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Abstract.  

 

Accurately characterizing the vertical distribution of aerosols and their cloud-forming properties is crucial 10 

for understanding aerosol-cloud interactions and their impact on climate. This study presents a novel 

technique for retrieving vertical profiles of aerosols, cloud condensation nuclei (CCN), and ice nucleating 

particles (INPs) by combining micropulse lidar, radiosonde, and ground-based aerosol measurements. 

Herein, the technique is applied to data collected by our team at Texas A&M University during the 

Tracking Aerosol Convection Interactions ExpeRiment (TRACER) campaign. Aerosol size distribution 15 

and CCN counter data are used to estimate the value of the aerosol hygroscopicity parameter, κ. The 

derived κ, together with Mie scattering theory and the relative humidity profiles from the radiosonde, are 

then used to estimate how much the aerosols have grown at each altitude. This estimate is applied 

inversely to the aerosol backscatter coefficient profile to produce a dry aerosol backscatter coefficient 

profile. The dry aerosol backscatter coefficient profile is used to linearly scale surface measurements of 20 

aerosol, CCN, and INP concentrations. Combining lidar and ground-based aerosol measurements reduces 

the assumptions typically needed in lidar-based aerosol retrievals, resulting in a more accurate 

representation of vertical distributions of aerosol properties. The method could be readily applied to 

measurements in future field campaigns.  
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1 Introduction 25 

The interaction between aerosols and clouds introduces significant uncertainties in estimating aerosol 

indirect radiative forcing, a critical factor in predicting future climate scenarios (Seinfeld et al., 2016). 

Aerosols can facilitate the formation of cloud water droplets and cloud ice particles by acting as cloud 

condensation nuclei (CCN) and ice nucleating particles (INPs), respectively. Consequently, changes in 

aerosol concentrations could influence a number of convective cloud properties and processes (Tao et al., 30 

2012; Fan et al., 2016). For example, increased CCN concentrations could result in smaller cloud droplet 

sizes, suppress local precipitation in warm-phase clouds, and extend cloud lifetimes (Twomey, 1977; 

Albrecht, 1989). Some studies have suggested that an increased concentration of ultrafine aerosol particles 

(smaller than 50 nm) leads to enhanced condensational heating from additional water vapor condensation. 

Since this process invigorates the updraft intensity, it has been referred to as warm-phase invigoration 35 

(Fan et al., 2007; Fan et al., 2018; Lebo and Seinfeld, 2011). Other studies have focused on cold-phase 

invigoration of updrafts, a process in which cloud water freezes, releasing latent heat and subsequently 

increasing the buoyancy of air parcels (Andreae et al., 2004; Rosenfeld et al., 2008). At present, the extent 

and significance of aerosol-induced invigoration effects are under debate (Lebo, 2018; Igel and Van Den 

Heever, 2021; Varble et al., 2023). Addressing these uncertainties requires a deeper understanding of the 40 

microphysical processes involved (Jensen, 2023). One of the key gaps in our current understanding of 

aerosol-cloud interactions is the vertical distribution of aerosols, CCN, and INPs in the cloud 

environment. 

 

The knowledge of the aerosol vertical distribution is important for assessing aerosol-cloud interactions 45 

(Rosenfeld et al., 2014; Lin et al., 2023). Modeling studies have shown evidence that the altitude of 

aerosol significantly influences their impact on cloud formation and deep convection (Marinescu et al., 

2017; Lebo, 2014; Zhang et al., 2021). However, in most long-term field campaigns, aerosol, CCN, and 

INP measurements are only made at ground-based sampling stations (Schmale et al., 2018; Pöhlker et al., 

2016; Perkins et al., 2022). By comparison, airborne in-situ measurements which provide observations of 50 

CCN and INP at the cloud level are generally shorter in duration (Stith et al., 2009; Dadashazar et al., 

2022; Raes et al., 2000). Thus, retrievals from ground-based lidar observations, which can operate 
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continuously over extended periods to quantitatively assess vertical profiles aerosol properties, represent 

a highly valuable method. 

 55 

Lidars detect range-resolved properties of aerosols and cloud particles by emitting laser pulses and 

measuring the backscattered light. Lidar measurements can be used to retrieve bulk aerosol optical 

properties, including the aerosol backscatter coefficient, extinction coefficient, and depolarization ratio. 

These aerosol optical properties are influenced by various aerosol properties, including size distribution, 

shape, chemical composition, and mixing state (Brooks et al., 2004b; Titos et al., 2016; Yao et al., 2022). 60 

While the same intrinsic properties drive microphysical properties, the relationship between the lidar 

observations and the concentration of cloud-forming aerosol is not straightforward. Most CCN are found 

within the Aitken (typically between 0.01 to 0.1 μm) and accumulation (typically between 0.1 to 1 μm) 

mode aerosols, but lidar observations at visible wavelengths are most sensitive to the accumulation and 

coarse (typically greater than 1 μm) mode aerosols (Shinozuka et al., 2015; Kapustin et al., 2006). In 65 

addition, aerosol hygroscopic growth due to increased humidity increases the aerosol backscatter 

coefficient without affecting the CCN concentration (Shinozuka et al., 2015; Liu and Li, 2014). As for 

INP, it has been shown that larger aerosols are more likely to be INP, particularly those with a diameter 

exceeding 500 nm (Demott et al., 2010). Individual aerosols in this size range backscatter light effectively, 

but less than 1 in 105 particles in the atmosphere can act as INPs (Demott et al., 2010). Thus, INPs 70 

contribute little to the measured bulk aerosol optical signals. Consequently, it is necessary to employ 

assumptions or complementary aerosol measurements when estimating cloud-forming aerosol 

concentration from remote sensing measurements. 

 

Studies have adopted different approaches when using lidar measurements to retrieve the CCN 75 

concentration vertical profile (Lv et al., 2018; Mamouri and Ansmann, 2016; Ansmann et al., 2021; Ghan 

et al., 2006; Ghan and Collins, 2004; Lenhardt et al., 2023). The first approach involves using multi-

wavelength lidar to retrieve aerosol concentrations by classifying them into three types (urban, biomass 

burning, and dust) and then using the prescribed hygroscopicity parameter of each aerosol type to estimate 

the CCN concentration (Lv et al., 2018). This approach requires an advanced multiwavelength lidar, such 80 
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as the Multiwavelength High Spectral Resolution Lidar (HSRL-2) or the multiwavelength Raman lidar 

(Müller et al., 2011; Müller et al., 2014). Another approach relies on an empirical relation between the 

aerosol extinction coefficient and aerosol concentrations derived from the Aerosol Robotic Network 

(AERONET) to convert backscatter into aerosol concentration profile. A CCN parameterization scheme 

based on the empirical relation of aerosol and CCN concentration of each aerosol type is applied to the 85 

aerosol concentration profile to produce the CCN concentration profile (Mamouri and Ansmann, 2016; 

Ansmann et al., 2021). Each of these approaches strongly relies on assumed aerosol composition, shape, 

and refractive index used in the lidar retrieval and CCN parameterizations. Consequently,  they may fail 

to capture the complex conditions of atmospheric aerosols, thus limiting the precision of CCN 

estimations. 90 

 

The third approach to determining CCN concentration using lidar is to directly scale ground-based CCN 

concentration measurement with the lidar-measured extinction or backscatter profile, first proposed by 

Ghan and Collins (2004). This approach assumes that the aerosol composition and size distribution remain 

relatively constant with altitude. Ghan and Collins (2004) used the humidification factor (hereby referred 95 

to as the lidar hygroscopic growth correction factor), defined as the dependence of aerosol extinction or 

backscatter on relative humidity (RH), to convert the observed extinction and backscatter coefficients to 

their dry counterparts. Ghan and Collins (2004) found that CCN concentrations at smaller 

supersaturations correlate more strongly with dry backscatter and are less impacted by height variations 

in aerosol size distribution than at higher supersaturations. Ghan et al. (2006) later validated this approach, 100 

showing that the correlation between lidar-derived and in situ CCN is influenced by supersaturation, 

aerosol uniformity with height, and lidar retrieval accuracy. This method has been applied in a routine 

CCN profile data product based on a Raman lidar (Kulkarni et al., 2023). Following a similar approach, 

Lenhardt et al. (2023) compared in-situ CCN and airborne HSRL-2 measurements in the southeast 

Atlantic. Their results show that CCN concentration at 0.3% supersaturation in dry ambient conditions 105 

strongly correlates with the HSRL-2 measured extinction and backscatter. Collectively, these studies 

demonstrate the strong potential of lidar observations for accurately retrieving CCN profiles. 

 

https://doi.org/10.5194/egusphere-2024-3363
Preprint. Discussion started: 13 December 2024
c© Author(s) 2024. CC BY 4.0 License.



5 
 

Compared to the lidar retrievals of CCN, fewer studies have focused on INP retrievals using lidar data. 

Studies have combined INP parameterization with lidar measurement to retrieve INP concentration 110 

profiles (Mamouri and Ansmann, 2016; Marinou et al., 2019; Ansmann et al., 2021). A number of INP 

parameterization schemes based on previous ice nucleation measurements are available in the literature 

for total global aerosols of unspecified composition (Demott et al., 2010), dust (Ullrich et al., 2017; 

Demott et al., 2015; Niemand et al., 2012; Steinke et al., 2015), soot aerosols (Ullrich et al., 2017), 

biological aerosols (Tobo et al., 2013), and organics (Wang and Knopf, 2011). Generalized aerosol type 115 

and composition assumptions must be made when using these INP parameterizations, which depend on 

past measurements from other locations or lab experiments. In contrast, lidar retrievals based on 

simultaneous ground-based INP measurements would provide a more realistic estimate of ice nucleation. 

We propose that analogous to CCN profile retrieval, INP concentration measured at the surface can be 

linearly scaled by the dry backscatter coefficient profile derived from lidar measurements to create an 120 

estimate of the INP vertical profile. 

 

Despite advancements in understanding aerosol and cloud interaction, significant uncertainties remain in 

accurately characterizing aerosol vertical distribution and their impact on cloud processes. Existing 

models and observations often rely on assumptions that can introduce biases, highlighting the need for 125 

dedicated field campaigns that provide comprehensive measurements to fill these knowledge gaps.	The 

Tracking Aerosol Convection Interactions ExpeRiment (TRACER) campaign focused on understanding 

aerosol-cloud/convection interaction in the Houston area in the summer and fall of 2022 (Jensen, 2023). 

In this study, we use the micropulse lidar and ground-based aerosol measurements we collected during 

the TRACER campaign to develop a purely measurement-based approach to retrieve the aerosol, CCN, 130 

and INP vertical profiles. The ground-based aerosol measurements include aerosol size distribution, CCN, 

and INP measurements. By leveraging observations to minimize assumptions in the retrieval process, this 

approach is expected to represent aerosol properties and their vertical distribution accurately. 
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2 Methodology 

2.1 Overview of TRACER Field Campaign 135 

 

 
Figure 1 TRACER Campaign Sampling Locations in the Houston metropolitan area, Texas. The 
Texas A&M University sampling sites are marked with circles, the ARM AMF1 site is marked 
with a star, and the ARM ancillary site is marked with a diamond. Map created using Natural 140 
Earth shapefiles, LandFire 2022 vegetation data, and USA Detailed Water Bodies data. 

The U.S. Department of Energy TRACER field campaign was conducted from October 2021 through 

September 2022 in the Houston metropolitan area, with an intensive observation period (IOP) from June 

2022 to September 2022 at sites shown in Figure 1. The First Atmospheric Radiation Measurement 

(ARM) Mobile Facility (AMF-1) was deployed at La Porte, Texas throughout the campaign. On enhanced 145 

operations days during the IOP period, the Texas A&M University (TAMU) Rapid Onsite Atmospheric 

Measurements Van (ROAM-V) was deployed at Seawolf Park, a coastal site in Galveston, Texas, and 

several inland sites (Rapp et al., 2024). An overview of the TAMU TRACER campaign payload, 

deployment strategy, and available measurements is provided by Rapp et al. (2024). Both AMF1 and 

ROAM-V collected similar ground-based aerosol measurements, radiosonde data, and ground-based lidar 150 
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profiles, as described in Table 1. The lidar retrieval method described below was initially developed based 

on the ROAM-V instrumentation but is also applied to the observations at the AMF-1 site during 

TRACER. By extension, this method could be used in other future campaigns with a similar 

instrumentation configuration.  

 155 

Table 1. A list of data and instruments used in this study. 

Measurements TAMU ROAM-V ARM AMF-1 

Aerosol Extinction and 
backscatter profile MiniMPL (Brooks and Chen, 2023) MPL (Muradyan, 2021) 

Pressure, temperature, and 
relative humidity profile  iMet-4 (Sharma et al., 2023) Vaisala RS41 (Keeler, 

2021) 
Ground-based aerosol 
measurements   

Aerosol concentration and 
size distribution SMPS, POPs (Chen et al., 2024) SMPS, APS (Shilling, 

2021) 
CCN concentration CCN-100 (Thompson, 2023) CCN-200 (Koontz, 2021) 

INP concentration DRUM impactor and TAMU droplet freezing array (Brooks and 
Thompson, 2023) 

 

Figure 2 provides an overview of the retrieval routine for aerosol, CCN, and INP profiles using the 

TRACER campaign data. The routine is summarized here. First, we used lidar and radiosonde data to 

determine the vertical profile of the cloud-free aerosol backscatter coefficient. Next, the aerosol size 160 

distribution and concentration collected with Scanning Mobility Particle Sizer (SMPS), Portable Optical 

Particle Spectrometer (POPS), and CCN counter are used to estimate the lidar hygroscopic growth 

correction factor, f(RH), which is the ratio of aerosol optical properties at a given relative humidity to 

those at dry conditions. f(RH) is then used to convert the aerosol backscatter coefficient profile to a dry 

aerosol backscatter coefficient profile. This dry aerosol backscatter coefficient profile is used to linearly 165 

scale the surface aerosol concentration, CCN concentration, and INP concentration measurements. 
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Below, we discuss details of each step of the retrieval process with TAMU ROAM-V data collected on 

28 August 2022 in Galveston, Texas, as an example. 

 

Figure 2 Overview of the aerosol, CCN, and INP profile retrieval routine. 170 

2.2 Micropulse Lidar Measurement and Inversion of the Lidar Equation 

The mini micropulse lidar (MiniMPL, Droplet Measurement Technologies, Inc.) is a 532-nm backscatter 

and depolarization lidar (Campbell et al., 2002; Flynna et al., 2007; Welton and Campbell, 2002). The 

MiniMPL uses a vertical resolution of 15 m and a temporal resolution of 1 min in the TRACER campaign. 

The Normalized Relative Backscatter (NRB), also known as the attenuated backscatter, is derived from 175 
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the raw backscattered lidar signal after standard background, afterpulse, deadtime, and overlap 

corrections are performed. Details of the corrections are presented in the supporting information 

(Equation S1-4). An example of an NRB time series collected by the MiniMPL is shown in Figure 3. 

 

 180 

Figure 3 Normalized relative backscatter time series collected on August 28, 2022, with MiniMPL 
in Galveston, Texas. 

NRB can be expressed as, 

 

𝑁𝑅𝐵(𝑅) = 𝐶[𝛽!(𝑅) + 𝛽"(𝑅)]𝑇!"(𝑅)𝑇""(𝑅)	 (1)  185 

 

Where R is the range, C is the lidar calibration constant, β1 and β2 represent the backscatter coefficient of 

aerosol and air molecules, respectively; T1 and T2 represent the transmittance of aerosol and air molecules, 

respectively. After correcting the raw lidar data to produce the NRB profile, data filtering and smoothing 

are applied to the NRB profile. First, a continuous wavelet transform based algorithm is used to create a 190 

cloud mask, filtering out periods of data with cloud signal peaks in the NRB profile that compromise the 

quality of aerosol retrieval (Du et al., 2006). Because the  MiniMPL collects measurements near the peak 

of the solar spectrum, observations can have a considerable amount of background noise during daytime 

measurements (Campbell et al., 2002). The NRB profiles of cloud-free columns, typically between about 

one to two hours before and after the radiosonde launch time, are time-averaged to improve signal-to-195 
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noise ratio. This averaged NRB profile is further normalized by the average NRB value of the lowest 

range bin. In addition, the NRB profile above 4.5 km is smoothed using the NeighBlock denoising 

algorithm based on discrete wavelet transform to increase the stability of the retrieval process (Cai and 

Silverman, 2001). Similar wavelet transform techniques have been widely used in lidar applications for 

noise reduction and feature detection because the lidar signal exhibits a varying degree and frequency of 200 

noise at different ranges (Fang and Huang, 2004; Xie et al., 2017). 

 

Next, a Fernald 2-component lidar inversion method is performed. This is a classic method for solving 

the lidar equation and retrieving aerosol backscatter profiles from the attenuated backscatter (Fernald et 

al., 1972; Klett, 1981; Fernald, 1984; Sasano et al., 1985). The lidar ratio (S), defined as the ratio of 205 

aerosol extinction coefficient to aerosol backscatter coefficient, is assumed to be constant with respect to 

range (R). Following the Fernald method, the sum of aerosol (β1(R)) and molecular backscatter coefficient 

(β2(R)) is expressed as: 

 

𝛽!(𝑅) + 𝛽"(𝑅) =
NRB(𝑅) ∙ 𝑒𝑥𝑝 8−2(𝑆! − 𝑆") ∫  #

#!
𝛽"(𝑟)d𝑟@

NRB(𝑅$)
𝛽!(𝑅$) + 𝛽"(𝑅$)

− 2𝑆! ∫  #
#!
NRB(𝑟) ∙ 𝑒𝑥𝑝 8−2(𝑆! − 𝑆") ∫  %

#!
𝛽"(𝑟&)d𝑟′@ d𝑟

(2) 210 

 

The numerical form of Equation 2 used for the calculation is shown in supporting information (Equation 

S5). S1 and S2 in Equation 2 represent the lidar ratio of aerosol and air molecules, respectively. S2 is 

approximated by the well-known constant 8π/3 sr (Fernald, 1984). RC is the calibration range selected at 

the far field, and usually, a priori information is needed to set the reference aerosol backscatter at the 215 

calibration range. At a wavelength of 532 nm, the aerosol lidar ratio typically ranges from 23±5 sr for 

clean marine aerosols, 44±9 for dust, 53±24 sr for clean continental aerosols, 55±22 sr for polluted dust, 

to 70±25 sr for polluted continental and smoke aerosols (Young et al., 2018). To account for the potential 

variability of the lidar ratio, we choose 20 and 90 sr as the lower and upper estimates of aerosol lidar ratio, 

respectively. The calibration range, RC, was chosen to be 8 km AGL. At this range, we assume the 220 

https://doi.org/10.5194/egusphere-2024-3363
Preprint. Discussion started: 13 December 2024
c© Author(s) 2024. CC BY 4.0 License.



11 
 

calibration scattering ratio (β1(R)+β2(R))/β2(R), which is the ratio of the sum of aerosol and molecular 

backscatter coefficient and molecular backscatter coefficient, varies between 1.0 and 1.2. 

 
Figure 4 (a) Time-averaged Normalized Relative Backscatter (NRB) profile of MiniMPL from 
16:10 to 18:50 UTC. The black line is the NRB profile normalized by the lowest level value; the 225 
orange dashed line represents smoothed NRB. (b) Rayleigh backscatter coefficient β2 (dashed blue 
line) and total backscatter coefficient β1+ β2 (solid black line). The shaded region shows the 
uncertainty range of the retrieved total backscatter coefficient. 

 

The Rayleigh backscatter β2(R) by gas phase molecules is calculated using the following equation 230 

(Gimmestad and Roberts, 2023). 

 

𝛽"(𝑅) = 1.39 × ['.))	+,
-

]. × 10/0 ∙ "11.!)	2
!'!3.")	456

∙ 7(#)
:(#)

(3)  

 

P(R) and T(R) are pressure and temperature profiles measured by radiosondes launched during the 235 

TRACER campaign, and λ is the lidar wavelength, 532 nm. Finally, Equation 2 can be iteratively solved 

in a top-down approach, starting from the calibration range and working toward the surface. The aerosol 

backscatter coefficient profile can be calculated by subtracting the molecular backscatter coefficient 

profile from the total backscatter coefficient profile. 

 240 
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An example of NRB profile and backscatter coefficient profile inversion is shown in Figure 4. The cloud-

free NRB profile of MiniMPL is time-averaged between 16:10 to 18:50 UTC at Sea Wolf Park on 28 

August 2022. The Rayleigh backscatter coefficient profile, shown in blue dashed lines in Figure 4b, is 

calculated using data from the radiosonde launched around 17:30 UTC from the same site, and the total 

backscatter coefficient derived from the lidar inversion is shown in Figure 4b as a black solid line. The 245 

total backscatter coefficient profile closely follows the molecular backscatter coefficient profile 2 km 

AGL and above, which indicates that the backscatter coefficient is primarily influenced by molecular 

scattering at higher altitudes, with minimal contributions from aerosols. 

 

The uncertainty in the total backscatter coefficient is assessed by systematically varying key parameters: 250 

the scattering ratio at the calibration height and the lidar ratio. The Fernald inversion process was applied 

40 times to the same NRB profile, using 5 calibration scattering ratios (1.0 to 1.2) and 8 lidar ratios (20 

to 90 sr), producing 40 backscatter coefficient profiles. The mean of these backscatter coefficient profiles 

can be considered as the best estimate, while the spread of these profiles from the maximum and minimum 

of these profiles represents the uncertainty interval. This systematic sensitivity analysis ensures that the 255 

retrieved aerosol backscatter profile accounts for potential variability in the lidar ratio and the scattering 

ratio, providing a more reliable estimate. The uncertainty range of the retrieved backscatter coefficient is 

shown in Figure 4b as the grey-shaded region. 
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2.3 Ground-based Aerosol Measurements 

 260 

 
Figure 5 Time-averaged aerosol measurements were collected on 28 August 2022, from 16:10 to 
18:50 UTC at the TAMU site in Galveston. (a) Time-averaged aerosol size distribution with a y-
axis on a linear scale. The shaded area illustrates the standard error of the estimated mean. (b) 
Time-averaged aerosol size distribution with a y-axis on a log-log scale. (c) CCN spectra, where 265 
scatter points are time-averaged CCN concentrations at different supersaturations, and the 
standard error of the sample mean is illustrated as error bars. (d) INP spectra. 

 

During the TRACER field campaign, the TAMU ROAM-V deployed a suite of surface aerosol 

measurements, which will be utilized in this analysis, as described in Table 1. The ROAM-V platform 270 

shares a heated and dried isokinetic inlet among the TSI Scanning Mobility Particle Sizer (SMPS), the 

Droplet Measurement Technologies CCN counter, and an additional GRIMM Condensation Particle 

Counter (CPC). Details of the ROAM-V instrument sampling setup for the TRACER campaign and the 

particle loss corrections are further described in Thompson et al. (2024). 

 275 
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Onboard ROAM-V, the SMPS measures the mobility diameter of aerosols between 7 and 305 nm, while 

the POPS measures the optical diameter of aerosols ranging from 125 to 3370 nm. Because the SMPS 

and POPS are based on different physical principles, a method was developed to merge their measured 

size distributions. Mie scattering theory is used to simulate the scattered signal by particles of various 

sizes detected by the POPS, generating a signal-size relation that depends on the aerosol effective 280 

refractive index. The POPS-measured aerosol sizes can be recalculated by adjusting the effective 

refractive index. The refractive index that minimizes the root mean square error of the overlapping size 

region between the POPS and SMPS distributions is then selected. The corresponding POPS size 

distribution is then merged with the SMPS size distribution by applying a weighted average over the 

overlapping region. The weights are determined by the Gaussian error function to ensure a smooth 285 

transition between the two distributions. The time average of the merged size distribution across the time-

averaging period is used for further analysis. An example of the time-averaged aerosol size distribution 

measurement taken on 28 August 2022, from 16:10 to 18:50 UTC at Sea Wolf Park, is shown in Figure 

5a and Figure 5b. The uncertainty of the aerosol size distribution is represented by two standard errors of 

the time-averaged aerosol size data to provide a 95% confidence interval for the time-averaged aerosol 290 

size distribution. 

 

The CCN concentration spectra were measured with the CCN counter, which was set to supersaturations 

between 0.2% and 1.2% with intervals of 0.2%. The CCN counter was calibrated with size-selected 

ammonium sulfate particles. Similar to the merged aerosol size distribution, the time-averaged CCN 295 

spectra are calculated to represent the CCN concentration during the time-averaging period. An example 

of the average CCN measurement taken on 28 August 2022, from 16:10 to 18:50 UTC at the TAMU site 

in Galveston, is shown in Figure 5c. The two standard errors of CCN data are calculated to provide a 95% 

confidence interval for the time-averaged CCN concentration. 

 300 

For ice nucleation measurements, size-resolved aerosol samples were collected using the Davis Rotating-

drum Universal-size-cut Monitoring (DRUM) impactor in four size ranges: > 3 μm, 3 to 1.2 μm, 1.2 to 

0.34 μm, and 0.34 to 0.15 μm, and analysed in the laboratory for ice nucleation measurements. Ice 
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nucleation measurements were conducted using the custom-built immersion freezing array used in our 

previous experiments (Lei et al., 2023; Thompson, 2024; Fornea et al., 2009), and described only briefly 305 

here. Aerosol impactor samples are washed off the impactor substrate into high purity UHPLC (ultra-

high-pressure liquid chromatography) water. Then, 2-μL droplets of the sample water are subjected to 25 

freeze-thaw cycles on the immersion freezing array. A digital camera is used to detect freezing events and 

identify ice nucleation temperatures by measuring the average brightness (or grayscale value) of the 

droplet pixels in an 8-bit image (which has 256 levels of grayscale value). This image-processing 310 

technique monitors changes in brightness to infer droplet freezing. The INP concentrations in the air are 

calculated using established methods (Vali, 1971). 

2.4 Aerosol Hygroscopicity and Lidar Hygroscopic Growth Correction Factor 

 

 315 

Figure 6 (a) Blue scattered points represent pairs of critical supersaturation and corresponding 
critical dry diameter derived from aerosol size distribution and CCN measurements. The blue 
dotted line represents the derived geometric mean of aerosol hygroscopicity κ, and the shaded 
region represents the one geometric standard deviation of κ. (b) Lidar hygroscopic growth 
correction factor as a function of relative humidity. The shaded area represents the uncertainties 320 
of derived κ. 

 

Since water uptake by aerosols enlarges their size and increases backscattering without affecting aerosol 

concentration, it is not possible to accurately determine aerosol concentration from the aerosol backscatter 
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profile alone. It is important to convert the aerosol backscatter profile to the aerosol backscatter profile 325 

which would be observed under dry conditions prior to calculating aerosol, CCN, or INP concentrations.  

In past studies, the hygroscopicity or water uptake by aerosols, defined as the change in aerosol diameter 

at a given RH relative to its dry diameter, has been quantified by tandem differential mobility 

measurements (Brooks et al., 2004a; Tomlinson et al., 2007). Similarly, humidified nephelometers have 

been used to quantify changes in scattering by aerosol at increased relative humidities to scattering by dry 330 

aerosol, and the results have been used to interpret lidar backscatter observations (Kotchenruther et al., 

1999; Ghan et al., 2006). 

 

Here, we developed a new method that combines κ-Köhler theory with Mie theory to predict dry aerosol 

backscatter profiles from the observations at ambient RH. It is well-known that activated CCN are defined 335 

as those aerosols that have grown beyond the critical diameter required for spontaneous droplet growth. 

CCN activation occurs in a supersaturated environment. However, it has been demonstrated that for 

uniformly mixed soluble aerosol, CCN activation measurements can be used to predict hygroscopic 

growth of aerosol in subsaturated conditions as well (Petters and Kreidenweis, 2007). This widely used 

concept has become known as κ-Köhler theory (Petters and Kreidenweis, 2007). 340 

 

Using κ-Köhler theory, CCN and aerosol size distribution measurements can be combined to predict an 

aerosol hygroscopicity parameter κ (kappa). The critical dry diameter Dp,c is the size above which dry 

aerosols of a certain κ activate to form cloud droplets when exposed to a critical supersaturation SSc. 

Following the work of Moore et al., 2011, Dp,c satisfies the integral 345 

 

𝑁$$; = G  
<

=",$
𝑛>(log𝐷>)	dlog𝐷> (4) 

 

np(logDp) is the measured aerosol size distribution in the form of dndlogDp, and NCCN is the measured 

CCN concentration at a supersaturation level. Dp,c can then be numerically solved. Since CCN 350 

concentration is measured at a few different supersaturations, multiple pairs of SSc-Dp,c values are 
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calculated, and an example of the SSc-Dp,c pairs is shown in Figure 6a. Each pair of  SSc-Dp,c values can 

then be numerically solved using κ-Köhler theory to derive a κ value. 

 

Following κ-Köhler theory, the saturation ratio S over an aqueous solution droplet with diameter D (also 355 

called wet diameter) can be expressed as 

 

𝑆(𝐷) =
𝐷3 − 𝐷?3

𝐷3 − 𝐷?3(1 − 𝜅)
exp R

4𝜎@
A
𝑀B

𝑅𝑇𝜌B𝐷
V (5) 

 

Dd is the dry diameter of the particle. κ is the hygroscopicity parameter. σs/a is the surface tension of the 360 

air-water interface. Mw is the molar mass of water. R is the universal gas constant. T is the temperature 

evaluated at 298.15 K. ρw is the density of water. The κ-Köhler equation relates saturation ratio to particle 

size, and the supersaturation at the peak indicates the activation point of the particle as a CCN. A 

numerical function was constructed to find the supersaturation at the peak of the κ-Köhler equation using 

binary search, with the particle dry diameter and κ as input parameters. Thus, the problem becomes 365 

finding the κ corresponding to a given Dp,c, to match a specific SSc as the output. The κ is then numerically 

determined using a root-finding method to match the measured SSc-Dp,c pairs. 

 

Since κ can be considered as log-normally distributed (Su et al., 2010), the geometric mean and geometric 

standard deviation can be calculated to represent the average value and the variability of κ for the bulk 370 

aerosol composition. An example of the geometric mean and geometric standard deviation of κ is also 

shown in Figure 6a. The variation in κ values at different supersaturations can be attributed to 

uncertainties in measurements and the differences in the aerosol chemical composition and mixing state 

across various sizes. Subsequently, the aerosol size growth is predicted by numerically solving for the 

wet aerosol diameter at a discrete series of RH values (Petters and Kreidenweis, 2007).  375 

 

Once the aerosol size is known as a function of RH, the Mie scattering theory is then used to calculate the 

aerosol extinction coefficient at each RH value. The refractive index for dry aerosol is assumed to be 
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1.45-0i based on values for dry ammonium sulfate at 532 nm (Cotterell et al., 2017). The refractive index 

of aerosol at each RH is calculated as the volume-weighted average of the dry aerosol refractive index 380 

and that of water. During the field campaign, aerosol size distribution measurements are collected at RH 

levels below 30%, where aerosols are typically considered dry, based on the efflorescence RH of 

background ammonium sulfate (Onasch et al., 1999). Therefore, a lidar hygroscopic growth correction 

factor f(RH) can then be calculated as: 

 385 

𝑓(𝑅𝐻) = Z
𝜎(𝑅𝐻)
𝜎(30%) 				𝑅𝐻 > 30%

1				 𝑅𝐻 ≤ 30%
(6) 

 

The extinction coefficient σ, rather than the backscatter coefficient, is used in the Mie scattering 

calculation. This is convenient since we already assumed a linear relation between backscatter and 

extinction in the lidar inversion, and it is justifiable based on the work on Ghan and Collins (2004) in 390 

which the influence of RH on backscatter and extinction were shown to be similar. In addition, we assume 

a perfect internally mixed aerosol distribution, and we apply the same κ across all aerosol sizes when 

predicting aerosol size growth at different RH. To account for the uncertainty of κ, we calculate the f(RH) 

using the geometric mean κ and its value at one geometric standard deviation interval. The f(RH) 

calculated using the κ values in Figure 6a is shown in Figure 6b. The solid black line represents the f(RH) 395 

calculated using the geometric mean κ, and the shaded region represents the f(RH) uncertainty calculated 

using one geometric standard deviation interval of κ. The calculated f(RH) is further interpolated using a 

cubic spline to calculate f(RH) at any RH value. 
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2.5 Deriving the Aerosol, CCN, and INP Vertical Profiles  

 400 

Figure 7 (a) Aerosol and dry aerosol backscatter coefficient profiles are shown as solid black and 
red lines, respectively, with a shaded area showing the corresponding uncertainty interval for 
each profile. The relative humidity profile is shown as a solid blue line. (b) The Aerosol profile is 
shown as a solid black line. CCN profiles are shown in different colors corresponding to 
supersaturation levels of 0.2%, 0.6%, and 1.2%.  (c) INP profiles evaluated at -20°C and -25°C. 405 

Based on the analysis above, we can now derive detailed vertical profiles of aerosol, CCN, and INP 

concentrations observed during the TRACER campaign. Here we assume that the surface measurements 

are representative of the aerosol size distribution, composition, and cloud-activating ability aloft. A caveat 

of this approach is that it holds true to well-mixed layers but cannot be used in cases in which layers of 

transported smoke or dust are observed in the NRB. The aerosol backscatter coefficient profile is shown 410 

in Figure 7a in a black line with a grey-shaded region as the uncertainty range. The dry aerosol backscatter 

coefficient profile βdry(R) is  

 

𝛽CDE(𝑅) =
𝛽!(𝑅)
𝑓(𝑅𝐻)

(7) 

 415 

The RH profile is shown in Figure 7a with a solid blue line. The dry aerosol backscatter coefficient is 

shown in the red line with the red-shaded region as the uncertainty range. The lidar hygroscopic growth 

correction factor f(RH) uncertainty is considered and added to the uncertainties when calculating the dry 
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aerosol backscatter coefficient. The aerosol (Np), CCN (NCCN), and INP (NINP) concentration profiles can 

therefore be estimated as: 420 

 

𝑁F(𝑅) =
𝛽CDE(𝑅)
𝛽CDE(𝑅')

∙ 𝑁F(𝑅') (8𝑎) 

𝑁$$;(𝑅, 𝑆𝑆) =
𝛽CDE(𝑅)
𝛽CDE(𝑅')

∙ 𝑁$$;(𝑅', 𝑆𝑆) (8𝑏) 

𝑁G;5(𝑅, 𝑇) =
𝛽CDE(𝑅)
𝛽CDE(𝑅')

∙ 𝑁G;5(𝑅', 𝑇) (8𝑐) 

 425 

R0 is the altitude where the surface measurements are collected. βdry(R0) is the dry aerosol backscatter 

coefficient profile at R0. Np, NCCN, and NINP are aerosol, CCN, and INP number concentrations, 

respectively. Since the MPL and the MiniMPL have near-field blind ranges of 250 m and 100 m, 

respectively, lidar measurements near the surface are unavailable. A second-degree polynomial fitting of 

the dry aerosol backscatter coefficient profile from the lidar blind range to 300 m above is used to estimate 430 

the dry aerosol backscatter coefficient profile down to R0, which is assumed to be around 10 m. The 

projected dry aerosol backscatter coefficient profiles within the blind range are shown in Figure 7a as 

dotted lines. The SS is the supersaturation at which the CCN concentration is evaluated, and T is the 

temperature at which the INP concentration is evaluated. In addition, one standard error of the time-

averaged aerosol and CCN concentration of the time averaging period around 1 to 3 hours is included in 435 

the calculation for aerosol and CCN concentration profiles. The aerosol and CCN concentrations 

evaluated at different supersaturations are shown in Figure 7b. INP profiles are shown in Figure 7c. The 

dry aerosol backscatter coefficient profile determines the shape of aerosol, CCN, and INP concentration 

profiles, while the surface aerosol measurements determine the amplitude. 
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3 Results  440 

3.1 Case study: Correction for Hygroscopic Growth in the Boundary Layer 

 
Figure 8 (a) NRB time series data collected on 6 September 2022, from 18:30 to 20:30 UTC, with 
MiniMPL inland at Hockley, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles 
are shown as solid black and red lines, respectively, with a shaded area showing the 445 
corresponding uncertainty interval for each profile. The relative humidity profile is shown as a 
solid blue line. (c) The Aerosol profile is shown as a solid black line. CCN profiles are shown in 
different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%. (d) INP profiles 
evaluated at -20°C and -25°C. No INP was observed at -15°C. 

An example from the measurements collected on 6 September 2022, during the inland TAMU deployment 450 

at Hockley, Texas, from 18:30 to 20:30 UTC, illustrates the importance of correcting for aerosol 

hygroscopic growth. Figure 8a shows the lidar NRB time-series profile. The layer at and below the cloud 

level height can be identified as a convective mixed layer, while the layer above the cloud level can be 

identified as an elevated aerosol layer. The cloud mask, which marks the temporal and vertical distribution 

of the cloud, is shown in Fig S2. The cloud mask was used to select a cloud-free lidar profile for aerosol 455 

backscatter coefficient profile retrieval. Figure 8b shows the cloud-free aerosol backscatter coefficient 

and the dry aerosol backscatter profile corrected for the water uptake by aerosols as RH increases. As the 

RH increases and approaches 100% in the mixed layer, the dry aerosol backscatter coefficient corrects 

for the increased backscatter due to aerosol growth. As Fig 8b demonstrates, if the uncorrected aerosol 

backscatter coefficient were used to estimate aerosol concentration in the mixed layer instead of the dry 460 

aerosol backscatter coefficient, the aerosol concentration would be substantially overestimated. For 

instance, relying on the uncorrected aerosol backscatter coefficient would result in an overestimation of 
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aerosol concentration by a factor of 2.8 at 1.2 km AGL. The aerosol concentration at the surface is 

approximately (3.30±0.09)×103 cm-3 and decreases to 371±216 cm-3 at the top of the mixed layer at 1.2 

km AGL. The CCN concentration evaluated at a supersaturation of 0.2% is 159±2 cm-3 the at surface and 465 

18±10 cm-3 at 1.2 km AGL (Figure 8d). The INP concentration evaluated at -20°C is around 0.07 L-1 at 

surface level and around 3×10-3 L-1 at 1 km AGL. No INP was observed at -15°C. Between 1.2 and 3.2 

km, the dry aerosol backscatter coefficient profile indicates the presence of an elevated aerosol layer 

above the mixed layer. The aerosol population in the mixed layer and the elevated aerosol layer may differ 

in terms of aerosol size distribution and chemical composition, making this method for retrieving aerosol, 470 

CCN, and INP profiles more uncertain in the elevated aerosol layer shown in Figure 8. 

3.2 Case study: Retrieval of Aerosol Profile with Multiple Cloud Layers 

 
Figure 9 (a) NRB time series collected on 26 August 2022, from 16:02 to 18:42 UTC, with 
MiniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are 475 
shown as solid black and red lines, respectively, with a shaded area showing the corresponding 
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. 
Gray dashed lines demonstrate the cloud level.  (c) The Aerosol profile is shown as a solid black 
line. CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2%, 
0.6%, and 1.2%. (d) INP profiles at -15°C, -20°C and -25°C. 480 

The next example, from the measurements collected on 26 August 2022 during the coastal TAMU 

deployment in Galveston, Texas, demonstrates the aerosol profile retrieval in the presence of multiple 

cloud layers. In Figure 9a, cloud layers around 0.6, 1.5, and 3.6 km can be identified as white pixels with 

high NRB. These cloud layers also match vertical regions of increased RH measured by the radiosonde 

launched around 17:26 UTC (Fig. 9b). A peak in the aerosol backscatter coefficient profile is seen around 485 
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3.6 km, showing a region where aerosol uptake water and grow in size (Fig. 9b). This peak is almost 

completely removed in the dry aerosol backscatter coefficient profile in Figure 9b, indicating a successful 

correction for the hygroscopic growth effect on aerosol scattering. This result also demonstrates that the 

lidar hygroscopic growth correction factor derived from surface measurements can also be applied to 

aerosol aloft. Increased aerosol backscatter coefficients around 0.6 and 1.5 km due to hygroscopic growth 490 

are also reduced, showing an expected aerosol vertical distribution. The results indicate that, at the surface 

level, the aerosol concentration is (7.95±0.27)×103 cm-3, and it decreases by approximately 28% at 0.6 

km, 50% at 1.5 km, and 79% at 3.6 km. At a supersaturation of 0.2%, the CCN concentrations are 511±10 

cm-3 at the surface, 368±73 cm-3 at 0.6 km, 256±86 cm-3 at 1.5 km, and 107±82 cm-3 at 3.6 km. At a 

temperature of -15°C, the INP concentrations are around 0.05 L-1 at the surface, 0.04 L-1 at 0.6 km, 0.03 495 

L-1 at 1.5 km, and 0.01 L-1 at 3.6 km. The correction for the aerosol hygroscopic growth leads to the more 

realistic aerosol, CCN, and INP profiles shown in Figure 8c, d, and Figure 9c, d. 

3.3 Case study: Aerosol Profile under Clear Sky Conditions 

 
Figure 10 (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC, with 500 
MiniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are 
shown as solid black and red lines, respectively, with a shaded area showing the corresponding 
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. 
Gray dashed lines demonstrate the cloud level.  (c) The Aerosol profile is shown as a solid black 
line. CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2% 505 
and 0.6%. CCN data for 1.2% supersaturation was not available. (d) INP profiles at -15°C, -20°C 
and -25°C. Note that the -20°C INP profile overlaps with the -25°C INP profile. 
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Measurements collected on 31 August 2022, in Galveston, Texas, from 16:39 to 19:00 UTC by MiniMPL 

show clear sky conditions in Figure 10a. One of the highest INP concentrations at -15 °C during the 

TRACER campaign was measured during this deployment. The RH profile is relatively stable below 8 510 

km, at approximately 70%, and the hygroscopicity parameter κ is small, around 0.09 × 2.70±1. As 

expected, with a constant RH profile and in the absence of distinct aerosol layers, the shape of the dry 

aerosol backscatter coefficient profile closely resembles that of the aerosol backscatter coefficient profile. 

The aerosol concentration near the surface and at 1 km are (5.65±0.46)×103 cm-3 and (1.14±0.57)×103 

cm-3. At a supersaturation of 0.2%, the CCN concentrations near the surface and at 1 km are approximately 515 

329±2 cm-3 and 67±26 cm-3. At a temperature of -15°C, the INP concentrations near the surface and at 1 

km are approximately 0.11 L-1 and 0.02 L-1. 

 

3.4 Comparison Between Collocated MPL and MiniMPL Lidar 

 520 

Figure 11 Comparison of retrieved aerosol backscatter coefficient profiles derived from MiniMPL 
and ARM AMF-1 MPL data. (a) MiniMPL aerosol backscatter coefficient profile is shown in a 
solid orange line, and the ARM AMF-1 MPL aerosol backscatter coefficient profile is shown in a 
blue line. Shaded areas show the corresponding uncertainty interval for each profile. (b) 
Comparison of the lidar aerosol backscatter coefficients interpolated to the same range. The 525 
uncertainty interval is shown as error bars. 
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The TAMU ROAM-V was deployed at the AMF1 (LaPorte, Texas) site on 1 September 2022, allowing 

MiniMPL and MPL to be collocated and compared directly. The ARM MPL deployed at AMF-1 collects 

data at a vertical resolution of 15 m and a temporal resolution of 10 s (Muradyan, 2021). The NRB data 

of both lidars are time-averaged between 20:00 and 22:00 UTC. The aerosol backscatter coefficient 530 

profiles are calculated following our method and shown in Figure 11a and 11b. The MPL and MiniMPL 

aerosol backscatter coefficient profiles follow similar shapes and magnitudes. The MiniMPL aerosol 

backscatter coefficients are slightly lower below 2 km, and there also seems to be a slight vertical 

misalignment below the 2 km. However, most of the differences between the two profiles are within the 

uncertainty ranges. The results show that following our method of smoothing the NRB and retrieving the 535 

aerosol backscatter coefficient, MiniMPL and MPL perform similarly despite the differences in the lidar 

designs and specifications. This agreement suggests that the MiniMPL, despite being a more compact and 

cost-effective option, can provide comparable data quality to the more established MPL system, and the 

retrieval results using both lidars can be compared directly. 

3.5 Comparison between Aerosol and Cloud Condensation Nuclei Profiles at Galveston and 540 
LaPorte, TX measurements on 28 August 2022 

 
Figure 12 Comparison of lidar measurement of MiniMPL deployed at TAMU Galveston site and 
MPL deployed at ARM AMF-1 site on 28 August 2022, from 16:10 to 18:50 UTC (a) Aerosol 
backscatter coefficient profiles (b) Dry aerosol backscatter coefficient profiles (c) Aerosol 545 
concentration profile (d) CCN concentration profiles at 0.2% supersaturation. 
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A comparison between MiniMPL and ARM MPL measurements at different locations at the same time 

on 28 August 2022 is shown in Figure 12. MiniMPL was deployed at Sea Wolf Park, Galveston, Texas, 

and the AMF-1 was located in LaPorte, Texas. The straight-line distance is about 46 km. The time-

averaging period was from 16:10 to 18:50 UTC. As shown in Figure 12b, near the ground surface, the 550 

dry aerosol backscatter coefficient near the surface at the 2 sites are similar. The dry aerosol backscatter 

coefficient at the TAMU Galveston site near the surface is (1.07±0.57)×103 km-1, and at the AMF-1 

LaPorte site, it is (0.89±0.51)×103 km-1. The dry aerosol backscatter coefficient is greater at the AMF-1 

LaPorte site at higher altitudes. Figure 12c and d show that the aerosol and CCN (SS = 0.2%) 

concentration at the AMF-1 LaPorte site is consistently greater than at the TAMU Galveston site at all 555 

vertical levels. At the surface, the aerosol concentration is (3.49±0.34)×103 cm-3 for the TAMU site and 

(5.24±1.26)×103 cm-3 for the ARM site. At 1 km altitude, these concentrations are 313±169 cm-3 and 

(1.78±0.47)×103 cm-3 for the TAMU and ARM sites, respectively. In terms of CCN concentrations 

evaluated at 0.2% SS, at the surface, the TAMU site has a CCN concentration evaluated at 0.2% 

supersaturation of 127±2 cm-3, while the ARM site has a slightly greater concentration of 137±9 cm-3. At 560 

1 km altitude, the CCN concentration at the TAMU site is 11±5 cm-3, compared to a substantially greater 

concentration of 46±5 cm-3 at the ARM site.  

 

These differences highlight variations in aerosol and CCN distributions between the two locations, 

especially at upper altitudes. The LaPorte site likely has a greater dry aerosol backscatter coefficient and 565 

aerosol concentration due to surrounding industrial emissions, while the TAMU Galveston site is more 

influenced by the maritime air mass. Despite similar surface aerosol and CCN number concentrations, 

there are clear differences in the aerosol and CCN vertical distribution between the two sites, only about 

46 km apart. Such variability underscores the importance of localized aerosol vertical profile 

measurements in accurately characterizing aerosol vertical distributions when assessing their impact on 570 

air quality, weather, and climate. It also highlights the necessity of deploying multiple measurement sites 

to capture the spatial heterogeneity of aerosol vertical profiles when conducting a field campaign that 

covers a large study area, especially in regions influenced by heterogeneous sources of emissions and 

complex airmass interactions. 
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4 Discussions and Conclusions 575 

This work uses data collected during the TRACER campaign to demonstrate a new method of retrieving 

aerosol, CCN, and INP profiles by integrating micropulse lidar measurements with radiosonde and 

ground-based aerosol measurements, including aerosol size distributions, CCN activation, and ice 

nucleation measurements. In the future, these measurements can be collected routinely to translate lidar 

backscatter coefficient profiles to long-term aerosol, CCN, and INP vertical profiles. Further, our method 580 

is not limited to the micropulse lidar and can be applied to other single-wavelength elastic or more 

advanced lidars. 

 

One of the key findings of this study is that correcting aerosol hygroscopic growth is necessary for 

retrieving accurate CCN and INP concentration profiles. We have shown that using lidar-retrieved 585 

backscatter or extinction profiles without correcting for hygroscopic growth can lead to a significant 

overestimate of the aerosol concentration near the cloud base. To solve this issue, we introduced a method 

to quantify aerosol scattering enhancement due to aerosol hygroscopic growth. This method for 

determining the lidar hygroscopic growth correction factor can be used as a complementary approach to 

the traditional method of using a collocated humidified nephelometer (Ghan et al., 2006) and can be used 590 

when a humidified nephelometer is unavailable. 

 

Another key finding is that aerosol and CCN vertical distributions can significantly vary at small spatial 

scales, even when similar aerosol and CCN concentrations are collected at the surface, as demonstrated 

by the comparison between the aerosol vertical profile at ARM and TAMU site on 28 August 2022. This 595 

variability highlights the importance of considering vertical profiles rather than relying solely on ground 

based aerosol measurements when assessing aerosol properties and their impacts on cloud formation. It 

also underscores the need for localized vertical profile measurements to accurately capture the diverse 

aerosol characteristics in different regions, particularly in areas with complex emission sources and air 

mass interactions. Portable lidars, such as the MiniMPL lidar, combined with surface aerosol 600 

measurements, can be highly effective in providing these localized aerosol vertical profile measurements. 
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While the method described herein clearly has some distinct advantages, it is subject to several limitations. 

Since the MPL and MiniMPL measurements are noisy at upper altitudes, this method’s retrieval above 

the altitude where the lidar signal is smoothed should be used with caution and can only serve as a best 605 

estimate. In addition, since our method relies on the assumption that the aerosol size distribution and 

composition	are similar throughout the vertical column, the retrieved profiles are the most reliable within 

the well-mixed boundary layer. At altitudes where aerosol properties differ significantly from those at the 

surface, such as in the presence of a transported dust layer in the free troposphere, this method may be 

less reliable, and the results should be interpreted with caution. Despite these limitations, as measurements 610 

of CCN and INP vertical profiles are difficult to obtain and sparse, the results from this method can serve 

as a significant improvement over the arbitrary aerosol profiles often used in model initialization. 

 

In conclusion, the integration of micropulse lidar and ground-based aerosol measurements offers a 

powerful tool for retrieving detailed vertical profiles of aerosols, CCN, and INPs. The retrieved profiles 615 

can serve as inputs to provide realistic aerosol vertical distributions for cloud-resolving models, 

facilitating the study of aerosol-cloud interactions and aerosol effects on climate.  
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