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Abstract.  20 

Natural aerosol components such as particulate methanesulfonic acid (MSAp) play an important role in the Arctic climate. 

However, numerical models struggle to reproduce MSAp concentrations and seasonality. Here we present an alternative data-

driven methodology for modeling MSAp at four High Arctic stations (Alert, Gruvebadet, Pituffik/Thule, and 

Utqiaġvik/Barrow). In our approach, we create input features that consider the ambient conditions during atmospheric transport 

(e.g., temperature, radiation, cloud cover, etc.) for use in two data-driven models: a random forest (RF) regressor and an additive 25 

model (AM). The most important features were selected through automatic selection procedures and their relationships with 

MSAp model output was investigated. Although the overall performance of our data-driven models on test data is modest (max. 

R2 = 0.29), the models can capture variability in the data well (max. Pearson correlation coefficient = 0.77),  outperform the 

current numerical models and reanalysis products, and produce physically interpretable results.  

The data-driven models selected features related to the sources, chemical processing, and removal of MSAp with 30 

specific differences between stations. The seasonal cycles and selected features suggest gas-phase oxidation is relatively more 

important during peak concentration months at Alert, Gruvebadet, and Pituffik/Thule while aqueous-phase oxidation is 

relatively more important at Utqiaġvik/Barrow. Alert and Pituffik/Thule appear to be more influenced by processes aloft than 

in the boundary layer. Our models usually selected chemical processing related features as the main factors influencing MSAp 

predictions, highlighting the importance of properly simulating oxidation related processes in numerical models.  35 
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1 Introduction 

Natural marine biogenic aerosols, e.g., particulate methanesulfonic acid (MSAp) are becoming an increasingly 

important part of the Arctic climate system, especially during summer, due to sea ice retreat as well as changing environmental 40 

conditions and circulation patterns (Willis et al., 2023), yet their environmental drivers remain understudied (Schmale et al., 

2021). Processes leading to natural aerosol emissions are affected by climate change, leading to ongoing changes in the natural 

aerosol baseline. Understanding natural aerosols has implications for accurate modeling of the pre-industrial atmosphere and 

thus estimation of the indirect aerosol effect (Carslaw et al., 2013; Menon et al., 2002). Natural aerosols, such as MSAp, are 

important seeds for low-level mixed-phase clouds in the Arctic (Abbatt et al., 2019; Beck et al., 2021). Low level clouds can 45 

have a significant effect on the surface energy budget, influencing snow cover, sea-ice extent, and the Greenland ice sheet 

behavior (Arouf et al., 2024; Wendisch et al., 2019). The current understanding of the Arctic climate system is limited, 

including due to an insufficient representation of low-level Arctic mixed-phase clouds in large-scale models (Morrison et al., 

2012; Pithan et al., 2016; Taylor et al., 2022). The inadequate representation of aerosol particles acting as cloud condensation 

nuclei and ice nucleating particles may partly explain the shortcomings of cloud representation in large-scale models 50 

(Mauritsen et al., 2011; Stevens et al., 2018). While significant progress has been made (Abbatt et al., 2019; Shupe et al., 2022; 

Wendisch et al., 2019, 2024), there are still important gaps in the current understanding and modeling efforts of natural Arctic 

aerosols (Schmale et al., 2021). 

In the Arctic atmosphere, MSAp mainly derives from the oxidation of natural, marine emissions of dimethyl sulfide 

(DMS) (Barnes et al., 2006), although other sources can make minor contributions such as lakes, coastal tundra, melt ponds, 55 

and biomass burning (Levasseur, 2013; Mungall et al., 2016; Park et al., 2019). MSAp has also been associated with biogenic 

terrestrial sources in the mid-latitudes (Li et al., 2021; Zhou et al., 2021) as well as recently on Svalbard (Boreddy et al., 2024). 

Arctic marine phytoplankton and algae produce dimethylsulfoniopropionate as an osmoprotectant (Yoch, 2002), which is 

enzymatically cleaved to produce DMS (Andreae, 1990; Kettle et al., 1999). Seawater DMS emission is the main source of 

marine biogenic sulfur in the atmosphere (Hulswar et al., 2022; Lana et al., 2011). Although the majority of DMS is oxidized 60 

within seawater, a fraction is ventilated into the atmosphere where it is photochemically oxidized by OH, O3, NO3, and halogen 

species via two pathways (addition or abstraction), both of which depend on temperature (Barnes et al., 2006; Jiang et al., 

2021; Shen et al., 2022). The atmospheric lifetime of DMS is on the order of 1-2 days (Breider et al., 2010; Lundén et al., 

2007), depending on latitude and environmental conditions (Ghahreman et al., 2019). DMS oxidation in the gas-phase proceeds 

through several intermediates and ultimately yields MSA or SO2. The addition pathway is more efficient at colder temperatures 65 

(Shen et al., 2022) and results in a higher yield of gas-phase MSA (Sørensen et al., 1996). In the aqueous phase, dissolved 

DMS (or its intermediates) is oxidized mainly by O3 and OH, either through processes in cloud droplets or on deliquesced 

particles, which is an important formation mechanism for MSAp (Baccarini et al., 2021; Chen et al., 2018; Fung et al., 2022; 

von Glasow and Crutzen, 2004; Hoffmann et al., 2016; Kecorius et al., 2023; Wollesen de Jonge et al., 2021). MSAp can also 

form via gas-phase oxidation of DMS and condensation of gaseous MSA. After formation in the aqueous phase, MSAp can be 70 
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released into the gas-phase during droplet evaporation and go on to further impact secondary aerosol production (Baccarini et 

al., 2021; Fung et al., 2022; Kecorius et al., 2023). Currently, the relative importance of gas- versus aqueous-phase oxidation 

of DMS is a topic of active research (Baccarini et al., 2021; Hoffmann et al., 2016; Wollesen de Jonge et al., 2021). The 

lifetime of MSAp is on the order of several days in the Arctic depending on the environmental conditions (Mungall et al., 

2018). MSA mainly resides in the accumulation mode (aerosols with a diameter > 100 nm) (Kerminen et al., 1997; Phinney et 75 

al., 2006; Xavier et al., 2022) although MSA can also be present in the Aitken mode (~25 < diameter < 100 nm) (Lawler et al., 

2021) and makes a minor contribution to the coarse mode (> 1 µm) (Kerminen et al., 1997). Seasonally, MSAp displays near-

zero values during the dark polar night with extensive sea ice coverage and little biological activity and the highest values 

during the sunlit, warmer polar day with retreating sea ice and highly biologically active waters (Sharma et al., 2012; Becagli 

et al., 2016, 2019; Jang et al., 2021). Depending on location, maximum MSAp concentrations are reached during early, mid, 80 

or late summer, which are related to differences in atmospheric circulation patterns in relation to biologically active waters 

and marginal ice zones, microbiological differences in these sources regions that produce different DMS emissions, 

meteorological conditions (e.g., solar radiation and precipitation), and other environmental factors (different atmospheric 

oxidants and sea ice coverage) (Becagli et al., 2016, 2019; Moffett et al., 2020; Moschos et al., 2022; Nielsen et al., 2019; 

Nøjgaard et al., 2022; Sharma et al., 2012, 2019). Dry and wet deposition are the main atmospheric removal mechanisms (with 85 

wet deposition making a larger contribution) as well as oxidation into sulfate (Chen et al., 2018; Fung et al., 2022).  

The low accumulation mode particle concentrations characterize the summertime Arctic atmosphere as an aerosol-

sensitive cloud condensation nuclei (CCN) regime (Birch et al., 2012; Mauritsen et al., 2011; Motos et al., 2023), thereby any 

variations in the number of CCN-active aerosols can have large consequences for the cloud radiative balance (Carslaw et al., 

2013). The low accumulation mode concentrations also create conditions conducive for new particle formation and growth. 90 

While modeling studies indicate MSA can participate in new particle formation (Chang et al., 2011; Li et al., 2024; Ning and 

Zhang, 2022), this has yet to be directly observed in the field (Beck et al., 2021; Dall’Osto et al., 2018), but has been 

demonstrated through chamber (Rosati et al., 2021) and flow tube studies (Johnson and Jen, 2023). Before these new particles 

can act as CCN they must first grow to sufficient sizes. MSA is especially critical for the condensational growth of aerosols to 

CCN sizes (Ghahreman et al., 2019, 2021; Park et al., 2021) thereby affecting cloud microphysical properties such as cloud 95 

lifetime, albedo, and precipitation efficiency (Hansen et al., 1997; Ramanathan et al., 2001; Rosenfeld, 1999; Twomey et al., 

1984).  Elucidating the sources and atmospheric drivers of MSAp is crucial for reliable modeling of the Arctic climate system 

when considering that aerosol-cloud interactions are one of the largest sources of uncertainty in global climate modeling 

(Regayre et al., 2020).  

The Arctic climate system is driven by many interconnected processes and feedback mechanisms making it difficult 100 

to disentangle the role of specific processes which is especially evident for aerosol-climate interactions (Schmale et al., 2021). 

Numerical modeling is currently the best method for exploring these complex processes and phenomena. Numerical models 

are defined here as global models, based on physical and chemical equations, used to simulate atmospheric composition and 

conditions. Numerical models can simulate Arctic aerosols, although some of the key underlying aerosol processes are often 
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simplified, approximated, or not represented due to lack of observations, unknown physical properties, or poorly parameterized 105 

mechanisms (Eckhardt et al., 2015; Emmons et al., 2015; Im et al., 2021; Monks et al., 2015; Whaley et al., 2022). There are 

also differences between models that create large uncertainties about future processes and their effects on aerosols, as well as 

aerosols’ effect on Arctic climate. For instance, sea ice is drastically declining (Stroeve and Notz, 2018), and while models 

predict an increase in natural aerosols, they do not agree on the climate effects (Browse et al., 2014; Gilgen et al., 2018; 

Struthers et al., 2011). Constraining numerical model uncertainty can be achieved by incorporating in situ observations 110 

(Regayre et al., 2020) but also through machine learning (or data-driven modeling, see below). This can be achieved through 

bias-correction methods (Lapere et al., 2023; Ran et al., 2023), using data-driven modeling algorithms to parameterize 

unresolved processes (Brajard et al., 2021; Yuval and O’Gorman, 2020), or combining data-driven modeling with ambient 

observations to model key atmospheric species and identify its drivers (Gilardoni et al., 2023; Hu et al., 2022). Improving the 

skill of numerical models in the Arctic can greatly aid in our ability to understand, predict, and possibly mitigate the effects of 115 

climate change not only in the Arctic but globally, and data-driven modeling is an important avenue for accomplishing this. 

Data-driven models, coming from the statistical and machine learning literature, tend to rely less on prior knowledge 

of physical processes than numerical models and attempt to learn dependencies across data directly from some available 

observations. The rationale of "letting the data speak" is that a relevant relation across variables should in principle be found 

with the appropriate amount of data and a proper representation of it, as long as the data-driven model is flexible enough and 120 

the signal-to-noise ratio is adequate (Breiman, 2001). As such, these data-driven models can confirm known processes and 

relations as well as potentially discover unknown ones. Such data-driven models can also be tailored to maximize out-of-

sample prediction (e.g. forecasting in time) while retaining interpretability (Rudin et al., 2022). The general framework of non-

linear regression appears appropriate for modeling and predicting complex environmental processes (Hastie et al., 2009) as 

represented by heterogeneous data sources: the relation between the target variable (here MSAp) and different input variables, 125 

hereafter referred to as features, can be approximated by training a data-driven model. Estimated relations can be ranked in 

terms of their contribution to the minimization of a loss function and non-relevant relations can be removed, making for more 

compact and parsimonious data-driven models and simplifying post-hoc interpretation. Any unexplained variability in the 

target variable, i.e., not captured by the approximated relations, is represented by an additive random error term. This class of 

data-driven models includes (generalized) additive models (Hastie and Tibshirani, 1990) as well as variants and extensions of 130 

regression trees (Breiman et al., 1984), among others. Additive models (AM), and generalized additive models (GAMs) more 

broadly, are fairly established for empirical modeling in various fields such as ecology, epidemiology, and Earth sciences when 

the interpretability of results is important (Wood, 2017; Zuur et al., 2009). In climate science and meteorology, GAMs are 

often used for spatial interpolation (Aalto et al., 2013; Pearce et al., 2011) and simulating sources of atmospheric constituents 

(Yue et al., 2023). Machine learning models like a random forest (RF) are increasingly recognized to outperform AMs/GAMs 135 

in terms of out-of-sample prediction (Bonsoms and Ninyerola, 2024). Nonetheless, some recent studies still advocate for the 

benefit of easily identifying drivers of natural phenomena, and directly interpreting their effect, with AMs/GAMs (Deger et 

al., 2024; Gao et al., 2023), highlighting their applicability to this study. RF models have been utilized for investigations of 
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environmental phenomena. Song et al. (2022) used a random forest regressor to investigate the drivers of different aerosol 

types on Svalbard with accurate results (R2 = 0.79) and found that solar radiation, surface pressure, and temperature were 140 

drivers of biogenic-type aerosols (which contained high amounts of MSA). Nair and Yu (2020) trained an RF model on long-

term simulations of a global size-resolved particle microphysics model (GEOS-Chem-Advanced Particle Microphysics) to 

simulate cloud condensation nuclei concentrations, which was robust  and accurate. Overall, these studies highlight the 

applicability of RF regressor and additive models in understanding complex atmospheric phenomena. 

Modeling natural aerosol processes in the Arctic remains a challenge but is critical to investigating the energy balance 145 

of this fast-changing, pristine region. In this study, we aim to (1) evaluate the performance of numerical models at simulating 

MSAp in the Arctic, (2) develop a data-driven methodology to simulate the seasonal cycle of MSAp at various locations, and 

(3) investigate the environmental drivers of MSAp. The study is structured in the following manner: 

 

• In Sect. 2, we describe the input data (Sect. 2.1, in situ observations, reanalysis products, satellite, and numerical 150 

model output), feature engineering procedure (Sect. 2.2), preparation of input data (Sect 2.3, temporal aggregation,  

feature grouping, and multi-site merging), model performance evaluation (Sect. 2.4), and data-driven models (model 

details, feature selection procedure, and model interpretation).  

 

• In Sect. 3, we analyze the seasonal cycles of in situ MSAp at the High Arctic stations (Sect. 3.1), evaluate the current 155 

performance of numerical models (Sect. 3.2), and our data-driven models at simulating MSAp at each station (Sect. 

3.3), and lastly explore the features selected by the models as being important for MSA production (Sect. 3.4) and 

how they affect model output of MSAp (Sect. 3.5).  

 

We show that existing numerical models struggle to reproduce the seasonal cycles and magnitudes of MSAp compared 160 

to observations, however, investigation of the underlying causes of these discrepancies is beyond the scope of this work. Our 

data-driven models outperform the numerical models although the evaluation metrics are modest at best. The data-driven 

models select features related to the source and chemical processing of MSA precursors as well as MSAp removal, indicating 

the data-driven models give physically interpretable results. While both gas- and aqueous-phase oxidation are likely occurring 

at all sites, the seasonal cycles and selected features suggest that during peak concentration months gas-phase oxidation is 165 

more relatively important at Alert, Gruvebadet, and Pituffik/Thule while aqueous-phase oxidation is more relatively important 

at Utqiaġvik/Barrow. Results also indicate that Gruvebadet and Utqiaġvik/Barrow are more influenced by surface-related 

processes compared to Alert and Pituffik/Thule which are more influenced by processes aloft.  

  

https://doi.org/10.5194/egusphere-2024-3379
Preprint. Discussion started: 14 November 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

2 Methods 170 

2.1 Datasets 

2.1.1 In situ aerosol observations 

In situ filter samples of particulate methanesulfonic acid (MSAp) were measured at four Arctic stations (Alert, Gruvebadet, 

Pituffik/Thule, and Utqiaġvik/Barrow) (Becagli et al., 2016, 2019; Moffett et al., 2020; Sharma et al., 2019). Figure 2a displays 

the location of each station and details about each station are given in Table 1. For Alert, Gruvebadet, and Pituffik/Thule, 175 

samples from 2010-2017 were used as each site contained sufficient data coverage and a consistent sampling frequency, while 

for Utqiaġvik/Barrow, samples included 2008-2014 due to data availability and changes in sampling frequency (Moffett et al., 

2020). Details about the analytical instrumentation and methods are described in Supplementary Text 1. While there are 

differences in sampling (different inlet and temporal resolution) and analysis (different ion chromatographs) at each station, 

these measurements are considered comparable as an analysis by two different laboratories for samples from Alert in 2018 180 

showed good agreement (Moschos et al., 2022) and ion chromatography is a reproducible methodology (Xu et al., 2020).  

 

Table 1: Details of the four Arctic stations. 

Station Name Latitude Longitude Altitude (m asl) Sampling Frequency (days) 

Alert 82.5° N 62.4° W 210 7 

Gruvebadet 78.9° N 11.9° E 50 1 

Pituffik/Thule 76.5° N 68.8° W 220 2 

Utqiaġvik/Barrow 71.3° N 156.6° W 10 1-5 

 

2.1.2 ERA5 185 

ERA5 is the fifth-generation atmospheric reanalysis product from ECMWF (Hersbach et al., 2020), based on the 

Integrated Forecast System (IFS) cycle 41r2 numerical model. In this study, ERA5 data on a 0.5° × 0.5° resolution for north 

of 45 °N and every third hour was used to match the geographical extent and temporal resolution of the output derived from 

the atmospheric transport model FLEXPART (Sect. 2.1.3). Surface-level (SL) and vertically resolved ERA5 data on model 

levels (ML) were used. The height of each model level on each grid cell was converted to geopotential height using the 190 

vertically resolved temperature and specific humidity as well as the logarithm of the surface pressure and the surface 

geopotential. Relative humidity was calculated using 2m air temperature and dew point temperature following the method of 

Pernov et al. (2024a). Here we use ERA5 data from April 1 to September 30 for 2008-2017. Recently, ERA5 surface level 

variables were compared against continental ground-based stations spanning at least 1 decade for most sites. Overall ERA5 

performed well for temperature, solar radiation, and pressure although less so for relative humidity and wind speed/direction 195 

(Pernov et al., 2024a). ERA5 is one of the best reanalysis datasets for reproducing precipitation (Loeb et al., 2022) and has 
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shown skill in reproducing precipitation for various regions (Bandhauer et al., 2022; Beck et al., 2019) as well as for the Arctic 

(Handong et al., 2021). Overall, these limitations should not affect the use of ERA5 or our interpretations. The ERA5 variables 

were selected based on domain knowledge of the atmospheric conditions which could plausibly affect DMS emission, 

oxidation to MSA, and removal of MSA aerosols. These include oceanic variables such as sea ice concentration (used to filter 200 

ocean biology features, see below) and sea surface temperature, physical atmospheric variables such as wind speed (WS), 

temperature at the surface (T2M), boundary layer (T_BL), and free troposphere (T_FT), shortwave and longwave downwelling 

radiation (SSRD and STRD, respectively), boundary layer height (BLH), and hydrological atmospheric variables such as 

relative humidity (RH), specific humidity (Q), low cloud cover (LCC), large-scale rain rate (LSRR), total column cloud liquid 

water content (TCLW), and specific cloud liquid water content (LWC). Table 2 lists more details about the ERA5 variables 205 

used in this study.  

2.1.3 FLEXPART 

Air mass residence times were simulated with the Lagrangian particle dispersion model FLEXPART v9.1 (Pisso et al., 2019), 

driven with meteorological data from the ERA5 reanalysis with 0.5° x 0.5° resolution and 137 vertical levels available every 

three hours. ERA5 data for FLEXPART were obtained using the Flex extract package (Tipka et al., 2020). 50,000 passive air 210 

tracer model particles, representing a passive air tracer without removal processes, were released every three hours at each of 

the atmospheric observatories and tracked for up to 10 days backward in time with an output frequency of three hours. The 

vertical limit of the FLEXPART output was 15,000 m. For Alert, Pituffik/Thule, and Utqiaġvik/Barrow, a release height of 10 

m above ground level (agl) was used. For Gruvebadet, to account for the complex topography, a range of 10-100 m agl was 

used as the release height. The main output from FLEXPART consists of 3-dimensional fields of residence time in units of 215 

seconds (s). In contrast to Eulerian models, Lagrangian dispersion models can be applied in time-reversed mode and superior 

in representing plumes emerging from point releases (Pisso et al., 2019). However, the quality of their results can be limited 

by the offline nature of the coupling to meteorological fields, which are restricted in spatial and especially temporal resolution 

(Brioude et al., 2013). The FLEXPART output was combined (Sect. 2.2) with other data sources for calculating additional 

input variables for the data-driven models. FLEXPART residence time was combined with boundary layer height from ERA5 220 

to calculate the residence time air masses within the boundary layer (RT_BL) or free troposphere (RT_FT). Sea ice 

concentrations from ERA5 were combined with FLEXPART to calculate the residence time of air masses over open water 

(OPEN_WATER, sea ice concentration < 20 %), open pack ice (OPEN_PACK_ICE, > 20 % and < 80 %), and consolidated 

pack ice (CONSOLIDATED_PACK_ICE, > 80 %), which was normalized by the grid cell area to give units of s km-2. The 

precipitation type from ERA5 (no precipitation, rain, freezing rain, snow, wet snow, mixture of rain and snow, ice pellets) was 225 

combined with FLEXPART to calculate the residence time of air masses experiencing no precipitation (NO_PRECIP) or 

precipitation (sum of the amount of time air masses experienced any precipitation types, PRECIP) which was normalized by 

the grid cell area to give units of s km-2. 
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2.1.4 CAMS 

The Copernicus Atmosphere Monitoring Service Re-Analysis dataset (hereafter referred to as CAMS) is the latest reanalysis 230 

product produced by ECMWF, including three-dimensional fields of meteorological variables, chemical, and aerosol species 

for the period from 2003 onwards. CAMS data was obtained from the Copernicus Atmospheric Data Store (ADS) 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/home, last accessed 08/11/2022). CAMS is based on the ECMWF’s IFS 

CY42R1 cycle and the 4D-VAR data assimilation system (Inness et al., 2019) and uses an extended version of the Carbon 

Bond 2005 (CB05) tropospheric chemical mechanism (Flemming et al., 2015). Emissions consist of MACCity (MACC and 235 

CityZEN EU projects) anthropogenic emissions (Granier et al., 2011), GFAS (Global Fire Assimilation System) fire emissions 

(Kaiser et al., 2012), and MEGAN2.1 (Model of Emissions of Gases and Aerosols from Nature) biogenic emissions (Guenther 

et al., 2006). The CAMS data have a spatial resolution of 0.75° × 0.75° with 60 hybrid sigma–pressure (model) levels (13 

levels between approximately 400 and 100 hPa) in the vertical (top level at 0.1 hPa) and a temporal resolution of 3 h. The two 

oxidants, ozone (O3) and the hydroxyl radical (OH) in the boundary layer and free troposphere were used from CAMS as they 240 

are related to the gas- and aqueous-phase oxidation of DMS and its intermediates to MSA (Barnes et al., 2006). CAMS output 

of MSAp was extracted using the nearest grid cell to the stations’ location (Table 1) for the lowest level and converted from 

mass mixing ratio to mass concentration using the ambient temperature and pressure from CAMS for comparison to numerical 

models. CAMS output of MSAp was not included in the data-driven models. To match the spatial resolution of different 

datasets, re-gridding, using bilinear interpolation from the xESMF (v0.8.2) python package (Zhuang et al., 2023) was applied 245 

to the FLEXPART dataset to match the CAMS spatial resolution.  

2.1.5 Chlorophyll-a 

Chlorophyll-a (ChlA) is commonly used as a proxy for phytoplankton biomass and oceanic productivity (Arnold et al., 2010; 

Huot et al., 2007), and was included for that purpose in this study. Level 3 datasets of satellite-derived daily surface 

chlorophyll-a concentration with a spatial resolution of 4 km from the European Space Agency’s GlobColour Project3 250 

(https://www.globcolour.info/, last access October 1, 2022) were obtained from the Copernicus Marine Environment 

Monitoring Service (CMEMS4). This product is produced by reprocessing the merged observations from five satellite 

radiometers (OLCI from Sentinel 3a and 3b, MODIS on Aqua, and VIIRS from Suomi-NPP and JPSS-1), therefore missing 

data due to the presence of clouds is minimized. The GlobColour dataset is a common and suitable choice for investigating 

phytoplankton (Ardyna et al., 2017; Becagli et al., 2022; Cole et al., 2015; Xi et al., 2020). The ChlA datasets were re-gridded 255 

using bilinear interpolation (xESMF v0.8.2 python package (Zhuang et al., 2023)) to match the 0.5° spatial resolution of 

FLEXPART.  
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2.1.6 DMS Flux 

Oceanic emissions of dimethyl sulfide (DMS) were used to evaluate the ocean-air exchange of DMS and were downloaded 

from the Copernicus ADS webpage (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-260 

inventories?tab=overview, last access 15 September 2022) and were not calculated offline for this study. DMS is the initial 

precursor for MSA formation, therefore, information on its oceanic emission is central to investigating processes related to 

MSA variation. The estimation of oceanic DMS emissions to the atmosphere requires DMS concentrations in the ocean as 

well as meteorological variables, specifically the u and v components of 10-meter wind speed, as well as the sea surface 

temperature. The oceanic DMS concentrations used for the flux estimation were provided by Lana et al., (2011). The data are 265 

derived from numerous measurements obtained for the period 1989-2009 and were obtained from the Surface Ocean Lower 

Atmosphere Study (SOLAS) webpage  (https://www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/, last 

access 15 September 2022). It should be noted that these oceanic DMS concentrations are based on a monthly climatology. 

Formulas for the calculation of the DMS flux were provided by Nightingale et al. (2000). Meteorological data computed by 

the Norwegian Meteorological Institute using the ECMWF-IFS model version Cy40r1 were used. The daily mean emission 270 

data are provided on a regular longitude-latitude grid on 0.5° × 0.5° resolution for the period 2000 to 2018.  

2.2 Feature Engineering: Residence time weighted average of environmental variables 

For our data-driven modeling efforts, we engineered appropriate input features to capture the air mass history (environmental 

conditions and surface interactions) in a time-resolved manner, i.e., capturing the environmental conditions where an air mass 

was actually located for different intervals backward in time. To create a time-resolved air mass history, FLEXPART residence 275 

time and environmental variables from the datasets described in Section 2.1 were combined. A total of five timesteps backward 

in time was selected as the duration of the air mass history: as the lifetime of DMS in the atmosphere is approximately 2 days 

(Breider et al., 2010; Lundén et al., 2007), this can account for the emission and oxidation of DMS and the detection of MSA 

at the ground-based stations. Daily intervals were selected as the temporal resolution of this air mass history as a compromise 

between high enough time resolution to capture physical and chemical processes and the number of input features in our 280 

models. We also selected daily resolution for the time-resolved air mass history to match the highest sampling frequency (daily 

at Gruvebadet). For each variable and observation, we calculated aggregations for daily intervals (up to 5 daily timesteps 

before release time) backward in time as indicated in Table 2. For the vertically resolved environmental variables (ERA5 and 

CAMS), the geopotential height of each grid cell was calculated according to the ERA5 documentation using temperature, 

surface level pressure, and geopotential height (IFS Documentation CY41R2 - Part III: Dynamics and Numerical Procedures, 285 

2024). This geopotential height of each grid cell was compared to the boundary layer height from ERA5. Grid cells inside the 

boundary layer were averaged to create a boundary layer average of the environmental variables. Grid cells above the boundary 

layer height were averaged up to the ERA5 model level corresponding to the highest non-zero FLEXPART level to create a 

free troposphere average of the environmental variables. The residence time in the boundary layer and free troposphere was 
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calculated by summing the FLEXPART residence time over all longitudes and latitudes for grid cells below or above the 290 

boundary layer height, respectively. The relative residence time (boundary layer or free troposphere) was calculated by 

normalizing the FLEXPART residence time in each grid cell to the sum of FLEXPART residence times over all grid cells and 

was applied to the boundary layer and free troposphere separately. To account for different sized grid cells, the relative 

FLEXPART residence time was weighted by the area of each grid cell (grid cell area weighted relative residence time). The 

grid cell area weighted relative residence time was used to calculate a weighted average of the environmental variables. In this 295 

manner, we could ascertain the environmental conditions while accounting for where air masses actually were, directly 

accounting for transport at our locations of interest. A schematic for the feature engineering procedure is displayed in Fig. 1 

using SSRD at Gruvebadet on 1 June 2010 as an example. 

 

 300 
Figure 1. Schematic of the feature engineering process. The top row represents the relative FLEXPART boundary layer 

residence time and the bottom row shows the average surface solar radiation downwards (SSRD, Table 1) for the different 

daily intervals backward from 2010-06-01 00 for Gruvebadet. Calculating a weighted average of the SSRD using the relative 

residence time as weights results in the weighted average listed below each SSRD subpanel.  

2.3 Preparation of input data 305 

Measurements of MSAp at the ground-based stations varied in terms of frequency and regularity, while the feature-

engineered variables (described above in Sect. 2.2) were initially processed at hourly resolution for every third hour (the 

temporal resolution of the FLEXPART output). The variables therefore needed to be temporally aggregated to match the 

station measurements. The aggregation was done over non-overlapping time windows corresponding to the sampling periods 

of each installed aerosol filter. For this aggregation, some features were summed while others were averaged, according to the 310 

physical nature of each variable and how it relates to MSA formation/removal (see Table 2 for more details). For instance, 

time over open water (OPEN_WATER) was summed as the total amount of time air masses spent over open water is more 

informative than an average, whilst for the 2-meter temperature (T2M), a sum is not physically meaningful therefore an 

arithmetic mean was applied. LSRR (originally expressed as mm day-1 in ERA5) was summed over the daily intervals to give 
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units of mm. Total DMS emission is originally expressed as kg m-2 s-1, during the feature engineering procedure the time unit 315 

was converted to days, the area unit was converted to km-2, the emission was summed over the daily intervals, normalized to 

the grid cell area, and summed over all grid cells for a given daily interval to give units of kg (which was then summed over 

the filter collection period).  

The four stations only measure MSAp concentrations locally, therefore, models were first trained and tested on the 

specific stations individually, as indicated by “St” throughout the text. To model Pan-Arctic MSAp, we created two additional 320 

datasets to train our models. The first one is called All Stations Full (ASF), which is simply the merger of all data from the 

four stations. For this, the stations’ geographical coordinates were not used: Stations were implicitly considered as independent 

replicates (in a statistical sense) if they had data on the same day. The second additional dataset is called All Stations (AS), 

which is another merger of a subset of data from the four stations: We sub-sampled measurements from the stations with higher 

temporal frequency (e.g., Gruvebadet with mostly daily measurements) to match that of the lowest temporal frequency (Alert, 325 

with roughly weekly measurements). Therefore, in AS all four stations are represented equally in terms of the number of 

observations.  

The feature engineering presented in the previous sections produced a large number of variables we could include in 

our models as predictors. The different data sources also had varying degrees of accuracy and reliability. We therefore 

manually subset the features into two groups, denoted as Group A and B. Group A included the variables that we deemed to 330 

be the most related and reliable among the predictors of MSAp, using domain knowledge of atmospheric chemistry and physics. 

For instance, surface air temperature affects the oxidation pathways of DMS and the thermodynamic phase of water in the 

atmosphere furthermore this variable is well reproduced by ERA5 in the Arctic (Pernov et al., 2024a), hence was included in 

Group A. Group B includes features which were expected to be good predictors for MSA, although the accuracy of these 

variables may be lower in the areas covered by our study. For instance, measurements of hydroxyl radical mixing ratios (OH) 335 

are analytically challenging and datasets are sparse (Lelieveld et al., 2016; Stone et al., 2012), therefore CAMS cannot be 

validated against sufficient in situ observations, especially in the Arctic, hence it was included in Group B. DMS flux is based 

on a monthly climatology of seawater DMS concentrations (Lana et al., 2011), therefore, short-term variations depend only 

on parameterizations based on wind speed and sea surface temperature, and hence was included in Group B. Table 2 lists all 

features in Groups A and B. Table A1 lists commonly used abbreviations throughout this manuscript. 340 

2.4 Model evaluation 

We evaluated our models by assessing the out-of-sample prediction error. To this end, we first performed a training-

test split: for every station, we left out some observations corresponding to one or two summers, before attempting any 

modeling (Table 3). These were our test subsets, and they were used to assess prediction error as a last step for the final versions 

of the models presented below. The remaining data are our training subsets on which we applied a temporal cross-validation 345 

(CV) scheme. This CV scheme was mainly used for hyperparameter tuning for the baseline models (see Section 2.6.1) and 

was the criterion in the feature selection procedure for the additive model (see Section 2.6.2). We used a six-fold CV, 
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corresponding to leaving out one year of data from the training set (between 2010 and 2015, see Table 3) for each station. 

Thus, five years of data were used for fitting the models and out-of-sample prediction could be performed on the one year of 

data in the left-out fold. Details about both training and test data for all stations are summarized in Table 3. Among other 350 

accuracy metrics, CV-based mean squared error (MSE) was computed as an average over the six folds. MSE is defined by Eq. 

(1):  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ (𝑦𝑦𝑖𝑖−ŷ𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                                                                                                    (1) 

 355 

where y𝑖𝑖 is an observation and 𝑦𝑦�𝑖𝑖 is the prediction of the model on this datapoint (from either RF or AM), and n stands for the 

number of observations in a given fold for a given station. MSE values lie within [0, ∞], where a value closer to 0 represents 

better predictions (lower error). Another two important metrics we report are the prediction coefficient of determination (or R2 

value) as defined by Eq. (2): 

 360 

 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−ŷ𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−ȳ𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

                                                                                                                                                                      (2) 

 

where 𝑦𝑦� denotes the mean of the observations in all other folds for a given station (constant prediction). We also report the 

Pearson (linear) correlation coefficient (PCC) as defined by Eq. (3): 

 365 

𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)(𝑦𝑦�𝑖𝑖−𝑦𝑦��)𝑛𝑛
𝑖𝑖=1

�∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦��)2𝑛𝑛

𝑖𝑖=1

                                                                                                                                                        (3) 

 

where 𝑦𝑦�� denotes the mean of the predictions. Note that the R2 can take values within (−∞, +1]: A value of 0 means that the 

model prediction is equivalent to the average of the MSA values in the training set, a negative value means that the model 

predictions are worse than this average, and a value closer to 1 means that the model predicts better than the training set average 370 

(a value of 1 meaning perfect prediction). It should be noted that the R2 metric we use in this study is not the square of the 

PCC. The PCC is calculated using the stats module from the Python package scipy. 

We compute all metrics on two scales: the original scale of values and the natural logarithm scale, the one used to 

train the models. The purpose of training the models and assessing their prediction on the log scale as well is that large 

observations are compressed by the transformation, thus squared errors on the log scale may be more informative for the 375 

majority of the observations (i.e., less sensitive to potential outliers). The same metrics were also computed on the test set. 
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Table 2: Key details of the features used for data-driven modeling of MSAp. Variables for the boundary layer and free 

troposphere are denoted by “BL” and “FT”, respectively. ERA5 data on surface and model levels are denoted by “SL” and 380 

“ML”, respectively. For the Aggregation Method column, “Average” indicates the arithmetic mean.  

Abbreviation Description Units Dataset Aggregation 
method Group 

WS_BL Wind speed BL m s-1 ERA5 ML Average A 
WS_FT Wind speed FT m s-1 ERA5 ML Average A 
OPEN_WATER Time over open water (<20 % sea ice) s km-2 ERA5 SL Sum A 
OPEN_PACK_ICE Time over open pack ice (>20 and <80 % sea ice) s km-2 ERA5 SL Sum A 
CONSOLIDATED_PACK_ICE Time over consolidated pack ice (<80 % sea ice) s km-2 ERA5 SL Sum A 
RT_BL Residence time BL s FLEXPART and ERA5 Sum A 
RT_FT Residence time FT s  FLEXPART and ERA5 Sum A 
SP Surface pressure hPa ERA5 SL Average A 
SST Sea surface temperature K ERA5 SL Average A 
Q_BL Specific humidity BL kg kg-1 ERA5 ML Average A 
Q_FT Specific humidity FT kg kg-1 ERA5 ML Average A 
T_BL Temperature BL K ERA5 ML Average A 
T_FT Temperature FT K ERA5 ML Average A 
T2M Air temperature at 2 m K ERA5 SL Average A 
SSRD Solar shortwave radiation downwards W m-2 ERA5 SL Sum A 
STRD Solar thermal radiation downwards W m-2 ERA5 SL Sum A 
ChlA Chlorophyll A mg m-3 Chlorophyll-a Average B 
DMS DMS emitted kg DMS Flux Sum B 
TCLW Total column cloud liquid water kg m-2 ERA5 SL Average B 
O3_BL Ozone mixing ratio BL ppbv CAMS Average B 
O3_FT Ozone mixing ratio FT ppbv CAMS Average B 
LWC_BL Specific Cloud Liquid Water BL kg kg-1 ERA5 ML Average B 
LWC_FT Specific Cloud Liquid Water FT kg kg-1 ERA5 ML Average B 
BLH Boundary Layer height m ERA5 SL Average B 
OH_BL OH radical mixing ratio BL ppbv CAMS Average B 
OH_FT OH radical mixing ratio FT ppbv CAMS Average B 
LCC Low cloud cover (0-1) ERA5 SL Average B 
RH Relative humidity % ERA5 SL Average B 
PRECIP Time with precipitation s km-2 ERA5 SL Sum B 
NO_PRECIP Time with no precipitation  s km-2 ERA5 SL Sum B 
LSRR Large-scale rain rate mm ERA5 SL Sum B 

2.5 Imputing missing values 

Missing data for both the in situ MSAp measurements (target variable) as well as for the input variables (features) exist and 

potentially could affect or bias our analyses. Regarding the in situ MSAp measurements, we considered the station-specific 

aerosol filter collection duration (called hereafter nominal resolution) as a reference over which features were aggregated. 385 

These nominal resolutions were: daily for Gruvebadet and Utqiaġvik/Barrow, every two days for Pituffik/Thule, and seven 

days for Alert. Based on a trial and error approach, we decided to enforce the rule that any sequence of consecutive missing 

values longer than three times this nominal resolution would be deemed too long to be imputed without introducing artifacts. 

These long patches were thus left as is and features were aggregated over time windows according to the nominal resolution. 

Shorter sequences of consecutive missing values were imputed at the nominal resolution. For Gruvebadet and Pituffik/Thule, 390 
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this was done by linear interpolation using the two closest available measurements. For Utqiaġvik/Barrow, the variable 

temporal resolution depending on the time of year (Table 1) complicated this procedure, and gaps of three and four days 

occurred too often for our rule to be applied strictly at a daily nominal resolution. Here we left gaps up to five days (as these 

could be valid measurements) as is and imputed by linear interpolation based on the two closest values to those gaps lasting 

between five and ten days. Finally, Alert required more care, as missing values could last for long periods (> 3 weeks), making 395 

linear interpolation unreliable. Here, we used different imputation methods for short gaps (up to two missing values) and long 

gaps (three weekly values missing), targeting at most ten days between values. For short gaps, we used local quadratic fits, 

fitted by minimizing the sum of squared residuals on the natural logarithm scale. We used neighborhoods of three available 

values before and after the gaps, weighted by a Gaussian kernel. For the single long gap, we used a model with a polynomial 

of degree 5 representing long-term time trends and yearly seasonality represented by a linear combination of cubic B-splines, 400 

also fitted by minimizing the sum of squared residuals on the log scale. Figure S14 illustrates the imputation of such short and 

long gaps for Alert in situ measurements. 

Regarding the input feature, ChlA, to minimize the impact of short gaps due to clouds or the presence of sea ice, we 

studied different data imputation strategies. We first assessed seven different algorithms (mean, median, imputeTS (Moritz 

and Bartz-Beielstein, 2017), k nearest neighbor, principle component analysis, and MissForest) based on randomized masking 405 

of measurements for Alert and measured the reconstruction error over the imputed values. Within the feature set, there are 

strong correlations that can be exploited to fill measurements. We found that MissForest (Stekhoven and Bühlmann, 2012) 

was the best-performing method, and we used this to impute values for the entirety of the feature input dataset. MissForest is 

based on the application of Random Forests iteratively. First, it imputes missing input data using the mean. Then it trains a 

Random Forest regressor on a set of fixed features, to predict missing values on a separate feature to be filled. It proceeds 410 

iteratively and stops when the predicted missing values converge, or when the maximum number of iterations is reached. 

MissForest is highly flexible and does not make any assumptions about the data distribution. However, purely statistically 

driven data imputation might lead to physically implausible values. To achieve consistency, we set all ocean biology variables 

(DMS and ChlA) to 0 if the sea ice concentration from ERA5 was >80 % as no ocean-atmosphere exchange is expected for 

these conditions. For each station, measurements below the reported limit of detection were imputed with half the detection 415 

limit (Becagli et al., 2016, 2019; Moffett et al., 2020; Sharma et al., 2019). 

 

Table 3: Train/test splits for all stations. N is the number of observations in each set. 

 Training set years N Test set years N 

Alert 2010-2015 166 2016-2017 56 

Gruvebadet 2010-2015 937 2017 173 

Pituffik/Thule 2010-2015 360 2016-2017 107 

Utqiaġvik/Barrow 2010-2015 311 2008-2009 109 
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2.6 Data-driven models 420 

For this task, we considered non-linear regression models approximating the log-transformed target, MSAp concentration, plus 

a constant as 𝑌𝑌𝑖𝑖 = ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 10−3), for 𝑖𝑖 =  1,2, . . . ,𝑁𝑁, where N is the sample size (different for each station, Table 3). Our 

choice of log-transformation and addition of a constant was based on achieving a somewhat symmetrical target distribution, 

which is better suited when using a mean squared error loss function, as well as improving numerical stability in the 

optimization. All models make use of the same engineered features presented above as inputs to predict Y. We considered two 425 

main approaches for modeling these relationships: a “baseline model” composed of a common random forest (RF) regressor 

(Breiman et al., 1984), which is a standard and well-accepted regression model, also offering some insights on feature 

importance; and we developed a specific additive model (AM), which models in a more principled manner the temporal 

relationships across the features and the target while providing a more interpretable model overall. The interpretability of 

estimated effects in the AM is a key aspect here, and the main reason why we developed it. The goal is to identify drivers and 430 

describe their relation with the target variable, while at the same time to have full control over the optimization process and 

variable selection procedure. We present the baseline RF model and its setup in the following Section 2.6.1 and the AM in 

Section 2.6.2. Other modeling approaches were explored, we summarize their performance in Supplementary Text 2 and Fig. 

S1. These other approaches were not retained because their predictive performance was no better than that of RF and AM. In 

the case of similar performance, RF and AM still had interpretability benefits, notably in identifying which features contributed 435 

the most to the model prediction power, and thus were the ones we retained.  

2.6.1 Baseline model: Random Forest 

Random Forests (RF) are among the top-performing models in a wide variety of classification and regression tasks and are 

known to be robust to overfitting while being fast to train and fast at inference (Biau and Scornet, 2016). RFs are often a 

nominal selection for most data-driven applications. RFs are composed of an ensemble of decision trees, where each tree is 440 

trained on a random subset of data (a bootstrap) and by testing a random subset of features for each decision tree node 

optimizing an impurity measure. Averaging the output of each trained tree, allows the RF to predict a given input datapoint. 

In addition, RFs provide an implicit ranking of features, which for regression tasks is based on the average reduction in the 

squared error at node splits for a given feature, which we will refer to as an importance score. Although ranking features 

according to their explicit relationship with the target variable is a difficult problem, RFs provide a simple yet effective way 445 

to sort features from more to less important. This will be used to qualitatively compare with the selected features based on our 

proposed AM described in Section 2.6.2. 

For each experiment with RFs, we performed a grid search for the depth of each tree and for the minimum number of 

data points per node to make it a leaf. Those two hyperparameters control how much each tree in the random forest can grow, 

trading off training accuracy for speed as well as avoiding overfitting. The number of trees was set to 500 and kept constant 450 

for all the experiments; a larger number of trees did not result in better models but only in increased computational time. 
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We selected the most important features for the RFs using a method analogous to the additive model forward selection 

procedure described in Section 2.6.2. First, for each of the 500 trees in each RF model, the list of features with a model 

importance score ≥ 5% of the maximum importance score for that tree was found. We then took the summed importance scores 

for each feature across all trees in which they were selected and divided them by the total number of trees (500) to estimate 455 

the mean score of each feature only from the trees where it was selected. If this mean score was ≥ 5% of the mean of the 

maximum importance scores for each tree, the feature was selected for that model. Re-training the RF with only the selected 

features did not materially change its predictive performance, see Figure S1. 

2.6.2 Additive model 

To maximize predictive performance while retaining interpretable feature effects we developed an additive model (AM) (Buja 460 

et al., 1989; Hastie and Tibshirani, 1990). This assumes that the mean of the log-transformed MSA Y is linked to the features 

by smooth (non-linear) functions. As these functions are unknown, we approximate them by linear combinations of user-

specified basis functions. To this end, we used the standard cubic B-splines as bases (de Boor, 2001). The ith aggregated value 

of the kth feature is denoted by 𝑥𝑥𝑖𝑖,𝑘𝑘, for 𝑘𝑘 =  1, 2, . . . ,𝐾𝐾, where K is the number of features used in the model (the maximum 

being K = 80 for Group A and K = 155 for Group A+B). The cubic B-spline basis function is generically written as 𝐵𝐵(). The 465 

AM main equation can be expressed according to Eq. (4): 

 

𝑌𝑌𝑖𝑖  =  𝛼𝛼0  +  ∑ ∑ 𝛼𝛼𝑗𝑗,𝑘𝑘𝐵𝐵𝑗𝑗(𝑥𝑥𝑖𝑖,𝑘𝑘)𝐽𝐽
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1  +  𝜀𝜀𝑖𝑖                                                                                                                                 (4) 

 

where α0 is an intercept, J is the number of spline bases we use for every feature effect represented by the linear combination 470 

∑ 𝛼𝛼𝑗𝑗,𝑘𝑘𝐵𝐵𝑗𝑗(𝑥𝑥𝑖𝑖,𝑘𝑘)𝐽𝐽
𝑗𝑗=1 , the 𝛼𝛼𝑗𝑗,𝑘𝑘 s are coefficients weighting the different splines bases for the kth feature effect, and 𝜀𝜀𝑖𝑖  is an 

independent error term assumed to have mean zero and constant variance. To reduce the computational cost and as an indirect 

regularization (see below) we set J = 5 throughout. This implies that the spline function relies on J − 2 = 3 knots; these were 

set as the minimum, median, and maximum observed values for each feature. There are thus P = K(J − 1) + 1 free model 

parameters. These were estimated on the training data by minimizing the mean squared error (Eq. 1).  The mean squared error 475 

loss function relies on the assumed independence between the values of 𝜀𝜀𝑖𝑖. Even though the MSA measurements were recorded 

sequentially in time, with the possibility of temporal dependence (autocorrelation), we believe the independence assumption 

is tenable here. The rationale is that if the K features include a subset of relevant variables that explain and predict Y, then all 

that remains is indeed white noise represented by 𝜀𝜀. In other words, we assume any (marginal) temporal dependence in Y is 

captured by the effect of the available features. 480 

The main challenge when fitting such a model is that K can be potentially large, leading the number of parameters P 

to exceed the number of observations N. That is, the AM can easily overfit the training data, with estimated feature effects 

appearing overly complex (i.e., wiggly) and difficult to interpret. As we want the model to predict well out-of-sample 
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observations, some regularization is required. Typical regularization approaches allow for a large J and involve adding 

penalties to the mean squared error loss so that many values of 𝛼𝛼𝑗𝑗,𝑘𝑘 are shrunk towards zero or even exactly set to zero (Wood, 485 

2017). We explored such approaches, notably using effect-specific ridge penalties or a group lasso penalty to select features 

as part of model fitting, but could not obtain satisfying results. These also came with undue computational overhead involved 

in part in selecting the penalty/smoothness hyperparameters. We thus opted for a simpler strategy: set J = 5, which is rather 

small and guarantees on its own that the estimated feature effects are relatively smooth albeit flexible enough. Rather than 

enforcing some penalty to counteract a large K, we selected features with a forward stepwise selection (FSS) procedure (Trevor 490 

Hastie et al., 2020). This scheme starts with an empty model, only with the intercept 𝛼𝛼0, and sequentially adds features based 

on an objective criterion. Our criterion here is the prediction MSE based on the temporal CV described in the previous section. 

At each FSS step, the feature that reduces this CV-based MSE the most is selected and kept in the model in subsequent steps. 

The scheme ends when the MSE reduction is smaller than a threshold of 5% of the initial reduction from an empty model to a 

model with one feature. That way, the model never includes too many variables, P remains low relative to N, and we have the 495 

guarantee that the selected features are useful in predicting/forecasting MSA observations. This also comes with computational 

gains, since the independent fits at each step (one for each candidate feature) can be parallelized. After this FSS round, we 

explored if any pairwise interaction (product of two features) between the selected features was worth including. For this, we 

applied the FSS in a similar fashion and only kept the most useful interactions with the same 5% MSE reduction threshold. 

In addition to predictions, the AM yields interpretable effects as output. After training, the estimated effect of feature 500 

k on the response is calculated similarly to the mean prediction 𝑦𝑦�𝑖𝑖 presented above, where all features except the kth are set to 

their mean observed value. Therefore, only the marginal contribution of the kth feature remains, and this can be represented as 

a curve, typically represented over a scatter plot of the response plotted against the kth feature. We refer to these curves (and 

the plots by extension) as "partial effects". These partial effects can also be constructed for pairwise interactions. In this case, 

the interaction between features k and l is computed as the mean prediction where all other features except k and l are set to 505 

their mean. The interaction partial effect plot is then a three-dimensional surface represented as a function of features k and l. 

The partial effects were calculated using only the training set.  

2.7 Numerical Model Output 

2.7.1 GEOS-Chem 

Output from the global chemical transport model, GEOS-Chem (v12.9.3: https://zenodo.org/records/3974569), for 510 

atmospheric concentrations of MSAp for the years 2016 and 2017 and was used in this study. Transport processes and cloud 

properties are driven by NASA MERRA‐2 (Modern‐Era Retrospective Reanalysis for Research and Applications, Version 2) 

reanalysis meteorology (Gelaro et al., 2017), which has a horizontal resolution of 0.5° × 0.625°. GEOS-Chem has a 4° × 5° 

horizontal resolution with 47 vertical levels. The chemical reactions were calculated every 60 min and the monthly averaged 

data was produced as model output. Boundary layer MSAp is calculated from GEOS-Chem output of boundary layer height, 515 
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air density, temperature, and surface pressure. The oceanic DMS emission flux is parameterized using a sea surface temperature 

and wind speed-dependent gas transfer velocity (Johnson, 2010) and the climatology of seawater DMS concentrations (Lana 

et al., 2011; Nightingale et al., 2000). GEOS-Chem contains comprehensive HOx–NOx–VOC–O3–halogen tropospheric 

oxidant chemistry including recent updates to halogen chemistry and cloud processing (Bey et al., 2001; Holmes et al., 2019; 

Wang et al., 2019). In addition to the original version of GEOS-Chem v12.9.3, we used the multiphase DMS oxidation 520 

chemistry scheme recently developed by Tashmim et al. (2024), while the aqueous-phase reaction of MSA and OH was omitted 

due to the high uncertainty in its reaction rate (Chen et al., 2018). The wet and dry deposition schemes for aerosols and gas 

species are based on previous studies (Amos et al., 2012; Liu et al., 2001; Wesely, 1989). 

2.7.2 OsloCTM3 

The OsloCTM3 is an offline global three-dimensional chemistry transport model with total MSA (gaseous and particulate 525 

MSA) and output for 2008-2017 was used in this study. We opted to include this model output even though it was for total 

MSA as modeled MSAp in the Arctic is scarce and from measurements of gaseous and particulate MSA from the MOSAiC 

expedition (Boyer et al., 2023; Heutte et al., 2023; Shupe et al., 2022) the ratio of gaseous to particulate MSA in the central 

Arctic Ocean is approx. 0.03, thus would not likely significantly influence the results of this study. OsloCTM3 is driven by 

meteorological forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecast System 530 

(ECMWF-IFS) model with a 3-hourly temporal resolution. OsloCTM3 has a 2.25° x 2.25° horizontal resolution, 60 vertical 

layers, and monthly temporal resolution. The lowest layer was taken as representative of surface concentrations. OsloCTM3 

consists of a tropospheric and stratospheric chemistry scheme (Søvde et al., 2012) as well as aerosol modules for sulfate, 

nitrate, black carbon, primary organic carbon, secondary organic aerosols, mineral dust, and sea salt (Lund et al., 2018). The 

sulfur cycle chemistry scheme and aqueous-phase oxidation are described by Berglen et al. (2004). The oceanic DMS emission 535 

flux in OsloCTM3 is parameterized using wind fields from ECMWF-IFS, gas transfer velocity calculations from Nightingale, 

(2000), and seawater DMS concentrations from Kettle and Andreae, (2000). Aerosol removal includes dry deposition and 

washout by convective and large-scale rain from ECMWF-IFS.  

2.7.3 GISS-E2.1 

The NASA Goddard Institute of Space Studies (GISS-E2.1) Earth system model (ESM), GISS-E2.1, is a fully coupled ESM, 540 

for a full description of GISS-E2.1, see Kelley et al. (2020). GISS-E2.1 has a horizontal resolution of 2° x 2.5° and 40 vertical 

layers and produced monthly output for 2008-2017. The output of the GISS-E2.1 model used historical CEDS emissions from 

2008 to 2014 and SSP2-4.5 from 2015 to 2017. The lowest layer was taken as representative of surface concentrations. The 

tropospheric chemistry scheme used in GISS-E2.1 (Shindell et al., 2001, 2003) includes inorganic chemistry of Ox, NOx, HOx, 

CO, and organic chemistry using the CBM4 scheme (Gery et al., 1989). The meteorology was nudged to the NCEP reanalysis 545 

(Kalnay et al., 1996). The one-moment aerosol (OMA) scheme used (Bauer et al., 2020) is a mass-based scheme in which 

aerosols are assumed to remain externally mixed and have a prescribed and constant size distribution. The OMA scheme treats 
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sulfate, nitrate, ammonium, carbonaceous aerosols (including methanesulfonic acid formation), dust, and sea salt. The natural 

emissions of DMS are calculated interactively using prescribed and fixed maps of DMS concentration in the ocean (Im et al., 

2021).   550 
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3 Results and Discussion 

This section begins with an analysis of the seasonal cycles and source regions of in situ MSAp observations at the High Arctic 

stations for context. We then evaluate current numerical models’ ability to simulate MSAp followed by a performance analysis 

of our data-driven models. The most relevant features selected by the models are discussed, and their effects on the AM output 

of MSAp are investigated.  555 

3.1 In-situ MSA observations from Arctic stations 

The locations and seasonal cycles of MSAp at each of the Arctic stations are displayed in Fig. 2a and b, respectively. For all 

stations, MSAp is elevated beginning in April and ending in September. This period corresponds to polar day, receding sea ice, 

increase in atmospheric oxidants as well as phytoplankton blooms. Details about each station’s seasonal cycle and source 

regions are given below.  560 

Alert, the most northern station located at 210 m asl on the Canadian Archipelago (Fig. 2a and Table 1), which is 

surrounded by sea ice and land, experiences air mass transport mainly from the central Arctic Ocean, Canadian Archipelago, 

and Greenland Sea (Sharma et al., 2012). Alert exhibits a maximum in MSAp during May (0.014 [0.011, 0.021] µg m-3, median 

[25th, 75th percentiles]) followed by lower levels during June and July until reaching a second smaller maximum in August 

(0.009 [0.006, 0.011] µg m-3). The maximum in May is likely due to efficient transport from regions of biologically active 565 

waters in the Northern Atlantic (Sharma et al., 2012; Xie et al., 1999) while the second maximum in August likely arises from 

biological emissions from regions of retreating sea ice in the Arctic Ocean (Sharma et al., 2019). 

Gruvebadet, located on the coast of the Svalbard Archipelago with sea ice to the north and open ocean to the south, 

experiences air mass transport mainly from the Greenland and Barents Sea (Becagli et al., 2016). Gruvebadet displays the 

highest MSAp concentrations of all the stations, with a maximum in May (0.022 [0.011, 0.046] µg m-3). As the summer 570 

progresses, monthly median MSAp concentrations steadily decrease, although the 75th percentile does display a shoulder in 

July showing the increased variability of MSAp during the later summer months. The May maximum is likely related to the 

spring bloom in the Barents Sea and the variability in the later summer is likely biological activity in the Greenland Sea as 

well as differences in oceanic DMS-producing species in these regions and timing/location of sea ice retreat (Becagli et al., 

2019).  575 

Pituffik/Thule, located in Northwestern Greenland at 220 m asl, experiences air mass transport almost exclusively 

from Baffin Bay (Becagli et al., 2016). Although located close to each other, Pituffik/Thule experiences similar levels of MSAp 

compared to Alert but interestingly a different seasonal cycle. From May to July, median MSAp concentrations at 

Pituffik/Thule plateau around 0.011 [0.007 and 0.018 µg m-3], while Alert experiences two local maxima (May and August as 

discussed above). The northern section of Baffin Bay regularly experiences the North Water (NOW) polynya, which is 580 

characterized by sea-ice-free areas and upwelling of nutrients (Tremblay et al., 2002). The NOW polynya begins to form in 

early spring and stays open until late July when sea ice is largely absent from the region. The timing of the NOW polynya and 
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the associated exposure of the underlying ocean to the atmosphere and solar radiation as well as nutrient-rich upwelling (which 

is crucial for DMS production) is the likely cause of the rather flat MSAp seasonal cycle at Pituffik/Thule (Becagli et al., 2016).  

Utqiaġvik/Barrow, located on the shores of the Beaufort Sea in the North American Arctic experiences air mass 585 

transport from the central Arctic Ocean (Chukchi and Beaufort Seas), the Bering Sea/Strait, and surrounding continental areas 

(Alaska, Canada, and Russia) (Moffett et al., 2020; Quinn et al., 2002; Sharma et al., 2012). Utqiaġvik/Barrow displays a 

different seasonal cycle compared to the other stations (Fig. 2b), with maximum MSAp concentrations occurring in later 

summer. Utqiaġvik/Barrow experiences an increasing pattern in MSAp concentration from April culminating in a maximum 

monthly median during August (0.012 [0.006, 0.016] µg m-3). Interestingly, the maximum 75th percentile (June) at 590 

Utqiaġvik/Barrow is not concurrent with the maximum monthly median (August), which indicates higher variability in June 

but on average higher values during August. The low values in early spring could be due to the low amounts of biological 

activity in the surrounding seas (Hulswar et al., 2022; Lana et al., 2011) during this time (as opposed to the biologically active 

waters in the Northern Atlantic during spring), whilst the late summer peak could be due to transport from more warmer, local 

waters in the Northern Pacific during August (Moffett et al., 2020; Quinn et al., 2002), which is a hotspot of DMS emission 595 

(Wang et al., 2020).  

The differences between the stations could be credited to the different locations, sea ice retreat timing/location, 

differences in the DMS-producing communities, oxidant species and levels, precipitation patterns, and different air mass 

transport patterns. The differences in the seasonal cycles, environmental conditions, and circulation patterns of these 

geographically dispersed measurement stations allow for an investigation and modeling of the processes unique to each station 600 

from a Pan-Arctic perspective. While much research has gone into elucidating the source regions, geographic differences, and 

seasonal behavior of MSAp, few have investigated the environmental drivers of MSAp, which is one of the goals of this study.  

 

 
 605 

Figure 2. Station locations and seasonal cycles. (a) Map of Arctic stations marked with a red star. The map background is 

from Natural Earth. (b) MSAp seasonal cycle at Alert (red), Gruvebadet (blue), Pituffik/Thule (cyan), and Utqiaġvik/Barrow 

(magenta). The median is represented by the thick lines and the interquartile range is represented by the shading.  
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3.2 Comparison of numerical model output to in situ MSA concentrations 

We compare in situ MSAp measurements from each Arctic station to output from three numerical models (GEOS-Chem, 610 

OsloCTM3, and GISS-E2.1) and one reanalysis product (CAMS) to gauge their current predictive abilities. Details about 

CAMS are given in Sect. 2.1.4 and details about the numerical models are given in Sect. 2.7. For a quantitative comparison 

using a regression analysis, we focus on the same evaluation metrics used for evaluating the data-driven models (R2, PCC, and 

MSE) and limit our evaluation to the same months (April-September), we calculated the slope of predicted versus measured 

MSAp as an additional metric. For a qualitative comparison, we compare the average seasonal cycles of numerical model 615 

output to in situ observations. For both the quantitative and qualitative comparison, we utilize all available years at a given 

station to obtain as large of sample size (and therefore a more robust statistical analysis) as possible. Our intent with such a 

comparison is to quantitatively gauge the current level of predictive performance for MSAp in numerical models, especially 

for the seasonal cycle, and for comparison against our data-driven models. We do not intend to identify and explore the 

underlying causes of the discrepancies between the numerical models and observations which is beyond the scope of this work. 620 

The regression analysis and seasonal cycles of the numerical models against in-situ observations for Alert, Gruvebadet, 

Pituffik/Thule, and Utqiaġvik/Barrow are presented in Fig. 3, S2, S3, and S4, respectively. 

Output from GEOS-Chem was only obtained for 2016-2017 therefore only a comparison at Alert, Gruvebadet, and 

Pituffik/Thule was possible. MSAp from GEOS-Chem is calculated over the height of the boundary layer for comparison to 

observations. For all three stations, a negative R2 value is observed, indicating that GEOS-Chem is worse at predicting MSAp 625 

values than the mean of the observations. PCC values range from 0.16 (Pituffik/Thule) to 0.85 (Gruvebadet), although only 

one year was available for comparison at Gruvebadet (Sect 2.1.1 and 2.7.1) making this result less statistically robust. MSE 

values range from 6.27 × 10-3 (Alert) to 3.5 × 10-2 µg m-3 (Gruvebadet) (Figs. 3, S2, and S3). Slopes larger than one are 

observed for all stations (ranging from 1.28 (Pituffik/Thule) to 6.67 (Gruvebadet)), indicating GEOS-Chem overestimates 

MSAp relative to observations. The seasonal cycle of observed MSAp is best reproduced by GEOS-Chem at Alert, with the 630 

model able to capture the double maxima in spring and autumn (Fig. 3), although the timing and relative magnitude of the 

second peak in autumn are not aligned with observations. 

The OsloCTM3 output is available for the entire study period, therefore, all data from all stations could be used. 

MSAp concentrations from the lowest model level were taken as representative of the surface level. OsloCTM3 overestimates 

in situ MSAp observations at all locations, with slopes ranging from 3.5 (Pituffik/Thule) to 6.5 (Gruvebadet). Additionally, the 635 

variation and magnitude are poorly reproduced with negative R2 values for all stations. The PCC slightly captures variability 

with values ranging from 0.18 (Utqiaġvik/Barrow) to 0.47 (Gruvebadet). MSE values range from 0.013 (Pituffik/Thule) to 

0.066 µg m-3 (Gruvebadet). The month of peak MSAp concentrations is consistently during June in OsloCTM3 which does not 

reflect the variations in the timing of the seasonal maxima at the various locations. At no station does the model correctly 

predict the peak month of MSA concentration.  640 
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GISS-E2.1 output is available for the entire period and the lowest model level was taken as representative of the 

surface. The GISS-E2.1 model generally overestimates in-situ MSAp at Gruvebadet, Pituffik/Thule, and Utqiaġvik/Barrow 

(slopes ranging from 1.63 to 4.2) and the observed variation is poorly captured with negative R2 values and MSE values ranging 

from 1.78 × 10-4 (Alert) to 0.014 µg m-3 (Gruvebadet). At Alert, the magnitude of MSAp concentrations is best reproduced by 

the GISS-E2.1 model compared to other stations as evidenced by the lowest MSE (1.78 × 10-4 µg m-3), although concentrations 645 

are underestimated with a slope of 0.52 and the variation and magnitude are poorly captured with a negative R2 value. PCC 

values range from 0.19 (Alert) to 0.64 (Gruvebadet). The peak month of MSAp concentration from the GISS-E2.1 model is 

consistently during June. Several features from the in situ  MSAp seasonal cycles are captured by the GISS-E2.1 model, for 

example, the second, minor peak of MSAp during August at Alert. The peak month of MSAp concentrations at 

Utqiaġvik/Barrow is August and while GISS-E2.1 does not capture this, it does show elevated levels during August. At 650 

Pituffik/Thule, the seasonal cycle is quite well captured apart from greatly overestimating concentrations during June. Overall, 

the GISS-E2.1 model reproduces MSAp concentrations at similar magnitudes as in-situ observations and can capture certain 

features of the observed seasonal cycle, although it incorrectly predicts the timing and concentrations during the peak month 

of MSAp levels.  

The CAMS MSAp data were averaged using the median according to the start and stop time of filter samples for the 655 

respective stations. CAMS output generally, but only slightly, underestimates in situ MSAp observations with slopes for all 

stations ranging from 0.45 to 0.80.  The variability and magnitude are poorly captured with negative R2 values for all stations. 

The PCC is consistent for each station with values between 0.3 to 0.4 and MSE values range from 2.1 × 10-4 (Pituffik/Thule) 

to 1.46 × 10-3 µg m-3 (Gruvebadet). The absolute values of the seasonal cycle are close to observed values, although, the peak 

MSA month is incorrectly predicted by CAMS at each station. A slight shoulder is observed during May for CAMS MSAp660 

  at Alert, however, no other noticeable features of the in-situ seasonal cycle are reproduced. Overall, the CAMS 

reanalysis product most accurately reproduces the levels, seasonal cycle, and spatial distribution of MSAp in the Arctic, 

although it does not reproduce the timing of peak MSA concentrations.  

In summary, we find that, in general, numerical models struggle to accurately reproduce the variability, magnitude, 

and seasonal cycles of in situ MSAp observations. GEOS-Chem, GISS-E2.1, and OsloCTM3 overestimate MSAp levels and 665 

miss the timing of peak MSA concentrations. CAMS is generally able to reproduce MSAp levels with a similar magnitude 

compared to observations although the seasonal cycle is usually inconsistent. Although CAMS was able to most accurately 

reproduce the behavior of MSAp, it will not be able to predict long-term future concentrations for climate analysis, being a 

reanalysis product capable of only short-term forecasting. Therefore, our science community still lacks the appropriate 

modeling tools to accurately explore the climatic importance and future changes of MSAp.  670 
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Figure 3. Comparison of modeled against in situ MSAp observations from Alert. Scatterplots on the left compare only 

April to September (over the available period for each station) with the 1:1 line in blue, linear fit in black, 95% confidence 

intervals estimated through bootstrapping in the shading. and  and seasonal cycles on the right (thick line is the median and 675 

shading is interquartile range) for GEOS-Chem (a and b), OsloCTM3 (c and d), GISS-E2.1 (e and f), and CAMS (g and h). 

The MSE, R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively. 

 

3.3 Data-driven model performance 

In this section, we present and discuss the implemented data-driven models used to estimate ambient MSAp concentrations. 680 

We use the RF as a baseline model and focus on AM as a tailored model developed for the task at hand. Figure 4 summarizes 

the prediction performance in the temporal CV scheme and on the test set (Table 3) for the RF and AM with Group A+B on 

the four stations. The 𝑅𝑅2, PCC, and MSE metrics are computed on the MSAp original scale in Fig. 4a and c, and on the log 

scale in Fig. 4b and d, respectively.  
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Prediction performance is relatively good on the log scale, with R2 values up to 0.49 and 0.54 and PCC up to 0.74 685 

and 0.82 for the temporal CV and test datasets respectively. Comparing the two models, AM has systematically higher CV R2 

(correspondingly lower MSE and similar PCC) in the St evaluations. This is expected since its variable selection procedure 

was designed to minimize the CV-based MSE. In the AS and ASF evaluations, neither model seems to clearly outperform the 

other. The R2 values on the original MSAp concentration scale are lower than on the log-transformed data, with a maximum 

of 0.37 and 0.29 for the temporal CV and test datasets, respectively. A likely explanation for the better performance on the 690 

log-scale could be the inter-annual, short-term variations in MSAp concentrations, which tend to be underpredicted by the 

models, particularly affecting the original scale data (Figs. 5 and S6), but less so for the log-transformed data which the models 

were trained on. The underprediction of MSAp peaks is particularly noticeable for Gruvebadet, where R2 values on the log-

transformed data are much higher than for the original data (Fig. 3c and d). Scatterplots and regression lines of the measured 

versus modeled MSAp are displayed in Fig. S7. The regression lines for RF and AM against observations often overlap or have 695 

similar slopes, but with a slight vertical shift particularly evident for Utqiaġvik/Barrow, indicating that different models are 

producing different amounts of background MSAp for this station. Comparing the left side of Fig. S7 with the right side, the 

log transformation clearly facilitates model fitting as mentioned above, especially for Gruvebadet (Fig. S7b and f). 

Our two data-driven models are relatively complex and rely on a large number of features for this prediction task. 

However, the results suggest that our models might be missing important variables or critical relationships that are not captured 700 

either due to inaccuracies in the original datasets (ERA5, CAMS, FLEXPART, etc.) or an effect of the feature engineering 

(averaging over daily intervals smooths out short-term temporal/spatial variation or important processes are occurring on 

timescales further backward in time than five days). In addition, interannual variability can cause seasons in some years to be 

markedly different than in other years, making the out-of-sample prediction quite challenging for low-time resolution datasets 

of 8 years. This is exacerbated by splitting the dataset into training and test sets which further reduces the amount of available 705 

data for the algorithm to learn from the data, although this is an essential step in data-driven modeling. The best MSE values 

on the original data scale are found with the AM for Alert and Pituffik/Thule, whereas the results on the log scale are clearly 

best at Gruvebadet (Fig. 4c and d). The better performance for Gruvebadet, with a daily temporal resolution, can likely be 

explained by its training sample size (N = 937) being roughly three to six times larger than that of the three other stations, 

highlighting the importance of high temporally resolved data. On the original MSA scale, Alert shows the lowest prediction 710 

performance, with Utqiaġvik/Barrow being a close second. Alert, with weekly temporal resolution, has the smallest training 

sample size (N = 166), again hinting at the importance of having enough observations to achieve better prediction. The modeled 

MSAp from RF and AM show similar temporal patterns relative to the observations for the test set years (Fig. 5), although 

capturing both the timing and magnitude of peaks and troughs is difficult and often only one of the two is captured at a time 

(i.e., either the magnitude or timing is predicted correctly but not both). 715 
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Figure 4: Prediction performance for the temporal cross-validation (CV) scheme and on the test set for the four stations, 

using the selected features from Group A+B for the random forest (RF) and additive model (AM). (a) and (b) show CV 

performance on original and log scales, respectively. (c) and (d) show performance on the test set on original and log scales, 720 

respectively. In each panel, R2 is shown in the top sub-panel, the Pearson correlation coefficient (PCC) in the middle sub-

panel, and the mean squared error (MSE) at the bottom. St refers to a model trained and tested on the specified station, AS 

refers to a subset of the data with an equal number of observations from each station, and ASF refers to all data from all four 

stations and tested only on the specified station. MSE is multiplied by 104 to display three significant digits. The color scale 

indicates performance, where the darkest blue signifies the best performance (lowest MSE, highest R2, and highest PCC within 725 

each row). The MSE, R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively. 

 

Importantly, by comparing the St and ASF fits for both models, it seems that the ASF fitted values tend to have a 

higher spread (higher MSE, Fig. 4). That is, pooling all four stations together for a single Pan-Arctic model often yields more 

variable predictions, and thus rarely improves the fit locally. These geographically dispersed stations with varying seasonal 730 

cycles (Fig. 2) should theoretically allow the modeling of MSAp from a Pan-Arctic perspective (i.e., modeling processes 

occurring throughout the Arctic and not only at a specific station). However, the time series from the individual stations might 
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behave differently enough that pooling all observations together does not allow for improved modeling. The fact that models 

trained and tested on individual stations do not show particularly high evaluation metrics either (St. in Fig. 4) could also 

contribute to this observation. The chemical and physical processes of MSAp production are necessarily similar across the 735 

Arctic, however, the relative importance of certain processes might change depending on time and location. If a station-specific 

model cannot capture the relationships in the data, either due to missing input variables, inaccuracies in the original input 

datasets used for feature engineering, inter-annual variability, or the low time resolution, then these errors will propagate into 

the AS and ASF datasets. These compound errors may in effect prevent the model from capturing these processes. Pooling 

several geographic locations into a single data-driven model is common in ML and has been shown to provide promising 740 

results (Bertrand et al., 2023; Mansour et al., 2023; McNabb and Tortell, 2022; Zhou et al., 2023). Here our results suggest 

this likely only has an advantage if the individual stations can be accurately modeled. 

While our data-driven models struggle to reproduce the observed MSAp with particularly high accuracy (max R2 = 

0.29), they can capture variability (PCC up to 0.77), and they outperform the classic numerical models. This is evident from a 

comparison of the negative R2 values for the numerical models (indicating the numerical models are worse at predicting MSAp 745 

compared to the mean of the observations) versus the data-driven models (Fig. 4). This shows that data-driven modeling (as 

opposed to the numerical modeling) has the potential to more accurately represent ambient MSAp concentrations when only 

considering the input data and there is still significant progress to be made in modeling natural, biogenic Arctic aerosols from 

a numerical and data-driven perspective. A comparison of the seasonal cycle from numerical vs data-driven models for only 

the test set years (thus a direct comparison of the same periods) is shown in Fig. 9 and evaluation metrics are showed in Fig. 750 

10. This shows our data-driven models can reproduce the seasonal cycle with greater accuracy compared to data-driven models.  
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Figure 5: Observed and modeled time series of MSAp for the test dataset at all four stations. (a) and (b) Alert, (c) 755 

Gruvebadet, (d) and (e) Pituffik/Thule, and (f) and (g) Utqiaġvik/Barrow. St refers to a model trained and tested on the specified 

station and ASF refers to all data from all four stations and tested only on the specified station. The observations are shown in 

black. Data from Gruvebadet during 2016 is not available.  

 

3.4 Selected features 760 

Features contributing significantly to the RF and AM model outputs for different backward timesteps were selected 

from the Group A and A+B subsets for each model using the FSS (see Methods for more details). Group A included reliable 

features for prediction of MSAp and Group B included features expected to be good predictors of MSAp, although less reliable. 

The right-hand panel in Fig. 6 summarizes which features are selected by which model over all timesteps, for both the Group 

A and Group A+B subsets of variables, for every station as well as the two additional merged datasets AS and ASF. Generally, 765 

AM selects fewer features than RF over the four stations (Table 4). AM selects between two and eight variables for Group A 

and between three and six for Group A+B, whereas RF selects between 14 and 44 features for Group A (an exception being 

Pituffik/Thule, for which the models select at most five variables in Group A, see below) and between 14 and 17 features for 

Group A+B. This suggests that the variables in Group A+B can explain the MSA variance using fewer variables.  

The differences in selected variable counts between RF and AM can likely be explained by the fact that RF has some 770 

difficulty distinguishing between features computed at various timesteps backward for the same feature type, in comparison 

to AM. This is because each of the features computed for a given backward timestep tends to correlate substantially (e.g., 
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meteorological conditions are usually correlated to the previous days’ conditions), which can make RF feature ranking 

inconsistent across the different decision trees. Therefore, each decision tree will likely only select one specific timestep of a 

feature, if that feature group happens to be important for MSAp overall. Thus, by averaging over all trees, the different timesteps 775 

of a given feature type are likely to be ranked similarly and the strength of the ranking score is averaged out. In contrast, AM 

is not an ensemble and its variable selection operates sequentially, therefore if a backward timestep for a given feature (among 

the five timesteps) is already included and if the other four are strongly dependent and not adding additional information to 

the model then they will likely not be selected. Therefore, the most relevant timestep is selected consistently with AM while 

RF selects different timesteps of the same variable. Another contributing factor to the difference between the number of 780 

features selected by each model could be the sensitivity of the cutoff threshold (5 %) in the FSS procedure, which would 

disproportionately impact the ensemble RF model over AM. The prediction performance is similar for both models (Fig. 4), 

therefore we can compare the selected features for each model on an equal footing. The two models were also compared with 

features grouped for all five backward time steps (left-hand panel of Fig. 6), which shows that a similar number of features 

were chosen for RF and AM when the backward time steps were not considered separately. While the models disagree on the 785 

number and which backward time step is important for MSAp prediction, importantly, they do agree on which features are 

most important, indicating these models can learn the same underlying factors that drive MSAp levels.  

The features selected by each model and station combination for Group A+B are listed in Table 4, where a common 

theme for the type of features selected emerges. Each model and station combination tend to select a source-related feature 

(either related to marine biogenic emissions, total DMS emitted or ChlA, or air mass contact with surface environments, time 790 

spent over open water, OPEN_WATER, residence time in the boundary layer, BL_RT), a chemical processing-related feature 

(solar radiation (SSRD), OH, O3, specific humidity (Q), cloud liquid water content (LWC)), and a removal-related feature 

(large-scale rain rate, LSRR). For instance, AM for Gruvebadet selected four features, which are related to marine emissions 

of DMS (ChlA_1.2 and DMS_4.5), oxidation of DMS and its intermediates to MSA (OH_BL_0.1), and removal (LSRR_1.2). 

There are, however, exceptions to this tendency, notably a removal-related feature is mainly absent from the model/station 795 

combinations (Alert RF, Gruvebadet RF, Pituffik/Thule RF/AM, and AS RF) and for Utqiaġvik/Barrow AM and RF, a source-

related features are absent.  

Another important observation from the analysis of the selected features is that models trained on Group A+B tend 

to select much fewer meteorological features than models trained on only Group A. For example, specific humidity (Q) and 

temperature (T) are often selected if the smaller Group A is being used but are almost never selected when using Group A+B. 800 

A possible explanation for this is that some features that are in Group B but not in Group A correlate with such meteorological 

variables, likely because they are driven by or co-vary with meteorological processes, e.g., solar radiation being a proxy for 

OH levels. This suggests that the smaller number of features selected from Group A+B (including oceanic biological, oxidant, 

and precipitation features, Tables 2 and 4) are better suited to capture the variability in MSA compared to a larger number of 

mainly meteorological features selected from Group A. We separated the input features into two groups to examine how the 805 

data-driven models predict MSAp when only using reliable meteorological features, and when additional chemical and oceanic 
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related features were used as input. Comparing the evaluation metrics between models trained on Group A variables (Fig. S5) 

and Group A+B (Fig. 4), we can see there are no clear systematic differences between station/model combinations trained on 

different input data groups. Models trained only on reliable features (Group A) can perform similarly to models trained on all 

features (Group A+B), therefore modeling MSAp in the Arctic can likely be achieved only using meteorological features that 810 

act as proxies for chemical and oceanic processes without negatively compromising model performance.  

3.4.1 Source-related features 

For the source-related feature type, RF and AM do not agree on the selection of DMS. RF never selects DMS while AM selects 

it for all sites except Pituffik/Thule. A possible explanation for this is that ChlA acts as a proxy for the biological activity that 

drives seawater DMS production and emission (Mansour et al., 2020; Rinaldi et al., 2013). Indeed, ChlA is chosen by RF for 815 

Gruvebadet, AS, and ASF. Importantly, AM never selects the 0–1 day back version of DMS and the earliest timestep selected 

is 2-3 days back for ASF as well as the 3-4 days back version for Utqiaġvik/Barrow and Pituffik/Thule. Conversely, both AM 

and RF select early timesteps of ChlA, with the latest being 2-3 days back. This could be due to differences in the nature of 

the data source, with ChlA being a satellite product vs DMS emissions being parameterized based on wind speed, sea surface 

temperature, and seawater DMS climatologies (see Methods). The presence of clouds, which obscure the satellite view, could 820 

also affect the timesteps selected for ChlA. Even though the ChlA dataset used should minimize the effect of clouds, their 

influence is still present, while the DMS climatology is unaffected by their presence. Missing ChlA was imputed and this could 

also affect the results shown here. The other source-related feature selected is the time air masses spent within the boundary 

layer and over open water (sea ice < 20 %, OPEN_WATER), with both models selecting this feature for different stations and 

days backward. RF selected OPEN_WATER_3.4 for Alert, while AM selected the 0-1 and 4-5 days back versions for ASF 825 

and Pituffik/Thule, respectively (Table 4). Overall, while there is some disagreement between RF and AM on which source-

related features are selected, both models can learn that a certain time lag seems necessary for air mass contact with biologically 

active marine environments to predict MSAp well, which indicates the results from the models are physically plausible.  

3.4.2 Chemical processing-related features 

For the chemical processing-related feature type, surface shortwave radiation downwards (SSRD) is commonly selected by all 830 

models when training models on Group A features only. When training models on Group A+B features, RF also always selects 

at least one version of SSRD while AM only selects SSRD for Alert and Pituffik/Thule. Thus, SSRD generally appears to be 

a strong predictor of MSAp, which is expected given the need for solar radiation in the generation of photochemical oxidants 

required for MSAp production, both in the gas- and aqueous-phases (Jiang et al., 2023; Wollesen de Jonge et al., 2021). AM 

almost exclusively selects the 0–1 timestep of SSRD, which hints at the near-immediacy of a causal relation between solar 835 

radiation, and MSAp generation, likely through the production of OH radicals and other photochemical oxidants (e.g., BrO and 

aqueous-phase O3). Gas-phase OH radical mixing ratios (either for the boundary layer or the free troposphere) are directly 

selected by both models at all sites except Utqiaġvik/Barrow. When AM selects OH, it is mainly the 0–1 or 1-2 days back 
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timestep, and either the BL or FT versions are selected depending on the station. This indicates that OH mixing ratios are 

making the largest impact on the model both aloft and close to the surface in the preceding 2 days before measurement. The 840 

lifetime of DMS is estimated to be on the order of days in the Arctic (Breider et al., 2010; Lundén et al., 2007) although the 

lifetime of the intermediate compounds dimethylsulfoxide (DMSO) and methanesulfinic acid (MSIA) are both less than one 

day (Hoffmann et al., 2016; Zhu et al., 2003). This indicates that the detected MSAp could be formed in close proximity to the 

measurement stations when sufficient solar radiation and photochemical oxidants become readily available (Collins et al., 

2017; Jiang et al., 2023). Interestingly, neither model selected any version of OH for Utqiaġvik/Barrow (Table 4), instead 845 

specific humidity (Q) and cloud liquid water content (LWC) was selected and Utqiaġvik/Barrow is the only station where gas-

phase O3 was selected (RF). It should be noted that gas-phase OH and O3 will dissolve into the aqueous-phase, thus also 

affecting aqueous-phase reactions as well. The selection of SSRD and OH at Alert, Gruvebadet, and Pituffik/Thule as well as 

the selection of LWC and Q at Utqiaġvik/Barrow hints at differences between the chemical processing between these stations 

during months of peak concentration. Utqiaġvik/Barrow, with its MSAp seasonal cycle peaking in late summer (Fig. 2b), is 850 

located in the Pacific sector of the Arctic while the other stations, with MSAp peaking in early summer, are located in the 

Atlantic sector (Fig. 2a). The selection of different chemical processing-related features for Utqiaġvik/Barrow and the 

geographic differences in relation to biologically active waters, sea ice, and ocean dynamics could explain the different 

seasonal cycle observed at Utqiaġvik/Barrow compared to the other stations. This analysis cannot quantitatively determine the 

relative importance of gas- vs aqueous-phase oxidation, previous research indicates that both are likely contributing to Arctic 855 

MSAp production (Chen et al., 2023; Kecorius et al., 2023; Pernov et al., 2024b; Shen et al., 2022). This study suggests that 

depending on the time of year and geographic location, different chemical processing mechanisms might be relatively more 

important. While there is disagreement between the most frequently selected timestep for DMS (4-5 days back) and ChlA (2-

3 days back), the selected timesteps for these features still mainly occur temporally before SSRD or OH when these features 

are selected together, indicating that our data-driven models can learn the temporal dependencies of the source- and chemical 860 

processing-related feature types affecting MSAp.  

3.4.3 Removal-related features 

LSRR (large-scale rain rate, Table 4) was selected by most model/station combinations to represent the removal of aerosols. 

Interestingly, the only other removal-related feature (time air masses experienced precipitation, PRECIP, including rain, snow, 

and a mix of both) is never selected by any model/station combination (Fig. 6 and Table 4). Particulate mass quickly decreases 865 

with initial increases in accumulated precipitation during air mass transport and levels off with larger amounts of precipitation 

(Isokääntä et al., 2022; Tunved et al., 2013). The PRECIP feature only estimates the time air masses experienced precipitation 

and does not account for the intensity. This could explain the selection of LSRR over PRECIP and suggests that the time air 

masses experienced precipitation (regardless of type – rain, snow, or mix) is less important compared to the intensity of 

precipitation (estimated by LSRR). The LSRR timesteps selected, however, showed no consistent pattern with different daily 870 

intervals being selected for different model/station combinations (Table 4). Precipitation can have dual effects on MSAp, where 
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precipitation closer to the station can act to remove aerosols resulting in lower MSAp while precipitation further back along 

the trajectory can create conditions conducive for secondary aerosol formation (for which MSA is an important component) 

(Khadir et al., 2023; Tunved et al., 2013; Xavier et al., 2022). These dual effects could complicate the consistent selection of 

timesteps for LSRR. The below-cloud scavenging coefficient of aerosol particles reaches a minimum in the accumulation 875 

mode (Andronache, 2003), which is where MSAp mainly resides (Kerminen et al., 1997), these aspects could also complicate 

the selection of removal related features. Overall, this shows that the data-driven models can discern removal mechanisms for 

MSAp, although does not specify when precipitation is important, and suggests that precipitation intensity (LSRR) is relatively 

more important than the total time air masses experienced precipitation (PRECIP).  

3.4.4 Physical meteorology related features 880 

Other feature types borne out of the FSS procedure include physical meteorology related features (e.g., boundary layer height 

(BLH) and wind speed (WS)) which can affect the sources, oxidation, and removal of precursors and MSAp depending on the 

prevailing environmental conditions. High wind speed can bring nutrients to the ocean surface thus stimulating marine 

biological activity and enhancing the ocean-atmosphere flux of DMS (Huebert et al., 2010; Park et al., 2013) but can also 

increase the oceanic mixed layer depth thus acting to delay spring phytoplankton blooms (Henson et al., 2009). Dry deposition 885 

of trace gases and aerosol particles is largely determined by turbulence which is driven by wind speed (Farmer et al., 2021) 

thus higher wind speeds can enhance dry deposition velocities (Mariraj Mohan, 2016) enhancing the removal of aerosols. High 

boundary layer heights can promote or diminish MSA burdens: high BLHs can dilute DMS in the lower atmosphere thus 

enhancing emissions but also diluting the oxidants and lowering the efficacy of MSAp production. High BLHs close to the 

station can also dilute MSAp concentrations. While the models mainly selected source, chemical processing, and removal 890 

related features, this shows that specific meteorological conditions can also affect MSAp variability.  

3.4.5 Vertical Origins 

Certain datasets (CAMS and ERA5 on model levels, see Methods) were vertically resolved which allowed for analysis of 

environmental conditions near the surface (or boundary layer, BL) and aloft (or free troposphere, FT). Similar to the different 

days back timesteps of a feature, AM selects only the most pertinent feature that contributes the most to the model output, as 895 

our variable selection procedure for AM performs this process sequentially by design, while RF trees select several different 

timesteps and vertical origins for each feature from a random subset thus might not be a globally optimal choice. This highlights 

the complementary nature of these two models for the feature-engineered input data – AM selects fewer features but 

specifically the ones that make the largest contribution to the model output while RF can broadly indicate the important features 

regardless of timestep or vertical origins. While this analysis cannot quantify the relative importance of BL or FT processes to 900 

MSA production, it is worth noting that AM for Alert and Pituffik/Thule (two stations located above the sea surface, Table 1) 

selected OH_FT_1.2, while Gruvebadet, Utqiaġvik/Barrow, AS, and ASF selected more BL than FT features (Table 4) and 

OH_BL was selected at these stations except for Utqiaġvik/Barrow where Q_BL_0.1 and LWC_BL_2.3 were selected. This 
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suggests that the two stations located at elevation are more influenced by FT processes than the stations located close to the 

surface and the Pan-Arctic merged datasets (AS and ASF).  905 

 

 
Figure 6: Overview of features selected by the RF and AM based on Group A and Group B, by station. The left panel 

shows selected features grouped over the 0–5 days prior to each MSAp measurement, and the right panel shows the features 

grouped for 0–1 (0), 2–3 (2), and 4–5 (4) days before each MSAp measurement. Features in Group A have their name in 910 

boldface and blue type, while the additional features that are only in Group B are in regular black typeface. The grey shaded 

area indicates that Group B features cannot be chosen in these model runs. St refers to a model trained and tested on the 

specified station, AS refers to a subset of the data with an equal number of observations from each station, and ASF refers to 

all data from all four stations and tested only on the specified station. Feature abbreviations are defined in Table 2. Only 

features selected at least once by a model/station combination are presented in this figure (i.e., if a feature is not included in 915 

the figure then it was not selected).  
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Table 4: Features selected by the different models using the Group A+B set of variables. N is the number of selected 

features. The chosen features are listed in order of importance for the model. Feature names are in the following format: 925 

ABBREVIATION_DAYS.BACK with the ABBREVIATION for each feature taken from Table 2 and DAYS.BACK is the 

daily interval backward in time preceding the measurement with the interval separated by a period and if the feature represents 

the boundary layer (BL) or free troposphere (FT) is also indicated, e.g., OH_BL_2.3 refers to the OH radical mixing ratio in 

the boundary layer 2-3 days before MSAp measurement. 

Station Model N Selected Features 

Alert AM 5 SSRD_0.1; DMS_4.5; LSRR_3.4; CONSOLIDATED_PACK_ICE_0.1; OH_FT_1.2 

Alert RF 17 BLH_0.1; SSRD_3.4; SSRD_4.5; SSRD_1.2; SSRD_0.1; SSRD_2.3; OH_BL_2.3; 

OH_BL_3.4; OH_BL_1.2; OH_FT_4.5; OH_FT_1.2; OH_BL_4.5; 

OPEN_WATER_3.4; OH_BL_0.1; OH_FT_0.1; OH_FT_3.4; OH_FT_2.3 

Gruvebadet AM 4 OH_BL_0.1; ChlA_1.2; DMS_4.5; LSRR_1.2 

Gruvebadet RF 14 OH_FT_0.1; OH_BL_0.1; OH_FT_1.2; SSRD_4.5; SSRD_3.4; OH_FT_3.4; 

ChlA_1.2; OH_BL_1.2; SSRD_2.3; SSRD_1.2; OH_FT_2.3; SSRD_0.1; 

OH_FT_4.5; ChlA_2.3 

Pituffik/Thule AM 3 SSRD_0.1; OPEN_WATER_4.5; OH_FT_1.2 

Pituffik/Thule RF 14 SSRD_0.1; SSRD_1.2; OH_BL_0.1; OH_FT_0.1; OH_BL_1.2; SSRD_2.3; 

OH_FT_3.4; OH_FT_4.5; OH_BL_2.3; OH_FT_1.2; SSRD_3.4; OH_FT_2.3; 

SSRD_4.5; OH_BL_3.4 

Utqiaġvik/Barrow AM 6 Q_BL_0.1; DMS_3.4; BLH_4.5; LSRR_4.5; LWC_BL_2.3; LWC_FT_0.1 

Utqiaġvik/Barrow RF 16 O3_BL_1.2; SSRD_2.3; Q_FT_1.2; Q_FT_0.1; SSRD_4.5; LSRR_0.1; SSRD_1.2; 

Q_BL_0.1; BLH_4.5; Q_BL_4.5; O3_BL_0.1; O3_BL_2.3; O3_BL_4.5; O3_BL_3.4; 

Q_FT_3.4; SSRD_3.4 

AllStations AM 7 OH_BL_1.2; WS_BL_0.1; DMS_3.4; LSRR_2.3; BL_RT_0.1; Q_FT_2.3; 

ChlA_2.3 

AllStations RF 17 OH_FT_3.4; OH_BL_0.1; OH_FT_0.1; OH_BL_1.2; OH_FT_1.2; OH_FT_4.5; 

OH_BL_2.3; OH_FT_2.3; SSRD_2.3; SSRD_3.4; WS_BL_0.1; SSRD_1.2; 

ChlA_2.3; OH_BL_3.4; OH_BL_4.5; WS_FT_0.1; SSRD_4.5 

AllStationsFull AM 6 OH_BL_0.1; DMS_2.3; WS_BL_0.1; LSRR_2.3; DMS_4.5; OPEN_WATER_0.1 

AllStationsFull RF 16 OH_FT_1.2; OH_FT_0.1; OH_BL_0.1; OH_BL_1.2; OH_FT_3.4; OH_FT_2.3; 

OH_FT_4.5; OH_BL_2.3; ChlA_2.3; SSRD_2.3; ChlA_1.2; SSRD_3.4; SSRD_1.2; 

OH_BL_3.4; SSRD_4.5; OH_BL_4.5 

 930 
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3.5 Contribution of selected features to model output (Partial effects) for Alert and Utqiaġvik/Barrow 

We investigated the relationships between the selected features and the AM output of MSAp, which produces estimated partial 

effects (representing the contribution of a feature to the model output after accounting for all other features, see Methods for 

more details) for every selected feature for every station and the merged datasets (AS and ASF). Figures 7 and 8 present the 

partial effects (as the solid red line) for the selected features at Alert and Utqiaġvik/Barrow, respectively, and the partial effects 935 

for Gruvebadet, Pituffik/Thule, AS, and ASF are displayed in Figs. S8-11, respectively. We present the partial effects for Alert 

and Utqiaġvik/Barrow as they are good examples of the relative importance of the two chemical processing methods observed 

in the study, gas- and aqueous-phase oxidation, respectively. The partial effects for each feature are discussed in order of 

importance from the feature selection process (Table 4). It should be noted that due to the different aggregation methods (sum 

or mean, Table 1) over the different temporal resolutions at each station (Table 2), the magnitude and units of certain features 940 

are not comparable between stations, therefore for display purposes only the summed features were divided by average number 

of input data contributing to the summed feature. In this manner, the partial effects plots are comparable between stations. For 

each subpanel, a scatterplot of the input variables and the corresponding model output of MSAp is also included. The partial 

effects should not be interpreted as a fitted value of this scatterplot. The scatterplot was included to show the data distribution 

and the low signal-to-noise ratio visible in the data: the observations have quite a large spread relative to the magnitude of the 945 

red solid curves representing the partial effects. It should also be noted that spline functions, like the B-splines used in the AM 

model (see Methods), are generally sensitive near the edges of the observed domain space if they contain few data points. 

Therefore, caution is urged when interpreting the partial effects if the data is highly skewed or if a few data points are contained 

at the edges of the domain space. 

3.5.1 Alert 950 

AM selected the following features at Alert, which are discussed in order of importance, SSRD_0.1, DMS_4.5, LSRR_3.4, 

CONSOLIDATED_PACK_ICE_0.1, and OH_FT_1.2 as well as the interactions between DMS_4.5 and SSRD_0.1 (Fig. 7).  

SSRD_0.1, a chemical processing related feature, makes a non-linear contribution to the model output of MSAp, with 

the maximum impact on model output in a certain range of values as well as low and high values of SSRD making similar 

contributions to model output (Fig. 7a). This indicates that there is a certain activation threshold of SSRD_0.1 required before 955 

this variable begins to increase MSAp in the model output, which is likely connected to the production of photochemical 

oxidants (Barnes et al., 2006; Song et al., 2022). Increasing SSRD above this threshold reduces the model output which could 

be due to photolysis of intermediate products during DMS oxidation or the continued oxidation of MSA to sulfate (Chen et 

al., 2018).  

DMS emissions during 4-5 days prior to observation, a source related feature, shows a linearly positive relationship 960 

to model output of MSAp, as expected (Fig. 7b). Although a slight change in the slope of this relationship is observed, indicating 

that the model output of MSAp is more sensitive to DMS emissions at lower values (with MSAp production likely being in a 
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DMS-limited regime) and are less sensitive at higher values (with MSAp production likely not limited by DMS availability 

but by other environmental conditions such as oxidants (Barnes et al., 2006)).  

LSRR, a removal related feature, makes a linearly, negative contribution to the model output of MSAp, indicating that 965 

precipitation acts to reduce the model output of MSAp (Fig. 7c), as expected (Isokääntä et al., 2022; Tunved et al., 2013). 

While this result is unsurprising, it adds validity to the model results by highlighting how they are physically interpretable. 

The partial effect of CONSOLIDATED_PACK_ICE, here treated as an indirect source related feature, shows a non-

linear relationship to model output of MSAp (Fig. 7d), with a maximum (minimum) at ~200 (~400) s km-2, respectively. Alert, 

being the northernmost station (Table 1) is usually surrounded by consolidated pack ice (Kwok, 2018) hence the transport time 970 

over consolidated pack ice will usually be non-zero. The maximum at ~200 s km-2 could indicate that air masses traversed 

biologically productive marginal ice zones before passing over consolidated pack ice and ultimately arriving at Alert (Sharma 

et al., 2012). The minimum of the partial effects at ~400 s km-2 is likely related to air masses spending time over the central 

Arctic Ocean and that did not come into recent contact with any major DMS source regions. 

OH_FT_1.2, a chemical processing related feature, shows a non-monotonic pattern with a maximum of around ~1.5 975 

× 10-5 ppbv and a minimum at ~4 × 10-5 ppbv (Fig. 7e). The maximum and minimum could indicate that a certain level of OH 

in the FT acts to produce MSAp and increasing OH above this level in the FT tends to decrease the model output of MSAp. A 

possible explanation could be the oxidation of intermediate compounds, DMSO and MSIA, to produce MSAp, and the 

continued oxidation of MSA to sulfate to diminish MSAp (Hoffmann et al., 2016). It should be noted that gas-phase OH will 

dissolve into the aqueous phase, therefore these reactions could both occur in either phase.  980 

Interactions between input features were also explored by multiplying the values of two input features together. Of 

the combinations tested for all features and stations, only the interactions between DMS_4.5 and SSRD_0.1 at Alert were 

retained (using the FSS with a 5% MSE reduction threshold, see Sect. 2.6.2). A contour plot of the model output of MSAp for 

different values of DMS_4.5 and SSRD_0.1 is shown in Fig. 7f. The results overall suggest that model output of MSAp is more 

sensitive to DMS_4.5 compared to SSRD_0.1 as indicated by the higher variability of MSAp model output over the range of 985 

DMS_4.5 at a fixed value of SSRD_0.1. This is especially evident for values of SSRD_0.1 above 400 W m-2, with a ridge of 

the maximum model output of MSAp for values of SSRD_0.1 around ~700 W m-2 (Fig. 7f). Taken together, this could indicate 

that at Alert, MSAp production is likely limited by DMS emissions and not necessarily by the availability of solar radiation 

(and therefore photochemical oxidants).  

 990 
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Figure 7: AM-St partial effects for the selected features at Alert. (a) SSRD_0.1, (b) DMS_4.5, (c) LSRR_3.4, (d) 

CONSOLIDATED_PACK_ICE_0.1, (e) OH_FT_1.2, and (f) DMS_4.5 and SSRD_0.1. For all panels except the bottom-right 

one, the red solid line is the partial effect for a different feature, blue points are the training observations, and orange crosses 

are the test data. The contour plot in the bottom-right panel shows the interaction effect between SSRD_0.1 and DMS_4.5, 995 

where the joint partial effect is represented by the color gradient. Feature abbreviations are defined in Table 2. St refers to 

models trained and tested on the specified station. Features aggregated as sums over filter time windows (see Table 2) are 

rescaled here by the average number of 3-hourly samples in each summation to help compare partial effects between stations. 

 

3.5.2 Utqiaġvik/Barrow 1000 

For Utqiaġvik/Barrow, AM selected the following features, Q_BL_0.1, DMS_3.4, BLH_4.5, LSRR_4.5, LWC_BL_2.3, and 

LWC_FT_0.1. 

Specific humidity is the mass of water vapor per mass of moist air and here is used as a proxy of aqueous-phase 

processing of DMS and its intermediates. For Q_BL_0.1, which represents the specific humidity in the boundary 0-1 days 

prior to measurement, the lower end of the feature range (< ~0.0025 kg kg-1) shows a small local maximum at ~0.00125 kg 1005 

kg-1. At the upper end, a linearly, positive relationship between Q_BL_0.1 and the model output of MSAp is observed (Fig. 

8a). This indicates that at lower values of Q_BL_0.1, the model output is showing a slight increase in MSAp and little variation 

with low values Q_BL_0.1 levels and at higher values of Q_BL_0.1 the model output of MSAp responds linearly. This 

relationship hints that at low values of Q_BL particles are not deliquesced yet and gas-phase oxidation could be more important 

while at higher values of Q_BL, sufficient aerosol liquid water is present for aqueous-phase processes to become dominant. 1010 

Another explanation for this relationship could be that moist air masses arrived from within the boundary layer and from 

marine regions, which would carry a higher signal of moisture uptake, although no air mass history features indicating transport 
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from marine regions (e.g., DMS, ChlA, OPEN_WATER, RT_BL) were selected for Utqiaġvik/Barrow suggesting this is 

improbable.   

The partial effects for DMS_3.4 display a U-shaped relationship for values < ~200 kg and afterward increase linearly 1015 

(Fig. 8b). The partial effects start to decrease at high values of DMS_3.4, although the few data points in the region add 

uncertainty to this slope change. The majority of the data for DMS_3.4 is skewed towards lower values, which likely 

contributes to the U-shaped partial effects below ~200 kg. Overall, the model output of MSAp increases with increasing DMS, 

again showing physically plausible results.  

The BLH 4-5 days prior to observation show an overall positive, linear relationship with the model output of MSAp, 1020 

although with some complex structure present (Fig. 8c). In the Arctic, and especially over sea ice, the BLH is largely controlled 

by wind shear-induced turbulence and cloud top radiative cooling (Nilsson, 1996; Overland, 1985; Tjernström et al., 2015). 

Recently, a gridded dataset of in situ-produced biogenic MSA (generated using machine learning) was published (Mansour et 

al., 2024) for the Northern Atlantic. An inverse relationship between BLH and in situ MSA was found, indicating that higher 

BLHs dilute the concentrations of MSA (Mansour et al., 2024). A machine learning study on the drivers of aerosol chemical 1025 

composition from Svalbard indicated an inverse relationship between BLH and biogenic-type aerosols (Song et al., 2022). 

These studies indicate that lower BLHs act to increase the concentration of MSA while higher BLHs dilute MSA in the lower 

troposphere. Our recent study analyzing the environmental drivers of MSA from a geographic perspective revealed the 

relationship between MSA and BLH is complex and displays different patterns in different months (Pernov et al., 2024b), with 

high values of BLH tending to increase the model output of MSA in all months but low BLHs also increased modeled MSA 1030 

during June and July. Our recent study and this work indicate that higher BLHs act to increase the modeled output of MSAp, 

which could be due to higher wind speeds (and thus higher BLHs) diluting atmospheric DMS levels therefore increasing the 

ocean-air flux of DMS. This also highlights the differences of considering air mass history when analyzing the relationships 

between aerosols and environmental drivers as opposed to considering only local, in situ explanatory variables.  

The partial effects for LSRR_4.5 show a somewhat unexpected relationship, with a maximum at ~1 mm and a linearly, 1035 

negative relationship afterward (Fig. 8d). The minimum at > ~ 4 mm is likely highly uncertain due to the low number of data 

points at the end of the feature domain space. A negative relationship is expected (and observed at other stations in this study 

and the literature) since precipitation acts to remove aerosols. The maximum of the LSRR partial effects at a non-zero value 

could be related to enhanced cloudiness and thus enhanced aqueous-phase processes although unlikely since AM selected the 

4-5 days back version of this feature. Another possible explanation could be that low values of precipitation 4-5 days prior to 1040 

measurement act to remove particles containing a high fraction of (possibly anthropogenic) sulfate (which are acidic and 

hygroscopic). Depending on the acidity of the remaining aerosols, this would create conditions that would favor the selective 

condensation of gas-phase MSA or diminish the evaporation of aqueous-phase produced MSA in less acidic particles since 

MSA has been shown to selectively condense on alkaline particles (Dada et al., 2022; Yan et al., 2020). The exact cause of the 

maximum LSRR_4.5 partial effect remains to be seen at this time and requires further investigation.  1045 
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LWC_BL_2.3 (defined as the boundary layer cloud liquid water content 2-3 days prior to measurement) is the amount 

of cloud liquid water and thus an excellent proxy for aqueous-phase processing. The partial effects for LWC_BL_2.3 display 

two local maxima: one at ~0.5 × 10-5 and another at ~4 kg kg-1 (Fig. 8e) albeit with an overall linearly, positive relationship 

with the model output of MSAp. The decrease in the partial effects after ~4 kg kg-1 carries added uncertainty due to the few 

data points but could possibly suggest the effect of precipitation at high values of LWC thus acting to remove MSA. These 1050 

two local maxima of LWC_BL_2.3 could indicate that gas-phase and aqueous-phase oxidation are the dominant mechanisms 

at lower and higher values of LWC_BL_2.3, respectively. If so, then the overall linearly, positive relationship for 

LWC_BL_2.3 and model output of MSAp could also indicate that aqueous-phase oxidation produces relatively greater amounts 

of MSAp compared to gas-phase oxidation, which is in line with the theoretical understanding (Chen et al., 2018; Hoffmann 

et al., 2016).   1055 

The amount of cloud liquid water in the free troposphere 0-1 days prior to measurement (LWC_FT_0.1) shows a 

similar relationship to model output of MSAp as does LWC_BL_2.3, with two local maxima, an overall positive relationship, 

and a decrease in model output after the second local maxima (Fig. 8f). Noticeable exceptions include the overall response of 

model output of MSAp being less sensitive to increases in LWC_FT_0.1 compared to LWC_BL_2.3 and the decrease in model 

output after the second local maxima being more substantial. This relationship likely points towards gas- and aqueous-phase 1060 

oxidation occurring at differing levels of LWC but also that the model output of MSAp is less sensitive to LWC in the FT than 

in the boundary layer and that high values of LWC in the FT more strongly removes aerosols than in the BL.  

 

 
Figure 8: AM-St partial effects for the selected features at Utqiaġvik/Barrow. (a) Q_BL_0.1, (b) DMS_3.4, (c) BLH_4.5, 1065 

(d) LSRR_4.5, (e) LWC_BL_2.3, and (f) LWC_FT_0.1.The red solid line is the partial effect for a different feature in each 

panel, the blue points are the training observations, and the orange crosses are the test data. Feature abbreviations are defined 
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in Table 2. St refers to models trained and tested on the specified station. Features aggregated as sums over filter time windows 

(see Table 2) are rescaled here by the average number of 3-hourly time steps to help compare partial effects between stations. 

 1070 

3.5.3 Summary of Gruvebadet, Pituffik/Thule, AS, and ASF 

For Gruvebadet, AS, and ASF, a source, chemical processing, and removal related feature type were selected for AM, except 

for a removal related feature being selected at Pituffik/Thule. The partial effects of the selected features for AM are discussed 

in detail in Sect. 3 of the SI. The chemical processing-related feature type was usually OH for Alert, Gruvebadet, 

Pituffik/Thule, and ASF while for Utqiaġvik/Barrow, Q and LWC were selected (Table 4) and interestingly the removal-1075 

related feature type (LSRR) showed a maximum at a non-zero value (Fig. 8d). The partial effects of Q and LWC show the 

presence of two local maxima and an overall positive relationship to model output of MSAp suggesting that the dual effects of 

gas- and aqueous-phase chemical processing can be detected. Our previous study showed the importance of both gas- and 

aqueous-phase oxidation for the geospatial modeling of Pan-Arctic MSA, with shortwave surface radiation (SSRD in this 

study), temperature (T2M), longwave surface radiation (STRD), and low cloud cover (LCC) being the top 4 important features. 1080 

Interestingly, neither T2M, STRD, nor LCC were selected for any station/model combination (Table 4). It should be noted that 

Pernov et al. (2024b) utilized a different feature engineering procedure to account for air mass transport patterns, a different 

data-driven model (gradient boosted trees vs RF/AM in this study), different explainability methods (SHAP (Lundberg and 

Lee, 2017) vs partial effects in this study), and focused on geospatial source regions from a Pan-Arctic perspective and not 

time series of time-resolved air mass history features at individual stations, therefore a direct comparison is complicated by 1085 

these facets. Although for the AS partial effects, the dual mechanisms of gas- and aqueous-phase oxidation are observed (both 

OH_BL_1.2 and Q_FT_2.3 were selected), indicating that modeling a merged Pan-Arctic dataset can detect these dual 

processes are occurring, similar to our previous research. The ASF features selected by AM and RF did not include an aqueous-

phase related oxidation feature (Table 4), which could be due to Gruvebadet contributing the greatest number of samples to 

the ASF merged dataset thus features selected at this station could dominate the selected features for ASF. Overall, the selected 1090 

features and their partial effects for the individual stations and merged datasets show our data-driven model produces physically 

realistic and interpretable results. 

 

 

 1095 
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Figure 9: Comparison of seasonal cycles for observations, St data-driven model, and numerical models. (a) Alert (b) 

Gruvebadet, (c) Pituffik/Thule, and (d) Utqiaġvik/Barrow. Monthly medians for observations (solid black), data-driven model 

(AM-St in solid red and RF-St in solid light blue), CAMS (dashed orange), GEOS-Chem (dashed dark blue), GISS-E2.1 

(dashed cyan), and OsloCTM3 (dashed magenta). Only data for the tests were included in this analysis for a fair comparison, 1100 

see Table 3 for dates. St refers to models trained and tested on the specified station. The evaluation metrics for each data-

driven and numerical model against in situ observations are given in Fig. 10.  

 

https://doi.org/10.5194/egusphere-2024-3379
Preprint. Discussion started: 14 November 2024
c© Author(s) 2024. CC BY 4.0 License.



42 
 

 
Figure 10. Prediction performance for the data-driven and numerical models on the test set for the four stations for the 1105 

random forest (RF) and additive model (AM). (a) Alert (b) Gruvebadet, (c) Pituffik/Thule, and (d) Utqiaġvik/Barrow. In 

each panel, R2 is shown in the top sub-panel, the Pearson correlation coefficient (PCC) in the middle sub-panel,  and the mean 

squared error (MSE) at the bottom. St refers to a model trained and tested on the specified station, AS refers to a subset of the 

data with an equal number of observations from each station, and ASF refers to all data from all four stations and tested only 

on the specified station. MSE is multiplied by 104 to display three significant digits. The color scale indicates performance, 1110 

where the darkest blue signifies the best performance (lowest MSE, highest R2, and highest PCC within each row). The MSE, 

R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively. 
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4 Conclusions 

The Arctic is undergoing drastic environmental changes inducing alterations in the natural aerosol population, which in turn 

affect the Arctic climate. Due to complex feedback mechanisms in the Arctic climate system, numerical modeling is vital for 1115 

understanding and predicting upcoming climate change and the role of natural aerosols therein. However, numerical models 

are deeply challenged in representing natural aerosols across the Arctic. Data-driven modeling can be a faster and less 

computationally intensive alternative for simulating Arctic aerosol processes, which can also identify important processes and 

variables to inform improvement efforts for numerical models. Therefore, we developed an alternative data-driven modeling 

approach for modeling Arctic MSAp using long-term in situ observations of MSAp from four High Arctic stations.  1120 

We developed an AM for the task of predicting MSAp observations. This tailored model allowed for more 

interpretable estimated relations (partial effects) in a more parsimonious format than the RF model, which served as a baseline, 

and this with both data-driven models achieving similar out-of-sample prediction performance. We incorporated feature 

selection procedures into both data-driven models which selected similar features when not considering the temporal 

dimension (timestep) of the features. However, RF selected more features compared to AM, when considering the timestep, 1125 

which could be attributed to the importance of different timesteps being averaged out over the ensemble of decision trees in 

RF versus AM which only selected the most important timestep for each feature. We utilized two groups of features for data-

driven modeling: one with only reliable features, and one with all features related to MSA production regardless of data source 

and degree of reliability. When modeling using only reliable features (which were mainly meteorological), they can act as a 

proxy for unreliable features (e.g., solar radiation (SSRD) acting as a proxy for OH radical mixing ratios), although no 1130 

systematic change in model performance was detected when including all features. Indicating that a similar model performance 

can be achieved by only using meteorological features but incorporating source, chemical processing, and removal related 

features (albeit with added feature uncertainty) resulted in fewer features being selected.   

We show that existing numerical models struggle to accurately simulate MSAp in terms of the magnitude, seasonality, 

and peak months of concentrations, which can have consequences for accurate estimations of the surface energy budget and 1135 

climate projections given the role of MSAp in the climate system (Fung et al., 2022; Mahmood et al., 2019). Our data-driven 

models outperform current numerical models for reproducing observations of MSAp, which is especially evident for the 

seasonal cycle. While data-driven models trained on merged datasets (AS and ASF) already outperform numerical models, the 

accuracy achieved by training on individual stations (St), is even higher (Fig. 4). Based on the correlation of monthly medians 

for the test set for each station, both the additive model (AM) and random forest (RF) can generally reproduce the seasonal 1140 

cycle of MSAp with greater accuracy than the numerical models based on the evaluation metrics used (Fig. 9, 10, S12, and 

S13), although there are few exceptions depending on station, dataset, and numerical model.  

Both models consistently selected features that were related to the source of MSA precursors (emission of DMS and 

air mass contact with biologically productive marine areas), chemical processing of DMS (and its intermediates) to MSA 

(SSRD, OH, specific humidity (Q) and cloud liquid water content (LWC)), and removal of aerosols (large-scale rain rate, 1145 
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LSRR). The timesteps selected by both models indicate that they can learn the correct timing of important processes related to 

MSA production, for instance when DMS and SSRD were selected together, the timesteps for DMS emission always preceded 

those of SSRD. The features also included a vertical dimension (boundary layer vs free troposphere). Results showed that the 

two stations located at elevated altitudes (Alert and Pituffik/Thule) were likely more influenced by processes in the free 

troposphere than in the boundary layer while the other stations (Gruvebadet and Utqiaġvik/Barrow) and merged Pan-Arctic 1150 

datasets showed greater influences from the boundary layer. The relationships between the input features and the model output 

of MSAp were investigated through the partial effects produced by AM.  

For Alert, Gruvebadet, Pituffik/Thule, and ASF, OH was the main chemical processing-related feature selected while 

for Utqiaġvik/Barrow, LWC and Q were selected, and for AS, both OH and Q were selected (Table 4). The selected features 

for AS suggest the dual effects of gas- and aqueous-phase processing are occurring on a Pan-Arctic scale. The selected features 1155 

and their partial effects for individual stations reveal site-specific characteristics that are likely contributing to the differing 

MSAp seasonal cycles for stations located in different sectors of the Arctic.  

While our methodology can outperform current numerical models there is room for improvement. Our in-situ 

observations were based on long-term datasets of low temporal resolution aerosol filter samples and were therefore limited in 

sample size. The input features were aggregated to the same temporal resolution as the collected filters, therefore fully 1160 

capturing processes occurring on shorter time scales than the filter collection periods can be challenging. This is reflected in 

the ranking of data-driven model performance for the individual stations (Gruvebadet > Pituffik/Thule > Utqiaġvik/Barrow > 

Alert), which directly mirrors the decreasing temporal resolution of these stations (Table 1). Long-term, high temporal 

resolution MSAp measurements are essential for accurately capturing processes that are short-lived and highly variable. 

Essential sources and sinks related to the burden of MSA, e.g., DMS emission and precipitation, while included in our model, 1165 

are difficult to accurately represent using climatology-based parameterizations and reanalysis products, respectively, and 

improved estimations could be incorporated in future data-driven model updates. Representation of specific oxidants (e.g., 

halogen radicals and dissolved oxidants) is missing from our input features due to a lack of adequate datasets. Incorporating 

accurate representations of these crucial species would help the data-driven models elucidate the relative importance of gas- 

versus aqueous-phase oxidation of DMS and specific oxidants. One of the main shortcomings of the data-driven models is the 1170 

inability to capture peak or minimum concentrations, which could be due to the low temporal resolution of the input target 

data into the models, inadequate representation of sources/sinks, the input data missing important features (such as dissolved 

oxidants or halogen species), processes occurring on timescales longer than the 5 days utilized in this study, or the daily interval 

between timesteps being too coarse. Future data-driven modeling efforts could focus on capturing the drivers related to these 

extremes of the MSA distribution.  1175 

This data-driven modeling methodology using the time-resolved air mass history can be applied to other atmospheric 

constituent datasets at these Arctic stations for the study period, allowing researchers to investigate other natural aerosol 

components or precursor species (e.g., sea salt or dimethyl sulfide) in a consistent and time efficient manner.      
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We recommend that numerical models be evaluated for the following processes that we identified as critical with our 

two data-driven model approaches: DMS emission, chemical processing, and removal.  1180 

• Oceanic emission of DMS is the initial step for MSA formation and AM identified DMS emission, OPEN_WATER, and 

ChlA as key features. The numerical models in this study all utilized climatologies of seawater DMS concentrations and 

parameterizations for estimating the DMS flux. Updating DMS emissions schemes using data-driven modeling can help 

improve estimates of MSA and sulfate as well as radiative forcing (Mansour et al., 2023; McNabb and Tortell, 2022; 

Regayre et al., 2020; Wang et al., 2020; Zhao et al., 2022). Current DMS emission parameterizations rely on seawater 1185 

concentration, sea surface temperature, and wind speed (Johnson, 2010; Lana et al., 2011; Nightingale et al., 2000) 

although studies show real-world emissions are affected by atmospheric DMS levels, air temperature, pH, and nutrient 

availability (Hopkins et al., 2023; Kloster et al., 2007; Steiner et al., 2012; Sunda et al., 2007; Zhao et al., 2024; Zindler 

et al., 2014). Improved DMS emission inventories should be a focus of the modeling community going forward either 

through updated parameterizations or data-driven estimates (Joge et al., 2024a, b).   1190 

• The data-driven models identified gas- and aqueous-phase oxidation to be affecting peak concentration months at different 

locations around the Arctic, namely OH, SSRD, LWC, and Q. Numerical models employ a plethora of chemical schemes 

for the oxidation of DMS and its intermediates, although shortcoming exists regarding aqueous phase oxidation, rate 

reaction coefficients, and oxidant concentrations (Bhatti et al., 2024; Cala et al., 2023; Chin et al., 1996; Fung et al., 2022; 

Hoffmann et al., 2021; Revell et al., 2019; Tashmim et al., 2024). This and our previous work (Pernov et al., 2024b) point 1195 

towards the dual effects of gas- and aqueous-phase oxidation both being key processes. Improvements to chemical 

processing schemes, especially aqueous-phase oxidation, as well as the inclusion of oxidants (halogens) and intermediates 

(DMSO, MSIA, and HPMTF) and their concentration levels should be a priority of the modeling community going 

forward (Chen et al., 2018; Hoffmann et al., 2021; Jongebloed et al., 2024; Tashmim et al., 2024).     

• The removal of MSA through wet deposition (LSRR) was found to be a key feature identified via AM at all 1200 

stations/datasets except for Pituffik/Thule and Utqiaġvik/Barrow (Table 4), however wet deposition is the key removal 

mechanism of MSA (Chen et al., 2018). Although dry deposition was not explicitly represented by our features, wind 

speed can be used as a proxy and was only selected by AM when considering the AS and ASF datasets and their 

relationship with MSAp output was negative (Figs. 10 and 11). Numerical models could benefit from improvements in 

representations in wet deposition including aerosol activation, below- and in-cloud scavenging, and precipitation 1205 

efficiency (Stier et al., 2024) as well as improvements in dry depositional processes.  

Altogether, this study shows that (1) existing numerical models cannot yet simulate Arctic MSAp accurately, (2) data-driven 

models can outperform current numerical models although with modest performance, and (3) data-driven models can capture 

physically meaningful relationships between input features and MSA predictions quite well and reveal specific processes 

occurring at the different stations. While data-driven modeling can aid in simulating levels of natural Arctic aerosol and 1210 

provide understanding of its drivers, it struggles with extrapolating beyond the distribution space of its training dataset 

therefore numerical modeling is ultimately needed to predict the effects of a future climate on natural Arctic aerosol. 
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5 Appendix 

Table A1. Commonly used abbreviations.  

MSAp Particulate methanesulfonic acid 

AM Additive model 

RF Random Forest 

BL Boundary layer 

FT Free troposphere 

St Station specific model 

AS AllStations 

ASF AllStationsFull 

DMS Dimethly sulfide 

OH Hydroxyl radical 

O3 Ozone 

CCN Cloud condensation nuclei 

GAM Generalized additive model 

CV Cross-validation 

MSE Mean squared error 

PCC Pearson correlation coefficient 

FSS Forward stepwise selection 

 1215 
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Data availability.  

The datasets used and/or analyzed during the current study are available on reasonable request from the corresponding author 

Jakob Boyd Pernov (jakob.pernov@epfl.ch). ERA5 data is available from the CDS (https://cds.climate.copernicus.eu/#!/home, 

last accessed 08/11/2022). CAMS data is available from the ADS (https://ads.atmosphere.copernicus.eu/cdsapp#!/home, last 1220 

accessed 08/11/2022). DMS emissions are available at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-

emission-inventories?tab=overview (last access 15 September 2022).  In situ MSA is available online for Utqiaġvik/Barrow 

(https://data.pmel.noaa.gov/pmel/erddap/tabledap/submicron.html) and Alert (https://ebas.nilu.no/) while Pituffik/Thule and 

Gruvebadet are available upon request. FLEXPART is available upon reasonable request to Eliza Harris 

(eliza.harris@sdsc.ethz.ch). Chlorophyll-a is available at https://www.globcolour.info/ (last accessed 1 October 2022). 1225 

 

Code availability.  

The underlying code for this study is available as a Renkulab project (https://gitlab.renkulab.io/arcticnap/msamodeling) and 

by contacting the corresponding author Jakob Boyd Pernov (jakob.pernov@epfl.ch) or Michele Volpi 

(michele.volpi@sdsc.ethz.ch). Code for FLEXPART and python packages (xESMF, cdsapi, and RF) are available online.  1230 
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