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Abstract.  

 

Accurately characterizing the vertical distribution of aerosols and their cloud-forming properties is crucial 10 

for understanding aerosol-cloud interactions and their impact on climate. This study presents a novel 

technique for retrieving vertical profiles of aerosols, cloud condensation nuclei (CCN), and ice nucleating 

particles (INP) by combining micropulse lidar, radiosonde, and ground-based aerosol measurements. 

Herein, the technique is applied to data collected by our team at Texas A&M University during the 

Tracking Aerosol Convection Interactions ExpeRiment (TRACER) campaign. Ground-based aerosol size 15 

distribution and CCN counter data are used to estimate the value of the aerosol hygroscopicity parameter, 

κ. The derived κ, together with Mie scattering theory and the relative humidity profile from the 

radiosonde, is used to estimate aerosol size growth and the associated increase in backscatter at each 

altitude. We then correct the lidar backscatter to dry conditions to produce the dry aerosol backscatter 

coefficient profile. The dry aerosol backscatter coefficient profile is linearly scaled to collocated surface 20 

measurements of aerosols, CCN, and INP to produce corresponding vertical profiles. Combining lidar 

backscatter profiles with aerosol and cloud nucleation measurements leads to a more realistic 

representation of vertical distributions of aerosol properties. The method could be readily applied to lidar 

measurements in future field campaigns. 
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1 Introduction 25 

The interaction between aerosols and clouds introduces significant uncertainties in estimating aerosol 

indirect radiative forcing, a critical factor in predicting future climate scenarios (Seinfeld et al., 2016). 

Aerosols can facilitate the formation of cloud droplets and ice particles by acting as cloud condensation 

nuclei (CCN) and ice nucleating particles (INP), respectively. Consequently, changes in aerosol 

concentrations could influence many cloud properties and processes (Tao et al., 2012; Fan et al., 2016; 30 

Twohy et al., 2005). For example, increased CCN concentrations could result in smaller cloud droplet 

sizes, suppress local precipitation in warm-phase clouds, and extend cloud lifetimes (Twomey, 1977; 

Albrecht, 1989). Some convective cloud studies have suggested that an increased concentration of 

ultrafine aerosol particles (smaller than 50 nm) leads to enhanced condensational heating from additional 

water vapor condensation. Since this process invigorates the updraft intensity, it has been referred to as 35 

warm-phase invigoration (Fan et al., 2007; Fan et al., 2018; Lebo and Seinfeld, 2011). Other studies have 

focused on cold-phase invigoration of updrafts, a process in which cloud water freezes, releasing latent 

heat and subsequently increasing the buoyancy of air parcels (Andreae et al., 2004; Rosenfeld et al., 2008). 

At present, the extent and significance of aerosol-induced invigoration effects are under debate (Lebo, 

2018; Igel and van den Heever, 2021; Varble et al., 2023). Addressing these uncertainties requires a 40 

deeper understanding of the microphysical processes involved (Jensen, 2023). One of the key gaps in our 

current understanding of aerosol-cloud interactions is the vertical distribution of aerosols, CCN, and INPs 

in the cloud environment. 

 

The knowledge of the aerosol vertical distribution is important for assessing aerosol-cloud interactions 45 

(Rosenfeld et al., 2014; Lin et al., 2023). Modeling studies have shown evidence that the altitude of 

aerosols significantly influences their impact on cloud formation and deep convection (Marinescu et al., 

2017; Lebo, 2014; Zhang et al., 2021). However, in most long-term field campaigns, aerosol, CCN, and 

INP measurements are only made at ground-based sampling stations (Schmale et al., 2018; Pöhlker et al., 

2016; Perkins et al., 2022). By comparison, airborne in situ measurements, which provide observations 50 

of CCN and INP at the cloud level, are generally of shorter duration (Stith et al., 2009; Dadashazar et al., 

2022; Raes et al., 2000). Thus, retrievals from ground-based lidar observations, which can operate 
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continuously over extended periods to quantitatively assess vertical profiles of aerosol properties, 

represent a highly valuable method. 

 55 

Lidars detect range-resolved properties of aerosols and cloud particles by emitting laser pulses and 

measuring the backscattered light. Lidar measurements can be used to retrieve bulk aerosol optical 

properties, including the aerosol backscatter coefficient, extinction coefficient, and depolarization ratio. 

These aerosol optical properties are influenced by various aerosol properties, including size distribution, 

shape, chemical composition, and mixing state (Brooks et al., 2004b; Titos et al., 2016; Yao et al., 2022). 60 

Although the same intrinsic particle properties govern microphysics, the relationship between the lidar 

observations and the concentration of cloud-forming aerosols is not straightforward. Most CCN are found 

within the Aitken (typically between 0.01 and 0.1 μm) and accumulation (typically between 0.1 and 1 

μm) aerosol modes, but lidar observations at visible wavelengths are most sensitive to the accumulation 

and coarse (typically greater than 1 μm) mode (Shinozuka et al., 2015; Kapustin et al., 2006). In addition, 65 

aerosol hygroscopic growth due to increased humidity increases the aerosol backscatter coefficient 

without affecting the CCN concentration (Shinozuka et al., 2015; Liu and Li, 2014). As for INP, it has 

been shown that larger aerosols are more likely to be INP, particularly those with a diameter exceeding 

500 nm (Demott et al., 2010). Individual aerosols in this size range backscatter light effectively, but less 

than 1 in 105 particles in the atmosphere can act as INPs (Demott et al., 2010). Thus, INPs contribute little 70 

to the measured bulk aerosol optical signals. Consequently, it is necessary to employ assumptions or 

complementary aerosol measurements when estimating cloud-forming aerosol concentration from remote 

sensing measurements. 

 

Studies have adopted different approaches when using lidar measurements to retrieve the CCN 75 

concentration vertical profile (Lv et al., 2018; Mamouri and Ansmann, 2016; Ansmann et al., 2021; Ghan 

et al., 2006; Ghan and Collins, 2004; Lenhardt et al., 2023). The first approach involves using 

multiwavelength lidar to retrieve aerosol concentrations by classifying them into different aerosol types 

(urban, biomass burning, and dust) and then using the prescribed hygroscopicity parameter of each aerosol 

type to estimate the CCN concentration (Lv et al., 2018). This approach requires an advanced 80 



4 
 

multiwavelength lidar, such as the multiwavelength High Spectral Resolution Lidar (HSRL-2) or the 

multiwavelength Raman lidar (Müller et al., 2011; Müller et al., 2014). Another approach relies on an 

empirical relation between the aerosol extinction coefficient and aerosol concentrations derived from the 

Aerosol Robotic Network (AERONET) to convert backscatter into aerosol concentration profiles. A CCN 

parameterization scheme based on the empirical relation between aerosol and CCN concentration of each 85 

aerosol type is applied to the aerosol concentration profile to produce the CCN concentration profile 

(Mamouri and Ansmann, 2016; Ansmann et al., 2021). Each of these approaches strongly relies on 

assumed aerosol composition, shape, and refractive index used in the lidar retrieval and CCN 

parameterizations. Consequently, they may fail to capture the complex conditions of atmospheric 

aerosols, thus limiting the precision of CCN estimations. 90 

 

The third approach to determining CCN concentration using lidar is to directly scale ground-based CCN 

concentration measurement with the lidar-measured extinction or backscatter profile, first proposed by 

Ghan and Collins (2004). This approach assumes that the aerosol composition and size distribution remain 

relatively constant with altitude. Ghan and Collins (2004) used the humidification factor (hereby referred 95 

to as the lidar hygroscopic growth correction factor), defined as the dependence of aerosol extinction or 

backscatter on relative humidity (RH), to convert the observed extinction and backscatter coefficients to 

their dry counterparts. Ghan and Collins (2004) found that CCN concentrations at smaller 

supersaturations correlate more strongly with dry backscatter and are less impacted by height variations 

in aerosol size distribution than at higher supersaturations. Ghan et al. (2006) later validated this approach, 100 

showing that the correlation between lidar-derived and in situ CCN is influenced by supersaturation, 

aerosol uniformity with height, and lidar retrieval accuracy. This method has been applied in a routine 

CCN profile data product based on a Raman lidar (Kulkarni et al., 2023). Following a similar approach, 

Lenhardt et al. (2023) compared in situ CCN and airborne HSRL-2 measurements in the southeast 

Atlantic. Their results show that CCN concentration at 0.3% supersaturation in dry ambient conditions 105 

(where RH ≤ 50%) strongly correlates with the HSRL-2 measured extinction and backscatter. 

Collectively, these studies demonstrate the strong potential of lidar observations for retrieving CCN 

profiles. 
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Compared to the lidar retrievals of CCN, fewer studies have focused on INP retrievals using lidar data. 110 

Studies have combined INP parameterization with lidar measurement to retrieve INP concentration 

profiles (Mamouri and Ansmann, 2016; Marinou et al., 2019; Ansmann et al., 2021). A number of INP 

parameterization schemes based on previous ice nucleation measurements are available in the literature 

for total global aerosols of unspecified composition (Demott et al., 2010), dust (Ullrich et al., 2017; 

Demott et al., 2015; Niemand et al., 2012; Steinke et al., 2015), soot aerosols (Ullrich et al., 2017), 115 

biological aerosols (Tobo et al., 2013), and organics (Wang and Knopf, 2011). Generalized aerosol type 

and composition assumptions must be made when using these INP parameterizations, which depend on 

past measurements from other locations or lab experiments. In contrast, lidar retrievals based on 

simultaneous ground-based INP measurements would provide a more realistic estimate of ice nucleation. 

We propose that, analogous to CCN profile retrieval, INP concentration measured at the surface can be 120 

linearly scaled by the dry backscatter coefficient profile derived from lidar measurements to create an 

estimate of the INP vertical profile. 

 

Despite advancements in understanding aerosol–cloud interactions, significant uncertainties remain in 

accurately characterizing aerosol vertical distributions and their impact on cloud processes, requiring 125 

more comprehensive and vertically resolved measurements to fill these knowledge gaps. The Tracking 

Aerosol Convection Interactions ExpeRiment (TRACER) campaign focused on understanding aerosol-

cloud/convection interaction in the Houston metropolitan area in the summer and fall of 2022 (Jensen, 

2023). In this study, we use the micropulse lidar and ground-based aerosol measurements we collected 

during the TRACER campaign to develop a measurement-based approach to retrieve the aerosol, CCN, 130 

and INP vertical profiles. The ground-based aerosol measurements include aerosol size distribution, CCN, 

and INP measurements. By leveraging observations to minimize assumptions in the retrieval process, this 

approach is expected to produce realistic vertical profiles of aerosol, CCN, and INP concentrations. 
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2 Methodology 

2.1 Overview of TRACER Field Campaign 135 

 

 
Figure 1 TRACER campaign sampling locations in the Houston, Texas, metropolitan area. The 
Texas A&M University sampling sites are marked with circles, the ARM AMF1 site is marked 
with a star, and the ARM ancillary site is marked with a diamond. This map was created using 140 
Natural Earth shapefiles, LandFire 2022 vegetation data, and USA detailed water bodies data 
(Rollins, 2009). 

The U.S. Department of Energy (DOE) TRACER field campaign was conducted from October 2021 

through September 2022 in the Houston metropolitan area, with an intensive observation period (IOP) 

from June 2022 to September 2022, as shown in Figure 1. The DOE first Atmospheric Radiation 145 

Measurement (ARM) Mobile Facility (AMF1) was deployed at La Porte, Texas, throughout the 

campaign. During the IOP, whenever forecasts indicated a strong sea breeze and conditions favorable for 

isolated deep convection, the TAMU ROAM-V was deployed at Seawolf Park in Galveston, Texas, and 

at several inland sites (Rapp et al., 2024). An overview of the TAMU TRACER campaign payload, 

deployment strategy, and available measurements is provided by Rapp et al. (2024). Both AMF1 and 150 

ROAM-V collected similar ground-based aerosol measurements, radiosonde data, and ground-based lidar 



7 
 

profiles, as summarized in Table 1. The lidar retrieval method described below was developed based on 

the ROAM-V instrumentation and was also applied to the observations at the AMF1 site during TRACER. 

By extension, this method could be used in other future campaigns with a similar instrumentation 

configuration. All ROAM-V measurements, including the offline ice-nucleation array work, were 155 

conducted by our Texas A&M group (see Thompson et al., 2025a, b for details), and Table 1 lists the 

corresponding DOE ARM data-archive entries for each instrument. 

 

Table 1. A list of data and instruments used in this study. 

Measurements TAMU ROAM-V ARM AMF1 

Aerosol Extinction and 
backscatter profile 

miniMPL 
(Brooks and Chen, 2023) 

MPL 
(Muradyan et al., 2021) 

Pressure, temperature, and 
relative humidity profile  

iMet-4 
(Sharma et al., 2023) 

Vaisala RS41 
(Keeler et al., 2021) 

Ground-based aerosol 
measurements   

Aerosol concentration and 
size distribution 

SMPS, POPs 
(Chen, Thompson, and Brooks, 

2024) 

SMPS, APS 
(Shilling and Levin, 2021, 

2023) 

CCN concentration 
CCN Counter 

(Thompson, Chen, and Brooks, 
2023) 

CCN-200 
(Koontz et al., 2021) 

INP concentration 
DRUM impactor and TAMU 

droplet freezing array 
(Brooks and Thompson, 2023) 

DRUM impactor and TAMU 
droplet freezing array 

(Brooks and Thompson, 2023) 

 160 

Figure 2 provides an overview of the retrieval routine for aerosol, CCN, and INP profiles using the 

TRACER campaign data. The routine is summarized here. First, we used lidar and radiosonde data to 

determine the vertical profile of the cloud-free aerosol backscatter coefficient. Next, the aerosol 

measurements from Scanning Mobility Particle Sizer (SMPS), Portable Optical Particle Spectrometer 

(POPS), and a cloud condensation nuclei (CCN) counter are used to estimate the lidar hygroscopic growth 165 
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correction factor, f(RH), which is the ratio of aerosol backscatter coefficient at a given relative humidity 

(RH) to that at dry conditions. f(RH) and radiosonde-derived RH profile are then used to convert the 

aerosol backscatter coefficient profile to a dry aerosol backscatter coefficient profile. The resulting dry 

aerosol backscatter coefficient profile is used to linearly scale time-averaged surface aerosol 

concentration, CCN concentration, and INP concentration measurements to estimate their vertical 170 

distributions. Each profile is retrieved from data collected over a one to three hour period centered around 

radiosonde launch time. 

 

This method addresses the challenge that aerosol size distribution, composition, particle shape, and 

hygroscopic growth, all of which influence backscatter, are not directly measured by the micropulse lidar 175 

and must be inferred. By assuming that surface aerosol properties are representative of those of the whole 

column, the dry backscatter coefficient becomes approximately linearly proportional to aerosol volume 

concentration. We therefore could scale the time-averaged surface aerosol, CCN, and INP measurements 

with the lidar-derived dry backscatter profile to obtain their vertical distributions. Below, we discuss 

details of each step of the retrieval process with TAMU ROAM-V data collected on 28 August 2022 in 180 

Galveston, Texas, as an example. 
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Figure 2 Overview of the aerosol, CCN, and INP profile retrieval routine. 

2.2 Micropulse Lidar Measurement and Inversion of the Lidar Equation 

The mini micropulse lidar (miniMPL, Droplet Measurement Technologies, Inc.) operates at 532 nm and 185 

measures backscatter and depolarization (Campbell et al., 2002; Flynn et al., 2007; Welton and Campbell, 

2002). The miniMPL uses a vertical resolution of 15 m and a temporal resolution of 1 min in the TRACER 

campaign. The normalized relative backscatter (NRB), also known as the attenuated backscatter, is 

derived from the raw backscattered lidar signal after standard background, afterpulse, deadtime, and 
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overlap corrections are performed. Details of the corrections are presented in the supporting information 190 

(Equation S1–S4). An example of an NRB time series collected by the miniMPL is shown in Figure 3. 

 

 
Figure 3 Normalized relative backscatter (NRB) time series collected on 28 August 2022, with 
miniMPL in Galveston, Texas. 195 

NRB can be expressed as, 

 

𝑁𝑅𝐵(𝑅) = 𝐶[𝛽!(𝑅) + 𝛽"(𝑅)]𝑇!"(𝑅)𝑇""(𝑅)	 (1)  

 

where R is the range, C is the lidar calibration constant, β1 and β2 represent the backscatter coefficient of 200 

aerosol and air molecules, respectively; T1 and T2 represent the transmittance of aerosol and air molecules, 

respectively. After correcting the raw lidar data to produce the NRB profile, data filtering and smoothing 

are applied to the NRB profile. First, a continuous wavelet transform based algorithm is used to create a 

cloud mask, filtering out periods of data with cloud signal peaks in the NRB profile that compromise the 

quality of aerosol retrieval (Du et al., 2006). Because the miniMPL collects measurements near the peak 205 

of the solar spectrum, observations can have a considerable amount of background noise during daytime 

measurements (Campbell et al., 2002). The NRB profiles of cloud-free columns, typically between 0.5 to 

1.5 hours before and after the radiosonde launch time (for a total of one to three hours), are time-averaged. 

The sensitivity of this aerosol profile retrieval method is shown in Section 4 of the supplement. This 
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averaged NRB profile is further normalized by the average NRB value of the lowest range bin. In addition, 210 

the NRB profile above 4.5 km is smoothed using the NeighBlock denoising algorithm based on the 

discrete wavelet transform to increase the stability of the retrieval process (Cai and Silverman, 2001). 

Similar wavelet transform techniques have been widely used in lidar applications for noise reduction and 

feature detection because the lidar signal exhibits a varying degree and frequency of noise at different 

ranges (Fang and Huang, 2004; Xie et al., 2017). 215 

 

Next, a Fernald two-component lidar inversion method is performed. This is a classic method for solving 

the lidar equation and retrieving aerosol backscatter profiles from the attenuated backscatter (Fernald et 

al., 1972; Klett, 1981; Fernald, 1984; Sasano et al., 1985). The lidar ratio (S), defined as the ratio of 

aerosol extinction coefficient to aerosol backscatter coefficient, is assumed to be constant with respect to 220 

range (R). Following the Fernald method, the sum of aerosol (β1(R)) and molecular backscatter coefficient 

(β2(R)) is expressed as: 

 

𝛽!(𝑅) + 𝛽"(𝑅) =
NRB(𝑅) ∙ 𝑒#"(%!#%") ∫  #

#$
)"(*)+*

NRB(𝑅,)
𝛽!(𝑅,) + 𝛽"(𝑅,)

− 2𝑆! ∫  -
-$
NRB(𝑟) ∙ 𝑒#"(%!#%") ∫  %

#$
)"(*&)+*&d𝑟

(2) 

 225 

The numerical form of Equation 2 used for the calculation is shown in the supporting information 

(Equation S5). S1 and S2 in Equation 2 represent the lidar ratio of aerosol and air molecules, respectively. 

S2 is approximated by the well-known constant 8π/3 sr (Fernald, 1984). RC is the calibration range selected 

at the far field, and usually, a priori information is needed to set the reference aerosol backscatter at the 

calibration range. At a wavelength of 532 nm, the aerosol lidar ratio typically ranges from 23 ± 5 sr for 230 

clean marine aerosols, 44 ± 9 sr for dust, 53 ± 24 sr for clean continental aerosols, 55 ± 22 sr for polluted 

dust, to 70 ± 25 sr for polluted continental and smoke aerosols (Young et al., 2018). To account for the 

potential variability of the lidar ratio, we choose 20 and 90 sr as the lower and upper estimates of aerosol 

lidar ratio, respectively. The calibration range, RC, was chosen to be 8 km above ground level (AGL). At 

this range, we assume the calibration scattering ratio (β1(R) + β2(R)) / β2(R), which is the ratio of the sum 235 
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of aerosol and molecular backscatter coefficients and molecular backscatter coefficient, varies between 

1.0 and 1.2. 

 
Figure 4 (a) Time-averaged NRB profile of miniMPL from 16:10 to 18:50 UTC on 28 August 
2022. The black line is the NRB profile normalized by the lowest level value; the orange dashed 240 
line represents the smoothed NRB. (b) Rayleigh backscatter coefficient β2 (dashed blue line) and 
total backscatter coefficient β1+ β2 (solid black line). The shaded region shows the uncertainty 
range of the retrieved total backscatter coefficient. 

The Rayleigh backscatter β2(R) is calculated using the following equation (Gimmestad and Roberts, 

2023). 245 

 

𝛽"(𝑅) = 1.39	 ×	 [..00	23
4

]5 	× 	10#6 ∙ "77.!0	8
!.!9."0	:;<

∙ =(-)
>(-)

(3)  

 

P(R) and T(R) are pressure and temperature profiles measured by radiosondes launched during the 

TRACER campaign, and λ is the lidar wavelength, 532 nm. Finally, Equation 2 can be iteratively solved 250 

in a top-down approach, starting from the calibration range and working toward the surface. The aerosol 

backscatter coefficient profile can be calculated by subtracting the molecular backscatter coefficient 

profile from the total backscatter coefficient profile. 
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An example of NRB profile and backscatter coefficient profile inversion is shown in Figure 4. The cloud-255 

free NRB profile of miniMPL is time-averaged between 16:10 to 18:50 UTC at Seawolf Park on 28 

August 2022. The Rayleigh backscatter coefficient profile, shown in blue dashed lines in Figure 4b, is 

calculated using data from the radiosonde launched around 17:30 UTC from the same site, and the total 

backscatter coefficient derived from the lidar inversion is shown in Figure 4b as a black solid line. The 

total backscatter coefficient profile closely follows the molecular (Rayleigh) backscatter profile above 2 260 

km AGL, indicating that aerosol contributions are minimal at these altitudes and that the backscatter is 

dominated by scattering from air molecules. This consistency also suggests that the Fernald inversion is 

performing well, since the molecular backscatter is independently calculated and provides a reference 

baseline. 

 265 

The uncertainty in the total backscatter coefficient is assessed by systematically varying key parameters: 

the scattering ratio at the calibration height and the lidar ratio. The Fernald inversion process was applied 

40 times to the same NRB profile, using 5 calibration scattering ratios (1.0 to 1.2) and 8 lidar ratios (20 

to 90 sr), producing 40 backscatter coefficient profiles. The mean of these profiles can be considered as 

the best estimate, while the spread of these profiles from the maximum to the minimum of these profiles 270 

represents the uncertainty interval. This systematic sensitivity analysis ensures that the retrieved aerosol 

backscatter profile accounts for potential variability in the lidar ratio and the scattering ratio, providing a 

more reliable estimate. The uncertainty range of the retrieved backscatter coefficient is shown in Figure 

4b as the grey-shaded region. 



14 
 

2.3 Ground-based Aerosol Measurements 275 

 

 
Figure 5 Time-averaged aerosol measurements were collected on 28 August 2022, from 16:10 to 
18:50 UTC at the TAMU site in Galveston. (a) Time-averaged aerosol size distribution with a y-
axis on a linear scale. The shaded area illustrates the standard error of the estimated mean. (b) 280 
Time-averaged aerosol size distribution with a y-axis on a log scale. (c) CCN spectra, where 
scatter points are time-averaged CCN concentrations at different supersaturations, and the 
standard error of the sample mean is illustrated as error bars. (d) INP spectra showing INP 
concentrations evaluated at different temperatures. 

During the TRACER field campaign, the TAMU ROAM-V deployed a suite of surface aerosol 285 

measurements, which are used in this analysis (see Table 1). The ROAM-V platform shares a heated and 

dried isokinetic inlet among the TSI Scanning Mobility Particle Sizer (SMPS), the Droplet Measurement 

Technologies CCN counter, and an additional GRIMM Condensation Particle Counter (CPC). Details of 

the ROAM-V instrument sampling setup for the TRACER campaign and the particle loss corrections are 

further described in Thompson et al. (2025). 290 
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Onboard ROAM-V, the SMPS measures the mobility diameter of aerosols between 7 and 305 nm, while 

the POPS measures the optical diameter of aerosols ranging from 125 to 3370 nm. Because the SMPS 

and POPS are based on different physical principles, a method was developed to merge their measured 

size distributions. T-matrix code is used to simulate the signal scattered by quasi-spherical particles of 295 

various sizes detected by the POPS, generating a signal-size relation that depends on the aerosol effective 

refractive index (Mishchenko and Travis, 1994). The POPS-measured aerosol sizes can be recalculated 

by adjusting the effective refractive index. The refractive index that minimizes the root-mean-square error 

of the overlapping size region between the POPS and SMPS size distributions is then selected. The 

resulting POPS size distribution is then merged with the SMPS size distribution by applying a weighted 300 

average over the overlapping region. The weights are determined by the Gaussian error function to ensure 

a smooth transition between the two size distributions. The time average of the merged size distribution 

across the time-averaging period is used for further analysis. An example of the time-averaged aerosol 

size distribution measurement taken on 28 August 2022, from 16:10 to 18:50 UTC at Seawolf Park, is 

shown in Figure 5a, b. The uncertainty of the aerosol size distribution is represented by two standard 305 

errors of the time-averaged aerosol size data to provide a 95% confidence interval for the time-averaged 

aerosol size distribution. 

 

The CCN concentration spectra were measured with the CCN counter, which was set to supersaturations 

between 0.2% and 1.2% with intervals of 0.2%. The CCN counter was calibrated with size-selected 310 

ammonium sulfate particles. Similar to the merged aerosol size distribution, the time-averaged CCN 

spectra are calculated to represent the CCN concentration during the time-averaging period. An example 

of the average CCN measurement taken on 28 August 2022, from 16:10 to 18:50 UTC at the TAMU site 

in Galveston, is shown in Figure 5c. The two standard errors of CCN data are calculated to provide a 95% 

confidence interval for the time-averaged CCN concentration. 315 

 

For ice nucleation measurements, size-resolved aerosol samples were collected using the Davis Rotating-

drum Universal-size-cut Monitoring (DRUM) impactor in four size ranges: greater than 3 μm, 3 to 1.2 

μm, 1.2 to 0.34 μm, and 0.34 to 0.15 μm, and analysed in the laboratory for ice nucleation measurements. 
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Ice nucleation measurements were conducted using the custom-built immersion freezing array used in 320 

our previous experiments (Fornea et al., 2009; Lei et al., 2023; Thompson et al., 2025a; Thompson et al., 

2025b), and described only briefly here. Aerosol impactor samples are washed off the impactor substrate 

into high purity UHPLC (ultra-high-pressure liquid chromatography) water. Then, 2 μL droplets of the 

sample water are subjected to 25 freeze-thaw cycles on the immersion freezing array. A digital camera is 

used to detect freezing events and identify ice nucleation temperatures by measuring the average 325 

brightness (or grayscale value) of the droplet pixels in an 8-bit image (which has 256 levels of grayscale 

value). This image-processing technique monitors changes in brightness to infer droplet freezing. The 

INP concentrations in the air are calculated using established methods (Vali, 1971). 

 

For each retrieval, aerosol, CCN, and INP measurements were averaged over the same one to three hour 330 

window as the lidar data used for backscatter profile retrieval. This averaging period reflects the 

operational constraints of each instrument: the CCN counter requires approximately 30 minutes to 

complete a full scan over the range of supersaturations, and INP samples were collected over one to two 

hour periods (Thompson et al., 2025a). 

2.4 Aerosol Hygroscopicity and Lidar Hygroscopic Growth Correction Factor 335 

 
Figure 6 (a) Blue scattered points represent pairs of critical supersaturation and corresponding 
critical dry diameter derived from aerosol size distribution and CCN measurements. The blue 
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dotted line represents the geometric mean of derived aerosol hygroscopicity κ, and the shaded 
region represents the one geometric standard deviation of κ. κ = 1 line is shown in a solid black 340 
line; κ = 0.1 is shown in a dashed line; κ = 0.01 line is shown in a dash-dotted line; κ = 0.001 line is 
shown in a dotted line; and κ = 0 is shown in a thick solid black line. (b) Lidar hygroscopic growth 
correction factor as a function of relative humidity. The shaded area represents the uncertainties 
of the derived κ. 

Since water uptake by aerosols enlarges their size and increases backscattering without affecting aerosol 345 

concentration, it is not possible to reliably determine aerosol concentration from the aerosol backscatter 

profile alone. It is important to convert the aerosol backscatter profile to the aerosol backscatter profile 

that would be observed under dry conditions prior to calculating aerosol, CCN, or INP concentrations.  

 

In past studies, the hygroscopicity or water uptake by aerosols, defined as the change in aerosol diameter 350 

at a given RH relative to its dry diameter, has been quantified by tandem differential mobility 

measurements (Brooks et al., 2004a; Tomlinson et al., 2007). Similarly, humidified nephelometers have 

been used to quantify changes in scattering by aerosol at increased RH compared to scattering by dry 

aerosol, and the results have been used to interpret lidar backscatter observations (Kotchenruther et al., 

1999; Ghan et al., 2006). 355 

 

Here, we developed a new method that combines κ-Köhler theory with Mie theory to infer dry aerosol 

backscatter profiles from the observations at ambient RH. It is well known that activated CCN are defined 

as those aerosols that have grown beyond the critical diameter required for spontaneous droplet growth. 

CCN activation occurs in a supersaturated environment. However, it has been demonstrated that for 360 

uniformly mixed soluble aerosol, CCN activation measurements can be used to infer hygroscopic growth 

of aerosol in subsaturated conditions as well (Petters and Kreidenweis, 2007). This widely used concept 

has become known as κ-Köhler theory (Petters and Kreidenweis, 2007). 

 

Using κ-Köhler theory, CCN and aerosol size distribution measurements can be combined to infer an 365 

aerosol hygroscopicity parameter κ (kappa). The critical dry diameter Dp,c is the size above which dry 

aerosols of a certain κ activate to form cloud droplets when exposed to a critical supersaturation SSc. 

Following the work of Moore et al. (2011), Dp,c satisfies the integral 
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𝑁,,? = @  
@

A',)
𝑛B(log𝐷B)	dlog𝐷B (4) 370 

 

np(logDp) is the measured aerosol size distribution in the form of dndlogDp, and NCCN is the measured 

CCN concentration at a supersaturation level. Dp,c can then be numerically solved. Since CCN 

concentration is measured at a few different supersaturations, multiple pairs of SSc-Dp,c values are 

calculated, and an example of the SSc-Dp,c pairs is shown in Figure 6a. Each pair of SSc-Dp,c values can 375 

then be numerically solved using κ-Köhler theory to derive a κ value (Petters and Kreidenweis, 2007). 

 

Following κ-Köhler theory, the saturation ratio S over an aqueous solution droplet with diameter D (also 

called wet diameter) can be expressed as 

𝑆(𝐷) =
𝐷9 − 𝐷C9

𝐷9 − 𝐷C9(1 − 𝜅)
exp K

4𝜎D
E
𝑀F

𝑅𝑇𝜌F𝐷
O (5) 380 

Dd is the dry diameter of the particle. κ is the hygroscopicity parameter. σs/a is the surface tension of the 

air-water interface. Mw is the molar mass of water. R is the universal gas constant. T is the temperature 

evaluated at 298.15 K. ρw is the density of water. The κ-Köhler equation relates saturation ratio to particle 

size, and the supersaturation at the peak indicates the activation point of the particle as a CCN. A 

numerical function was constructed to find the supersaturation at the peak of the κ-Köhler equation using 385 

binary search, with the particle dry diameter and κ as input parameters. Thus, the problem becomes 

finding the κ corresponding to a given Dp,c as the dry diameter, to match a specific SSc as the output. The 

κ is then numerically determined using an iterative root-finding method to match the measured SSc-Dp,c 

pairs. 
 390 

Since κ can be considered as log-normally distributed (Su et al., 2010), the geometric mean and geometric 

standard deviation can be calculated to represent the average value and the variability of κ for the bulk 

aerosol composition. An example of the geometric mean and geometric standard deviation of κ is also 

shown in Figure 6a. The variation in κ values at different supersaturations can be attributed to 
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uncertainties in measurements and the differences in the aerosol chemical composition and mixing state 395 

across various sizes. Subsequently, the aerosol size growth is predicted by numerically solving for the 

wet aerosol diameter at a discrete series of RH values (Petters and Kreidenweis, 2007). To determine the 

wet diameter at each RH value, we solve for the point at which the saturation ratio predicted by the κ-

Köhler theory matches the specified environmental saturation ratio. This is done through an iterative root-

finding approach, using the dry diameter as the initial guess. 400 

 

Once the aerosol size is known as a function of RH, the Mie scattering theory is then used to calculate the 

aerosol extinction coefficient at each RH value (Prahl, 2023). The refractive index for dry aerosol is 

assumed to be 1.45 − 0i based on values for dry ammonium sulfate at 532 nm (Cotterell et al., 2017). In 

the absence of detailed aerosol composition data, the refractive index of ammonium sulfate is frequently 405 

adopted as a representative value in aerosol optical calculations, as it provides a reasonable approximation 

for non-absorbing, hygroscopic particles (Zieger et al., 2013; Ghan and Collins, 2004). In reality, aerosols 

containing sulfate, nitrate, organic compounds, soot, and soil dust were all presented in Houston in 

varying proportions depending on air mass origin (Thompson et al., 2025a; Lei et al., 2025). The refractive 

index of aerosol at each RH is calculated as the volume-weighted average of the dry aerosol refractive 410 

index and that of water. During the field campaign, aerosol size distribution measurements are made after 

the sample air is dried to below 30% RH, as measured by an RH sensor. At this RH level, aerosols are 

typically considered dry based on the efflorescence point of background ammonium sulfate (Onasch et 

al., 1999). Therefore, a lidar hygroscopic growth correction factor f(RH) can then be calculated as: 

 415 

𝑓(𝑅𝐻) = S
𝜎(𝑅𝐻)
𝜎(30%) 		𝑅𝐻 > 30%

1		 𝑅𝐻 ≤ 30%
(6) 

 

Following the work of Geisinger, the extinction coefficient σ, rather than the backscatter coefficient, was 

used here. The extinction coefficient is more stable numerically than the backscatter coefficient in Mie 

scattering calculations and is less sensitive to uncertainties in particle size distribution and refractive index 420 

(Geisinger et al., 2017). This is convenient since we already assumed a linear relation between backscatter 
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and extinction in the lidar inversion, and it is justifiable based on the work of Ghan and Collins (2004), 

in which the influence of RH on backscatter and extinction was shown to be similar. In addition, we 

assume a perfectly internally mixed aerosol distribution, and we apply the same κ across all aerosol sizes 

when predicting aerosol size growth at different RH. To account for the uncertainty of κ, we calculate the 425 

f(RH) using the geometric mean κ and its value at one geometric standard deviation interval. The f(RH) 

calculated using the κ values is shown in Figure 6b. The solid black line represents the f(RH) calculated 

using the geometric mean κ, and the shaded region represents the f(RH) uncertainty calculated using one 

geometric standard deviation interval of κ. The calculated f(RH) is further interpolated using a cubic 

spline to calculate f(RH) at any RH value. 430 

2.5 Deriving the Aerosol, CCN, and INP Vertical Profiles  

 
Figure 7 (a) Aerosol and dry aerosol backscatter coefficient profiles are shown as solid black and 
red lines, respectively, with shaded areas showing the corresponding uncertainty interval for each 
profile. The relative humidity profile is shown as a solid blue line. (b) The aerosol profile is shown 435 
as a solid black line. CCN profiles are shown in different colors corresponding to supersaturation 
levels of 0.2%, 0.6%, and 1.2%. (c) INP profiles evaluated at −20°C and −25°C. 

To retrieve aerosol, CCN, and INP vertical profiles, we assume that the surface measurements are 

representative of the aerosol size distribution, composition, and cloud-activating ability aloft. This 

assumption generally holds in well-mixed layers but may break down in the presence of elevated aerosol 440 

layers, such as transported smoke or dust, which can be identified in the normalized relative backscatter 
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(NRB) signal. Assuming that aerosol hygroscopicity at the surface is representative of the entire profile, 

the dry aerosol backscatter coefficient profile βdry(R) is given by 

 

𝛽+GH(𝑅) =
𝛽!(𝑅)
𝑓(𝑅𝐻)

(7) 445 

 

Figure 7a shows the aerosol backscatter coefficient profile (black line with gray shading for uncertainty), 

the RH profile (solid blue line), and the resulting dry aerosol backscatter coefficient profile (red line with 

red shading for uncertainty). The radiosonde has a relatively small uncertainty in RH measurements, 

specified as ±5%. The uncertainty in the lidar hygroscopic growth correction factor, f(RH), is included in 450 

the overall uncertainty of the dry aerosol backscatter coefficient. Assuming that the aerosol, CCN, and 

INP properties at the surface are representative of the vertical profile, the aerosol (Np), CCN (NCCN), and 

INP (NINP) concentration profiles can therefore be estimated as: 

 

𝑁I(𝑅) =
𝛽+GH(𝑅)
𝛽+GH(𝑅.)

∙ 𝑁I(𝑅.) (8𝑎) 455 

𝑁,,?(𝑅, 𝑆𝑆) =
𝛽+GH(𝑅)
𝛽+GH(𝑅.)

∙ 𝑁,,?(𝑅., 𝑆𝑆) (8𝑏) 

𝑁J?;(𝑅, 𝑇) =
𝛽+GH(𝑅)
𝛽+GH(𝑅.)

∙ 𝑁J?;(𝑅., 𝑇) (8𝑐) 

 

R0 is the altitude where the surface measurements are collected. βdry(R0) is the dry aerosol backscatter 

coefficient profile at R0. Np, NCCN, and NINP are aerosol, CCN, and INP number concentrations, 460 

respectively. One profile each for aerosol, CCN, and INP is retrieved for each time-averaging period. 

Since the MPL and the miniMPL have near-field blind ranges of 250 m and 100 m, respectively, lidar 

measurements near the surface are unavailable. To estimate the aerosol backscatter coefficient profile 

within the lidar’s blind zone, we perform a second-degree polynomial fit to the dry aerosol backscatter 

profile from up to 300 m AGL down to the edge of the blind zone. This fitted curve is then extrapolated 465 

into the blind zone. Since the aerosol profile is later linearly scaled by the dry backscatter profile, having 
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a physically reasonable estimation of the aerosol profile in the blind zone is necessary to ensure that the 

scaling reflects realistic near-surface conditions. The extrapolated portions of the dry backscatter 

coefficient profile within the blind zone are shown as dotted lines in Figure 7a. The SS is the 

supersaturation at which the CCN concentration is evaluated, and T is the temperature at which the INP 470 

concentration is evaluated. In addition, one standard error of the time-averaged aerosol and CCN 

concentration of the time averaging period, around one to three hours, is included in the calculation for 

aerosol and CCN concentration profiles. The aerosol and CCN concentrations evaluated at different 

supersaturations are shown in Figure 7b. INP profiles are shown in Figure 7c. The dry aerosol backscatter 

coefficient profile determines the shape of aerosol, CCN, and INP concentration profiles, while the 475 

surface aerosol measurements determine the amplitude. CCN concentration profiles are presented at 

different supersaturations, and INP concentration profiles are presented at different activation 

temperatures. Presenting CCN and INP profiles this way is useful for modeling applications, as it allows 

the model to compute CCN and INP activation dynamically when the particles are transported to 

conditions supportive of cloud condensation or ice nucleation within the modeled convection (or other 480 

atmospheric processes of interest). 

 

It is important to acknowledge that lidar-derived aerosol profiles may be affected by the artificial increase 

in aerosol backscatter at higher altitudes. As seen in Figure 7a, b, the aerosol backscatter coefficient shows 

a steady increase with height above 4 km. This apparent increase is likely a systematic artifact related to 485 

lidar signal noise at higher altitudes. As a result, the retrieved aerosol profile above 4 km should be 

interpreted with caution. 
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3 Results  

3.1 Case study: Aerosol Profile under Clear Sky Conditions 490 

 
Figure 8 (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC, with 
miniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are 
shown as solid black and red lines, respectively, with a shaded area showing the corresponding 
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. (c) 495 
The aerosol profile is shown as a solid black line. CCN profiles are shown in different colors 
corresponding to supersaturation levels of 0.2% and 0.6%. CCN data for 1.2% supersaturation 
were not available. (d) INP profiles at −15°C, −20°C, and −25°C. Note that the −20°C INP profile 
overlaps with the −25°C INP profile. 

We begin with a case study from 31 August 2022, at the coastal Galveston site (16:39–19:00 UTC), 500 

representing a baseline case under well-mixed atmospheric conditions with minimal cloud influence. The 



24 
 

NRB time series in Figure 8a shows a persistent layer of high backscatter, visible below approximately 1 

km AGL. In addition, intermittent layers of high backscatter are observed between 1 and 3 km. 

 

Figure 8b shows the cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile 505 

during the time-averaging period. The relative humidity (RH) profile is relatively uniform below 8 km, 

stabilizing around 65%, and the derived aerosol hygroscopicity parameter κ is modest, with a geometric 

mean of approximately 0.09 × 2.70±1. This low κ value suggests the aerosol population during this period 

was only weakly hygroscopic. As expected, under these uniform RH and composition conditions, the 

correction for aerosol hygroscopic growth introduces minimal differences between the raw and dry 510 

backscatter profiles. The similarity between the two profiles (Figure 8b) confirms that, in this case, the 

lidar backscatter signal is not significantly biased by water uptake. 

 

Figure 8c shows the retrieved aerosol profile and CCN profile at different supersaturations. Surface 

aerosol concentrations were (5.65 ± 0.46) × 103 cm−3, decreasing to (1.14 ± 0.57) × 103 cm−3 at 1 km 515 

AGL, a roughly fivefold reduction with height. CCN concentrations at a supersaturation of 0.2% show a 

similar decline, from 329 ± 2 cm−3 at the surface to 67 ± 26 cm−3 at 1 km. Figure 8d shows the retrieved 

INP profile evaluated at different temperatures. INP concentrations evaluated at −15°C were 0.11 L−1 at 

the surface and 0.02 L−1 at 1 km AGL. 
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3.2 Case study: Correction for Hygroscopic Growth in the Boundary Layer 520 

 
Figure 9 (a) NRB time series data collected on 6 September 2022, from 18:30 to 20:30 UTC, with 
miniMPL inland at Hockley, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles 
are shown as solid black and red lines, respectively, with a shaded area showing the 
corresponding uncertainty interval for each profile. The relative humidity profile is shown as a 525 
solid blue line. (c) The aerosol profile is shown as a solid black line. CCN profiles are shown in 
different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%. (d) INP profiles 
evaluated at −20°C and −25°C. No INP was observed at −15°C. 

This case from 6 September 2022 at the inland site in Hockley, Texas (18:30–20:30 UTC), demonstrates 

the importance of applying a hygroscopic growth correction when RH varies strongly with altitude. Figure 530 

9a shows the lidar NRB time series, with a shallow boundary cloud observed around 1.2 km AGL. The 

layer at and below the cloud level height can be identified as a convective mixed layer, while the layer 

above the cloud level can be identified as an elevated aerosol layer. Although an elevated aerosol layer 
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exists, it does not affect the correction for the enhanced scattering from hygroscopic growth in the mixed 

layer. The NRB time series in Figure 9a shows limited temporal variation in attenuated backscatter 535 

profiles during the cloud-free period. 

 

Figure 9b shows the cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile 

during the time-averaging period. As RH increases toward 100% within the mixed layer, the correction 

for hygroscopic growth, applied using the lidar hygroscopicity factor f(RH), results in a dry aerosol 540 

backscatter profile lower than the uncorrected one. Without this correction, aerosol concentrations would 

be substantially overestimated. For example, at 1.2 km AGL, aerosol concentration estimates from 

uncorrected backscatter would exceed the corrected value by a factor of 2.8. 

 

Figure 9c and 9d show retrieved aerosol, CCN, and INP profiles. The aerosol concentration at the surface 545 

is approximately (3.30 ± 0.09) × 103 cm−3 and decreases to 371 ± 216 cm−3 at the top of the mixed layer 

at 1.2 km AGL. The CCN concentration evaluated at a supersaturation of 0.2% is 159 ± 2 cm−3 at the 

surface and 18 ± 10 cm−3 at 1.2 km AGL (Figure 9d). The INP concentration evaluated at −20°C is around 

0.07 L−1 at the surface level and around 3 × 10−3 L−1 at 1 km AGL. No INP was observed at −15°C. 

Between 1.2 and 3.2 km, the dry aerosol backscatter coefficient profile indicates the presence of an 550 

elevated aerosol layer above the mixed layer. The aerosol population in the mixed layer and the elevated 

aerosol layer may differ in terms of aerosol size distribution and chemical composition, making this 

method for retrieving aerosol, CCN, and INP profiles more uncertain in the elevated aerosol layer shown 

in Figure 9. The increase of the dry aerosol backscatter profile as well as the aerosol concentration profile 

between 6 and 8 km is likely a systematic artifact related to the lidar noise at high altitude. 555 
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3.3 Case study: Retrieval of Aerosol Profile with Multiple Cloud Layers 

 
Figure 10 (a) NRB time series collected on 26 August 2022, from 16:02 to 18:42 UTC, with 
miniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are 
shown as solid black and red lines, respectively, with a shaded area showing the corresponding 560 
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. 
Gray dashed lines indicate the cloud level. (c) The aerosol profile is shown as a solid black line. 
CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2%, 0.6%, 
and 1.2%. (d) INP profiles at −15°C, −20°C, and −25°C. 

This case from 26 August 2022 at the Galveston coastal site (16:02–18:42 UTC) illustrates the retrieval 565 

method’s performance in the presence of multiple cloud and moisture layers. In Figure 10a, cloud layers 

around 0.6, 1.5, and 3.6 km AGL can be identified as white pixels with high NRB. These cloud layers 

also match vertical regions of increased RH measured by the radiosonde launched around 17:26 UTC 

(Figure 10b). The high attenuated backscatter signal near the cloud levels may reflect the presence of 
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distinct aerosol layers or result from higher humidity enhancing aerosol scattering. The NRB time series 570 

in Figure 10a shows some temporal variation in the attenuated backscatter profile, with a layer of high 

backscatter slowly decreasing from around 2 to 1 km AGL. 

 

As shown in Figure 10b, a peak in the aerosol backscatter coefficient profile is seen around 3.6 km AGL, 

showing a region where aerosols take up water and grow. This peak is almost completely removed in the 575 

dry aerosol backscatter coefficient profile in Figure 10b, indicating a successful correction for the 

hygroscopic growth effect on aerosol scattering. This result also demonstrates that the lidar hygroscopic 

growth correction factor derived from surface measurements can be applied to aerosol aloft. Increased 

aerosol backscatter coefficients around 0.6 and 1.5 km AGL due to hygroscopic growth are also reduced, 

resulting in a more realistic aerosol vertical distribution. The dry backscatter profile suggests that an 580 

elevated aerosol layer may be present near 1.5 km AGL, while the uncorrected peak at 3.6 km AGL is 

likely dominated by humidity-enhanced scattering rather than a distinct aerosol layer. 

 

Figure 10c and 10d show retrieved aerosol, CCN, and INP profiles. At the surface, the aerosol 

concentration is (7.95 ± 0.27) × 103 cm−3, and decreases by approximately 28% at 0.6 km, 50% at 1.5 km, 585 

and 79% at 3.6 km AGL. At a supersaturation of 0.2%, the CCN concentrations are 511 ± 10 cm−3 at the 

surface, 368 ± 73 cm−3 at 0.6 km, 256 ± 86 cm−3 at 1.5 km, and 107 ± 82 cm−3 at 3.6 km AGL. At a 

temperature of −15°C, the INP concentrations are around 0.05 L−1 at the surface, 0.04 L−1 at 0.6 km, 0.03 

L−1 at 1.5 km, and 0.01 L−1 at 3.6 km AGL. The correction for the aerosol hygroscopic growth leads to 

the more realistic aerosol, CCN, and INP profiles shown in Figure 10c, d. The retrieval of aerosol, CCN, 590 

and INP concentrations may be less reliable around 1.5 km due to the possible presence of an elevated 

aerosol layer. However, the successful removal of the humidity-enhanced scattering peak near 3.6 km is 

encouraging, suggesting that the applied κ value may be reasonable throughout the column. 

 

The increase in the dry aerosol backscatter and aerosol concentration between 5 and 7 km is a systematic 595 

artifact likely caused by high lidar signal noise, as shown in Figure 10a above 5 km. The magnitude of 

this artifact is likely amplified by the high noise level, which is caused by the limited number of cloud-
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free profiles available for averaging during this period, as compared to the previous case, where more 

cloud-free profiles led to reduced noise and less pronounced artifacts. 

3.4 Comparison Between Collocated MPL and miniMPL Lidar 600 

 
Figure 11 Comparison of retrieved aerosol backscatter coefficient profiles derived from miniMPL 
and ARM AMF1 MPL data. (a) Raw co-polarized lidar signal of TAMU miniMPL (red solid line) 
and ARM MPL (blue solid line). (b) Calibrated lidar normalized relative backscatter signal of 
TAMU miniMPL (red solid line) and ARM MPL (blue solid line). (c) Retrieved lidar aerosol 605 
backscatter coefficient of TAMU miniMPL (orange solid line and area) and ARM MPL (blue solid 
line and area). (d) Comparison of the lidar aerosol backscatter coefficients. The uncertainty interval 
of the retrieved aerosol backscatter coefficient is shown as error bars. 

The TAMU ROAM-V was deployed at the AMF1 (La Porte, Texas) site on 1 September 2022, allowing 

miniMPL and MPL to be collocated and compared directly. The ARM MPL deployed at AMF1 collects 610 

data at a vertical resolution of 15 m and a temporal resolution of 10 s (Muradyan et al., 2021). During the 

colocation test, the two lidars were separated horizontally by approximately 30 meters and vertically by 

less than 10 meters. The data from both lidars were time-averaged between 20:00 and 22:00 UTC. Vertical 

profiles of the lidar raw signal, the NRB, and the aerosol backscatter coefficient, and a comparison of the 

lidar aerosol backscatter coefficient are shown in Figure 11, a, b, c, and d, respectively. Figure 11a shows 615 

that the raw signals from the two lidars differ significantly. However, after applying lidar-specific 

afterpulse, deadtime, background, and range corrections for each lidar, their NRB profiles agree closely 

(Figure 11b). Figure 11c and d show that the MPL and miniMPL NRB and aerosol backscatter coefficient 

profiles follow similar shapes and magnitudes. The miniMPL overestimates aerosol backscatter 
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coefficients between 6 km and 8 km compared to the MPL, suggesting that the miniMPL-derived profiles 620 

may be less reliable at higher altitudes. This artifact is consistent with the spurious high-altitude 

enhancements discussed earlier and is likely caused by signal noise and overlap correction uncertainty in 

the miniMPL retrieval. The miniMPL and MPL profiles exhibit a slight vertical offset below 4 km, which 

may result from residual errors introduced during the afterpulse, background, or overlap corrections. The 

differences between the two aerosol backscatter profiles generally remain within the estimated uncertainty 625 

bounds, which primarily arise from the assumed lidar ratio and the scattering ratio at the reference height. 

In summary, miniMPL and MPL data are remarkably similar despite differences in their lidar designs and 

specifications. This agreement suggests that the more compact and less expensive miniMPL can provide 

comparable data quality to the more established MPL system. In addition, the use of two lidars with 

comparable outputs enables coordinated deployment and consistent analysis across different sites over 630 

the same period. 

3.5 Comparison of aerosol and CCN profiles between Galveston and La Porte, Texas (28 August 
2022) 

 
Figure 12 Comparison of lidar measurement of miniMPL deployed at TAMU Galveston site and 635 
MPL deployed at ARM AMF1 site on 28 August 2022, from 16:10 to 18:50 UTC. (a) Aerosol 
backscatter coefficient profiles. (b) Dry aerosol backscatter coefficient profiles. (c) Aerosol 
concentration profile. (d) CCN concentration profiles at 0.2% supersaturation. 



31 
 

A comparison between miniMPL and ARM MPL measurements at different locations at the same time 

on 28 August 2022 is shown in Figure 12. miniMPL was deployed at Seawolf Park, Galveston, Texas, 640 

and the AMF1 was located in La Porte, Texas. The straight-line distance between the two sites is about 

46 km. The time-averaging period was from 16:10 to 18:50 UTC. As shown in Figure 12b, near the 

ground surface, the dry aerosol backscatter coefficients at the two sites are similar. The dry aerosol 

backscatter coefficient at the TAMU Galveston site near the surface is (1.07 ± 0.57) × 103 km−1, and at 

the AMF1 La Porte site, it is (0.89 ± 0.51) × 103 km−1. The dry aerosol backscatter coefficient is greater 645 

at the AMF1 La Porte site at higher altitudes. Figure 12c and d show that the aerosol and CCN (SS = 0.2%) 

concentration at the AMF1 La Porte site is consistently greater than at the TAMU Galveston site at all 

vertical levels. At the surface, the aerosol concentration is (3.49 ± 0.34) × 103 cm−3 for the TAMU site 

and (5.24 ± 1.26) × 103 cm−3 for the ARM site. At 1 km altitude, these concentrations are 313 ± 169 cm−3 

and (1.78 ± 0.47) × 103 cm−3 for the TAMU and ARM sites, respectively. In terms of CCN concentrations 650 

evaluated at 0.2% SS at the surface, the TAMU site has a CCN concentration of 127 ± 2 cm−3, while the 

ARM site has a slightly greater concentration of 137 ± 9 cm−3. At 1 km altitude, the CCN concentration 

at the TAMU site is 11 ± 5 cm−3, compared to a substantially greater concentration of 46 ± 5 cm−3 at the 

ARM site.  

 655 

These differences highlight variations in aerosol and CCN distributions between the two locations, 

especially at upper altitudes. The La Porte site likely has a greater dry aerosol backscatter coefficient and 

aerosol concentration due to surrounding industrial emissions, while the TAMU Galveston site is more 

influenced by the maritime air mass. Despite similar surface aerosol and CCN number concentrations, 

there are clear differences in the aerosol and CCN vertical distribution between the two sites, only about 660 

46 km apart. Such variability underscores the importance of localized aerosol vertical profile 

measurements in characterizing aerosol vertical distributions when assessing their impact on air quality, 

weather, and climate. It also highlights the necessity of deploying multiple measurement sites to capture 

the spatial heterogeneity of aerosol vertical profiles when conducting a field campaign that covers a large 

study area, especially in regions influenced by heterogeneous sources of emissions and complex airmass 665 

interactions. 
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4 Discussion and Conclusions 

In this study, we use data collected during the TRACER campaign to demonstrate a new method of 

retrieving aerosol, CCN, and INP profiles by integrating mini micropulse lidar measurements with 

radiosonde and ground-based aerosol measurements, including aerosol size distributions, CCN activation, 670 

and ice nucleation measurements. In the future, these measurements can be collected routinely to translate 

lidar backscatter coefficient profiles to long-term aerosol, CCN, and INP vertical profiles. Further, our 

method is not limited to the micropulse lidar and can be applied to other single-wavelength elastic or 

more advanced lidars. 

 675 

One of the key findings of this study is that correcting aerosol hygroscopic growth is necessary for 

retrieving realistic CCN and INP concentration profiles. We have shown that using lidar-retrieved 

backscatter or extinction profiles without correcting for hygroscopic growth can lead to a significant 

overestimation of the aerosol concentration near the cloud base. To solve this issue, we introduced a 

method to quantify aerosol scattering enhancement due to aerosol hygroscopic growth. This method for 680 

determining the lidar hygroscopic growth correction factor can be used as a complementary approach to 

the traditional method of using a collocated humidified nephelometer (Ghan et al., 2006). 

 

Another key finding is that aerosol and CCN vertical distributions can significantly vary at small spatial 

scales, even when similar aerosol and CCN concentrations are measured at the surface, as demonstrated 685 

by the comparison between the aerosol vertical profile at the ARM and TAMU sites on 28 August 2022. 

This variability highlights the importance of considering vertical profiles rather than relying solely on 

ground-based aerosol measurements when assessing aerosol properties and their impacts on cloud 

formation. It also highlights the need for localized vertical profile measurements to accurately capture the 

diverse aerosol characteristics in different regions, particularly in areas with complex emission sources 690 

and air mass interactions. Portable lidars, such as the miniMPL lidar, combined with surface aerosol 

measurements, can be highly effective in providing these localized aerosol vertical profile measurements. 
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While the method described herein clearly has some distinct advantages, it is subject to several limitations. 

Since the MPL and miniMPL measurements are noisy at upper altitudes, this method’s retrieval above 695 

the altitude where the lidar signal is smoothed should be used with caution and can only serve as a best 

estimate. In addition, since our method relies on the assumption that the aerosol size distribution and 

composition are similar throughout the vertical column, the retrieved profiles are most reliable within the 

well-mixed boundary layer. At altitudes where aerosol properties differ significantly from those at the 

surface, such as in the presence of a transported dust layer in the free troposphere, this method may be 700 

less reliable, and the results should be interpreted with caution. Despite these limitations, as measurements 

of CCN and INP vertical profiles are difficult to obtain and sparse, the results from this method can serve 

as a significant improvement over the arbitrary aerosol profiles often used in model initialization. 

 

In conclusion, the integration of MPL and ground-based aerosol measurements offers a powerful tool for 705 

retrieving detailed vertical profiles of aerosols, CCN, and INPs. The retrieved profiles can serve as inputs 

to provide realistic aerosol vertical distributions for cloud-resolving models, facilitating the study of 

aerosol-cloud interactions and aerosol effects on climate. 
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