarily caused by the barystatic effect, and the trend 25 

differences between observations, satellite, and physical processes are related to vertical land motion. It was 26 

confirmed through GNSS that ground subsidence of −0.89±0.47 mm/yr is occurring at I-ORS. As a representative 27 

of the East China Sea, this qualified SLH time series makes dynamics research possible spanning from a few 28 

hours of nonlinear waves to a decadal trend, along with simultaneously observed environmental variables from 29 
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the air-sea monitoring system in the research station. This TALOD QC method is designed for SLH observations 30 

in the open ocean, but it can be generally applied to SLH data from tidal gauge stations in the coastal region. 31 

1 Introduction 32 

Sea Level Height (SLH) comprises oceanic components such as tides and currents and atmospheric components 33 

(Pirooznia et al., 2016). Global warming due to the increased greenhouse gas has caused a persistent increase of 34 

heat fluxes into the ocean, accelerating upper ocean heat content and the loss of land-based glaciers and ice sheets, 35 

resulting in rapid sea level rise (SLR; Pugh, 2019; IPCC). This rise is not spatially homogeneous but localized in 36 

association with a change in the current system (e.g., Roemmich et al., 2007; Hamlington et al., 2020; Lee et al., 37 

2022; Li et al., 2024). Rising sea levels have induced coastal erosion and broad flooding, suggesting a presumable 38 

vulnerability of populated low-lying coastal regions to global warming (Kulp and Strauss, 2019). Recent research 39 

has demonstrated its robust relationship with extreme weather events (Cayan et al., 2008; Yin et al., 2020; Calafat 40 

et al., 2022), underscoring the need for a long-term SLH monitoring network.  41 

A global network of tidal gauges at the coastal region, along with satellite altimetry for the open ocean, has made 42 

it possible to observe worldwide sea level changes (e.g., Dieng et al., 2017; Cazenave et al., 2018; Chen et al., 43 

2017; Royston et al., 2020; Cha et al., 2023). The upward trend of global mean SLR increased from 3.05 mm/yr 44 

for the period 1993−2018 to 3.59 mm/yr from 2006 to 2018, about twice faster than 1.7 mm/yr during the 20 th 45 

century (Fox-Kemper et al., 2021; Nerem et al., 2018). A future projected sea level trend is expected to be 4.631.1 46 

mm/yr for the period 2010−2060 from observed and reconstructed measurements around Korea (Kim and Kim, 47 

2017), implying more frequent occurrences of extreme weather and climate hazards associated with the mean sea 48 

level rising within the near future.  49 

Due to its broad socioeconomic implications, the Korea Hydrographic and Oceanographic Agency (KHOA) has 50 

constructed a sea level monitoring network with thirty-eight tide gauge stations for the coastal region around 51 

Korea (red pentagram in Fig 1). Besides, the ocean research stations, steel framed tower-type research facilities, 52 

started to conduct unceasing and autonomous observations to cover a north-south section of the Yellow and East 53 

China Seas, allowing us to understand air-sea interaction and atmospheric and oceanic processes in various time 54 

scales at the open ocean (Ha et al., 2019; Kim et al., 2019; Kim et al., 2022; Kim et al., 2023a; Kim et al 2023b; 55 

Saranya et al., 2024). The Ieodo ocean research station (I-ORS), the first one constructed at 32.125°N, 125.18°E 56 

(see Fig. 1 for its location) in 2003, has produced sea level measurements using a radar-type sensor with a 10-57 

minute interval for more than two decades since October 2003. This station is strategically positioned along the 58 
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pathway of typhoons that impact the Korean Peninsula; hence, the I-ORS can serve as a crucial platform for 59 

comprehending extreme weather phenomena (Moon et al., 2010; Park et al., 2019; Yang et al., 2022) and long-60 

term climate variability. 61 

The collected sea level data, however, contains intricate outliers such as missing, spike, electric noise, stuck, drift, 62 

systematic conversion (or offset)1, and so on (Pytharouli et al., 2018). These outliers must be identified or 63 

corrected before being used for research. This process, known as Quality Control (QC), involves outlier 64 

classification into range, variability (or gradient), and sensor test categories (OOI, 2013; Min et al., 2020). Each 65 

institution utilizes a different algorithm. For instance, outliers might be identified by applying a threshold of three 66 

times the standard deviation above and below the average of measurements within a specified sliding window 67 

(Min et al., 2020; 2021). This approach assumes the Gaussian distribution of the observed time series; hence, it 68 

may not be suitable for uniformly applying this method because nonlinear waves or abrupt extreme events tend 69 

to be misclassified as outliers. Also, the variables that are greatly affected by strong tides may have difficulty 70 

detecting outliers when a range check is performed without considering tidal components. Therefore, Pugh (1987) 71 

suggested a QC procedure based on tidal components estimated by a harmonic analysis. Recently, Pirooznia et al. 72 

(2019) computed tides by adopting the classical least square (CLS) and total least square (TLS) from raw data 73 

that contained outliers and missing values. They used the estimated tidal components to get residual components 74 

of SLH data and then performed outlier detection. This process might be appropriate for the data stably obtained 75 

from tide gauge stations but seems impertinent to measurements in the open ocean, which may have various types 76 

of intricate outliers.  77 

In addition, previous studies attempted to verify the factors contributing to sea level rise (SLR) using various data. 78 

Cha et al. (2023) quantified and assessed the underlying processes contributing to sea level rise in the northwestern 79 

Pacific using reanalysis data and satellite measurements from 1993 to 2017. This study found that the major 80 

contributions to sea level rise are land ice melt and sterodynamic components, while the spatial pattern and 81 

interannual variability are dominated by the sterodynamic effect. However, satellite-based sea level observations 82 

cannot detect vertical land motion such as subsidence or uplift, which may lead to trend differences between 83 

                                                           
1 The I-ORS methodology for sea level measurements was changed in December 2007. Previously, the I-ORS 

observed the length between the instrument and the sea level; since then, it has been changed to observe the 

sea level to the bottom. Due to the methodological switch, the recorded sea level time series has a sharp and 

systematic offset, as described in section 2.1.  
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satellite and station observation. This indicates the need to analyze the variability of vertical land motion at these 84 

stations as well. 85 

This paper aims to introduce a unique, invaluable SLH time series obtained in the open ocean over two decades, 86 

processed with a newly developed QC process named the Temporally And Locally Optimized Detection (TALOD) 87 

method. For this purpose, we take advantage of simulated tidal components based on TOPEX/Poseidon global 88 

tidal model v9 (TPXO9; Erofeeva and Egbert, 2018). This high-resolution global tidal model reproduces tidal 89 

well components around the Korean peninsula (Lee et al., 2022) and, hence, can be used for a local and temporal 90 

range check. The performance of the newly suggested QC process is assessed by comparing it to a typical QC 91 

method suggested by the Intergovernmental Oceanographic Commission (IOC), and the qualified, daily and 92 

monthly averaged sea level time series are assessed using satellite altimetry and reanalyzed products from 93 

GLORYS12, ORAS5, and HYCOM regarding their long-term trends. Additionally, the physical processes 94 

contributing to sea level rise at the I-ORS were analyzed using reanalyzed product, and the vertical land motion 95 

at the I-ORS platform was estimated using the Global Navigation Satellite System (GNSS). 96 

 97 

Figure 1. The structure of I-ORS and Instruments (Right) and the horizontal distribution for bathymetry and the 98 
tracks of typhoon passed by I-ORS (data from Joint Typhoon Warning Center; cases depicted in Fig. 10). The star 99 
marks indicate the location of the I-ROS (red) and the Socheongcho (black; above) and Gageocho (black; below) Ocean 100 
Research Station, respectively. The black dots depict the locations of tide stations. The grey solid lines show the storm 101 
tracks passing by I-ROS from 2003 to 2022. The darker lines indicate the typhoon case in Table 2. 102 

 103 
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2 Data and Method 104 

2.1 SLH observed time series from the I-ORS 105 

We constructed the TALOD QC process based on the TPXO9 and applied it to the 10-minute interval real-time 106 

SLH measurements obtained from the I-ORS, a total of 1,011,584 data points from 8 October 2003 to 31 107 

December 2022. The data was measured by the MIROS SM-140 non-directional wave radar, installed at the main 108 

deck 29 m above the sea surface (Fig. 1). The range finder principally estimates the distance to the sea surface 109 

through the reflected signals by detecting back-scattered microwaves from the surface. Table 1 describes the 110 

detailed specification of the SM-140. The sensor's measurements are known to be relatively free from atmospheric 111 

conditions such as rain, fog, and water spray. 112 

As mentioned in the introduction, the sea level measuring standard was changed on 12 December 2007. A sharp 113 

offset of about 6.7 m, therefore, was recorded between the data before and after the transition point (TP; see Fig. 114 

2). Before the TP, the range finder recorded the distance from the sensor to the sea surface as sea level. After that, 115 

the KHOA altered the standard to record the actual sea level by subtracting the measured distance from the known 116 

height from the sea bottom to the sensor (KHOA, 2013). Therefore, this study corrected the forepart by flipping 117 

it upside down and then shifting to the position extrapolated to the first time of the data afterward. Also, we 118 

performed the harmonic analysis on the corrected SLH time series to validate the correction method. The corrected 119 

SLH time series for December 2007 estimated a sufficiently high signal-to-noise ratio (SNR) over 10.0 120 

(Pawlowicz et al., 2002), compared to the much broader ranges like years or decades of SLH at I-ORS. Its 121 

consistencies in amplitude and phase with the rear subset also guaranteed the method for correcting the systematic 122 

offset. 123 

Table 1. Instrument specifications for the SM-140 by MIROS. 124 

Data Range Resolution Accuracy 

Range 1 – 23 m 1 mm < 5 mm 

 3 – 95 m 

Frequency  50 – 200 Hz (according to range) 

  

 125 
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 126 

Figure 2. The circle markers indicate each process of methodological adjustment for the data before TP. The grey line 127 
with circles means the raw data and blue and red marker lines indicate the reverse and shift (+ 1.57m after reversed) 128 
process. 129 

2.1.1 Satellite altimetry and reanalysis products 130 

We collected satellite altimetry and reanalysis datasets to validate the performance of the qualified SLH. The 131 

satellite is the gridded L4 sea surface height dataset provided by Copernicus Marine Environment Monitoring 132 

Service (CMEMS, https://doi.org/10.48670/moi-00145) for 1993-2022. This altimetry, sea surface height from 133 

the geoid, was calculated through optimal interpolation (OI) by merging along-track altimetry from all satellites. 134 

Inverted barometric and tidal heights correction was applied to adjust the along-track data. The daily gridded 135 

satellite altimetry has a quarter-degree resolution for the global ocean. We used daily SSH time series at the nearest 136 

grid point to the I-ORS.  137 

The three SSH products used in this study are the HYbrid Coordinate Ocean Model (HYCOM, 138 

https://www.hycom.org/) data-assimilative reanalysis (HYCOM-R) for the period of 2003-2017 and HYCOM 139 

non-assimilative simulation (HYCOM-S) from 2018-2022, Global Ocean Physics Reanalysis 12 version 1 140 

(hereafter GLORYS; Lellouche et al., 2021), and the Ocean Reanalysis System 5 (hereafter ORAS5; Zuo et al., 141 

2019). The HYCOM product provided by the Navy’s operational Altimeter Processing System (ALPS) has a 142 

spatial resolution of 1/12° by 1/12° for the global ocean and a temporal resolution of 3 hourly. GLORYS12 is 143 

produced by Mercator Ocean International (https://www.mercator-ocean.fr/en/) and has a spatial resolution of 144 

1/12° by 1/12° for the global ocean with a daily resolution. The ORAS5 provided by the European Center for 145 

Medium-Range Weather Forecasts (ECMWF) has a spatial resolution of 1/4° by 1/4° for the global ocean and a 146 

temporal resolution of monthly (DOI: 10.24381/cds.67e8eeb7). To efficiently compare sea level variability, the 147 

SLH of all datasets was converted to sea level anomalies by subtracting their mean values. Except for ORAS5, 148 

which is monthly data, the other sea level data were averaged daily. Similarly, we estimated the daily mean 149 

observed time series when more than half of the data were available or flagged as good data.  150 
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2.2 TALOD QC 151 

2.2.1 Meta check 152 

After correcting the systematic offset in the observed sea level time series, we classified outliers into four 153 

categories: metadata, range, spike, and stuck (see Fig. 3 for a flowchart). The metadata check involves manually 154 

flagging unreliable data, including instrumental jolts or a data section that may disrupt the following automatic 155 

detection procedures to prevent contamination of the observed data's long-term characteristics. This examination 156 

is normally based on historical metadata information (or field notes) on the sensor’s maintenance, cleansing, a 157 

power shortage event in the ocean research station, etc. Unfortunately, the observed SLH time series from the I-158 

ORS are not distributed with metadata information. Instead, we flagged subjectively a section where the 159 

periodicity of SLH data was irregular or nonsensical data existed for several days. For example, from June 2016 160 

to July 2017, the sea level observations at the I-ORS involved two relocations and one replacement of the 161 

observational instrument, and the sea levels observed during this period were relatively low (not shown). As a 162 

result, 56,024 data points were flagged based on the metadata check accounting for 6.32% of the total observations. 163 

This study points out the need for recorded metadata information to ensure quality assessment of the observed 164 

time series and efficient instrumental maintenance. 165 

 166 
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Figure 3. Flow chart of TALOD QC process. 167 

2.2.2 Stuck check 168 

After the metadata check, we recommend examining stuck values in the time series. Generally, a stuck check 169 

detects outliers when a fixed value is continuously recorded over a certain period. At the I-ORS, the SLH 170 

measurements exhibit two distinct characteristics of stuck values. Firstly, these values persist for a certain duration 171 

without variation; a typical QC process can identify this kind of stuck. An abnormal case is observed at the I-ORS: 172 

alternation between normal observations (good data) and fixed values. To handle this unusual stuck case 173 

efficiently, we adopted the density of identical values over a certain period. We experimented with various range 174 

and frequency combinations. As a result, we flagged the cases when a single value was detected more than 6 times 175 

within a range of 15 or more than 13 times within a range of 31. 176 

2.2.3 Range check 177 

Normally, range check can be divided into two parts. A local or gross range check designates a single value that 178 

is difficult to occur naturally for a target variable at a specific location during the monitoring span. And seasonally 179 

varying range check effectively detects errors for variables dominated by seasonal variability, such as air or sea 180 

surface temperatures or humidity. However, these methods are not suitable for SLH measurements in shallow 181 

water with large tidal amplitudes, such as the maximum tidal amplitude of 2.5 m that can occur at the I-ORS, and 182 

significant seasonal cycles (Lee et al., 2006).  183 

This study's range check consists of two procedures: a gross range check with a fixed range by assigning upper 184 

(+2.0 m) and lower (–2.0 m) limits for SLA, and a localized check with temporally varying ranges by taking 185 

advantage of the tidal prediction model. The gross range check effectively identifies extremely high values such 186 

as 29.0 m and 7.98 m, which are frequently recorded in the SLH measurements from the I-ORS even during 187 

normal situations. For the local range check, we used the TPXO9 tidal model, which has a 1/30° horizontal 188 

resolution. This global tide model offers realistic spatial and temporal tides around the Korean Peninsula with the 189 

smallest root mean square difference (RMSD) compared to tide gauge observations (Lee et al., 2022).  190 

Tide data extracted from the TPXO9 sliding every month was adjusted using the observed SLH for the same 191 

period (Fig. 4). A month window is selected to consider seasonal evolution. The extracted tidal time series was 192 

shifted to positions where the Root Mean Square Errors (RMSEs) are minimized (the red line in Fig. 4). 193 

Overshooting tends to be generated when using the arithmetic mean only for the shifting, especially for the 194 

convex-up and -down data, which correspond to high and low tides respectively, thus potentially resulting in 195 
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detecting overestimated outliers. To address the overshooting issue, the residual time series, i.e., the observations 196 

minus mean shifted tides, is smoothed twice and then added to the estimated tidal time series (the green line in 197 

Fig. 4). When the difference between the observed SLH and the bias-corrected tide exceeds +0.3 meters or falls 198 

below –0.2 meters, the local range check identifies it as an outlier (see Fig. 5b). These thresholds are sufficient 199 

for elevation changes associated with nonlinear internal waves in this region (Lee et al., 2006). 200 

 201 

Figure 4. Lines indicate the processes for fitting TPXO9 to observation (black line with circle) in the range check. (1) 202 
The blue line with a triangle means raw TPXO9 data. (2) The orange line with the square shows mean-shifted TPXO9 203 
based on the Mean Square Error method. (3) The green line with a circle indicates the final output with a twice-204 
smoothened bias added. 205 

 206 

Figure 5. Time series for the examples of 4 flags. a) metadata, b) range, c) spike, and d) stuck. Each marker indicates 207 
Good Data (grey circle), metadata (blue circle), range (green triangle), spike (yellow square with red outline), and stuck 208 
(red cross), respectively. 209 

2.2.4 Spike check 210 

The spike check is developed based on the Gradient Spike Method (GSM) following Hwang et al. (2022). The 211 

GSM generally detects outliers using the gradient of SLH data. However, we employed the temporal discrepancy 212 

in the non-tidal residual SLH time series; that is, if the square of that value exceeds 0.02, it is classified as a spike. 213 

The equation is as follows: 214 
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𝑓𝑙𝑎𝑔 = 𝑓𝑖𝑛𝑑((∆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)2 > 0.02),        (1) 215 

2.2.5 Extreme event flag 216 

Atmospheric factors such as sea level pressure and wind modulate SLH; the inverted barometer effect (IBE) and 217 

strong winds can generate abrupt SLH fluctuations. Under extreme weather, the SLH measurements can be 218 

classified as an outlier through range and spike checks. The flagged SLH data during severe weather might be 219 

regarded as good data, depending on the situation. As a last QC procedure, this study introduced the extreme event 220 

flag (EEF) to note that the SLH data was measured over severe weather periods. The typhoon cases analyzed in 221 

this study are shown in Table 2.  222 

The observed range of sea surface height anomalies was almost equal for both normal and typhoon situations, i.e., 223 

0.30/–0.20 m and 0.29/–0.20 m, respectively. However, there was a significant difference in variance, which 224 

implies large fluctuations in the SLH measurements. The normal case exhibited a variance of 9.0 cm2, whereas 225 

during the typhoon-influenced period, it increased to 40 cm2, approximately five times higher. Consequently, 226 

although the maximum/minimum ranges of residual components remained almost unchanged during typhoon 227 

periods, the outliers classified by the spikes increased significantly (Fig. 6). We manually flagged the typhoon 228 

period with the EEF based on the daily variance and reported information on typhoons from the KMA. 229 

Table 2. List of Typhoon cases during observation. 230 

Typhoon Start date End date 

Chanthu (2021) 14 Sep, 2021 16 Sep, 2021 

Bavi (2020) 26 Aug, 2020 26 Aug, 2020 

Lingling (2019) 6 Sep, 2019 7 Sep, 2019 

Kong-rey (2018) 6 Sep, 2018 7 Sep, 2018 

Soulik (2018) 22 Aug, 2018 23 Aug, 2018 

Chan-hom (2015) 12 Jul, 2015 12 Jul, 2015 

Neoguri (2014) 9 Aug, 2014 9 Aug, 2014 

Bolaven (2012) 27 Aug, 2012 28 Aug, 2012 

Muifa (2011) 8 Aug, 2011 9 Aug, 2011 

Megi (2004) 10 Aug, 2004 10 Aug, 2004 
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 231 

Figure 6. Same as Fig. 5, but for Typhoon cases. 232 

3 results 233 

3.1 Comparative analysis to existing QC process 234 

Representative results obtained during the TALOD QC are shown in Figure 7, and the number of outliers and 235 

proportions flagged by each QC process are presented in Table 3. The results were compared with those obtained 236 

by applying the IOC’s standard QC process to assess the performance of the TALOD QC process. The IOC was 237 

designed and applied as a QC procedure consisting of several steps to accord with international standards through 238 

the support of the National Data Buoy Center (NDBC) and the National Science Foundation under the National 239 

Oceanic and Atmospheric Administration (NOAA) to provide uniformly qualified observations to scientists (Min 240 

et al., 2020). The differences between those two QC processes are illustrated in Figure 8 and summarized in Table 241 

4. 242 

We collected a total of 1,011,584 SLH data observed at I-ORS during the observation period from 2003 to 2022. 243 

After excluding 165,702 instances of missing values (NaNs), 886,128 data points were kept for quality control 244 

and analysis. Of these, 793,034 (89.49%) were classified as good data, while 93,184 data points (10.51%) were 245 

flagged as bad through the TALOD QC procedure (Table 3). Among the flagged data, excluding those flagged as 246 

the meta, stuck values constituted the majority, representing 89.84% of the bad data. This was followed by spike 247 

and range flags, accounting for 5.52% and 4.64% of the bad data, respectively. 248 

Seasonal patterns in the frequency of each flag were further analyzed. The number of occurrences of bad data was 249 

found to be the highest in spring, exceeding the annual average by a factor of 1.28. This seasonal increase was 250 

primarily driven by a higher occurrence rate of stuck errors. Specifically, a total of 33,383 stuck errors were 251 
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recorded, with 16,536 instances occurring in spring, the highest count across all seasons (winter: 5,795; summer: 252 

7,985; autumn: 3,067). The spring frequency of stuck errors was nearly double the annual average (1.98 times). 253 

Other bad data types, such as range and spike, exhibited relatively low frequencies throughout the whole season, 254 

with total counts of 1,725 and 2,052, respectively. Conversely, the meta-flagged data, which accounted for the 255 

largest proportion of bad data excluding NaN values, displayed a uniform distribution across all seasons, with a 256 

mean of 56,024 occurrences (winter: 14,934; spring: 12,298; summer: 14,843; autumn: 13,949). As a result, the 257 

meta flag did not contribute significantly to the observed seasonal variations in the long-term perspective. 258 

The overshooting-like errors related to extreme weather conditions, such as range and spike flags showed peak 259 

occurrence rates in summer. This seasonal pattern coincided with the peak typhoon season over the NWP, 260 

indicating a linkage between extreme weather events and the occurrence of overshooting-like error types. 261 

The SLH is dominated by neap-spring tidal cycles, and it can induce misclassifications in error detection by a 262 

range check that adopts a constant value as a threshold. However, the TALOD method utilizes residual 263 

components that consider the rapid increase/decrease of SLH caused by most diurnal components and short-264 

duration weather systems, thereby reducing detection errors. For example, the range check in the TALOD QC 265 

process successfully flagged 1,936 data points by outliers. In detail, the gross range check detected 1,121 bad data, 266 

while the temporal and local outlier detection identified 815 instances of bad data. As a result, the temporally and 267 

locally utilized outlier detection method successfully captured the errors with little biases. The TALOD QC 268 

process preemptively flags bad data that excessively disrupt continuity through the range checks. This approach, 269 

as depicted in Figure 8f, prevents detection failures caused by recurrent spike error values. The IOC’s spike check 270 

has trouble with flagging spike-type errors within a short period. These unqualified outlying values may provoke 271 

the downgrading in the performance of the spike check using min/max for calculating threshold. Attention should 272 

be given when applying the IOC QC processes to such sea level measurements because the automatic QC on 273 

observation data could be vulnerable to recurrently recorded spike-like errors. For instance, among the 261 274 

observations logged from 1 June 2016 00 KST to 14 June 2016 00 KST, the TALOD method flagged 43 instances 275 

as bad data, while IOC identified 37 values only with apparent error-like values still remaining (see Fig. 8e and 276 

8f).  277 

Moreover, as summarized in Table 4, the two QC processes showed significant differences in the stuck check. 278 

While the TALOD QC process successfully detects stuck values, as illustrated in Figure 8a, 8c, 8e, and 8g, the 279 

IOC seems to fail to identify these error-like values. Instead of flagging abnormal stuck values, the IOC QC 280 

removes the entire section (Fig. 8b, 8d, 8f, and 8h). Furthermore, the IOC’s stuck check, which is designed to 281 
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identify values as stuck when the sensor records the same values, tends to classify excessively normal data into 282 

stuck errors due to instrumental issues including low frequency (10 minutes); these situations are frequently 283 

observed during high and leap tides (Fig. 8d).  284 

During the application of the IOC Process to SLH data, misclassifications or detection failures were confirmed 285 

due to the inability to identify irregularly repeated stuck errors. However, the TALOD applied optimized detection 286 

techniques, and 45,850 stuck errors were successfully flagged. Figure 9 shows the distribution of observed and 287 

qualified SLAs. Compared to the idealized normal distribution indicated by the grey line in Figure 9, unusually 288 

high values were concentrated in the ranges of –1.4 to –1.3 m, –0.2 to –0.1 m, and 0.4 to 0.5 m. After the TALOD 289 

QC, this distribution is more closely aligned with the normal distribution, indirectly suggesting the performance 290 

of the TALOD QC to identify outliers.  291 

Table 3. Detection counts and proportions for each flag from Oct 2003 to Dec 2022 (excluding NaN values). 292 

Flag number 

(Name) 

1 

(Good data) 

2 

(Range) 

4 

(Spike) 

5 

(Stuck) 

7 

(Metadata) 

8 

(NaN) 

# 793,034 1,725 2,052 33,383 56,024 165,702 

% (without NaN) 89.49% 0.19% 0.23% 3.77% 6.32%  

 293 

Table 4: The differences in flag detection methods between TALOD and IOC. 294 

Flag TALOD IOC 

Range Data point where observation 

exceeds the threshold from the 

tidal component, which is 

adjusted according to temporal 

observations 

Data point exceeds sensor or 

operator-selected min/max for 

whole period 

SPIKE Data point where the square of the 

difference in residuals exceeds the 

threshold 

Data point n-1 exceeds a selected 

threshold relative to adjacent data 

points 

STUCK Data point where the reoccurrence 

rates for constant value within the 

windows are over thresholds 

Invariant value 
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 295 

Figure 7. Representative results from 01 Apr 2012 to 15 Apr 2012 296 

 297 

Figure 8. Same as Fig. 5, but for invariant stuck case (a-b, from 05 May 2005 to 07 May 2005), stuck case during short-298 
period (c-d, from 12 Jul 2013 to 18 Jul 2013), range-spike misclassification case (e-f, from 12 Jun 2016 to 14 Jun 2016), 299 
and range-spike mixed case (g-h, 08 Sep 2016 to 13 Sep 2016). The figures on the left and right sides show results for 300 
TALOD and IOC, respectively. 301 
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 302 

Figure 9. Histogram of observed sea level anomaly without QC (light red) and with QC (light grey) from 2003 to 2022 303 
at I-ORS. the area enclosed by a darker grey line indicates the normal distribution. 304 

3.2 Data validation by using observation data 305 

Figure 10 displays the daily time series of SLA for each dataset except ORAS5. SLH generally represents the 306 

vertically integrated heat contents of the ocean. Therefore, there are higher SLAs during the boreal summer period, 307 

June-September, and lower SLAs during the boreal winter, December-March. The daily mean sea level range is 308 

approximately ± 0.6 m for the observed one, –0.4 to +0.6 for the HYCOM product, and ± 0.3 m for GLORYS and 309 

satellite altimetry. We calculated the standard deviation (STD) and variance of each dataset to infer their 310 

variability and distribution. The STD and variance for the I-ORS measurements were 0.16 m and 0.02 m, 311 

respectively. For satellite and GLORYS, the values were the same at 0.10 m and 0.01 m. The HYCOM-R had 312 

values of 0.11m and 0.01m. Both Satellite and the two reanalysis data simulated lower variability of SLH 313 

compared to the in-situ observation. However, both datasets captured the overall pattern well, showing high 314 

accuracy with a low RMSE of less than 0.1m. Compared to HYCOM, which has a spatial resolution of 1/12° and 315 

a temporal resolution of 3-hourly, the satellite exhibits lower seasonal variance, which might be due to substantial 316 

optimal interpolation procedure to reduce high-frequency noise during a gridding process. Besides, significant 317 

statistical differences were found between HYCOM and other datasets (OBS and reanalysis data) for the period 318 

after 2018. Therefore, we further analyzed the HYCOM data by dividing it into two periods: before 2018 319 

(HYCOM-R) and after 2018 (HYCOM-S). 320 

First, we compared the SLR rates of each dataset (Fig. 10). The observation exhibited a SLR of 5.27 mm/yr for 321 

this period from 2003 to 2022, while the satellite altimetry rendered slightly lower rates of 2.76 mm/yr. Owing to 322 
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a robust falling trend in the HYCOM’s SLA during the recent period since 2018 (–24.42 mm/yr; HYCOM-S), the 323 

overall rate of SLR for the HYCOM was negative (–4.22 mm/yr) during the study period, but the HYCOM-R has 324 

a 2.70 mm/yr trend from 2003 to 2017. This result might indicate that we must be careful when using the HYCOM-325 

R and HYCOM-S products to study long-term climate dynamics. 326 

Figure 11a shows the monthly sea level trends for the observation and other four datasets. The observation showed 327 

a higher sea level rise rate (5.27±0.46 mm/yr) compared to the other datasets. ORAS5 exhibited a trend similar to 328 

satellite altimetry, while GLORYS and HYCOM showed a sea level fall trend. As mentioned earlier, HYCOM 329 

showed a strong fall trend unlike other datasets because it simulated lower sea levels after 2018. Also, we 330 

compared the correlation and variability between the observation and the other four datasets using a Taylor 331 

Diagram (Fig. 11b). Satellite altimetry exhibited the highest accuracy among the datasets, with a high correlation 332 

coefficient (0.71) and low RMSE (0.04 m) compared to the observation. For HYCOM, it showed the lowest 333 

correlation coefficient (-0.08) and highest RMSE (0.10 m) over the entire period, indicating poor agreement. 334 

HYCOM-R demonstrated performance close to Satellite, whereas HYCOM-S exhibited a significantly low 335 

correlation coefficient (-0.39) and high RMSE (0.12 m). The correlation coefficients of ORAS5 and GLORYS 336 

were 0.71 and 0.76, respectively, and the RMSE of both data was 0.1 m, showing higher correlation and accuracy 337 

than HYCOM. HYCOM was found to have an overall lower performance due to its inability to simulate the 338 

variability of SLH since 2018 in HYCOM-S. 339 

 340 

Figure 10. Time series of monthly QC-ed observations (black dot), Satellite (green empty circle), HYCOM (light red 341 
diamond), and GlORYS12 (light cyan hexagram) data during the observation period at the I-ORS. 342 
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 343 

Figure 11. Bar plot with error bar (A; Left) and Modified Taylor diagram (B; Right). the azimuthal angle represents 344 
the correlation coefficient, the radial distance indicates the standard deviation, and the semicircles centered at the 345 
“OBS” marker mean the Root Mean Square Errors. The colors and markers indicate each data (black circle: 346 
observation, green square: Satellite, light cyan hexagram: GLORYS, purple pentagram: ORAS5, red diamond: 347 
HYCOM, light red upward-pointing triangle: HYCOM-R, light red downward-pointing triangle: HYCOM-S). 348 

3.3 Sea-level budget assessment at I-ORS 349 

As mentioned above, the SLH of the I-ORS produced through the developed QC process estimated a SLR rate of 350 

5.27±0.46 mm/yr. Sea level change is divided into relative and geocentric sea level change representing the 351 

distance from the sea floor and center of the earth to the sea surface, respectively. The ground-based observations 352 

such as I-ORS are relative sea level. and its change can be affected by various physical processes including sea 353 

level change due to ocean density and circulation (sterodynamic effect), mass exchange between the ocean and 354 

land (barystatic effect), glacial isostatic adjustment (GIA) (Gregory et al., 2019; Frederikse et al., 2020; Cha et al., 355 

2024). In this regard, we performed a budget analysis of each physical process affecting SLR at the I-ORS. 356 

The sterodynamic (SD) effect is calculated as the sum of dynamic sea level change (DSL) and global mean steric 357 

sea level rise (GMSSL) (Gregory et al., 2019). DSL was obtained from ORAS5, which was also used for validation 358 

data in this study. GMSSL used in-situ observation data provided by the Institute of Atmospheric Physics (IAP, 359 

Cheng et al., 2017), Met Office Hadley Centre (EN4, Good et al., 2013), and Japan Meteorological Agency (JMA, 360 

Ishii et al., 2017). GMSSL was produced using the temperature-salinity profile data from each institution and was 361 

used to compute the SD effect by adding the DSL. The barystatic (BS) effect is the sum of ice melting from the 362 

Antarctica, and Greenland ice sheets, glaciers, and changes in land water storage. Here, we used ocean mass 363 

reconstructed barystatic data from Ludwigsen et al. (2024). GIA comprises sea level changes due to the 364 

disappearance of glaciers since the glacial period, and we took the model results from Caron et al. (2018). Caron 365 

et al. (2018) utilized a global positioning system (GPS) time series from 459 sites and 11,451 relative sea level 366 
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data to improve the model accuracy, and based on this, computed the ensemble mean of 128,000 model simulation 367 

results. 368 

Figure 12 shows the sea level time series and trend budget at the I-ORS along with a comparison to satellite 369 

altimetry. The sea level change rate due to physical processes (Sum=SD+BS+GIA) was 2.57±0.35 mm/yr, about 370 

2.70±0.58 smaller than the observation (5.27±0.46 mm/yr). This discrepancy was also found in comparing satellite 371 

altimetry and observation (diff: 2.51±0.62 mm/yr). Among the components for physical processes, SD contributed 372 

0.73±0.34 mm/yr, approximately 28% of the rise. The BS effect had the largest contribution, at 1.85±0.02 mm/yr 373 

(about 72%). Meanwhile, GIA led to a slight fall in sea level, contributing -0.11±0.00 mm/yr, about 0.04%. 374 

Satellites cannot detect vertical land motion (VLM) because they measure the change in distance from the center 375 

of the earth to the sea surface, whereas station observations such as I-ORS are affected by VLM because they 376 

measure the change in height from the sea floor to sea level (Han et al., 2014; Gregory et al., 2019; Cha et al., 377 

2024).Thus the difference between the sea level trend from satellite altimetry and I-ORS can be regarded as VLM 378 

component, we checked whether a difference of approximately 2.51±0.62 mm/yr was associated with VLM. Cha 379 

et al. (2024) defined the total VLM as the sum of the VLM components in GIA, BS, and local processes, where 380 

GIA and BS are categorized as natural processes. The VLM of GIA was obtained from Caron et al. (2018), the 381 

VLM of BS used the data of Frederikse et al. (2020), and the VLM component of the local process was calculated 382 

using the difference between sea level change due to physical processes (2.57±0.35 mm/yr) and sea level change 383 

from observation (5.27±0.46 mm/yr). At the I-ORS location, the VLM of GIA was calculated to be 0.22±0.14 384 

mm/yr, the VLM of BS was 0.28±0.64 mm/yr, and the VLM of the local process was –2.67±0.60 mm/yr. 385 

Therefore, the total VLM was approximately –2.17±0.89 mm/yr, indicating significant ground subsidence at the 386 

I-ORS location, and this subsidence was more affected by local processes than by natural effects such as GIA and 387 

BS.  388 

Additionally, we analyzed the trend of observed vertical displacements using the Global Navigation Satellite 389 

System (GNSS) observing 30-second intervals at the I-ORS from 2013 to 2019. The trend of GNSS vertical 390 

displacements was –0.89±0.47 mm/yr, using daily mean. it's smaller than the VLM of the local process (2.67±0.60 391 

mm/yr), but it certified that the actual ground subsidence exists. 392 

https://doi.org/10.5194/egusphere-2024-3380
Preprint. Discussion started: 13 November 2024
c© Author(s) 2024. CC BY 4.0 License.



19 

 

 393 

Figure 12. Monthly time series of sea level anomalies (left) and bar chart with error bar for sea level rise rate (right; 394 
units: mm/yr). Each color and type of line indicates the dataset (OBS: black solid line, Satellite: green solid line, Sum: 395 
bright red solid line, STERO: orange diamond, BARY: purple dotted line, GIA: sky-blue dotted line, and GNSS: bright 396 
brown). 397 

4 Summary and Discussion 398 

This study developed a novel quality control procedure based on a high-resolution tidal prediction model, named 399 

the Temporally and Locally Optimized Detection (TALOD) method, and applied it to 10-minute interval real-400 

time SLH data observed by the MIROS Range Finder (SM-140) from 2003 to 2022. The TALOD method is 401 

divided into manual and automatic processes. The manual process includes a METADATA check that relies on 402 

the empirical knowledge of the data producer. The METADATA check flags sections that could contaminate the 403 

long-term characteristics of the collected time series observations. This check improves the performance of 404 

subsequent automatic QC processes. The automatic process includes RANGE, SPIKE, and STUCK checks. The 405 

range check with residual components derived from the tidal prediction model, TPXO9, may enable it to address 406 

known issues such as detection failure due to non-periodic outliers or adulteration when estimating the tidal 407 

components using the least square method. Spatiotemporally optimized thresholds reduce misclassification and 408 

detection failures caused by frequent error values during the spike check. The spike check detected bad data by 409 

setting a spatially and temporally optimized threshold using the non-tidal residual component. This approach can 410 

reduce false detections compared to the gradient-based GSM. Also, the GSM method tends to detect rapidly 411 

fluctuating SLH, such as extreme weather events, as an outlier. In the stuck check, we also utilized the occurrence 412 

frequency of specific values to handle the alternating of the good and bad data, the unique characteristics in SLH 413 

at the I-ORS. This study confirmed that a novel stuck check using the reoccurrence rate of the same value for a 414 

specific period can reduce truncation and increase the retention rate of good data compared to existing QC 415 

processes such as IOC. 416 
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To evaluate the reliability of SLH data applying the TALOD and analyze the characteristics of SLH data from 417 

various institutions, we collected and compared with HYCOM, Satellite, GLORYS, and ORAS5. Before 2018, 418 

HYCOMa and Satellite data exhibited the highest performance, while GLORYS and ORAS5 showed relatively 419 

higher RMSE. Since 2018, the trend of SLH for HYCOM (HYCOMb) was –23.86 mm/yr, which showed 420 

unrealistic results compared to other datasets. In conclusion, the reanalysis data, including HYCOMa and satellite 421 

altimetry, showed a more similar pattern to the observation, and the others exhibited a quite narrower distribution 422 

for anomalies. Through assessment, we confirmed an issue with the variability of SLH in HYCOM, and the 423 

reliability and validity of the TALOD QC method and SLH observation at I-ORS. 424 

The TALOD QC process includes the extreme event flag (EEF), which indicates the period during which SLH is 425 

affected by extreme weather. For instance, since the variance of SLH was more than four times larger (including 426 

flagged data) than usual during the typhoon-influenced period, some good data can be flagged as range and spike 427 

errors. Ensuring sufficient observation numbers is crucial for research on typhoons. Therefore, we provide the 428 

extreme event option so researchers can use these data for extreme weather dynamics. 429 

In the budget analysis, the BS effect related to mass exchange between the ocean and land contributed significantly, 430 

accounting for approximately 70% of the total sea level change. The difference in sea level trend between the I-431 

ORS and satellite altimetry (about 2.67 mm/yr) was attributed to VLM. The total VLM estimated from reanalysis 432 

data (-2.17 mm/yr) indicates considerable ground subsidence at the I-ORS site. In detail, this subsidence was more 433 

influenced by local processes than natural processes such as BS or GIA. Although the total VLM varies depending 434 

on the reanalysis data, the GNSS-measured vertical displacement trend from 2013 to 2019 was calculated at -435 

0.89±0.47 mm/yr, demonstrating the ongoing ground subsidence at the I-ORS. 436 

Despite the advancements in the TALOD QC process, several challenges remain. The TALOD QC process only 437 

targets the observed SLH and is still not fully automated. Additionally, there is a need for further processes that 438 

make it possible to take count of misclassification in extreme weather, such as rogue waves. In normal cases, good 439 

data with extreme values induced by the inverted barometer and steric effect may be erroneously identified as 440 

errors. Thus, an additional step of adjusting coefficients using atmospheric and oceanographic observation 441 

variables is required. 442 

Nevertheless, the TALOD QC process has the utility of being applied to both tide gauges and range finders. It 443 

also utilizes predicted tidal components for each point, enhancing its adaptability. Well-controlled in-situ data are 444 

essential not only for data assimilation and validation but also for data management. The I-ORS platform stands 445 

out as a unique resource, offering over 20 years of continuous atmospheric and oceanographic observation data 446 
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in the open sea. Additionally, the Gageocho Ocean Research Station (G-ORS) and Socheongcho Ocean Research 447 

Station (S-ORS) are positioned along the meridian, contributing to the study of marine environmental 448 

development. 449 
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List of Figures 599 

Figure 1. The structure of I-ORS and Instruments (Right) and the horizontal distribution for bathymetry and the 600 

tracks of typhoon passed by I-ORS (data from Joint Typhoon Warning Center; cases depicted in Fig. 10). 601 

The star marks indicate the location of the I-ROS (red) and the Socheongcho (black; above) and 602 

Gageocho (black; below) Ocean Research Station, respectively. The black dots depict the locations of 603 

tide stations. The grey solid lines show the storm tracks passing by I-ROS from 2003 to 2022. The darker 604 

lines indicate the typhoon case in Table 2. 605 

Figure 2. The circle markers indicate each process of methodological adjustment for the data before TP. The grey 606 

line with circles means the raw data and blue and red marker lines indicate the reverse and shift (+ 1.57m 607 

after reversed) process. 608 

Figure 3. Flow chart of TALOD QC process. 609 

Figure 4. Lines indicate the processes for fitting TPXO9 to observation (black line with circle) in the range check. 610 

(1) The blue line with a triangle means raw TPXO9 data. (2) The orange line with the square shows 611 

mean-shifted TPXO9 based on the Mean Square Error method. (3) The green line with a circle indicates 612 

the final output with a twice-smoothened bias added. 613 

Figure 5. Time series for the examples of 4 flags. a) metadata, b) range, c) spike, and d) stuck. Each marker 614 

indicates Good Data (grey circle), metadata (blue circle), range (green triangle), spike (yellow square 615 

with red outline), and stuck (red cross), respectively. 616 

Figure 6. Same as Fig. 5, but for Typhoon cases. 617 

Figure 7. Representative results from 01 Apr 2012 to 15 Apr 2012 618 

Figure 8. Same as Fig. 5, but for invariant stuck case (a-b, from 05 May 2005 to 07 May 2005), stuck case during 619 

short-period (c-d, from 12 Jul 2013 to 18 Jul 2013), range-spike misclassification case (e-f, from 12 Jun 620 

2016 to 14 Jun 2016), and range-spike mixed case (g-h, 08 Sep 2016 to 13 Sep 2016). The figures on the 621 

left and right sides show results for TALOD and IOC, respectively. 622 

Figure 9. Histogram of observed sea level anomaly without QC (light red) and with QC (light grey) from 2003 to 623 

2022 at I-ORS. the area enclosed by a darker grey line indicates the normal distribution. 624 

Figure 10. Time series of monthly QC-ed observations (black dot), Satellite (green empty circle), HYCOM (light 625 

red diamond), and GlORYS12 (light cyan hexagram) data during the observation period at the I-ORS. 626 

Figure 11. Bar plot with error bar (A; Left) and Modified Taylor diagram (B; Right). the azimuthal angle 627 

represents the correlation coefficient, the radial distance indicates the standard deviation, and the 628 
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semicircles centered at the “OBS” marker mean the Root Mean Square Errors. The colors and markers 629 

indicate each data (black circle: observation, green square: Satellite, light cyan hexagram: GLORYS, 630 

purple pentagram: ORAS5, red diamond: HYCOM, light red upward-pointing triangle: HYCOM-R, light 631 

red downward-pointing triangle: HYCOM-S). 632 

Figure 12. Monthly time series of sea level anomalies (left) and bar chart with error bar for sea level rise rate 633 

(right; units: mm/yr). Each color and type of line indicates the dataset (OBS: black solid line, Satellite: 634 

green solid line, Sum: bright red solid line, STERO: orange diamond, BARY: purple dotted line, GIA: 635 

sky-blue dotted line, and GNSS: bright brown). 636 
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