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Abstract.

Accurately characterizing the vertical distribution of aerosols and their cloud-forming properties
is crucial for understanding aerosol-cloud interactions and their impact on climate. This study
presents a novel technique for retrieving vertical profiles of aerosols, cloud condensation nuclei
(CCN), and ice nucleating particles (INPINPs) by combining micropulse lidar, radiosonde, and
ground-based aerosol measurements. Herein, the technique is applied to data collected by our team
at Texas A&M University during the Tracking Aerosol Convection Interactions ExpeRiment

(TRACER) campaign. Ground-based aerosolAeresel size distribution and CCN counter data are

used to estimate the value of the aerosol hygroscopicity parameter, k. The derived «, together with
Mie scattering theory and the relative humidity profileprefiles from the radiosonde, isare-then used
to estimate aerosol size growth andhew-mueh the associated increase in backscatteraeresels-have

grown at each altitude. We then correct Fhis—estimate-is—applied—inverselyto-the lidaraeresel
backscatter to dry conditionseeefficientprefile to produce thea dry aerosol backscatter coefficient

profile. The dry aerosol backscatter coefficient profile is used-to-linearly scaled to collocatedseale

surface measurements of acrosolsaeresel, CCN, and INP to produce corresponding vertical

profiles.coneentrations: Combining lidar backscatter profiles withand-greund-based aerosol_and

cloud nucleation measurements leads toredueces-the-assumptions—typteally needed-inlidar-based
aerosolretrievals;resultingin a more realisticaceurate representation of vertical distributions of

aerosol properties. The method could be readily applied to lidar measurements in future field

campaigns.
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1 Introduction

The interaction between aerosols and clouds introduces significant uncertainties in estimating
aerosol indirect radiative forcing, a critical factor in predicting future climate scenarios (Seinfeld
et al., 2016). Aerosols can facilitate the formation of cloud water-droplets and eloud-ice particles
by acting as cloud condensation nuclei (CCN) and ice nucleating particles (INPHNPs), respectively.
Consequently, changes in aerosol concentrations could influence manyanumber-of-conveetive
cloud properties and processes (Tao etal., 2012; Fan etal., 2016; Twohy et al., 2005). For example,

increased CCN concentrations could result in smaller cloud droplet sizes, suppress local
precipitation in warm-phase clouds, and extend cloud lifetimes (Twomey, 1977; Albrecht, 1989).

Some convective cloud studies have suggested that an increased concentration of ultrafine aerosol

particles (smaller than 50 nm) leads to enhanced condensational heating from additional water
vapor condensation. Since this process invigorates the updraft intensity, it has been referred to as
warm-phase invigoration (Fan et al., 2007; Fan et al., 2018; Lebo and Seinfeld, 2011). Other
studies have focused on cold-phase invigoration of updrafts, a process in which cloud water
freezes, releasing latent heat and subsequently increasing the buoyancy of air parcels (Andreae et
al., 2004; Rosenfeld et al., 2008). At present, the extent and significance of aerosol-induced
invigoration effects are under debate (Lebo, 2018; Igel and van denVan-Den Heever, 2021; Varble
et al., 2023). Addressing these uncertainties requires a deeper understanding of the microphysical
processes involved (Jensen, 2023). One of the key gaps in our current understanding of aerosol-

cloud interactions is the vertical distribution of aerosols, CCN, and INPs in the cloud environment.

The knowledge of the aerosol vertical distribution is important for assessing aerosol-cloud
interactions (Rosenfeld et al., 2014; Lin et al., 2023). Modeling studies have shown evidence that

the altitude of acrosolsaerosel significantly influences their impact on cloud formation and deep

convection (Marinescu et al., 2017; Lebo, 2014; Zhang et al., 2021). However, in most long-term
field campaigns, aerosol, CCN, and INP measurements are only made at ground-based sampling
stations (Schmale et al., 2018; Pohlker et al., 2016; Perkins et al., 2022). By comparison, airborne
in_-situ measurements, which provide observations of CCN and INP at the cloud level, are
generally of shorter-in duration (Stith et al., 2009; Dadashazar et al., 2022; Raes et al., 2000). Thus,

retrievals from ground-based lidar observations, which can operate continuously over extended
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periods to quantitatively assess vertical profiles of aerosol properties, represent a highly valuable

method.

Lidars detect range-resolved properties of aerosols and cloud particles by emitting laser pulses and
measuring the backscattered light. Lidar measurements can be used to retrieve bulk aerosol optical
properties, including the aerosol backscatter coefficient, extinction coefficient, and depolarization
ratio. These aerosol optical properties are influenced by various aerosol properties, including size
distribution, shape, chemical composition, and mixing state (Brooks et al., 2004b; Titos et al.,
2016; Yao et al., 2022). AlthoughWhile the same intrinsic particle properties govern
microphysicsdrive-mierophysical-properties, the relationship between the lidar observations and
the concentration of cloud-forming aerosolsaeresel is not straightforward. Most CCN are found
within the Aitken (typically between 0.01 andte 0.1 um) and accumulation (typically between 0.1
andte 1 um) aerosol modesmode-aeresels, but lidar observations at visible wavelengths are most
sensitive to the accumulation and coarse (typically greater than 1 um) mode aeresels-(Shinozuka
et al., 2015; Kapustin et al., 2006). In addition, aerosol hygroscopic growth due to increased
humidity increases the aerosol backscatter coefficient without affecting the CCN concentration
(Shinozuka et al., 2015; Liu and Li, 2014). As for INP, it has been shown that larger aerosols are
more likely to be INP, particularly those with a diameter exceeding 500 nm (Demott et al., 2010).
Individual aerosols in this size range backscatter light effectively, but less than 1 in 10° particles
in the atmosphere can act as INPs (Demott et al., 2010). Thus, INPs contribute little to the
measured bulk aerosol optical signals. Consequently, it is necessary to employ assumptions or
complementary aerosol measurements when estimating cloud-forming aerosol concentration from

remote sensing measurements.

Studies have adopted different approaches when using lidar measurements to retrieve the CCN
concentration vertical profile (Lv et al., 2018; Mamouri and Ansmann, 2016; Ansmann et al., 2021;
Ghan et al., 2006; Ghan and Collins, 2004; Lenhardt et al., 2023). The first approach involves
using multiwavelengthmulti-wavelength lidar to retrieve aerosol concentrations by classifying

them into different aerosolthree types (urban, biomass burning, and dust) and then using the

prescribed hygroscopicity parameter of each aerosol type to estimate the CCN concentration (Lv

et al., 2018). This approach requires an advanced multiwavelength lidar, such as the
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multiwavelengthMultiwavelength  High Spectral Resolution Lidar (HSRL-2) or the
multiwavelength Raman lidar (Miiller et al., 2011; Miiller et al., 2014). Another approach relies
on an empirical relation between the aerosol extinction coefficient and aerosol concentrations
derived from the Aerosol Robotic Network (AERONET) to convert backscatter into aerosol
concentration profilesprefile. A CCN parameterization scheme based on the empirical relation
betweenef aerosol and CCN concentration of each aerosol type is applied to the aerosol
concentration profile to produce the CCN concentration profile (Mamouri and Ansmann, 2016;
Ansmann et al., 2021). Each of these approaches strongly relies on assumed aerosol composition,
shape, and refractive index used in the lidar retrieval and CCN parameterizations. Consequently,
they may fail to capture the complex conditions of atmospheric aerosols, thus limiting the precision

of CCN estimations.

The third approach to determining CCN concentration using lidar is to directly scale ground-based
CCN concentration measurement with the lidar-measured extinction or backscatter profile, first
proposed by Ghan and Collins (2004). This approach assumes that the aerosol composition and
size distribution remain relatively constant with altitude. Ghan and Collins (2004) used the
humidification factor (hereby referred to as the lidar hygroscopic growth correction factor),
defined as the dependence of aerosol extinction or backscatter on relative humidity (RH), to
convert the observed extinction and backscatter coefficients to their dry counterparts. Ghan and
Collins (2004) found that CCN concentrations at smaller supersaturations correlate more strongly
with dry backscatter and are less impacted by height variations in aerosol size distribution than at
higher supersaturations. Ghan et al. (2006) later validated this approach, showing that the
correlation between lidar-derived and in situ CCN is influenced by supersaturation, aerosol
uniformity with height, and lidar retrieval accuracy. This method has been applied in a routine
CCN profile data product based on a Raman lidar (Kulkarni et al., 2023). Following a similar
approach, Lenhardt et al. (2023) compared in_-situ CCN and airborne HSRL-2 measurements in
the southeast Atlantic. Their results show that CCN concentration at 0.3% supersaturation in dry

ambient conditions (where RH < 50%) strongly correlates with the HSRL-2 measured extinction

and backscatter. Collectively, these studies demonstrate the strong potential of lidar observations

for aceuvratelyretrieving CCN profiles.
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Compared to the lidar retrievals of CCN, fewer studies have focused on INP retrievals using lidar
data. Studies have combined INP parameterization with lidar measurement to retrieve INP
concentration profiles (Mamouri and Ansmann, 2016; Marinou et al., 2019; Ansmann et al., 2021).
A number of INP parameterization schemes based on previous ice nucleation measurements are
available in the literature for total global aerosols of unspecified composition (Demott et al., 2010),
dust (Ullrich et al., 2017; Demott et al., 2015; Niemand et al., 2012; Steinke et al., 2015), soot
aerosols (Ullrich et al., 2017), biological aerosols (Tobo et al., 2013), and organics (Wang and
Knopf, 2011). Generalized aerosol type and composition assumptions must be made when using
these INP parameterizations, which depend on past measurements from other locations or lab
experiments. In contrast, lidar retrievals based on simultaneous ground-based INP measurements
would provide a more realistic estimate of ice nucleation. We propose that, analogous to CCN
profile retrieval, INP concentration measured at the surface can be linearly scaled by the dry
backscatter coefficient profile derived from lidar measurements to create an estimate of the INP

vertical profile.

Despite advancements in understanding aerosol—and-cloud interactionsinteraction, significant

uncertainties remain in accurately characterizing aerosol vertical distributionsdistributien and their

impact on cloud processes, requiring mOTGMﬁg—m@é&S—&ﬂd—@bﬁ%ﬂ%@ﬂS—@ﬁ%ﬂ—F&l—y—eﬂ

provide comprehensive and vertically resolved measurements to fill these knowledge gaps. -The

Tracking Aerosol Convection Interactions ExpeRiment (TRACER) campaign focused on
understanding aerosol-cloud/convection interaction in the Houston metropolitan area in the
summer and fall of 2022 (Jensen, 2023). In this study, we use the micropulse lidar and ground-
based aerosol measurements we collected during the TRACER campaign to develop a purely
measurement-based approach to retrieve the aerosol, CCN, and INP vertical profiles. The ground-
based aerosol measurements include aerosol size distribution, CCN, and INP measurements. By
leveraging observations to minimize assumptions in the retrieval process, this approach is expected

to produce realistic vertical profiles ofrepresent aerosol, CCN.—properties and INP
concentrationstheirvertical-distribution-aceurately.
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2 Methodology

2.1 Overview of TRACER Field Campaign
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Figure 1 TRACER campaign sampling locationsCampaign-Sampling Lecations in the
Houston, Texas., metropolitan area;Texas. The Texas A&M University sampling sites are

marked with circles, the ARM AMFT1 site is marked with a star, and the ARM ancillary site
is marked with a diamond. This map wasMap created using Natural Earth shapefiles,
LandFire 2022 vegetation data, and USA detailed water bodiesDetailed-Water Bodies data
(Rollins, 2009).:

The U.S. Department of Energy (DOE) TRACER field campaign was conducted from October
2021 through September 2022 in the Houston metropolitan area, with an intensive observation
period (IOP) from June 2022 to September 2022, as-at-sites shown in Figure 1. The DOE firstFirst
Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF 1 AME-1) was deployed at La
Porte, Texas, throughout the campaign. DuringOn-enhanced-eperations—days—during the I0OP,

whenever forecasts indicated a strong sea breeze and conditions favorable for isolated deep
convection—period, the Texas—AELM University (TAMU_ }Rapid—Onsite—Atmeospherie
Measurements Van{ROAM-V) was deployed at Seawolf Park;-aeoastal-site in Galveston, Texas,
and_at several inland sites (Rapp et al., 2024). An overview of the TAMU TRACER campaign

payload, deployment strategy, and available measurements is provided by Rapp et al. (2024). Both

AMF1 and ROAM-V collected similar ground-based aerosol measurements, radiosonde data, and
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ground-based lidar profiles, as summarizeddeseribed in Table 1. The lidar retrieval method
described below was initially-developed based on the ROAM-V instrumentation and wasbut-is
also applied to the observations at the AMFI1AME-} site during TRACER. By extension, this
method could be used in other future campaigns with a similar instrumentation configuration. All

ROAM-V measurements, including the offline ice-nucleation array work, were conducted by our

Texas A&M group (see Thompson et al., 2025a. b for details), and Table 1 lists the corresponding

DOE ARM data-archive entries for each instrument.

Table 1. A list of data and instruments used in this study.

Measurements TAMU ROAM-V ARM AMF1AME-1
.. miniMPL

Aerosol Extinction and MiniMPL (Brooks MPL

backscatter profile (]363%1;S and Chen, -(Muradyan et al..; 2021)

Pressure, temperature, and iMet-4 Vaisala RS41

relative humidity profile

-(Sharma et al., 2023)

-(Keeler et al..; 2021)

Ground-based aerosol
measurements

Aerosol concentration and
size distribution

CCN concentration

INP concentration

SMPS, POPs

-(Chen, Thompson, and Brooks,

etal; 2024)

CCN Counter
—100-(Thompson, Chen, and

Brooks, 2023)

DRUM impactor and TAMU
droplet freezing array
~(Brooks and Thompson, 2023)

SMPS, APS
-(Shilling and Levin, 2021,
2023)

CCN-200
-(Koontz et al.,; 2021)

DRUM impactor and TAMU

droplet freezing array
(Brooks and Thompson,

2023)

Figure 2 provides an overview of the retrieval routine for aerosol, CCN, and INP profiles using
the TRACER campaign data. The routine is summarized here. First, we used lidar and radiosonde
data to determine the vertical profile of the cloud-free aerosol backscatter coefficient. Next, the
aerosol measurements fromsize-distribution-and-concentrationcoleeted-with Scanning Mobility
Particle Sizer (SMPS), Portable Optical Particle Spectrometer (POPS), and a cloud condensation

nuclei (CCN) counter are used to estimate the lidar hygroscopic growth correction factor, {ARH),
which is the ratio of aerosol backscatter coefficienteptical- properties at a given relative humidity

7
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(RH) to thatthese at dry conditions. ARH) and radiosonde-derived RH profile areis then used to

convert the aerosol backscatter coefficient profile to a dry aerosol backscatter coefficient profile.
The resultingFhis dry aerosol backscatter coefficient profile is used to linearly scale time-
averagedthe surface aerosol concentration, CCN concentration, and INP concentration

measurements to estimate their vertical distributions. Each profile is retrieved from data collected

over a one to three hour period centered around radiosonde launch time.

This method addresses the challenge that aerosol size distribution, composition, particle shape,

and hyeroscopic growth, all of which influence backscatter, are not directly measured by the

micropulse lidar and must be inferred. By assuming that surface aerosol properties are

representative  of those of the whole column, the dry backscatter coefficient becomes

approximately linearly proportional to aerosol volume concentration. We therefore could scale the

time-averaged surface aerosol, CCN, and INP measurements with the lidar-derived dry backscatter

profile to obtain their vertical distributions. Below, we discuss details of each step of the retrieval

process with TAMU ROAM-V data collected on 28 August 2022 in Galveston, Texas, as an

example.
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Figure 2 Overview of the aerosol, CCN, and INP profile retrieval routine.
2.2 Micropulse Lidar Measurement and Inversion of the Lidar Equation

The mini micropulse lidar (miniMPLMiniMPLE, Droplet Measurement Technologies, Inc.)
operates atisa 532 -nm_and measures backscatter and depolarization lidar-(Campbell et al., 2002;
FlynnElymna et al., 2007; Welton and Campbell, 2002). The miniMPLMinMPL uses a vertical
resolution of 15 m and a temporal resolution of 1 min in the TRACER campaign. The normalized
relative backscatterThe Nermalized Relative Baekseatter (NRB), also known as the attenuated
backscatter, is derived from the raw backscattered lidar signal after standard background,
afterpulse, deadtime, and overlap corrections are performed. Details of the corrections are
presented in the supporting information (Equation S1-S4-4). An example of an NRB time series

collected by the miniMPLMiniMPE is shown in Figure 3.
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Figure 3 Normalized relative backscatter (NRB) time series collected on 28 August 28;
2022, with miniMPLMiniMPL in Galveston, Texas.

NRB can be expressed as,

NRB(R) = C[B1(R) + B (RITE(R)T(R) ey

whereWhere R is the range, C is the lidar calibration constant, 1 and f> represent the backscatter
coefficient of aerosol and air molecules, respectively; 71 and 7> represent the transmittance of
aerosol and air molecules, respectively. After correcting the raw lidar data to produce the NRB
profile, data filtering and smoothing are applied to the NRB profile. First, a continuous wavelet
transform based algorithm is used to create a cloud mask, filtering out periods of data with cloud
signal peaks in the NRB profile that compromise the quality of aerosol retrieval (Du et al., 2006).
Because the miniMPL-MiniMPLE collects measurements near the peak of the solar spectrum,
observations can have a considerable amount of background noise during daytime measurements
(Campbell et al., 2002). The NRB profiles of cloud-free columns, typically between 0.5ene to

1.5twe hours before and after the radiosonde launch time (for a total of one to three hours).; are

time-averaged. The sensitivity of this aerosol profile retrieval method is shown in Section 4 of the

supplement-te-improve-sighal-to-neiseratio. This averaged NRB profile is further normalized by
the average NRB value of the lowest range bin. In addition, the NRB profile above 4.5 km is

smoothed using the NeighBlock denoising algorithm based on the discrete wavelet transform to

increase the stability of the retrieval process (Cai and Silverman, 2001). Similar wavelet transform

11



techniques have been widely used in lidar applications for noise reduction and feature detection
because the lidar signal exhibits a varying degree and frequency of noise at different ranges (Fang

and Huang, 2004; Xie et al., 2017).

245  Next, a Fernald two2-component lidar inversion method is performed. This is a classic method for
solving the lidar equation and retrieving aerosol backscatter profiles from the attenuated
backscatter (Fernald et al., 1972; Klett, 1981; Fernald, 1984; Sasano et al., 1985). The lidar ratio
(S), defined as the ratio of aerosol extinction coefficient to aerosol backscatter coefficient, is
assumed to be constant with respect to range (R). Following the Fernald method, the sum of aerosol

250  (B1(R)) and molecular backscatter coefficient (£2(R)) is expressed as:

NRB(R) . e_Z(SI_SZ) f}fc BZ(r)dr

Bi(R) + B2(R) = —p sy (2) BBt o B

B1(Rc) + B2(Re)

_ 251 f:c NRB(T,) . e_Z(SI_SZ) fRC ﬁZ(r’)d‘r’dr

The numerical form of Equation 2 used for the calculation is shown in_the supporting information
255  (Equation S5). S1 and S in Equation 2 represent the lidar ratio of aerosol and air molecules,
respectively. S» is approximated by the well-known constant 8n/3 sr (Fernald, 1984). Rc is the
calibration range selected at the far field, and usually, a priori information is needed to set the
reference aerosol backscatter at the calibration range. At a wavelength of 532 nm, the aerosol lidar
ratio typically ranges from 23 + =5 sr for clean marine aerosols, 44 + £9 sr for dust, 53 4+ £24 sr
260  for clean continental aerosols, 55 = £22 sr for polluted dust, to 70 + £25 sr for polluted continental
and smoke aerosols (Young et al., 2018). To account for the potential variability of the lidar ratio,
we choose 20 and 90 sr as the lower and upper estimates of aerosol lidar ratio, respectively. The
calibration range, Rc, was chosen to be 8 km above ground level (AGL).- At this range, we assume

the calibration scattering ratio (£1(R) + )+62(R)) / H/f>(R), which is the ratio of the sum of aerosol

265 and molecular backscatter coefficientseoefficient and molecular backscatter coefficient, varies

between 1.0 and 1.2.

12
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Figure 4 (a) Time-averaged Normalized Relative Backseatter (NRB) profile of
miniMPLMiniMPE from 16:10 to 18:50 UTC on 28 August 2022. The black line is the NRB

profile normalized by the lowest level value; the orange dashed line represents the
smoothed NRB. (b) Rayleigh backscatter coefficient > (dashed blue line) and total
backscatter coefficient f1+ f2 (solid black line). The shaded region shows the uncertainty
range of the retrieved total backscatter coefficient.

The Rayleigh backscatter f2(R) by-gasphase-meleeules-is calculated using the following equation
(Gimmestad and Roberts, 2023).

0.55 pm

288.15K  P(R)
1013.25hPa T(R) 3)

B,(R) =139 x [ 14 x 1076 -

P(R) and T(R) are pressure and temperature profiles measured by radiosondes launched during the
TRACER campaign, and 4 is the lidar wavelength, 532 nm. Finally, Equation 2 can be iteratively
solved in a top-down approach, starting from the calibration range and working toward the surface.
The aerosol backscatter coefficient profile can be calculated by subtracting the molecular

backscatter coefficient profile from the total backscatter coefficient profile.

An example of NRB profile and backscatter coefficient profile inversion is shown in Figure 4. The
cloud-free NRB profile of miniMPLMiniMPLE is time-averaged between 16:10 to 18:50 UTC at
SeawolfSea-Welf Park on 28 August 2022. The Rayleigh backscatter coefficient profile, shown in
blue dashed lines in Figure 4b, is calculated using data from the radiosonde launched around 17:30

UTC from the same site, and the total backscatter coefficient derived from the lidar inversion is

13
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shown in Figure 4b as a black solid line. The total backscatter coefficient profile closely follows
the molecular (Rayleigh) backscatter eoefficient-profile above 2 km AGL, indicating that aerosol
contributions are minimal at these altitudes and abeve,—which—indicates—that the backscatter

coefficient-is dominatedprimartly—influenced by meleetlar—scattering at-higher—altitudes,—with
minimal—contributions—from air molecules. This consistency also suggests that the Fernald

inversion is performing well, since the molecular backscatter is independently calculated and

provides a reference baselineaerosels.

The uncertainty in the total backscatter coefficient is assessed by systematically varying key
parameters: the scattering ratio at the calibration height and the lidar ratio. The Fernald inversion
process was applied 40 times to the same NRB profile, using 5 calibration scattering ratios (1.0 to
1.2) and 8 lidar ratios (20 to 90 sr), producing 40 backscatter coefficient profiles. The mean of
these-backseattercoefficient profiles can be considered as the best estimate, while the spread of

these profiles from the maximum to theand minimum of these profiles represents the uncertainty

interval. This systematic sensitivity analysis ensures that the retrieved aerosol backscatter profile
accounts for potential variability in the lidar ratio and the scattering ratio, providing a more reliable
estimate. The uncertainty range of the retrieved backscatter coefficient is shown in Figure 4b as

the grey-shaded region.

14



2.3 Ground-based Aerosol Measurements
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Figure 5 Time-averaged aerosol measurements were collected on 28 August 2022, from
16:10 to 18:50 UTC at the TAMU site in Galveston. (a) Time-averaged aerosol size
distribution with a y-axis on a linear scale. The shaded area illustrates the standard error

315  of the estimated mean. (b) Time-averaged aerosol size distribution with a y-axis on a log-
leg scale. (c) CCN spectra, where scatter points are time-averaged CCN concentrations at
different supersaturations, and the standard error of the sample mean is illustrated as
error bars. (d) INP spectra_ showing INP concentrations evaluated at different

temperatures.

320
During the TRACER field campaign, the TAMU ROAM-V deployed a suite of surface aerosol
measurements, which are usedwill-be-utilized in this analysis (see;-as-deseribed-in Table 1).- The
ROAM-V platform shares a heated and dried isokinetic inlet among the TSI Scanning Mobility
Particle Sizer (SMPS), the Droplet Measurement Technologies CCN counter, and an additional

325 GRIMM Condensation Particle Counter (CPC). Details of the ROAM-V instrument sampling
setup for the TRACER campaign and the particle loss corrections are further described in
Thompson et al. (20252024).

Onboard ROAM-V, the SMPS measures the mobility diameter of aerosols between 7 and 305 nm,

330  while the POPS measures the optical diameter of aerosols ranging from 125 to 3370 nm. Because

15
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the SMPS and POPS are based on different physical principles, a method was developed to merge
their measured size distributions. T-matrix codeMieseattering theory is used to simulate the signal
scattered signal-by quasi-spherical particles of various sizes detected by the POPS, generating a

signal-size relation that depends on the aerosol effective refractive index (Mishchenko and Travis,

1994).- The POPS-measured aerosol sizes can be recalculated by adjusting the effective refractive
index. The refractive index that minimizes the root--mean--square error of the overlapping size
region between the POPS and SMPS size distributions is then selected. The resultingeerresponding
POPS size distribution is then merged with the SMPS size distribution by applying a weighted
average over the overlapping region. The weights are determined by the Gaussian error function
to ensure a smooth transition between the two size distributions. The time average of the merged
size distribution across the time-averaging period is used for further analysis. An example of the
time-averaged aerosol size distribution measurement taken on 28 August 2022, from 16:10 to
18:50 UTC at SeawolfSea-Welf Park, is shown in Figure 5a, -and Figure-5b. The uncertainty of
the aerosol size distribution is represented by two standard errors of the time-averaged aerosol size

data to provide a 95% confidence interval for the time-averaged aerosol size distribution.

The CCN concentration spectra were measured with the CCN counter, which was set to
supersaturations between 0.2% and 1.2% with intervals of 0.2%. The CCN counter was calibrated
with size-selected ammonium sulfate particles. Similar to the merged aerosol size distribution, the
time-averaged CCN spectra are calculated to represent the CCN concentration during the time-
averaging period. An example of the average CCN measurement taken on 28 August 2022, from
16:10 to 18:50 UTC at the TAMU site in Galveston, is shown in Figure 5c¢. The two standard errors
of CCN data are calculated to provide a 95% confidence interval for the time-averaged CCN

concentration.

For ice nucleation measurements, size-resolved aerosol samples were collected using the Davis
Rotating-drum Universal-size-cut Monitoring (DRUM) impactor in four size ranges: greater than>
3 um, 3 to 1.2 um, 1.2 to 0.34 um, and 0.34 to 0.15 um, and analysed in the laboratory for ice
nucleation measurements. Ice nucleation measurements were conducted using the custom-built
immersion freezing array used in our previous experiments (Fornea et al., 2009: Lei et al., 2023;

Thompson;2024:Fernea et al., 2025a; Thompson et al., 2025b2009), and described only briefly
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here. Aerosol impactor samples are washed off the impactor substrate into high purity UHPLC
(ultra-high-pressure liquid chromatography) water. Then, 2 -uL. droplets of the sample water are
subjected to 25 freeze-thaw cycles on the immersion freezing array. A digital camera is used to
detect freezing events and identify ice nucleation temperatures by measuring the average
brightness (or grayscale value) of the droplet pixels in an 8-bit image (which has 256 levels of
grayscale value). This image-processing technique monitors changes in brightness to infer droplet

freezing. The INP concentrations in the air are calculated using established methods (Vali, 1971).

For each retrieval, aerosol, CCN, and INP measurements were averaged over the same one to three

hour window as the lidar data used for backscatter profile retrieval. This averaging period reflects

the operational constraints of each instrument: the CCN counter requires approximately 30 minutes

to complete a full scan over the range of supersaturations, and INP samples were collected over

one to two hour periods (Thompson et al., 2025a).

2.4 Aerosol Hygroscopicity and Lidar Hygroscopic Growth Correction Factor
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Figure 6 (a) Blue scattered points represent pairs of critical supersaturation and
corresponding critical dry diameter derived from aerosol size distribution and CCN
measurements. The blue dotted line represents the derived-geometric mean of derived
aerosol hygroscopicity x, and the shaded region represents the one geometric standard
deviation of x. k =1 line is shown in a solid black line; x = 0.1 is shown in a dashed line; ¥ =
0.01 line is shown in a dash-dotted line; ¥ = 0.001 line is shown in a dotted line; and x = 0 is
shown in a thick solid black line. (b) Lidar hygroscopic growth correction factor as a
function of relative humidity. The shaded area represents the uncertainties of the derived
K.

Since water uptake by aerosols enlarges their size and increases backscattering without affecting
aerosol concentration, it is not possible to reliablyaeeurately determine aerosol concentration from
the aerosol backscatter profile alone. It is important to convert the aerosol backscatter profile to
the aerosol backscatter profile thatwhich would be observed under dry conditions prior to

calculating aerosol, CCN, or INP concentrations.

In past studies, the hygroscopicity or water uptake by aerosols, defined as the change in aerosol
diameter at a given RH relative to its dry diameter, has been quantified by tandem differential
mobility measurements (Brooks et al., 2004a; Tomlinson et al., 2007). Similarly, humidified
nephelometers have been used to quantify changes in scattering by aerosol at increased RH
comparedrelative-humidities to scattering by dry aerosol, and the results have been used to interpret
lidar backscatter observations (Kotchenruther et al., 1999; Ghan et al., 2006).

Here, we developed a new method that combines x-Kohler theory with Mie theory to inferprediet
dry aerosol backscatter profiles from the observations at ambient RH. It is well -known that

activated CCN are defined as those aerosols that have grown beyond the critical diameter required
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for spontaneous droplet growth. CCN activation occurs in a supersaturated environment. However,
it has been demonstrated that for uniformly mixed soluble aerosol, CCN activation measurements
can be used to inferprediet hygroscopic growth of aerosol in subsaturated conditions as well
(Petters and Kreidenweis, 2007). This widely used concept has become known as x-Kohler theory

(Petters and Kreidenweis, 2007).

Using x-Kohler theory, CCN and aerosol size distribution measurements can be combined to
inferprediet an aerosol hygroscopicity parameter x (kappa). The critical dry diameter D, is the
size above which dry aerosols of a certain x activate to form cloud droplets when exposed to a

critical supersaturation SS.. Following the work of Moore et al. (+-2011).; D, satisfies the integral

Ncen =f n,(logD,) dlogD,, (4)
D

b.c

ny(logD,) is the measured aerosol size distribution in the form of dndlogD,, and Nccwn is the
measured CCN concentration at a supersaturation level. D, can then be numerically solved. Since
CCN concentration is measured at a few different supersaturations, multiple pairs of SSc-Dp,c
values are calculated, and an example of the SS.-D,, - pairs is shown in Figure 6a. Each pair of -SS.-
D, values can then be numerically solved using x-Kohler theory to derive a x value (Petters and
Kreidenweis, 2007).-

Following x-Kohler theory, the saturation ratio S over an aqueous solution droplet with diameter

D (also called wet diameter) can be expressed as

s(D) = a 5
(D) =55z Di(1—r) P (RTpWD )

Dy is the dry diameter of the particle. x is the hygroscopicity parameter. oy is the surface tension
of the air-water interface. M, is the molar mass of water. R is the universal gas constant. 7 is the
temperature evaluated at 298.15 K. p,, is the density of water. The x-Kohler equation relates

saturation ratio to particle size, and the supersaturation at the peak indicates the activation point of
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the particle as a CCN. A numerical function was constructed to find the supersaturation at the peak
of the x-Kohler equation using binary search, with the particle dry diameter and x as input
parameters. Thus, the problem becomes finding the x corresponding to a given D, as the dry
diameter, to match a specific SS. as the output. The x is then numerically determined using an

iterativea root-finding method to match the measured SS.-D,, pairs.

Since x can be considered as log-normally distributed (Su et al., 2010), the geometric mean and
geometric standard deviation can be calculated to represent the average value and the variability
of x for the bulk aerosol composition. An example of the geometric mean and geometric standard
deviation of « is also shown in Figure 6a. The variation in x values at different supersaturations
can be attributed to uncertainties in measurements and the differences in the aerosol chemical
composition and mixing state across various sizes. Subsequently, the aerosol size growth is
predicted by numerically solving for the wet aerosol diameter at a discrete series of RH values

(Petters and Kreidenweis, 2007). To determine the wet diameter at each RH value, we solve for

the point at which the saturation ratio predicted by the x-Kohler theory matches the specified

environmental saturation ratio. This is done through an iterative root-finding approach, using the

dry diameter as the initial guess.

Once the aerosol size is known as a function of RH, the Mie scattering theory is then used to
calculate the aerosol extinction coefficient at each RH value (Prahl, 2023). The refractive index
for dry aerosol is assumed to be 1.45 — -01 based on values for dry ammonium sulfate at 532 nm

(Cotterell et al., 2017). In the absence of detailed aerosol composition data, the refractive index of

ammonium sulfate is frequently adopted as a representative value in aerosol optical calculations,

as it provides a reasonable approximation for non-absorbing, hygroscopic particles (Zieger et al.,

2013: Ghan and Collins, 2004). In reality, acrosols containing sulfate. nitrate, organic compounds,

soot, and soil dust were all presented in Houston in varying proportions depending on air mass

origin (Thompson et al., 2025a; Lei et al., 2025). The refractive index of aerosol at each RH is

calculated as the volume-weighted average of the dry aerosol refractive index and that of water.
During the field campaign, aerosol size distribution measurements are made after the sample air is

dried tocoHeeted-at RH-levels below 30% RH, as measured by an RH sensor. At this RH level,%;

where aerosols are typically considered dry; based on the efflorescence pointRH of background
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ammonium sulfate (Onasch et al., 1999). Therefore, a lidar hygroscopic growth correction factor

AIRH) can then be calculated as:

ORH) py > 300
f(RH) = {5(30%) ° 6)—
1 RH < 30%

Following the work of Geisinger, theThe extinction coefficient -c, rather than the backscatter

coefficient, wasis used here. The extinction coefficient is more stable numerically than the

backscatter coefficient in the-Mie scattering calculations and is less sensitive to uncertainties in

particle size distribution and refractive index (Geisinger et al., 2017).caleulation- This is

convenient since we already assumed a linear relation between backscatter and extinction in the
lidar inversion, and it is justifiable based on the work ofen Ghan and Collins (2004).) in which the
influence of RH on backscatter and extinction waswere shown to be similar. In addition, we
assume a perfectlyperfeet internally mixed aerosol distribution, and we apply the same « across all
aerosol sizes when predicting aerosol size growth at different RH. To account for the uncertainty
of x, we calculate the f{RH) using the geometric mean x and its value at one geometric standard
deviation interval. The f{RH) calculated using the x values in-Figure-6a-is shown in Figure 6b. The
solid black line represents the f{RH) calculated using the geometric mean x, and the shaded region
represents the fARH) uncertainty calculated using one geometric standard deviation interval of .

The calculated f(RH) is further interpolated using a cubic spline to calculate f{RH) at any RH value.
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2.5 Deriving the Aerosol, CCN, and INP Vertical Profiles
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Figure 7 (a) Aerosol and dry aerosol backscatter coefficient profiles are shown as solid
black and red lines, respectively, with a-shaded areasarea showing the corresponding
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue
line. (b) The aerosolAeresol profile is shown as a solid black line. CCN profiles are shown
in different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%. (¢)
INP profiles evaluated at —20°C and —25°C.

assume that the surface measurements are representative of the aerosol size distribution,

composition, and cloud-activating ability aloft. This assumption generallyA—eaveat—of—this
approachis-thatit holds intrue-te well-mixed layers but may break down in the presence of elevated
aerosol eannot-be-used-in-ecases-in-whieh-layers, such as-ef transported smoke or dust, which can
be identified in -a
Figure 7a-in-a-black line-with-agrey-shaded region-as-the normalized relative backscatter (NRB)

signal. Assuming that aerosol hygroscopicity at the surface is representative of the entire profile,

theuneertaintyrange—The dry aerosol backscatter coefficient profile Sary(R) is given by

B.i(R)

F(RED) )

Bdry( )=

Figure 7a shows the aerosol backscatter coefficient profile (black line with gray shading for

uncertainty), the The-RH profile (isshowninFigure 7a-with-a-solid blue line), and the resulting -
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The-dry aerosol backscatter coefficient profile (is-shewn-in-the-red line with the-red shading for
uncertainty). The radiosonde has a relatively small uncertainty in RH measurements, specified-
shaded-region as £5%. Thethe uncertainty in therange—The lidar hygroscopic growth correction
factor, f{(RH), is included in the overall} uncertainty ofis-considered-and-added-to-the-unecertainties
when-ecaleulating the dry aerosol backscatter coefficient. Assuming that the acrosol, CCN, and INP

properties at the surface are representative of the vertical profile, theThe aerosol (N,), CCN (Ncen),

and INP (Nmnp) concentration profiles can therefore be estimated as:

_ Bdry(R) )
Ny(R) = m Ny (Ry) (8a)
v (R
Neen (R, SS) = % - Neen (Ro, SS) (8b)
ry
_ Bdry(R) )
Ninp(R,T) = m Ninp(Ry, T) (8¢)

Ro is the altitude where the surface measurements are collected. fary(Ro) 1s the dry aerosol
backscatter coefficient profile at Ro. N, Ncen, and Niwp are aerosol, CCN, and INP number
concentrations, respectively. One profile each for aerosol, CCN, and INP is retrieved for each time-

averaging period. Since the MPL and the miniMPLMiniMPLE have near-field blind ranges of 250

m and 100 m, respectively, lidar measurements near the surface are unavailable. To estimate the

aerosol backscatter coefficient profile within the lidar’s blind zone, we perform a second-degree

polynomial fit to the dry aerosol backscatter profile from up to 300 m AGL down to the edge of

the blind zone. This fitted curve is then extrapolated into the blind zone. Since the aerosol profile

is later linearly scaled by the dry backscatter profile, having a physically reasonable estimation of

the aerosol profile in the blind zone is necessary to ensure that the scaling reflects realistic near-

surface conditions. The extrapolated portions of the dry backscatter coefficient profile within the

Figure 7a—as—detted-tines: The SS is the supersaturation at which the CCN concentration is
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evaluated, and 7' is the temperature at which the INP concentration is evaluated. In addition, one
standard error of the time-averaged aerosol and CCN concentration of the time averaging period,
around onel to three3 hours, is included in the calculation for aerosol and CCN concentration
profiles. The aerosol and CCN concentrations evaluated at different supersaturations are shown in
Figure 7b. INP profiles are shown in Figure 7c. The dry aerosol backscatter coefficient profile
determines the shape of aerosol, CCN, and INP concentration profiles, while the surface aerosol

measurements determine the amplitude. CCN concentration profiles are presented at different

supersaturations, and INP concentration profiles are presented at different activation temperatures.

Presenting CCN and INP profiles this way is useful for modeling applications, as it allows the

model to compute CCN and INP activation dynamically when the particles are transported to

conditions supportive of cloud condensation or ice nucleation within the modeled convection (or

other atmospheric processes of interest).

It is important to acknowledge that lidar-derived aerosol profiles may be affected by the artificial

increase in aerosol backscatter at higher altitudes. As seen in Figure 7a, b, the aerosol backscatter

coefficient shows a steady increase with height above 4 km. This apparent increase is likely a

systematic artifact related to lidar signal noise at higher altitudes. As a result, the retrieved aerosol

profile above 4 km should be interpreted with caution.
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Figure 8 (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC,

with miniMPL in Galveston, Texas. (b) Aerosol and drv aerosol backscatter coefficient

profiles are shown as solid black and red lines, respectively, with a shaded area showing the

corresponding uncertainty interval for each profile. The relative humidity profile is shown

as a solid blue line. (¢) The aerosol profile is shown as a solid black line. CCN profiles are
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\ in different colo prresponding tg ersaturation levels ¢ AN( N
data for 1.2% supersaturation were not available. (d) INP profiles at —15°C, —20°C. and
—25°C. Note that the —20°C INP profile overlaps with the —25°C INP profile.

We begin with a case study from 31 August 2022, at the coastal Galveston site (16:39-19:00 UTC),

representing a baseline case under well-mixed atmospheric conditions with minimal cloud
influence. The NRB time series in Figure 8a shows a persistent layer of high backscatter, visible
below approximately 1 km AGL. In addition, intermittent layers of high backscatter are observed

between 1 and 3 km.

b shows the cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile

during the time-averaging period. The relative humidit

8 km, stabilizing around 65%, and the derived aerosol hygroscopicity parameter x is modest, with

a geometric mean of approximately 0.09 x 2.70*!. This low x value suggests the aerosol population

during this period was only weakly hygroscopic. As expected, under these uniform RH and

composition conditions, the correction for aerosol hygroscopic growth introduces minimal
differences between the raw and dry backscatter profiles. The similarity between the two profiles
(b) confirms that, in this case, the lidar backscatter signal is not significantly biased by water
uptake.

¢ shows the retrieved aerosol profile and CCN profile at different supersaturations. Surface aerosol

concentrations were (5.65 + 0.46) x 103 cm 3, decreasing to (1.14 +0.57) X 10° cm> at 1 km AGL,

a roughly fivefold reduction with height. CCN concentrations at a supersaturation of 0.2% show a

similar decline, from 329 + 2 cm > at the surface to 67 = 26 cm > at 1 km. d shows the retrieved

INP profile evaluated at different temperatures. INP concentrations evaluated at —15°C were 0.11

L at the surface and 0.02 L' at 1 km AGL.
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Figure 9 (a) NRB time series data collected on 6 September 2022, from 18:30 to 20:30 UTC,
with miniMPLMiniMPL inland at Hockley, Texas. (b) Aerosol and dry aerosol backscatter
coefficient profiles are shown as solid black and red lines, respectively, with a shaded area
showing the corresponding uncertainty interval for each profile. The relative humidity
profile is shown as a solid blue line. (¢) The aerosolAeresol profile is shown as a solid black
line. CCN profiles are shown in different colors corresponding to supersaturation levels of
0.2%, 0.6%, and 1.2%. (d) INP profiles evaluated at —-20°C and —-25°C. No INP was
observed at —-15°C.

This caseAn-example from the-measurements-collected-en-6 September 2022 _at;-during the inland
site in FAMU-deployment-at-Hockley, Texas (;—from—18:30—t6-20:30 UTC), demonstrates;
iHustrates the importance of applying acerrecting foraeresel hygroscopic growth correction when
RH varies strongly with altitude.- Figure 8a shows the lidar NRB time -series, with a shallow

boundary cloud observed around 1.2 km AGL-prefile. The layer at and below the cloud level height

can be identified as a convective mixed layer, while the layer above the cloud level can be

identified as an elevated aerosol layer. Although an elevated aerosol layer exists, it does not
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affectThe-cloud-mask—which-marks the correction for the enhanced scattering from hygroscopic

growth in the mixed layer. The NRB time series in Figure 8a shows limited temporal variation in

attenuated backscatter profiles during the and-vertical- distribution-of the-eloud,is-showninFigS2-
The-cloud-mask-wasused-to-seleet-acloud-free period.

Figure 8blida shows the

cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile duringeerrected
for the time-averaging period. Aswateruptake by-aeresels-as RH increases_toward 100% within
the mixed layer, the correction for hygroscopic growth, applied using the lidar hygroscopicity

factor fl—As-the-RH), results in a -inereases—and-approaches100%inthe-mixedlayer,the-dry
aerosol backscatter profile lower thaneeefficient-corrects—forthe—inereased-backseatter-due—to

aerosol-growth—AsFig-8b-demeonstrates;+f the uncorrected one. Without this correction, aerosol

concentrations aeresel-ba atter-coe ent-were-used-to-estimate-aerosol-concentration

substantially overestimated. For example, at 1.2 km AGL, aerosol concentration estimates

frominstanee,—relying—on—the uncorrected aeresel-backscatter eoefficient—would exceed the
corrected valueresultin-an-overestimation-of-aerosol-conecentration by a factor of 2.8,

Figure 8c and 9d show retrieved aerosol, CCN, and INP profiles.-at+-2-km-AGE: The aerosol

concentration at the surface is approximately (3.30 = £0.09) x }*103 cm—> and decreases to 371 +
£216 cm— at the top of the mixed layer at 1.2 km AGL. The CCN concentration evaluated at a
supersaturation of 0.2% is 159 + £2 c¢m— at the at-surface and 18 = =10 cm— at 1.2 km AGL
(Figure 9d8d). The INP concentration evaluated at —20°C is around 0.07 L= at the surface level
and around 3 x x10-3 L=" at 1 km AGL. No INP was observed at —15°C. Between 1.2 and 3.2
km, the dry aerosol backscatter coefficient profile indicates the presence of an elevated aerosol
layer above the mixed layer. The aerosol population in the mixed layer and the elevated aerosol
layer may differ in terms of aerosol size distribution and chemical composition, making this
method for retrieving aerosol, CCN, and INP profiles more uncertain in the elevated aerosol layer

shown in Figure 8. The increase of the dry aerosol backscatter profile as well as the aerosol

concentration profile between 6 and 8 km is likely a systematic artifact related to the lidar noise at

high altitude.-
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3.32 Case study: Retrieval of Aerosol Profile with Multiple Cloud Layers
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Figure 10 (a) NRB time series collected on 26 August 2022, from 16:02 to 18:42 UTC, with
miniMPLMiniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter
coefficient profiles are shown as solid black and red lines, respectively, with a shaded area

showing the corresponding uncertainty interval for each profile. The relative humidity

profile is shown as a solid blue line. Gray dashed lines indicatedemenstrate the cloud level.

(¢) The aerosolAereosel profile is shown as a solid black line. CCN profiles are shown in

different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%. (d) INP
profiles at —15°C, —20°C, and —-25°C.
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This caseThe-next-example; from the-measurements—collected-on-26 August 2022 atduring the
coastal TAMU-deployment-in-Galveston_coastal site (16:02—18:42 UTC) illustrates the ;Fexas;
demenstrates-the-aerosolprofile retrieval method’s performance in the presence of multiple cloud

and moisture layers. In Figure 10a, cloud layers around 0.6, 1.5, and 3.6 km AGL can be identified

as white pixels with high NRB. These cloud layers also match vertical regions of increased RH

measured by the radiosonde launched around 17:26 UTC (Figure 10b). The high attenuated

backscatter signal near the cloud levels may reflect the presence of distinct aerosol layers or result

from higher humidity enhancing aerosol scattering. The NRB time series in Figure 10a shows

some temporal variation in the attenuated backscatter profile, with a layer of high backscatter

slowly decreasing from around 2 to 1 km AGL.

As shown in Figure 10b, afFig—9b)—A peak in the aerosol backscatter coefficient profile is seen
around 3.6 km AGL, showing a region where aerosols take upaeresel-uptake water and grow.-in

size-(Fig—9b). This peak is almost completely removed in the dry aerosol backscatter coefficient
profile in Figure 10b, indicating a successful correction for the hygroscopic growth effect on
aerosol scattering. This result also demonstrates that the lidar hygroscopic growth correction factor
derived from surface measurements can alse—be applied to aerosol aloft. Increased aerosol
backscatter coefficients around 0.6 and 1.5 km AGL due to hygroscopic growth are also reduced,
resulting in a more realisticshewingan-expeeted aerosol vertical distribution. The dry backscatter
profile suggestsresults—indicate that an elevated;—at-the-surfacetevel—the aerosol layer may be
present near 1.5 km AGL, while the uncorrected peak at 3.6 km AGLeeneentration is likely
dominated(7-95+0-27)<10>—em>—and—it—decreases by humidity-enhanced scattering rather

thanap
0-2%the- CCN-concentrations-are-SH=+10-em=-at the surface, 36873 em=-at 0-6- kim, 256+86-em™
*at-h5 kmand 10782 em~at 3.6 km-At a distincttemperature-of -15°C, the INP-concentrations
are-around-0-05-L+at the surface; 0-04- L+ at 0.6 km,; 0-03 L +at 1.5 km,-and 0-01 L +at 3-6 kam-
The correction for the aerosol layerhygroscopic growth leads to the more realistic acrosol. CCN.

2 2 b
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Figure 10c and 10d show retrieved aerosol, CCN, and INP profiles. At the surface, the aerosol

concentration is (7.95 + 0.27) x 10 cm > and decreases by approximately 28% at 0.6 km, 50% at

1.5 km, and 79% at 3.6 km AGL. At a supersaturation of 0.2%. the CCN concentrations are 511 +
10 cm 3 at the surface, 368 + 73 cm 2 at 0.6 km, 256 = 86 cm > at 1.5 km, and 107 = 82 cm > at

3.6 km AGL. At a temperature of —15°C, the INP concentrations are around 0.05 L! at the surface,
0.04 L 'at0.6 km,0.03 L ! at 1.5 km,and 0.01 L' at 3.6 km AGL. The correction for the aerosol

hygroscopic growth leads to the more realistic aerosol, CCN, and INP profiles shown in Figure

10c, d. The retrieval of aerosol, CCN. and INP concentrations may be less reliable around 1.5 km

due to the possible presence of an elevated aerosol layer. However, the successful removal of the

humidity-enhanced scattering peak near 3.6 km is encouraging, suggesting that the applied k value

may be reasonable throughout the column.

The increase in the dry aerosol backscatter and aerosol concentration between 5 and 7 km is a

systematic artifact likely caused by high lidar signal noise, as shown in Figure 10a above 5 km.

The magnitude of this artifact is likely amplified by the high noise level, which is caused by the
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700  limited number of cloud-free profiles available for averaging during this period, as compared to

the previous case, where more cloud-free profiles led to reduced noise and less pronounced

artifacts.

705

710

715
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3.4 Comparison Between Collocated MPL and miniMPLMiniMPL Lidar
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Figure 11 Comparison of retrieved aerosol backscatter coefficient profiles derived from
miniMPLMiniMPE and ARM AMF1AME-1 MPL data. (a) Raw co-polarized lidar signal of
TAMU miniMPL (red solid line) and ARM MPL (blue solid line). (b) Calibrated lidar
normalized relative backscatter signal of TAMU miniMPL (red solid line) and ARM MPL
(blue_solid line). (¢) Retrieved lidarMiniMPL aerosol backscatter coefficient of TAMU

miniMPL (prefile-is-shoewn-in-a-selid-orange solid line; and area) andthe ARM AM¥F-1-MPL
(aerosol backscatter coefficient profile is shown in a blue solid line_and area). (d. Shaded
areas show the corresponding uncertainty interval for each profile. (b) Comparison of the
lidar aerosol backscatter coefficients.—interpolatedto—the same range. The uncertainty

interval of the retrieved aerosol backscatter coefficient is shown as error bars.

The TAMU ROAM-V was deployed at the AMF1 (La PorteLaPeorte, Texas) site on 1 September
2022, allowing miniMPLMin#MPLE and MPL to be collocated and compared directly. The ARM
MPL deployed at AMFIAME-1 collects data at a vertical resolution of 15 m and a temporal

resolution of 10 s (Muradyan et al..; 2021). During the colocation test, the two lidars were separated
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horizontally by approximately 30 meters and vertically by less than 10 meters. The NRB-data

fromef both lidars wereare time-averaged between 20:00 and 22:00 UTC. Vertical profiles of the

lidar raw signal, the NRB. and the The-aerosol backscatter coefficient, and a comparison of the

lidar aerosol backscatter coefficient are -prefiles-are-caleulated following-ourmethod-and-shown

in Figure 11, a, b, ¢, and d, respectively. Figure 11a shows that the raw signals from the two lidars

differ significantly. However, after applying lidar-specific afterpulse, deadtime, background, and

range corrections for each lidar, their NRB profiles agree closely (Figure 11b). Figure 11c and d
show that the a—and—ttb—TFhe-MPL and miniMPL NRB andMniMPE aerosol backscatter

coefficient profiles follow similar shapes and magnitudes. The miniMPL overestimatesMiniMPE

aerosol backscatter coefficients between 6 km and 8 km compared to the MPL, suggesting that the

miniMPL-derived profiles may be less reliable at higher altitudes. This artifact is consistent with

the spurious high-altitude enhancements discussed earlier and is likely caused by signal noise and

overlap correction uncertainty in the miniMPL retrieval. The miniMPL and MPL profiles exhibit

a are-shightly lower below2km;and-there-also-seems-to-be-a-slight vertical offset below 4 km,

which may result from residual errors introduced during the afterpulse, background, or overlap

corrections. The misalignmentbelow-the 2 km-—Hewever, mostof the-differences between the two

aerosol backscatter profiles generally remainare within the estimated uncertainty bounds, which

primarily arise fromrang hine the assumed

lidar ratioNRB and retrieving—the scattering ratio at the reference height. In summary,
miniMPLaerosol-backseattercoeffictent MintMPE and MPL data are remarkably similarperform
similarly despite the-differences in theirthe lidar designs and specifications. This agreement

suggests that the MiniMPL,-despite-beinga-more compact and less expensive miniMPLeost-
effeetive-option; can provide comparable data quality to the more established MPL system. In

addition, the use of two lidars with comparable outputs enables coordinated deployment and

consistent analysis across different sites over the same period;-and-theretrieval resultsusing both
lid ] I directlv.
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760 3.5 Comparison of aerosol and CCN profiles between Aerosol-and-Cloud-Condensation

Nuelei Profiles-at-Galveston and La Porte, Texas (EaPorte; FX-measurements-on-28 August
2022)
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Figure 12 Comparison of lidar measurement of miniMPLMiniMPL deployed at TAMU

765  Galveston site and MPL deployed at ARM AMF1AMF-1 site on 28 August 2022, from
16:10 to 18:50 UTC. (a) Aerosol backscatter coefficient profiles. (b) Dry aerosol backscatter
coefficient profiles. (c) Aerosol concentration profile. (d) CCN concentration profiles at
0.2% supersaturation.

A comparison between miniMPLMiniMPE and ARM MPL measurements at different locations
770  at the same time on 28 August 2022 is shown in Figure 12. miniMPLMiniMPE was deployed at
SeawolfSea-Welf Park, Galveston, Texas, and the AMF 1 AME-1 was located in La PortelaPorte,

Texas. The straight-line distance between the two sites is about 46 km. The time-averaging period

was from 16:10 to 18:50 UTC. As shown in Figure 12b, near the ground surface, the dry aerosol
backscatter coefficientseoefficientnear-the-surface at the two2 sites are similar. The dry aerosol
775  backscatter coefficient at the TAMU Galveston site near the surface is (1.07 £ £0.57) x }*10° km—
!, and at the AMF1 La Porte AME-1-LaPorte site, it is (0.89 £ £0.51) x }*103 km~—". The dry aerosol
backscatter coefficient is greater at the AMF1 [a PorteAME-1-LaPorte site at higher altitudes.
Figure 12¢ and d show that the aerosol and CCN (SS = 0.2%) concentration at the AMFI1 La
PorteAME-1-LaPerte site is consistently greater than at the TAMU Galveston site at all vertical

780  levels. At the surface, the aerosol concentration is (3.49 = £0.34) x }*103° cm— for the TAMU site
and (5.24 £ £1.26) x }*103 cm~— for the ARM site. At 1 km altitude, these concentrations are 313
+ £169 cm— and (1.78 £ £0.47) x }<103 cm—> for the TAMU and ARM sites, respectively. In
terms of CCN concentrations evaluated at 0.2% SS; at the surface, the TAMU site has a CCN
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concentration evaluated-at-0.2% supersaturation-of 127 £ £2 ¢cm—>, while the ARM site has a

slightly greater concentration of 137 = =9 cm—3. At 1 km altitude, the CCN concentration at the
TAMU site is 11 = +5 cm—3, compared to a substantially greater concentration of 46 = +5 cm— at

the ARM site.

These differences highlight variations in aerosol and CCN distributions between the two locations,
especially at upper altitudes. The La PortelaPerte site likely has a greater dry aerosol backscatter
coefficient and aerosol concentration due to surrounding industrial emissions, while the TAMU
Galveston site is more influenced by the maritime air mass. Despite similar surface aerosol and
CCN number concentrations, there are clear differences in the aerosol and CCN vertical
distribution between the two sites, only about 46 km apart. Such variability underscores the
importance of localized aerosol vertical profile measurements in aceurately-characterizing aerosol
vertical distributions when assessing their impact on air quality, weather, and climate. It also
highlights the necessity of deploying multiple measurement sites to capture the spatial
heterogeneity of aerosol vertical profiles when conducting a field campaign that covers a large
study area, especially in regions influenced by heterogeneous sources of emissions and complex

airmass interactions.

4 DiscussionPiscussions and Conclusions

In this study, we useThis-werkuses data collected during the TRACER campaign to demonstrate

a new method of retrieving aerosol, CCN, and INP profiles by integrating mini micropulse lidar
measurements with radiosonde and ground-based aerosol measurements, including aerosol size
distributions, CCN activation, and ice nucleation measurements. In the future, these measurements
can be collected routinely to translate lidar backscatter coefficient profiles to long-term aerosol,
CCN, and INP vertical profiles. Further, our method is not limited to the micropulse lidar and can

be applied to other single-wavelength elastic or more advanced lidars.

One of the key findings of this study is that correcting aerosol hygroscopic growth is necessary for
retrieving realisticaceurate CCN and INP concentration profiles. We have shown that using lidar-
retrieved backscatter or extinction profiles without correcting for hygroscopic growth can lead to

a significant overestimationeverestimate of the aerosol concentration near the cloud base. To solve
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this issue, we introduced a method to quantify aerosol scattering enhancement due to aerosol
hygroscopic growth. This method for determining the lidar hygroscopic growth correction factor
can be used as a complementary approach to the traditional method of using a collocated

humidified nephelometer (Ghan et al., 2006).)-and-can-be-used-when-a-humidified nephelometer

Another key finding is that aerosol and CCN vertical distributions can significantly vary at small
spatial scales, even when similar aerosol and CCN concentrations are measuredeollected at the
surface, as demonstrated by the comparison between the aerosol vertical profile at the ARM and
TAMU sitessite on 28 August 2022. This variability highlights the importance of considering
vertical profiles rather than relying solely on ground--based aerosol measurements when assessing
aerosol properties and their impacts on cloud formation. It also highlightsunderseores the need for
localized vertical profile measurements to accurately capture the diverse aerosol characteristics in
different regions, particularly in areas with complex emission sources and air mass interactions.
Portable lidars, such as the miniMPLMiniMPLE lidar, combined with surface aerosol
measurements, can be highly effective in providing these localized aerosol vertical profile

measurements.

While the method described herein clearly has some distinct advantages, it is subject to several
limitations. Since the MPL and miniMPLMiniMPE measurements are noisy at upper altitudes, this
method’s retrieval above the altitude where the lidar signal is smoothed should be used with
caution and can only serve as a best estimate. In addition, since our method relies on the
assumption that the aerosol size distribution and composition are similar throughout the vertical
column, the retrieved profiles are the-most reliable within the well-mixed boundary layer. At
altitudes where aerosol properties differ significantly from those at the surface, such as in the
presence of a transported dust layer in the free troposphere, this method may be less reliable, and
the results should be interpreted with caution. Despite these limitations, as measurements of CCN
and INP vertical profiles are difficult to obtain and sparse, the results from this method can serve

as a significant improvement over the arbitrary aerosol profiles often used in model initialization.
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In conclusion, the integration of MPLmicropulse-tidar and ground-based aerosol measurements
845  offers a powerful tool for retrieving detailed vertical profiles of aerosols, CCN, and INPs. The
retrieved profiles can serve as inputs to provide realistic aerosol vertical distributions for cloud-

resolving models, facilitating the study of aerosol-cloud interactions and aerosol effects on climate.
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