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Abstract.

Accurately characterizing the vertical distribution of aerosols and their cloud-forming properties is crucial
for understanding aerosol-cloud interactions and their impact on climate. This study presents a novel
technique for retrieving vertical profiles of aerosols, cloud condensation nuclei (CCN), and ice nucleating
particles (INP) by combining micropulse lidar, radiosonde, and ground-based aerosol measurements.
Herein, the technique is applied to data collected by our team at Texas A&M University during the
Tracking Aerosol Convection Interactions ExpeRiment (TRACER) campaign. Ground-based aerosol size
distribution and CCN counter data are used to estimate the value of the aerosol hygroscopicity parameter,
K. The derived «, together with Mie scattering theory and the relative humidity profile from the
radiosonde, is used to estimate aerosol size growth and the associated increase in backscatter at each
altitude. We then correct the lidar backscatter to dry conditions to produce the dry aerosol backscatter
coefficient profile. The dry aerosol backscatter coefficient profile is linearly scaled to collocated surface
measurements of aerosols, CCN, and INP to produce corresponding vertical profiles. Combining lidar
backscatter profiles with aerosol and cloud nucleation measurements leads to a more realistic
representation of vertical distributions of aerosol properties. The method could be readily applied to lidar

measurements in future field campaigns.
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1 Introduction

The interaction between aerosols and clouds introduces significant uncertainties in estimating aerosol
indirect radiative forcing, a critical factor in predicting future climate scenarios (Seinfeld et al., 2016).
Aerosols can facilitate the formation of cloud droplets and ice particles by acting as cloud condensation
nuclei (CCN) and ice nucleating particles (INP), respectively. Consequently, changes in aerosol
concentrations could influence many cloud properties and processes (Tao et al., 2012; Fan et al., 2016;
Twohy et al., 2005). For example, increased CCN concentrations could result in smaller cloud droplet
sizes, suppress local precipitation in warm-phase clouds, and extend cloud lifetimes (Twomey, 1977;
Albrecht, 1989). Some convective cloud studies have suggested that an increased concentration of
ultrafine aerosol particles (smaller than 50 nm) leads to enhanced condensational heating from additional
water vapor condensation. Since this process invigorates the updraft intensity, it has been referred to as
warm-phase invigoration (Fan et al., 2007; Fan et al., 2018; Lebo and Seinfeld, 2011). Other studies have
focused on cold-phase invigoration of updrafts, a process in which cloud water freezes, releasing latent
heat and subsequently increasing the buoyancy of air parcels (Andreae et al., 2004; Rosenfeld et al., 2008).
At present, the extent and significance of aerosol-induced invigoration effects are under debate (Lebo,
2018; Igel and van den Heever, 2021; Varble et al., 2023). Addressing these uncertainties requires a
deeper understanding of the microphysical processes involved (Jensen, 2023). One of the key gaps in our
current understanding of aerosol-cloud interactions is the vertical distribution of aerosols, CCN, and INPs

in the cloud environment.

The knowledge of the aerosol vertical distribution is important for assessing aerosol-cloud interactions
(Rosenfeld et al., 2014; Lin et al., 2023). Modeling studies have shown evidence that the altitude of
aerosols significantly influences their impact on cloud formation and deep convection (Marinescu et al.,
2017; Lebo, 2014; Zhang et al., 2021). However, in most long-term field campaigns, aerosol, CCN, and
INP measurements are only made at ground-based sampling stations (Schmale et al., 2018; Pohlker et al.,
2016; Perkins et al., 2022). By comparison, airborne in situ measurements, which provide observations
of CCN and INP at the cloud level, are generally of shorter duration (Stith et al., 2009; Dadashazar et al.,

2022; Raes et al., 2000). Thus, retrievals from ground-based lidar observations, which can operate

2



55

60

65

70

75

80

continuously over extended periods to quantitatively assess vertical profiles of aerosol properties,

represent a highly valuable method.

Lidars detect range-resolved properties of aerosols and cloud particles by emitting laser pulses and
measuring the backscattered light. Lidar measurements can be used to retrieve bulk aerosol optical
properties, including the aerosol backscatter coefficient, extinction coefficient, and depolarization ratio.
These aerosol optical properties are influenced by various aerosol properties, including size distribution,
shape, chemical composition, and mixing state (Brooks et al., 2004b; Titos et al., 2016; Yao et al., 2022).
Although the same intrinsic particle properties govern microphysics, the relationship between the lidar
observations and the concentration of cloud-forming aerosols is not straightforward. Most CCN are found
within the Aitken (typically between 0.01 and 0.1 pm) and accumulation (typically between 0.1 and 1
um) aerosol modes, but lidar observations at visible wavelengths are most sensitive to the accumulation
and coarse (typically greater than 1 um) mode (Shinozuka et al., 2015; Kapustin et al., 2006). In addition,
aerosol hygroscopic growth due to increased humidity increases the aerosol backscatter coefficient
without affecting the CCN concentration (Shinozuka et al., 2015; Liu and Li, 2014). As for INP, it has
been shown that larger aerosols are more likely to be INP, particularly those with a diameter exceeding
500 nm (Demott et al., 2010). Individual aerosols in this size range backscatter light effectively, but less
than 1 in 10° particles in the atmosphere can act as INPs (Demott et al., 2010). Thus, INPs contribute little
to the measured bulk aerosol optical signals. Consequently, it is necessary to employ assumptions or
complementary aerosol measurements when estimating cloud-forming aerosol concentration from remote

sensing measurements.

Studies have adopted different approaches when using lidar measurements to retrieve the CCN
concentration vertical profile (Lv et al., 2018; Mamouri and Ansmann, 2016; Ansmann et al., 2021; Ghan
et al., 2006; Ghan and Collins, 2004; Lenhardt et al., 2023). The first approach involves using
multiwavelength lidar to retrieve aerosol concentrations by classifying them into different aerosol types
(urban, biomass burning, and dust) and then using the prescribed hygroscopicity parameter of each aerosol

type to estimate the CCN concentration (Lv et al., 2018). This approach requires an advanced
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multiwavelength lidar, such as the multiwavelength High Spectral Resolution Lidar (HSRL-2) or the
multiwavelength Raman lidar (Miiller et al., 2011; Miiller et al., 2014). Another approach relies on an
empirical relation between the aerosol extinction coefficient and aerosol concentrations derived from the
Aerosol Robotic Network (AERONET) to convert backscatter into aerosol concentration profiles. A CCN
parameterization scheme based on the empirical relation between aerosol and CCN concentration of each
aerosol type is applied to the aerosol concentration profile to produce the CCN concentration profile
(Mamouri and Ansmann, 2016; Ansmann et al., 2021). Each of these approaches strongly relies on
assumed aerosol composition, shape, and refractive index used in the lidar retrieval and CCN
parameterizations. Consequently, they may fail to capture the complex conditions of atmospheric

aerosols, thus limiting the precision of CCN estimations.

The third approach to determining CCN concentration using lidar is to directly scale ground-based CCN
concentration measurement with the lidar-measured extinction or backscatter profile, first proposed by
Ghan and Collins (2004). This approach assumes that the aerosol composition and size distribution remain
relatively constant with altitude. Ghan and Collins (2004) used the humidification factor (hereby referred
to as the lidar hygroscopic growth correction factor), defined as the dependence of aerosol extinction or
backscatter on relative humidity (RH), to convert the observed extinction and backscatter coefficients to
their dry counterparts. Ghan and Collins (2004) found that CCN concentrations at smaller
supersaturations correlate more strongly with dry backscatter and are less impacted by height variations
in aerosol size distribution than at higher supersaturations. Ghan et al. (2006) later validated this approach,
showing that the correlation between lidar-derived and in situ CCN is influenced by supersaturation,
aerosol uniformity with height, and lidar retrieval accuracy. This method has been applied in a routine
CCN profile data product based on a Raman lidar (Kulkarni et al., 2023). Following a similar approach,
Lenhardt et al. (2023) compared in situ CCN and airborne HSRL-2 measurements in the southeast
Atlantic. Their results show that CCN concentration at 0.3% supersaturation in dry ambient conditions
(where RH < 50%) strongly correlates with the HSRL-2 measured extinction and backscatter.
Collectively, these studies demonstrate the strong potential of lidar observations for retrieving CCN

profiles.
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Compared to the lidar retrievals of CCN, fewer studies have focused on INP retrievals using lidar data.
Studies have combined INP parameterization with lidar measurement to retrieve INP concentration
profiles (Mamouri and Ansmann, 2016; Marinou et al., 2019; Ansmann et al., 2021). A number of INP
parameterization schemes based on previous ice nucleation measurements are available in the literature
for total global aerosols of unspecified composition (Demott et al., 2010), dust (Ullrich et al., 2017;
Demott et al., 2015; Niemand et al., 2012; Steinke et al., 2015), soot acrosols (Ullrich et al., 2017),
biological aerosols (Tobo et al., 2013), and organics (Wang and Knopf, 2011). Generalized aerosol type
and composition assumptions must be made when using these INP parameterizations, which depend on
past measurements from other locations or lab experiments. In contrast, lidar retrievals based on
simultaneous ground-based INP measurements would provide a more realistic estimate of ice nucleation.
We propose that, analogous to CCN profile retrieval, INP concentration measured at the surface can be
linearly scaled by the dry backscatter coefficient profile derived from lidar measurements to create an

estimate of the INP vertical profile.

Despite advancements in understanding aerosol—cloud interactions, significant uncertainties remain in
accurately characterizing aerosol vertical distributions and their impact on cloud processes, requiring
more comprehensive and vertically resolved measurements to fill these knowledge gaps. The Tracking
Aerosol Convection Interactions ExpeRiment (TRACER) campaign focused on understanding aerosol-
cloud/convection interaction in the Houston metropolitan area in the summer and fall of 2022 (Jensen,
2023). In this study, we use the micropulse lidar and ground-based aerosol measurements we collected
during the TRACER campaign to develop a measurement-based approach to retrieve the aerosol, CCN,
and INP vertical profiles. The ground-based aerosol measurements include aerosol size distribution, CCN,
and INP measurements. By leveraging observations to minimize assumptions in the retrieval process, this

approach is expected to produce realistic vertical profiles of aerosol, CCN, and INP concentrations.
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135 2.1 Overview of TRACER Field Campaign
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Figure 1 TRACER campaign sampling locations in the Houston, Texas, metropolitan area. The
Texas A&M University sampling sites are marked with circles, the ARM AMFT1 site is marked
with a star, and the ARM ancillary site is marked with a diamond. This map was created using
Natural Earth shapefiles, LandFire 2022 vegetation data, and USA detailed water bodies data
(Rollins, 2009).

The U.S. Department of Energy (DOE) TRACER field campaign was conducted from October 2021
through September 2022 in the Houston metropolitan area, with an intensive observation period (IOP)
from June 2022 to September 2022, as shown in Figure 1. The DOE first Atmospheric Radiation
Measurement (ARM) Mobile Facility (AMF1) was deployed at La Porte, Texas, throughout the
campaign. During the IOP, whenever forecasts indicated a strong sea breeze and conditions favorable for
isolated deep convection, the TAMU ROAM-V was deployed at Seawolf Park in Galveston, Texas, and
at several inland sites (Rapp et al., 2024). An overview of the TAMU TRACER campaign payload,
deployment strategy, and available measurements is provided by Rapp et al. (2024). Both AMF1 and

ROAMS-V collected similar ground-based aerosol measurements, radiosonde data, and ground-based lidar
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profiles, as summarized in Table 1. The lidar retrieval method described below was developed based on

the ROAM-V instrumentation and was also applied to the observations at the AMF1 site during TRACER.

By extension, this method could be used in other future campaigns with a similar instrumentation

configuration. All ROAM-V measurements, including the offline ice-nucleation array work, were

conducted by our Texas A&M group (see Thompson et al., 2025a, b for details), and Table 1 lists the

corresponding DOE ARM data-archive entries for each instrument.

Table 1. A list of data and instruments used in this study.

Measurements TAMU ROAM-V ARM AMF1
Aerosol Extinction and miniMPL MPL
backscatter profile (Brooks and Chen, 2023) (Muradyan et al., 2021)
Pressure, temperature, and iMet-4 Vaisala RS41

relative humidity profile

(Sharma et al., 2023)

(Keeler et al., 2021)

Ground-based aerosol
measurements

Aerosol concentration and
size distribution

CCN concentration

INP concentration

SMPS, POPs
(Chen, Thompson, and Brooks,
2024)

CCN Counter
(Thompson, Chen, and Brooks,
2023)

DRUM impactor and TAMU
droplet freezing array
(Brooks and Thompson, 2023)

SMPS, APS

(Shilling and Levin, 2021,

2023)

CCN-200
(Koontz et al., 2021)

DRUM impactor and TAMU

droplet freezing array

(Brooks and Thompson, 2023)

Figure 2 provides an overview of the retrieval routine for aerosol, CCN, and INP profiles using the

TRACER campaign data. The routine is summarized here. First, we used lidar and radiosonde data to

determine the vertical profile of the cloud-free aerosol backscatter coefficient. Next, the aerosol

measurements from Scanning Mobility Particle Sizer (SMPS), Portable Optical Particle Spectrometer

165 (POPS), and a cloud condensation nuclei (CCN) counter are used to estimate the lidar hygroscopic growth
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correction factor, f{RH), which is the ratio of aerosol backscatter coefficient at a given relative humidity
(RH) to that at dry conditions. f{RH) and radiosonde-derived RH profile are then used to convert the
aerosol backscatter coefficient profile to a dry aerosol backscatter coefficient profile. The resulting dry
aerosol backscatter coefficient profile is used to linearly scale time-averaged surface aerosol
concentration, CCN concentration, and INP concentration measurements to estimate their vertical
distributions. Each profile is retrieved from data collected over a one to three hour period centered around

radiosonde launch time.

This method addresses the challenge that aerosol size distribution, composition, particle shape, and
hygroscopic growth, all of which influence backscatter, are not directly measured by the micropulse lidar
and must be inferred. By assuming that surface aerosol properties are representative of those of the whole
column, the dry backscatter coefficient becomes approximately linearly proportional to aerosol volume
concentration. We therefore could scale the time-averaged surface aerosol, CCN, and INP measurements
with the lidar-derived dry backscatter profile to obtain their vertical distributions. Below, we discuss
details of each step of the retrieval process with TAMU ROAM-V data collected on 28 August 2022 in

Galveston, Texas, as an example.
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Figure 2 Overview of the aerosol, CCN, and INP profile retrieval routine.
2.2 Micropulse Lidar Measurement and Inversion of the Lidar Equation

The mini micropulse lidar (miniMPL, Droplet Measurement Technologies, Inc.) operates at 532 nm and
measures backscatter and depolarization (Campbell et al., 2002; Flynn et al., 2007; Welton and Campbell,
2002). The miniMPL uses a vertical resolution of 15 m and a temporal resolution of 1 min in the TRACER
campaign. The normalized relative backscatter (NRB), also known as the attenuated backscatter, is

derived from the raw backscattered lidar signal after standard background, afterpulse, deadtime, and
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overlap corrections are performed. Details of the corrections are presented in the supplement (Equation

S1-S4). An example of an NRB time series collected by the miniMPL is shown in Figure 3.

8
2.00
! 1.75
€6 1.50
X
3 5 1.25
om
< 4 1.00 o
() =2
T, 0.75
=
)
£, 0.50
y 0.25
o 0.00
16:10:00 17:03:00 17:57:00 18:50:00
08-28-2022

Time (UTC)

Figure 3 Normalized relative backscatter (NRB) time series collected on 28 August 2022, with
miniMPL in Galveston, Texas.

NRB can be expressed as,

NRB(R) = C[p1(R) + B (RIT{ (R)TS(R) (1)

where R is the range, C is the lidar calibration constant, £ and f> represent the backscatter coefficient of
aerosol and air molecules, respectively; 71 and 7> represent the transmittance of aerosol and air molecules,
respectively. After correcting the raw lidar data to produce the NRB profile, data filtering and smoothing
are applied to the NRB profile. First, a continuous wavelet transform based algorithm is used to create a
cloud mask, filtering out periods of data with cloud signal peaks in the NRB profile that compromise the
quality of aerosol retrieval (Du et al., 2006). Because the miniMPL collects measurements near the peak
of the solar spectrum, observations can have a considerable amount of background noise during daytime
measurements (Campbell et al., 2002). The NRB profiles of cloud-free columns, typically between 0.5 to
1.5 hours before and after the radiosonde launch time (for a total of one to three hours), are time-averaged.
The sensitivity of this aerosol profile retrieval method is shown in Section 4 of the supplement. This

10
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averaged NRB profile is further normalized by the average NRB value of the lowest range bin. In addition,
the NRB profile above 4.5 km is smoothed using the NeighBlock denoising algorithm based on the
discrete wavelet transform to increase the stability of the retrieval process (Cai and Silverman, 2001).
Similar wavelet transform techniques have been widely used in lidar applications for noise reduction and
feature detection because the lidar signal exhibits a varying degree and frequency of noise at different

ranges (Fang and Huang, 2004; Xie et al., 2017).

Next, a Fernald two-component lidar inversion method is performed. This is a classic method for solving
the lidar equation and retrieving aerosol backscatter profiles from the attenuated backscatter (Fernald et
al., 1972; Klett, 1981; Fernald, 1984; Sasano et al., 1985). The lidar ratio (S), defined as the ratio of
aerosol extinction coefficient to aerosol backscatter coefficient, is assumed to be constant with respect to
range (R). Following the Fernald method, the sum of aerosol (#1(R)) and molecular backscatter coefficient

(B2(R)) is expressed as:

NRB(R) . e_Z(SI_SZ) J‘;C ﬁZ(r)dr

B1(Rc) + B2(Rc)

_ 251 J‘:C NRB(T) . e_z(sl_SZ)fRC ﬁZ(r )dT dT‘

The numerical form of Equation 2 used for the calculation is shown in the supplement (Equation S5). Si
and S> in Equation 2 represent the lidar ratio of aerosol and air molecules, respectively. S> is approximated
by the well-known constant 87/3 sr (Fernald, 1984). Rc is the calibration range selected at the far field,
and usually, a priori information is needed to set the reference aerosol backscatter at the calibration range.
At a wavelength of 532 nm, the aerosol lidar ratio typically ranges from 23 + 5 sr for clean marine
aerosols, 44 £ 9 sr for dust, 53 & 24 sr for clean continental aerosols, 55 + 22 sr for polluted dust, to 70 +
25 sr for polluted continental and smoke aerosols (Young et al., 2018). To account for the potential
variability of the lidar ratio, we choose 20 and 90 sr as the lower and upper estimates of aerosol lidar ratio,

respectively. The calibration range, Rc, was chosen to be 8 km above ground level (AGL). At this range,

11
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we assume the calibration scattering ratio (£1(R) + S2(R)) / f2(R), which is the ratio of the sum of aerosol

and molecular backscatter coefficients and molecular backscatter coefficient, varies between 1.0 and 1.2.
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Figure 4 (a) Time-averaged NRB profile of miniMPL from 16:10 to 18:50 UTC on 28 August
2022. The black line is the NRB profile normalized by the lowest level value; the orange dashed
line represents the smoothed NRB. (b) Rayleigh backscatter coefficient £, (dashed blue line) and
total backscatter coefficient f1+ £, (solid black line). The shaded region shows the uncertainty
range of the retrieved total backscatter coefficient.

The Rayleigh backscatter f2(R) is calculated using the following equation (Gimmestad and Roberts,
2023).

0.55 pm
A

288.15K P(R)
1013.25hPa T(R) (3)

B(R) =139 X | 1* x 1076

P(R) and T(R) are pressure and temperature profiles measured by radiosondes launched during the
TRACER campaign, and 4 is the lidar wavelength, 532 nm. Finally, Equation 2 can be iteratively solved
in a top-down approach, starting from the calibration range and working toward the surface. The aerosol
backscatter coefficient profile can be calculated by subtracting the molecular backscatter coefficient

profile from the total backscatter coefficient profile.

12
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An example of NRB profile and backscatter coefficient profile inversion is shown in Figure 4. The cloud-
free NRB profile of miniMPL is time-averaged between 16:10 to 18:50 UTC at Seawolf Park on 28
August 2022. The Rayleigh backscatter coefficient profile, shown in blue dashed lines in Figure 4b, is
calculated using data from the radiosonde launched around 17:30 UTC from the same site, and the total
backscatter coefficient derived from the lidar inversion is shown in Figure 4b as a black solid line. The
total backscatter coefficient profile closely follows the molecular (Rayleigh) backscatter profile above 2
km AGL, indicating that aerosol contributions are minimal at these altitudes and that the backscatter is
dominated by scattering from air molecules. This consistency also suggests that the Fernald inversion is
performing well, since the molecular backscatter is independently calculated and provides a reference

baseline.

The uncertainty in the total backscatter coefficient is assessed by systematically varying key parameters:
the scattering ratio at the calibration height and the lidar ratio. The Fernald inversion process was applied
40 times to the same NRB profile, using 5 calibration scattering ratios (1.0 to 1.2) and 8 lidar ratios (20
to 90 sr), producing 40 backscatter coefficient profiles. The mean of these profiles can be considered as
the best estimate, while the spread of these profiles from the maximum to the minimum of these profiles
represents the uncertainty interval. This systematic sensitivity analysis ensures that the retrieved aerosol
backscatter profile accounts for potential variability in the lidar ratio and the scattering ratio, providing a
more reliable estimate. The uncertainty range of the retrieved backscatter coefficient is shown in Figure

4b as the grey-shaded region.

13



2.3 Ground-based Aerosol Measurements
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Figure 5 Time-averaged aerosol measurements were collected on 28 August 2022, from 16:10 to
18:50 UTC at the TAMU site in Galveston. (a) Time-averaged aerosol size distribution with a y-
axis on a linear scale. The shaded area illustrates the standard error of the estimated mean. (b)

280 Time-averaged aerosol size distribution with a y-axis on a log scale. (¢c) CCN spectra, where
scatter points are time-averaged CCN concentrations at different supersaturations, and the
standard error of the sample mean is illustrated as error bars. (d) INP spectra showing INP
concentrations evaluated at different temperatures.

During the TRACER field campaign, the TAMU ROAM-V deployed a suite of surface aerosol
285 measurements, which are used in this analysis (see Table 1). The ROAM-V platform shares a heated and
dried isokinetic inlet among the TSI Scanning Mobility Particle Sizer (SMPS), the Droplet Measurement
Technologies CCN counter, and an additional GRIMM Condensation Particle Counter (CPC). Details of
the ROAM-V instrument sampling setup for the TRACER campaign and the particle loss corrections are
further described in Thompson et al. (2025).
290
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Onboard ROAM-V, the SMPS measures the mobility diameter of aerosols between 7 and 305 nm, while
the POPS measures the optical diameter of aerosols ranging from 125 to 3370 nm. Because the SMPS
and POPS are based on different physical principles, a method was developed to merge their measured
size distributions. T-matrix code is used to simulate the signal scattered by quasi-spherical particles of
various sizes detected by the POPS, generating a signal-size relation that depends on the aerosol effective
refractive index (Mishchenko and Travis, 1994). The POPS-measured aerosol sizes can be recalculated
by adjusting the effective refractive index. The refractive index that minimizes the root-mean-square error
of the overlapping size region between the POPS and SMPS size distributions is then selected. The
resulting POPS size distribution is then merged with the SMPS size distribution by applying a weighted
average over the overlapping region. The weights are determined by the Gaussian error function to ensure
a smooth transition between the two size distributions. The time average of the merged size distribution
across the time-averaging period is used for further analysis. An example of the time-averaged aerosol
size distribution measurement taken on 28 August 2022, from 16:10 to 18:50 UTC at Seawolf Park, is
shown in Figure 5a, b. The uncertainty of the aerosol size distribution is represented by two standard
errors of the time-averaged aerosol size data to provide a 95% confidence interval for the time-averaged

aerosol size distribution.

The CCN concentration spectra were measured with the CCN counter, which was set to supersaturations
between 0.2% and 1.2% with intervals of 0.2%. The CCN counter was calibrated with size-selected
ammonium sulfate particles. Similar to the merged aerosol size distribution, the time-averaged CCN
spectra are calculated to represent the CCN concentration during the time-averaging period. An example
of the average CCN measurement taken on 28 August 2022, from 16:10 to 18:50 UTC at the TAMU site
in Galveston, is shown in Figure 5c. The two standard errors of CCN data are calculated to provide a 95%

confidence interval for the time-averaged CCN concentration.

For ice nucleation measurements, size-resolved aerosol samples were collected using the Davis Rotating-
drum Universal-size-cut Monitoring (DRUM) impactor in four size ranges: greater than 3 pm, 3 to 1.2

um, 1.2 to 0.34 pm, and 0.34 to 0.15 um, and analysed in the laboratory for ice nucleation measurements.

15



Ice nucleation measurements were conducted using the custom-built immersion freezing array used in
320 our previous experiments (Fornea et al., 2009; Lei et al., 2023; Thompson et al., 2025a; Thompson et al.,
2025b), and described only briefly here. Aerosol impactor samples are washed off the impactor substrate
into high purity UHPLC (ultra-high-pressure liquid chromatography) water. Then, 2 uL droplets of the
sample water are subjected to 25 freeze-thaw cycles on the immersion freezing array. A digital camera is
used to detect freezing events and identify ice nucleation temperatures by measuring the average
325 brightness (or grayscale value) of the droplet pixels in an 8-bit image (which has 256 levels of grayscale
value). This image-processing technique monitors changes in brightness to infer droplet freezing. The

INP concentrations in the air are calculated using established methods (Vali, 1971).

For each retrieval, aerosol, CCN, and INP measurements were averaged over the same one to three hour
330 window as the lidar data used for backscatter profile retrieval. This averaging period reflects the
operational constraints of each instrument: the CCN counter requires approximately 30 minutes to
complete a full scan over the range of supersaturations, and INP samples were collected over one to two

hour periods (Thompson et al., 2025a).

2.4 Aerosol Hygroscopicity and Lidar Hygroscopic Growth Correction Factor
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Figure 6 (a) Blue scattered points represent pairs of critical supersaturation and corresponding
critical dry diameter derived from aerosol size distribution and CCN measurements. The blue
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dotted line represents the geometric mean of derived aerosol hygroscopicity x, and the shaded
region represents the one geometric standard deviation of x. ¥ =1 line is shown in a solid black
line; x = 0.1 is shown in a dashed line; x = 0.01 line is shown in a dash-dotted line; x = 0.001 line is
shown in a dotted line; and x = 0 is shown in a thick solid black line. (b) Lidar hygroscopic growth
correction factor as a function of relative humidity. The shaded area represents the uncertainties
of the derived k.

Since water uptake by aerosols enlarges their size and increases backscattering without affecting aerosol
concentration, it is not possible to reliably determine aerosol concentration from the aerosol backscatter
profile alone. It is important to convert the aerosol backscatter profile to the aerosol backscatter profile

that would be observed under dry conditions prior to calculating aerosol, CCN, or INP concentrations.

In past studies, the hygroscopicity or water uptake by aerosols, defined as the change in aerosol diameter
at a given RH relative to its dry diameter, has been quantified by tandem differential mobility
measurements (Brooks et al., 2004a; Tomlinson et al., 2007). Similarly, humidified nephelometers have
been used to quantify changes in scattering by aerosol at increased RH compared to scattering by dry
aerosol, and the results have been used to interpret lidar backscatter observations (Kotchenruther et al.,

1999; Ghan et al., 20006).

Here, we developed a new method that combines x-Kohler theory with Mie theory to infer dry aerosol
backscatter profiles from the observations at ambient RH. It is well known that activated CCN are defined
as those aerosols that have grown beyond the critical diameter required for spontaneous droplet growth.
CCN activation occurs in a supersaturated environment. However, it has been demonstrated that for
uniformly mixed soluble aerosol, CCN activation measurements can be used to infer hygroscopic growth
of aerosol in subsaturated conditions as well (Petters and Kreidenweis, 2007). This widely used concept

has become known as x-Kohler theory (Petters and Kreidenweis, 2007).

Using x-Kohler theory, CCN and aerosol size distribution measurements can be combined to infer an
aerosol hygroscopicity parameter x (kappa). The critical dry diameter D, is the size above which dry
aerosols of a certain x activate to form cloud droplets when exposed to a critical supersaturation SS..
Following the work of Moore et al. (2011), D, satisfies the integral
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Ncen =f n,(logD,) dlogD,, (4)
D

p.c

ny(logD,) is the measured aerosol size distribution in the form of drndlogD,, and Nccw is the measured
CCN concentration at a supersaturation level. D, can then be numerically solved. Since CCN
concentration is measured at a few different supersaturations, multiple pairs of SS.-D, . values are
calculated, and an example of the SS.-Dp,. pairs is shown in Figure 6a. Each pair of SS.-Dp,. values can

then be numerically solved using x-Kohler theory to derive a x value (Petters and Kreidenweis, 2007).

Following x-Kd&hler theory, the saturation ratio S over an aqueous solution droplet with diameter D (also
called wet diameter) can be expressed as

S(D) = a 5
(D) =55 Di(1—r) P (RTpWD> )

Dy is the dry diameter of the particle. « is the hygroscopicity parameter. gy. is the surface tension of the
air-water interface. M, is the molar mass of water. R is the universal gas constant. 7 is the temperature
evaluated at 298.15 K. p,, is the density of water. The x-Kohler equation relates saturation ratio to particle
size, and the supersaturation at the peak indicates the activation point of the particle as a CCN. A
numerical function was constructed to find the supersaturation at the peak of the x-Kdhler equation using
binary search, with the particle dry diameter and x as input parameters. Thus, the problem becomes
finding the x corresponding to a given D, as the dry diameter, to match a specific SS. as the output. The
x is then numerically determined using an iterative root-finding method to match the measured SS.-Dp,c

pairs.

Since x can be considered as log-normally distributed (Su et al., 2010), the geometric mean and geometric
standard deviation can be calculated to represent the average value and the variability of x for the bulk
aerosol composition. An example of the geometric mean and geometric standard deviation of « is also

shown in Figure 6a. The variation in x values at different supersaturations can be attributed to
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uncertainties in measurements and the differences in the aerosol chemical composition and mixing state
across various sizes. Subsequently, the aerosol size growth is predicted by numerically solving for the
wet aerosol diameter at a discrete series of RH values (Petters and Kreidenweis, 2007). To determine the
wet diameter at each RH value, we solve for the point at which the saturation ratio predicted by the «-
Kohler theory matches the specified environmental saturation ratio. This is done through an iterative root-

finding approach, using the dry diameter as the initial guess.

Once the aerosol size is known as a function of RH, the Mie scattering theory is then used to calculate the
aerosol extinction coefficient at each RH value (Prahl, 2023). The refractive index for dry aerosol is
assumed to be 1.45 — 0i based on values for dry ammonium sulfate at 532 nm (Cotterell et al., 2017). In
the absence of detailed aerosol composition data, the refractive index of ammonium sulfate is frequently
adopted as a representative value in aerosol optical calculations, as it provides a reasonable approximation
for non-absorbing, hygroscopic particles (Zieger et al., 2013; Ghan and Collins, 2004). In reality, aerosols
containing sulfate, nitrate, organic compounds, soot, and soil dust were all presented in Houston in
varying proportions depending on air mass origin (Thompson et al., 2025a; Lei et al., 2025). The refractive
index of aerosol at each RH is calculated as the volume-weighted average of the dry aerosol refractive
index and that of water. During the field campaign, aerosol size distribution measurements are made after
the sample air is dried to below 30% RH, as measured by an RH sensor. At this RH level, aerosols are
typically considered dry based on the efflorescence point of background ammonium sulfate (Onasch et

al., 1999). Therefore, a lidar hygroscopic growth correction factor f{RH) can then be calculated as:

ORH) b i > 309
f(RH) = {5(30%) 0 (6)
1 RH < 30%

Following the work of Geisinger, the extinction coefficient o, rather than the backscatter coefficient, was
used here. The extinction coefficient is more stable numerically than the backscatter coefficient in Mie
scattering calculations and is less sensitive to uncertainties in particle size distribution and refractive index
(Geisinger et al., 2017). This is convenient since we already assumed a linear relation between backscatter
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and extinction in the lidar inversion, and it is justifiable based on the work of Ghan and Collins (2004),
in which the influence of RH on backscatter and extinction was shown to be similar. In addition, we
assume a perfectly internally mixed aerosol distribution, and we apply the same « across all aerosol sizes

when predicting aerosol size growth at different RH. To account for the uncertainty of x, we calculate the

425 f(RH) using the geometric mean x and its value at one geometric standard deviation interval. The f{RH)

430

435

440

calculated using the x values is shown in Figure 6b. The solid black line represents the f{RH) calculated
using the geometric mean «, and the shaded region represents the f{RH) uncertainty calculated using one
geometric standard deviation interval of x. The calculated f{RH) is further interpolated using a cubic

spline to calculate f{RH) at any RH value.

2.5 Deriving the Aerosol, CCN, and INP Vertical Profiles
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Figure 7 (a) Aerosol and dry aerosol backscatter coefficient profiles are shown as solid black and
red lines, respectively, with shaded areas showing the corresponding uncertainty interval for each
profile. The relative humidity profile is shown as a solid blue line. (b) The aerosol profile is shown
as a solid black line. CCN profiles are shown in different colors corresponding to supersaturation
levels of 0.2%, 0.6%, and 1.2%. (c) INP profiles evaluated at —20°C and —25°C.

To retrieve aerosol, CCN, and INP vertical profiles, we assume that the surface measurements are
representative of the aerosol size distribution, composition, and cloud-activating ability aloft. This
assumption generally holds in well-mixed layers but may break down in the presence of elevated aerosol

layers, such as transported smoke or dust, which can be identified in the normalized relative backscatter
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(NRB) signal. Assuming that aerosol hygroscopicity at the surface is representative of the entire profile,

the dry aerosol backscatter coefficient profile fary(R) is given by

B (R)
f(RH)

ﬁdry(R) = (7)

Figure 7a shows the aerosol backscatter coefficient profile (black line with gray shading for uncertainty),
the RH profile (solid blue line), and the resulting dry aerosol backscatter coefficient profile (red line with
red shading for uncertainty). The radiosonde has a relatively small uncertainty in RH measurements,
specified as +5%. The uncertainty in the lidar hygroscopic growth correction factor, f{RH), is included in
the overall uncertainty of the dry aerosol backscatter coefficient. Assuming that the aerosol, CCN, and
INP properties at the surface are representative of the vertical profile, the aerosol (V,), CCN (Ncen), and

INP (Nmp) concentration profiles can therefore be estimated as:

(R
M) = 22 Ry (8a)
ry \\*o
(R
Neen (R, SS) = lf;dy—((R)) * Neen (Ro, SS) (8b)
ry \\*o
_ ﬁdry(R) )
Ninp(R,T) = ﬁ—dry(Ro) Ninp(Ro, T) (8c)

Ro is the altitude where the surface measurements are collected. fary(Ro) is the dry aerosol backscatter
coefficient profile at Ro. Np, Ncen, and Niwp are aerosol, CCN, and INP number concentrations,
respectively. One profile each for aerosol, CCN, and INP is retrieved for each time-averaging period.
Since the MPL and the miniMPL have near-field blind ranges of 250 m and 100 m, respectively, lidar
measurements near the surface are unavailable. To estimate the aerosol backscatter coefficient profile
within the lidar’s blind zone, we perform a second-degree polynomial fit to the dry aerosol backscatter
profile from up to 300 m AGL down to the edge of the blind zone. This fitted curve is then extrapolated
into the blind zone. Since the aerosol profile is later linearly scaled by the dry backscatter profile, having
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a physically reasonable estimation of the aerosol profile in the blind zone is necessary to ensure that the
scaling reflects realistic near-surface conditions. The extrapolated portions of the dry backscatter
coefficient profile within the blind zone are shown as dotted lines in Figure 7a. The SS is the
supersaturation at which the CCN concentration is evaluated, and 7 is the temperature at which the INP
concentration is evaluated. In addition, one standard error of the time-averaged aerosol and CCN
concentration of the time averaging period, around one to three hours, is included in the calculation for
aerosol and CCN concentration profiles. The aerosol and CCN concentrations evaluated at different
supersaturations are shown in Figure 7b. INP profiles are shown in Figure 7c. The dry aerosol backscatter
coefficient profile determines the shape of aerosol, CCN, and INP concentration profiles, while the
surface aerosol measurements determine the amplitude. CCN concentration profiles are presented at
different supersaturations, and INP concentration profiles are presented at different activation
temperatures. Presenting CCN and INP profiles this way is useful for modeling applications, as it allows
the model to compute CCN and INP activation dynamically when the particles are transported to
conditions supportive of cloud condensation or ice nucleation within the modeled convection (or other

atmospheric processes of interest).

It is important to acknowledge that lidar-derived aerosol profiles may be affected by the artificial increase
in aerosol backscatter at higher altitudes. As seen in Figure 7a, b, the aerosol backscatter coefficient shows
a steady increase with height above 4 km. This apparent increase is likely a systematic artifact related to
lidar signal noise at higher altitudes. As a result, the retrieved aerosol profile above 4 km should be

interpreted with caution.
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3 Results

3.1 Case study: Aerosol Profile under Clear Sky Conditions
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Figure 8 (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC, with
miniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are
shown as solid black and red lines, respectively, with a shaded area showing the corresponding
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. (c)
The aerosol profile is shown as a solid black line. CCN profiles are shown in different colors
corresponding to supersaturation levels of 0.2% and 0.6%. CCN data for 1.2% supersaturation
were not available. (d) INP profiles at —15°C, —20°C, and —25°C. Note that the —20°C INP profile
overlaps with the —25°C INP profile.

We begin with a case study from 31 August 2022, at the coastal Galveston site (16:39—-19:00 UTC),

representing a baseline case under well-mixed atmospheric conditions with minimal cloud influence. The
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NRB time series in Figure 8a shows a persistent layer of high backscatter, visible below approximately 1

km AGL. In addition, intermittent layers of high backscatter are observed between 1 and 3 km.

Figure 8b shows the cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile
during the time-averaging period. The relative humidity (RH) profile is relatively uniform below 8 km,
stabilizing around 65%, and the derived aerosol hygroscopicity parameter « is modest, with a geometric
mean of approximately 0.09 x 2.70*!. This low x value suggests the aerosol population during this period
was only weakly hygroscopic. As expected, under these uniform RH and composition conditions, the
correction for aerosol hygroscopic growth introduces minimal differences between the raw and dry
backscatter profiles. The similarity between the two profiles (Figure 8b) confirms that, in this case, the

lidar backscatter signal is not significantly biased by water uptake.

Figure 8c shows the retrieved aerosol profile and CCN profile at different supersaturations. Surface
aerosol concentrations were (5.65 + 0.46) x 10° cm ™, decreasing to (1.14 + 0.57) x 103 cm™ at 1 km
AGL, a roughly fivefold reduction with height. CCN concentrations at a supersaturation of 0.2% show a
similar decline, from 329 + 2 cm ™ at the surface to 67 =26 cm ™ at 1 km. Figure 8d shows the retrieved
INP profile evaluated at different temperatures. INP concentrations evaluated at —15°C were 0.11 L™! at

the surface and 0.02 L' at 1 km AGL.
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3.2 Case study: Correction for Hygroscopic Growth in the Boundary Layer
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Figure 9 (a) NRB time series data collected on 6 September 2022, from 18:30 to 20:30 UTC, with
miniMPL inland at Hockley, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles
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are shown as solid black and red lines, respectively, with a shaded area showing the

corresponding uncertainty interval for each profile. The relative humidity profile is shown as a
solid blue line. (¢) The aerosol profile is shown as a solid black line. CCN profiles are shown in
different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%. (d) INP profiles

evaluated at —20°C and —25°C. No INP was observed at —15°C.

This case from 6 September 2022 at the inland site in Hockley, Texas (18:30-20:30 UTC), demonstrates
the importance of applying a hygroscopic growth correction when RH varies strongly with altitude. Figure
9a shows the lidar NRB time series, with a shallow boundary cloud observed around 1.2 km AGL. The
layer at and below the cloud level height can be identified as a convective mixed layer, while the layer

above the cloud level can be identified as an elevated aerosol layer. Although an elevated aerosol layer
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exists, it does not affect the correction for the enhanced scattering from hygroscopic growth in the mixed
layer. The NRB time series in Figure 9a shows limited temporal variation in attenuated backscatter

profiles during the cloud-free period.

Figure 9b shows the cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile
during the time-averaging period. As RH increases toward 100% within the mixed layer, the correction
for hygroscopic growth, applied using the lidar hygroscopicity factor f{RH), results in a dry aerosol
backscatter profile lower than the uncorrected one. Without this correction, aerosol concentrations would
be substantially overestimated. For example, at 1.2 km AGL, aerosol concentration estimates from

uncorrected backscatter would exceed the corrected value by a factor of 2.8.

Figure 9c and 9d show retrieved aerosol, CCN, and INP profiles. The aerosol concentration at the surface
is approximately (3.30 &= 0.09) x 10° cm ™3 and decreases to 371 + 216 cm™ at the top of the mixed layer
at 1.2 km AGL. The CCN concentration evaluated at a supersaturation of 0.2% is 159 + 2 cm ™ at the
surface and 18 + 10 cm > at 1.2 km AGL (Figure 9d). The INP concentration evaluated at —20°C is around
0.07 L! at the surface level and around 3 x 1073 L' at 1 km AGL. No INP was observed at —15°C.
Between 1.2 and 3.2 km, the dry aerosol backscatter coefficient profile indicates the presence of an
elevated aerosol layer above the mixed layer. The aerosol population in the mixed layer and the elevated
aerosol layer may differ in terms of aerosol size distribution and chemical composition, making this
method for retrieving aerosol, CCN, and INP profiles more uncertain in the elevated aerosol layer shown
in Figure 9. The increase of the dry aerosol backscatter profile as well as the aerosol concentration profile

between 6 and 8 km is likely a systematic artifact related to the lidar noise at high altitude.
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555 3.3 Case study: Retrieval of Aerosol Profile with Multiple Cloud Layers
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Figure 10 (a) NRB time series collected on 26 August 2022, from 16:02 to 18:42 UTC, with
miniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are
shown as solid black and red lines, respectively, with a shaded area showing the corresponding

560 uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line.
Gray dashed lines indicate the cloud level. (c) The aerosol profile is shown as a solid black line.
CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2%, 0.6%,
and 1.2%. (d) INP profiles at —15°C, —20°C, and —25°C.

This case from 26 August 2022 at the Galveston coastal site (16:02—18:42 UTC) illustrates the retrieval
565 method’s performance in the presence of multiple cloud and moisture layers. In Figure 10a, cloud layers
around 0.6, 1.5, and 3.6 km AGL can be identified as white pixels with high NRB. These cloud layers
also match vertical regions of increased RH measured by the radiosonde launched around 17:26 UTC

(Figure 10b). The high attenuated backscatter signal near the cloud levels may reflect the presence of
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distinct aerosol layers or result from higher humidity enhancing aerosol scattering. The NRB time series
in Figure 10a shows some temporal variation in the attenuated backscatter profile, with a layer of high

backscatter slowly decreasing from around 2 to 1 km AGL.

As shown in Figure 10b, a peak in the aerosol backscatter coefficient profile is seen around 3.6 km AGL,
showing a region where aerosols take up water and grow. This peak is almost completely removed in the
dry aerosol backscatter coefficient profile in Figure 10b, indicating a successful correction for the
hygroscopic growth effect on aerosol scattering. This result also demonstrates that the lidar hygroscopic
growth correction factor derived from surface measurements can be applied to aerosol aloft. Increased
aerosol backscatter coefficients around 0.6 and 1.5 km AGL due to hygroscopic growth are also reduced,
resulting in a more realistic aerosol vertical distribution. The dry backscatter profile suggests that an
elevated aerosol layer may be present near 1.5 km AGL, while the uncorrected peak at 3.6 km AGL is

likely dominated by humidity-enhanced scattering rather than a distinct aerosol layer.

Figure 10c and 10d show retrieved aerosol, CCN, and INP profiles. At the surface, the aerosol
concentration is (7.95 + 0.27) x 10° cm™ and decreases by approximately 28% at 0.6 km, 50% at 1.5 km,
and 79% at 3.6 km AGL. At a supersaturation of 0.2%, the CCN concentrations are 511 + 10 cm 3 at the
surface, 368 + 73 cm ™ at 0.6 km, 256 + 86 cm > at 1.5 km, and 107 + 82 cm ™ at 3.6 km AGL. At a
temperature of —15°C, the INP concentrations are around 0.05 L™! at the surface, 0.04 L™! at 0.6 km, 0.03
L 'at 1.5 km, and 0.01 L™! at 3.6 km AGL. The correction for the aerosol hygroscopic growth leads to
the more realistic acrosol, CCN, and INP profiles shown in Figure 10c, d. The retrieval of aerosol, CCN,
and INP concentrations may be less reliable around 1.5 km due to the possible presence of an elevated
aerosol layer. However, the successful removal of the humidity-enhanced scattering peak near 3.6 km is

encouraging, suggesting that the applied k value may be reasonable throughout the column.

The increase in the dry aerosol backscatter and aerosol concentration between 5 and 7 km is a systematic
artifact likely caused by high lidar signal noise, as shown in Figure 10a above 5 km. The magnitude of
this artifact is likely amplified by the high noise level, which is caused by the limited number of cloud-
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free profiles available for averaging during this period, as compared to the previous case, where more

cloud-free profiles led to reduced noise and less pronounced artifacts.

3.4 Comparison Between Collocated MPL and miniMPL Lidar
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Figure 11 Comparison of retrieved aerosol backscatter coefficient profiles derived from miniMPL
and ARM AMF1 MPL data. (a) Raw co-polarized lidar signal of TAMU miniMPL (red solid line)
and ARM MPL (blue solid line). (b) Calibrated lidar normalized relative backscatter signal of
TAMU miniMPL (red solid line) and ARM MPL (blue solid line). (¢) Retrieved lidar aerosol
backscatter coefficient of TAMU miniMPL (orange solid line and area) and ARM MPL (blue solid
line and area). (d) Comparison of the lidar aerosol backscatter coefficients. The uncertainty interval
of the retrieved aerosol backscatter coefficient is shown as error bars.

The TAMU ROAM-V was deployed at the AMF1 (La Porte, Texas) site on 1 September 2022, allowing
miniMPL and MPL to be collocated and compared directly. The ARM MPL deployed at AMF1 collects
data at a vertical resolution of 15 m and a temporal resolution of 10 s (Muradyan et al., 2021). During the
colocation test, the two lidars were separated horizontally by approximately 30 meters and vertically by
less than 10 meters. The data from both lidars were time-averaged between 20:00 and 22:00 UTC. Vertical
profiles of the lidar raw signal, the NRB, and the aerosol backscatter coefficient, and a comparison of the
lidar aerosol backscatter coefficient are shown in Figure 11, a, b, ¢, and d, respectively. Figure 11a shows
that the raw signals from the two lidars differ significantly. However, after applying lidar-specific
afterpulse, deadtime, background, and range corrections for each lidar, their NRB profiles agree closely
(Figure 11b). Figure 11c and d show that the MPL and miniMPL NRB and aerosol backscatter coefficient

profiles follow similar shapes and magnitudes. The miniMPL overestimates aerosol backscatter
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coefficients between 6 km and 8 km compared to the MPL, suggesting that the miniMPL-derived profiles
may be less reliable at higher altitudes. This artifact is consistent with the spurious high-altitude
enhancements discussed earlier and is likely caused by signal noise and overlap correction uncertainty in
the miniMPL retrieval. The miniMPL and MPL profiles exhibit a slight vertical offset below 4 km, which
may result from residual errors introduced during the afterpulse, background, or overlap corrections. The
differences between the two aerosol backscatter profiles generally remain within the estimated uncertainty
bounds, which primarily arise from the assumed lidar ratio and the scattering ratio at the reference height.
In summary, miniMPL and MPL data are remarkably similar despite differences in their lidar designs and
specifications. This agreement suggests that the more compact and less expensive miniMPL can provide
comparable data quality to the more established MPL system. In addition, the use of two lidars with
comparable outputs enables coordinated deployment and consistent analysis across different sites over

the same period.

3.5 Comparison of aerosol and CCN profiles between Galveston and La Porte, Texas (28 August
2022)
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Figure 12 Comparison of lidar measurement of miniMPL deployed at TAMU Galveston site and
MPL deployed at ARM AMF1 site on 28 August 2022, from 16:10 to 18:50 UTC. (a) Aerosol
backscatter coefficient profiles. (b) Dry aerosol backscatter coefficient profiles. (c) Aerosol
concentration profile. (d) CCN concentration profiles at 0.2% supersaturation.
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A comparison between miniMPL and ARM MPL measurements at different locations at the same time
on 28 August 2022 is shown in Figure 12. miniMPL was deployed at Seawolf Park, Galveston, Texas,
and the AMF1 was located in La Porte, Texas. The straight-line distance between the two sites is about
46 km. The time-averaging period was from 16:10 to 18:50 UTC. As shown in Figure 12b, near the
ground surface, the dry aerosol backscatter coefficients at the two sites are similar. The dry aerosol
backscatter coefficient at the TAMU Galveston site near the surface is (1.07 £ 0.57) x 10° km™!, and at
the AMF1 La Porte site, it is (0.89 + 0.51) x 10° km™!. The dry aerosol backscatter coefficient is greater
at the AMF1 La Porte site at higher altitudes. Figure 12¢ and d show that the aerosol and CCN (SS= 0.2%)
concentration at the AMF1 La Porte site is consistently greater than at the TAMU Galveston site at all
vertical levels. At the surface, the aerosol concentration is (3.49 + 0.34) x 10° cm™ for the TAMU site
and (5.24 £ 1.26) x 103 cm™ for the ARM site. At 1 km altitude, these concentrations are 313 = 169 cm ™
and (1.78 £0.47) x 10 cm™ for the TAMU and ARM sites, respectively. In terms of CCN concentrations
evaluated at 0.2% SS at the surface, the TAMU site has a CCN concentration of 127 + 2 cm ™3, while the
ARM site has a slightly greater concentration of 137 + 9 cm™3. At 1 km altitude, the CCN concentration
at the TAMU site is 11 =5 ¢cm 3, compared to a substantially greater concentration of 46 + 5 cm 3 at the

ARM site.

These differences highlight variations in aerosol and CCN distributions between the two locations,
especially at upper altitudes. The La Porte site likely has a greater dry aerosol backscatter coefficient and
aerosol concentration due to surrounding industrial emissions, while the TAMU Galveston site is more
influenced by the maritime air mass. Despite similar surface aerosol and CCN number concentrations,
there are clear differences in the aerosol and CCN vertical distribution between the two sites, only about
46 km apart. Such variability underscores the importance of localized aerosol vertical profile
measurements in characterizing aerosol vertical distributions when assessing their impact on air quality,
weather, and climate. It also highlights the necessity of deploying multiple measurement sites to capture
the spatial heterogeneity of aerosol vertical profiles when conducting a field campaign that covers a large
study area, especially in regions influenced by heterogeneous sources of emissions and complex airmass

interactions.

31



670

675

680

685

690

4 Discussion and Conclusions

In this study, we use data collected during the TRACER campaign to demonstrate a new method of
retrieving aerosol, CCN, and INP profiles by integrating mini micropulse lidar measurements with
radiosonde and ground-based aerosol measurements, including aerosol size distributions, CCN activation,
and ice nucleation measurements. In the future, these measurements can be collected routinely to translate
lidar backscatter coefficient profiles to long-term aerosol, CCN, and INP vertical profiles. Further, our
method is not limited to the micropulse lidar and can be applied to other single-wavelength elastic or

more advanced lidars.

One of the key findings of this study is that correcting aerosol hygroscopic growth is necessary for
retrieving realistic CCN and INP concentration profiles. We have shown that using lidar-retrieved
backscatter or extinction profiles without correcting for hygroscopic growth can lead to a significant
overestimation of the aerosol concentration near the cloud base. To solve this issue, we introduced a
method to quantify aerosol scattering enhancement due to aerosol hygroscopic growth. This method for
determining the lidar hygroscopic growth correction factor can be used as a complementary approach to

the traditional method of using a collocated humidified nephelometer (Ghan et al., 2006).

Another key finding is that aerosol and CCN vertical distributions can significantly vary at small spatial
scales, even when similar acrosol and CCN concentrations are measured at the surface, as demonstrated
by the comparison between the aerosol vertical profile at the ARM and TAMU sites on 28 August 2022.
This variability highlights the importance of considering vertical profiles rather than relying solely on
ground-based aerosol measurements when assessing aerosol properties and their impacts on cloud
formation. It also highlights the need for localized vertical profile measurements to accurately capture the
diverse aerosol characteristics in different regions, particularly in areas with complex emission sources
and air mass interactions. Portable lidars, such as the miniMPL lidar, combined with surface aerosol

measurements, can be highly effective in providing these localized aerosol vertical profile measurements.
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While the method described herein clearly has some distinct advantages, it is subject to several limitations.
Since the MPL and miniMPL measurements are noisy at upper altitudes, this method’s retrieval above
the altitude where the lidar signal is smoothed should be used with caution and can only serve as a best
estimate. In addition, since our method relies on the assumption that the aerosol size distribution and
composition are similar throughout the vertical column, the retrieved profiles are most reliable within the
well-mixed boundary layer. At altitudes where aerosol properties differ significantly from those at the
surface, such as in the presence of a transported dust layer in the free troposphere, this method may be
less reliable, and the results should be interpreted with caution. Despite these limitations, as measurements
of CCN and INP vertical profiles are difficult to obtain and sparse, the results from this method can serve

as a significant improvement over the arbitrary aerosol profiles often used in model initialization.

In conclusion, the integration of MPL and ground-based aerosol measurements offers a powerful tool for
retrieving detailed vertical profiles of aerosols, CCN, and INPs. The retrieved profiles can serve as inputs
to provide realistic aerosol vertical distributions for cloud-resolving models, facilitating the study of

aerosol-cloud interactions and aerosol effects on climate.
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