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Abstract.  

 10 

Accurately characterizing the vertical distribution of aerosols and their cloud-forming properties 

is crucial for understanding aerosol-cloud interactions and their impact on climate. This study 

presents a novel technique for retrieving vertical profiles of aerosols, cloud condensation nuclei 

(CCN), and ice nucleating particles (INPINPs) by combining micropulse lidar, radiosonde, and 

ground-based aerosol measurements. Herein, the technique is applied to data collected by our team 15 

at Texas A&M University during the Tracking Aerosol Convection Interactions ExpeRiment 

(TRACER) campaign. Ground-based aerosolAerosol size distribution and CCN counter data are 

used to estimate the value of the aerosol hygroscopicity parameter, κ. The derived κ, together with 

Mie scattering theory and the relative humidity profileprofiles from the radiosonde, isare then used 

to estimate aerosol size growth andhow much the associated increase in backscatteraerosols have 20 

grown at each altitude. We then correct This estimate is applied inversely to the lidaraerosol 

backscatter to dry conditionscoefficient profile to produce thea dry aerosol backscatter coefficient 

profile. The dry aerosol backscatter coefficient profile is used to linearly scaled to collocatedscale 

surface measurements of aerosolsaerosol, CCN, and INP to produce corresponding vertical 

profiles.concentrations. Combining lidar backscatter profiles withand ground-based aerosol and 25 

cloud nucleation measurements leads toreduces the assumptions typically needed in lidar-based 

aerosol retrievals, resulting in a more realisticaccurate representation of vertical distributions of 

aerosol properties. The method could be readily applied to lidar measurements in future field 

campaigns.  
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1 Introduction 30 

The interaction between aerosols and clouds introduces significant uncertainties in estimating 

aerosol indirect radiative forcing, a critical factor in predicting future climate scenarios (Seinfeld 

et al., 2016). Aerosols can facilitate the formation of cloud water droplets and cloud ice particles 

by acting as cloud condensation nuclei (CCN) and ice nucleating particles (INPINPs), respectively. 

Consequently, changes in aerosol concentrations could influence manya number of convective 35 

cloud properties and processes (Tao et al., 2012; Fan et al., 2016; Twohy et al., 2005). For example, 

increased CCN concentrations could result in smaller cloud droplet sizes, suppress local 

precipitation in warm-phase clouds, and extend cloud lifetimes (Twomey, 1977; Albrecht, 1989). 

Some convective cloud studies have suggested that an increased concentration of ultrafine aerosol 

particles (smaller than 50 nm) leads to enhanced condensational heating from additional water 40 

vapor condensation. Since this process invigorates the updraft intensity, it has been referred to as 

warm-phase invigoration (Fan et al., 2007; Fan et al., 2018; Lebo and Seinfeld, 2011). Other 

studies have focused on cold-phase invigoration of updrafts, a process in which cloud water 

freezes, releasing latent heat and subsequently increasing the buoyancy of air parcels (Andreae et 

al., 2004; Rosenfeld et al., 2008). At present, the extent and significance of aerosol-induced 45 

invigoration effects are under debate (Lebo, 2018; Igel and van denVan Den Heever, 2021; Varble 

et al., 2023). Addressing these uncertainties requires a deeper understanding of the microphysical 

processes involved (Jensen, 2023). One of the key gaps in our current understanding of aerosol-

cloud interactions is the vertical distribution of aerosols, CCN, and INPs in the cloud environment. 

 50 

The knowledge of the aerosol vertical distribution is important for assessing aerosol-cloud 

interactions (Rosenfeld et al., 2014; Lin et al., 2023). Modeling studies have shown evidence that 

the altitude of aerosolsaerosol significantly influences their impact on cloud formation and deep 

convection (Marinescu et al., 2017; Lebo, 2014; Zhang et al., 2021). However, in most long-term 

field campaigns, aerosol, CCN, and INP measurements are only made at ground-based sampling 55 

stations (Schmale et al., 2018; Pöhlker et al., 2016; Perkins et al., 2022). By comparison, airborne 

in -situ measurements, which provide observations of CCN and INP at the cloud level, are 

generally of shorter in duration (Stith et al., 2009; Dadashazar et al., 2022; Raes et al., 2000). Thus, 

retrievals from ground-based lidar observations, which can operate continuously over extended 
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periods to quantitatively assess vertical profiles of aerosol properties, represent a highly valuable 60 

method. 

 

Lidars detect range-resolved properties of aerosols and cloud particles by emitting laser pulses and 

measuring the backscattered light. Lidar measurements can be used to retrieve bulk aerosol optical 

properties, including the aerosol backscatter coefficient, extinction coefficient, and depolarization 65 

ratio. These aerosol optical properties are influenced by various aerosol properties, including size 

distribution, shape, chemical composition, and mixing state (Brooks et al., 2004b; Titos et al., 

2016; Yao et al., 2022). AlthoughWhile the same intrinsic particle properties govern 

microphysicsdrive microphysical properties, the relationship between the lidar observations and 

the concentration of cloud-forming aerosolsaerosol is not straightforward. Most CCN are found 70 

within the Aitken (typically between 0.01 andto 0.1 μm) and accumulation (typically between 0.1 

andto 1 μm) aerosol modesmode aerosols, but lidar observations at visible wavelengths are most 

sensitive to the accumulation and coarse (typically greater than 1 μm) mode aerosols (Shinozuka 

et al., 2015; Kapustin et al., 2006). In addition, aerosol hygroscopic growth due to increased 

humidity increases the aerosol backscatter coefficient without affecting the CCN concentration 75 

(Shinozuka et al., 2015; Liu and Li, 2014). As for INP, it has been shown that larger aerosols are 

more likely to be INP, particularly those with a diameter exceeding 500 nm (Demott et al., 2010). 

Individual aerosols in this size range backscatter light effectively, but less than 1 in 105 particles 

in the atmosphere can act as INPs (Demott et al., 2010). Thus, INPs contribute little to the 

measured bulk aerosol optical signals. Consequently, it is necessary to employ assumptions or 80 

complementary aerosol measurements when estimating cloud-forming aerosol concentration from 

remote sensing measurements. 

 

Studies have adopted different approaches when using lidar measurements to retrieve the CCN 

concentration vertical profile (Lv et al., 2018; Mamouri and Ansmann, 2016; Ansmann et al., 2021; 85 

Ghan et al., 2006; Ghan and Collins, 2004; Lenhardt et al., 2023). The first approach involves 

using multiwavelengthmulti-wavelength lidar to retrieve aerosol concentrations by classifying 

them into different aerosolthree types (urban, biomass burning, and dust) and then using the 

prescribed hygroscopicity parameter of each aerosol type to estimate the CCN concentration (Lv 

et al., 2018). This approach requires an advanced multiwavelength lidar, such as the 90 
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multiwavelengthMultiwavelength High Spectral Resolution Lidar (HSRL-2) or the 

multiwavelength Raman lidar (Müller et al., 2011; Müller et al., 2014). Another approach relies 

on an empirical relation between the aerosol extinction coefficient and aerosol concentrations 

derived from the Aerosol Robotic Network (AERONET) to convert backscatter into aerosol 

concentration profilesprofile. A CCN parameterization scheme based on the empirical relation 95 

betweenof aerosol and CCN concentration of each aerosol type is applied to the aerosol 

concentration profile to produce the CCN concentration profile (Mamouri and Ansmann, 2016; 

Ansmann et al., 2021). Each of these approaches strongly relies on assumed aerosol composition, 

shape, and refractive index used in the lidar retrieval and CCN parameterizations. Consequently,  

they may fail to capture the complex conditions of atmospheric aerosols, thus limiting the precision 100 

of CCN estimations. 

 

The third approach to determining CCN concentration using lidar is to directly scale ground-based 

CCN concentration measurement with the lidar-measured extinction or backscatter profile, first 

proposed by Ghan and Collins (2004). This approach assumes that the aerosol composition and 105 

size distribution remain relatively constant with altitude. Ghan and Collins (2004) used the 

humidification factor (hereby referred to as the lidar hygroscopic growth correction factor), 

defined as the dependence of aerosol extinction or backscatter on relative humidity (RH), to 

convert the observed extinction and backscatter coefficients to their dry counterparts. Ghan and 

Collins (2004) found that CCN concentrations at smaller supersaturations correlate more strongly 110 

with dry backscatter and are less impacted by height variations in aerosol size distribution than at 

higher supersaturations. Ghan et al. (2006) later validated this approach, showing that the 

correlation between lidar-derived and in situ CCN is influenced by supersaturation, aerosol 

uniformity with height, and lidar retrieval accuracy. This method has been applied in a routine 

CCN profile data product based on a Raman lidar (Kulkarni et al., 2023). Following a similar 115 

approach, Lenhardt et al. (2023) compared in -situ CCN and airborne HSRL-2 measurements in 

the southeast Atlantic. Their results show that CCN concentration at 0.3% supersaturation in dry 

ambient conditions (where RH ≤ 50%) strongly correlates with the HSRL-2 measured extinction 

and backscatter. Collectively, these studies demonstrate the strong potential of lidar observations 

for accurately retrieving CCN profiles. 120 
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Compared to the lidar retrievals of CCN, fewer studies have focused on INP retrievals using lidar 

data. Studies have combined INP parameterization with lidar measurement to retrieve INP 

concentration profiles (Mamouri and Ansmann, 2016; Marinou et al., 2019; Ansmann et al., 2021). 

A number of INP parameterization schemes based on previous ice nucleation measurements are 125 

available in the literature for total global aerosols of unspecified composition (Demott et al., 2010), 

dust (Ullrich et al., 2017; Demott et al., 2015; Niemand et al., 2012; Steinke et al., 2015), soot 

aerosols (Ullrich et al., 2017), biological aerosols (Tobo et al., 2013), and organics (Wang and 

Knopf, 2011). Generalized aerosol type and composition assumptions must be made when using 

these INP parameterizations, which depend on past measurements from other locations or lab 130 

experiments. In contrast, lidar retrievals based on simultaneous ground-based INP measurements 

would provide a more realistic estimate of ice nucleation. We propose that, analogous to CCN 

profile retrieval, INP concentration measured at the surface can be linearly scaled by the dry 

backscatter coefficient profile derived from lidar measurements to create an estimate of the INP 

vertical profile. 135 

 

Despite advancements in understanding aerosol– and cloud interactionsinteraction, significant 

uncertainties remain in accurately characterizing aerosol vertical distributionsdistribution and their 

impact on cloud processes, requiring more. Existing models and observations often rely on 

assumptions that can introduce biases, highlighting the need for dedicated field campaigns that 140 

provide comprehensive and vertically resolved measurements to fill these knowledge gaps. 	The 

Tracking Aerosol Convection Interactions ExpeRiment (TRACER) campaign focused on 

understanding aerosol-cloud/convection interaction in the Houston metropolitan area in the 

summer and fall of 2022 (Jensen, 2023). In this study, we use the micropulse lidar and ground-

based aerosol measurements we collected during the TRACER campaign to develop a purely 145 

measurement-based approach to retrieve the aerosol, CCN, and INP vertical profiles. The ground-

based aerosol measurements include aerosol size distribution, CCN, and INP measurements. By 

leveraging observations to minimize assumptions in the retrieval process, this approach is expected 

to produce realistic vertical profiles ofrepresent aerosol, CCN, properties and INP 

concentrationstheir vertical distribution accurately. 150 
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2 Methodology 

2.1 Overview of TRACER Field Campaign 

 

 
Figure 1 TRACER campaign sampling locationsCampaign Sampling Locations in the 155 
Houston, Texas, metropolitan area, Texas. The Texas A&M University sampling sites are 
marked with circles, the ARM AMF1 site is marked with a star, and the ARM ancillary site 
is marked with a diamond. This map wasMap created using Natural Earth shapefiles, 
LandFire 2022 vegetation data, and USA detailed water bodiesDetailed Water Bodies data 
(Rollins, 2009).. 160 

The U.S. Department of Energy (DOE) TRACER field campaign was conducted from October 

2021 through September 2022 in the Houston metropolitan area, with an intensive observation 

period (IOP) from June 2022 to September 2022, as at sites shown in Figure 1. The DOE firstFirst 

Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF1AMF-1) was deployed at La 

Porte, Texas, throughout the campaign. DuringOn enhanced operations days during the IOP, 165 

whenever forecasts indicated a strong sea breeze and conditions favorable for isolated deep 

convection period, the Texas A&M University (TAMU ) Rapid Onsite Atmospheric 

Measurements Van (ROAM-V) was deployed at Seawolf Park, a coastal site in Galveston, Texas, 

and at several inland sites (Rapp et al., 2024). An overview of the TAMU TRACER campaign 

payload, deployment strategy, and available measurements is provided by Rapp et al. (2024). Both 170 

AMF1 and ROAM-V collected similar ground-based aerosol measurements, radiosonde data, and 
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ground-based lidar profiles, as summarizeddescribed in Table 1. The lidar retrieval method 

described below was initially developed based on the ROAM-V instrumentation and wasbut is 

also applied to the observations at the AMF1AMF-1 site during TRACER. By extension, this 

method could be used in other future campaigns with a similar instrumentation configuration. All 175 

ROAM-V measurements, including the offline ice-nucleation array work, were conducted by our 

Texas A&M group (see Thompson et al., 2025a, b for details), and Table 1 lists the corresponding 

DOE ARM data-archive entries for each instrument. 

 

Table 1. A list of data and instruments used in this study. 180 

Measurements TAMU ROAM-V ARM AMF1AMF-1 

Aerosol Extinction and 
backscatter profile 

miniMPL 
MiniMPL (Brooks and Chen, 

2023) 

MPL 
 (Muradyan et al.,, 2021) 

Pressure, temperature, and 
relative humidity profile  

iMet-4 
 (Sharma et al., 2023) 

Vaisala RS41 
 (Keeler et al.,, 2021) 

Ground-based aerosol 
measurements   

Aerosol concentration and 
size distribution 

SMPS, POPs 
 (Chen, Thompson, and Brooks, 

et al., 2024) 

SMPS, APS 
 (Shilling and Levin, 2021, 

2023) 

CCN concentration 
CCN Counter 

-100 (Thompson, Chen, and 
Brooks, 2023) 

CCN-200 
 (Koontz et al.,, 2021) 

INP concentration 
DRUM impactor and TAMU 

droplet freezing array 
 (Brooks and Thompson, 2023) 

DRUM impactor and TAMU 
droplet freezing array 

(Brooks and Thompson, 
2023) 

 

Figure 2 provides an overview of the retrieval routine for aerosol, CCN, and INP profiles using 

the TRACER campaign data. The routine is summarized here. First, we used lidar and radiosonde 

data to determine the vertical profile of the cloud-free aerosol backscatter coefficient. Next, the 

aerosol measurements fromsize distribution and concentration collected with Scanning Mobility 185 

Particle Sizer (SMPS), Portable Optical Particle Spectrometer (POPS), and a cloud condensation 

nuclei (CCN) counter are used to estimate the lidar hygroscopic growth correction factor, f(RH), 

which is the ratio of aerosol backscatter coefficientoptical properties at a given relative humidity 



 

8 
 

(RH) to thatthose at dry conditions. f(RH) and radiosonde-derived RH profile areis then used to 

convert the aerosol backscatter coefficient profile to a dry aerosol backscatter coefficient profile. 190 

The resultingThis dry aerosol backscatter coefficient profile is used to linearly scale time-

averagedthe surface aerosol concentration, CCN concentration, and INP concentration 

measurements to estimate their vertical distributions. Each profile is retrieved from data collected 

over a one to three hour period centered around radiosonde launch time. 

 195 

This method addresses the challenge that aerosol size distribution, composition, particle shape, 

and hygroscopic growth, all of which influence backscatter, are not directly measured by the 

micropulse lidar and must be inferred. By assuming that surface aerosol properties are 

representative of those of the whole column, the dry backscatter coefficient becomes 

approximately linearly proportional to aerosol volume concentration. We therefore could scale the 200 

time-averaged surface aerosol, CCN, and INP measurements with the lidar-derived dry backscatter 

profile to obtain their vertical distributions. Below, we discuss details of each step of the retrieval 

process with TAMU ROAM-V data collected on 28 August 2022 in Galveston, Texas, as an 

example. 
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Figure 2 Overview of the aerosol, CCN, and INP profile retrieval routine. 

2.2 Micropulse Lidar Measurement and Inversion of the Lidar Equation 

The mini micropulse lidar (miniMPLMiniMPL, Droplet Measurement Technologies, Inc.) 

operates atis a 532 -nm and measures backscatter and depolarization lidar (Campbell et al., 2002; 210 

FlynnFlynna et al., 2007; Welton and Campbell, 2002). The miniMPLMiniMPL uses a vertical 

resolution of 15 m and a temporal resolution of 1 min in the TRACER campaign. The normalized 

relative backscatterThe Normalized Relative Backscatter (NRB), also known as the attenuated 

backscatter, is derived from the raw backscattered lidar signal after standard background, 

afterpulse, deadtime, and overlap corrections are performed. Details of the corrections are 215 

presented in the supporting information (Equation S1–S4-4). An example of an NRB time series 

collected by the miniMPLMiniMPL is shown in Figure 3. 
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Figure 3 Normalized relative backscatter (NRB) time series collected on 28 August 28, 220 
2022, with miniMPLMiniMPL in Galveston, Texas. 

NRB can be expressed as, 

 

𝑁𝑅𝐵(𝑅) = 𝐶[𝛽!(𝑅) + 𝛽"(𝑅)]𝑇!"(𝑅)𝑇""(𝑅)	 (1)  

 225 

whereWhere R is the range, C is the lidar calibration constant, β1 and β2 represent the backscatter 

coefficient of aerosol and air molecules, respectively; T1 and T2 represent the transmittance of 

aerosol and air molecules, respectively. After correcting the raw lidar data to produce the NRB 

profile, data filtering and smoothing are applied to the NRB profile. First, a continuous wavelet 

transform based algorithm is used to create a cloud mask, filtering out periods of data with cloud 230 

signal peaks in the NRB profile that compromise the quality of aerosol retrieval (Du et al., 2006). 

Because the miniMPL MiniMPL collects measurements near the peak of the solar spectrum, 

observations can have a considerable amount of background noise during daytime measurements 

(Campbell et al., 2002). The NRB profiles of cloud-free columns, typically between 0.5one to 

1.5two hours before and after the radiosonde launch time (for a total of one to three hours),, are 235 

time-averaged. The sensitivity of this aerosol profile retrieval method is shown in Section 4 of the 

supplement to improve signal-to-noise ratio. This averaged NRB profile is further normalized by 

the average NRB value of the lowest range bin. In addition, the NRB profile above 4.5 km is 

smoothed using the NeighBlock denoising algorithm based on the discrete wavelet transform to 

increase the stability of the retrieval process (Cai and Silverman, 2001). Similar wavelet transform 240 
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techniques have been widely used in lidar applications for noise reduction and feature detection 

because the lidar signal exhibits a varying degree and frequency of noise at different ranges (Fang 

and Huang, 2004; Xie et al., 2017). 

 

Next, a Fernald two2-component lidar inversion method is performed. This is a classic method for 245 

solving the lidar equation and retrieving aerosol backscatter profiles from the attenuated 

backscatter (Fernald et al., 1972; Klett, 1981; Fernald, 1984; Sasano et al., 1985). The lidar ratio 

(S), defined as the ratio of aerosol extinction coefficient to aerosol backscatter coefficient, is 

assumed to be constant with respect to range (R). Following the Fernald method, the sum of aerosol 

(β1(R)) and molecular backscatter coefficient (β2(R)) is expressed as: 250 

 

𝛽!(𝑅) + 𝛽"(𝑅) =
NRB(𝑅) ∙ 𝑒#"(%!#%") ∫  #

#$
)"(*)+*

NRB(𝑅,)
𝛽!(𝑅,) + 𝛽"(𝑅,)

− 2𝑆! ∫  -
-$
NRB(𝑟) ∙ 𝑒#"(%!#%") ∫  %

#$
)"(*&)+*&d𝑟

(2)𝛽!(𝑅) + 𝛽"(𝑅) =
NRB(𝑅) ∙ 𝑒𝑥𝑝 =−2(𝑆! − 𝑆") ∫  -

-$
𝛽"(𝑟)d𝑟>

NRB(𝑅,)
𝛽!(𝑅,) + 𝛽"(𝑅,)

− 2𝑆! ∫  -
-$
NRB(𝑟) ∙ 𝑒𝑥𝑝 =−2(𝑆! − 𝑆") ∫  *

-$
𝛽"(𝑟.)d𝑟′> d𝑟

(2) 

 

The numerical form of Equation 2 used for the calculation is shown in the supporting information 

(Equation S5). S1 and S2 in Equation 2 represent the lidar ratio of aerosol and air molecules, 255 

respectively. S2 is approximated by the well-known constant 8π/3 sr (Fernald, 1984). RC is the 

calibration range selected at the far field, and usually, a priori information is needed to set the 

reference aerosol backscatter at the calibration range. At a wavelength of 532 nm, the aerosol lidar 

ratio typically ranges from 23 ± ±5 sr for clean marine aerosols, 44 ± ±9 sr for dust, 53 ± ±24 sr 

for clean continental aerosols, 55 ± ±22 sr for polluted dust, to 70 ± ±25 sr for polluted continental 260 

and smoke aerosols (Young et al., 2018). To account for the potential variability of the lidar ratio, 

we choose 20 and 90 sr as the lower and upper estimates of aerosol lidar ratio, respectively. The 

calibration range, RC, was chosen to be 8 km above ground level (AGL).. At this range, we assume 

the calibration scattering ratio (β1(R) + )+β2(R)) / ))/β2(R), which is the ratio of the sum of aerosol 

and molecular backscatter coefficientscoefficient and molecular backscatter coefficient, varies 265 

between 1.0 and 1.2. 
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Figure 4 (a) Time-averaged Normalized Relative Backscatter (NRB) profile of 
miniMPLMiniMPL from 16:10 to 18:50 UTC on 28 August 2022. The black line is the NRB 
profile normalized by the lowest level value; the orange dashed line represents the 270 
smoothed NRB. (b) Rayleigh backscatter coefficient β2 (dashed blue line) and total 
backscatter coefficient β1+ β2 (solid black line). The shaded region shows the uncertainty 
range of the retrieved total backscatter coefficient. 

 

The Rayleigh backscatter β2(R) by gas phase molecules is calculated using the following equation 275 

(Gimmestad and Roberts, 2023). 

 

𝛽"(𝑅) = 1.39	 ×	 [/.11	34
5

]6 	× 	10#7 ∙ "88.!1	9
!/!:."1	;<=

∙ >(-)
?(-)

(3) 𝛽"(𝑅) = 1.39 × [/.11	34
5

]6 × 10#7 ∙ "88.!1	9
!/!:."1	;<=

∙ >(-)
?(-)

(3)  

 

P(R) and T(R) are pressure and temperature profiles measured by radiosondes launched during the 280 

TRACER campaign, and λ is the lidar wavelength, 532 nm. Finally, Equation 2 can be iteratively 

solved in a top-down approach, starting from the calibration range and working toward the surface. 

The aerosol backscatter coefficient profile can be calculated by subtracting the molecular 

backscatter coefficient profile from the total backscatter coefficient profile. 

 285 

An example of NRB profile and backscatter coefficient profile inversion is shown in Figure 4. The 

cloud-free NRB profile of miniMPLMiniMPL is time-averaged between 16:10 to 18:50 UTC at 

SeawolfSea Wolf Park on 28 August 2022. The Rayleigh backscatter coefficient profile, shown in 

blue dashed lines in Figure 4b, is calculated using data from the radiosonde launched around 17:30 

UTC from the same site, and the total backscatter coefficient derived from the lidar inversion is 290 
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shown in Figure 4b as a black solid line. The total backscatter coefficient profile closely follows 

the molecular (Rayleigh) backscatter coefficient profile above 2 km AGL, indicating that aerosol 

contributions are minimal at these altitudes and above, which indicates that the backscatter 

coefficient is dominatedprimarily influenced by molecular scattering at higher altitudes, with 

minimal contributions from air molecules. This consistency also suggests that the Fernald 295 

inversion is performing well, since the molecular backscatter is independently calculated and 

provides a reference baselineaerosols. 

 

The uncertainty in the total backscatter coefficient is assessed by systematically varying key 

parameters: the scattering ratio at the calibration height and the lidar ratio. The Fernald inversion 300 

process was applied 40 times to the same NRB profile, using 5 calibration scattering ratios (1.0 to 

1.2) and 8 lidar ratios (20 to 90 sr), producing 40 backscatter coefficient profiles. The mean of 

these backscatter coefficient profiles can be considered as the best estimate, while the spread of 

these profiles from the maximum to theand minimum of these profiles represents the uncertainty 

interval. This systematic sensitivity analysis ensures that the retrieved aerosol backscatter profile 305 

accounts for potential variability in the lidar ratio and the scattering ratio, providing a more reliable 

estimate. The uncertainty range of the retrieved backscatter coefficient is shown in Figure 4b as 

the grey-shaded region. 
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2.3 Ground-based Aerosol Measurements 

 310 

 
Figure 5 Time-averaged aerosol measurements were collected on 28 August 2022, from 
16:10 to 18:50 UTC at the TAMU site in Galveston. (a) Time-averaged aerosol size 
distribution with a y-axis on a linear scale. The shaded area illustrates the standard error 
of the estimated mean. (b) Time-averaged aerosol size distribution with a y-axis on a log-315 
log scale. (c) CCN spectra, where scatter points are time-averaged CCN concentrations at 
different supersaturations, and the standard error of the sample mean is illustrated as 
error bars. (d) INP spectra showing INP concentrations evaluated at different 
temperatures. 

 320 

During the TRACER field campaign, the TAMU ROAM-V deployed a suite of surface aerosol 

measurements, which are usedwill be utilized in this analysis (see, as described in Table 1).. The 

ROAM-V platform shares a heated and dried isokinetic inlet among the TSI Scanning Mobility 

Particle Sizer (SMPS), the Droplet Measurement Technologies CCN counter, and an additional 

GRIMM Condensation Particle Counter (CPC). Details of the ROAM-V instrument sampling 325 

setup for the TRACER campaign and the particle loss corrections are further described in 

Thompson et al. (20252024). 

 

Onboard ROAM-V, the SMPS measures the mobility diameter of aerosols between 7 and 305 nm, 

while the POPS measures the optical diameter of aerosols ranging from 125 to 3370 nm. Because 330 
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the SMPS and POPS are based on different physical principles, a method was developed to merge 

their measured size distributions. T-matrix codeMie scattering theory is used to simulate the signal 

scattered signal by quasi-spherical particles of various sizes detected by the POPS, generating a 

signal-size relation that depends on the aerosol effective refractive index (Mishchenko and Travis, 

1994).. The POPS-measured aerosol sizes can be recalculated by adjusting the effective refractive 335 

index. The refractive index that minimizes the root- mean- square error of the overlapping size 

region between the POPS and SMPS size distributions is then selected. The resultingcorresponding 

POPS size distribution is then merged with the SMPS size distribution by applying a weighted 

average over the overlapping region. The weights are determined by the Gaussian error function 

to ensure a smooth transition between the two size distributions. The time average of the merged 340 

size distribution across the time-averaging period is used for further analysis. An example of the 

time-averaged aerosol size distribution measurement taken on 28 August 2022, from 16:10 to 

18:50 UTC at SeawolfSea Wolf Park, is shown in Figure 5a,  and Figure 5b. The uncertainty of 

the aerosol size distribution is represented by two standard errors of the time-averaged aerosol size 

data to provide a 95% confidence interval for the time-averaged aerosol size distribution. 345 

 

The CCN concentration spectra were measured with the CCN counter, which was set to 

supersaturations between 0.2% and 1.2% with intervals of 0.2%. The CCN counter was calibrated 

with size-selected ammonium sulfate particles. Similar to the merged aerosol size distribution, the 

time-averaged CCN spectra are calculated to represent the CCN concentration during the time-350 

averaging period. An example of the average CCN measurement taken on 28 August 2022, from 

16:10 to 18:50 UTC at the TAMU site in Galveston, is shown in Figure 5c. The two standard errors 

of CCN data are calculated to provide a 95% confidence interval for the time-averaged CCN 

concentration. 

 355 

For ice nucleation measurements, size-resolved aerosol samples were collected using the Davis 

Rotating-drum Universal-size-cut Monitoring (DRUM) impactor in four size ranges: greater than> 

3 μm, 3 to 1.2 μm, 1.2 to 0.34 μm, and 0.34 to 0.15 μm, and analysed in the laboratory for ice 

nucleation measurements. Ice nucleation measurements were conducted using the custom-built 

immersion freezing array used in our previous experiments (Fornea et al., 2009; Lei et al., 2023; 360 

Thompson, 2024; Fornea et al., 2025a; Thompson et al., 2025b2009), and described only briefly 
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here. Aerosol impactor samples are washed off the impactor substrate into high purity UHPLC 

(ultra-high-pressure liquid chromatography) water. Then, 2 -μL droplets of the sample water are 

subjected to 25 freeze-thaw cycles on the immersion freezing array. A digital camera is used to 

detect freezing events and identify ice nucleation temperatures by measuring the average 365 

brightness (or grayscale value) of the droplet pixels in an 8-bit image (which has 256 levels of 

grayscale value). This image-processing technique monitors changes in brightness to infer droplet 

freezing. The INP concentrations in the air are calculated using established methods (Vali, 1971). 

 

For each retrieval, aerosol, CCN, and INP measurements were averaged over the same one to three 370 

hour window as the lidar data used for backscatter profile retrieval. This averaging period reflects 

the operational constraints of each instrument: the CCN counter requires approximately 30 minutes 

to complete a full scan over the range of supersaturations, and INP samples were collected over 

one to two hour periods (Thompson et al., 2025a). 

2.4 Aerosol Hygroscopicity and Lidar Hygroscopic Growth Correction Factor 375 
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Figure 6 (a) Blue scattered points represent pairs of critical supersaturation and 
corresponding critical dry diameter derived from aerosol size distribution and CCN 380 
measurements. The blue dotted line represents the derived geometric mean of derived 
aerosol hygroscopicity κ, and the shaded region represents the one geometric standard 
deviation of κ. κ = 1 line is shown in a solid black line; κ = 0.1 is shown in a dashed line; κ = 
0.01 line is shown in a dash-dotted line; κ = 0.001 line is shown in a dotted line; and κ = 0 is 
shown in a thick solid black line. (b) Lidar hygroscopic growth correction factor as a 385 
function of relative humidity. The shaded area represents the uncertainties of the derived 
κ. 

 

Since water uptake by aerosols enlarges their size and increases backscattering without affecting 

aerosol concentration, it is not possible to reliablyaccurately determine aerosol concentration from 390 

the aerosol backscatter profile alone. It is important to convert the aerosol backscatter profile to 

the aerosol backscatter profile thatwhich would be observed under dry conditions prior to 

calculating aerosol, CCN, or INP concentrations.  

 

In past studies, the hygroscopicity or water uptake by aerosols, defined as the change in aerosol 395 

diameter at a given RH relative to its dry diameter, has been quantified by tandem differential 

mobility measurements (Brooks et al., 2004a; Tomlinson et al., 2007). Similarly, humidified 

nephelometers have been used to quantify changes in scattering by aerosol at increased RH 

comparedrelative humidities to scattering by dry aerosol, and the results have been used to interpret 

lidar backscatter observations (Kotchenruther et al., 1999; Ghan et al., 2006). 400 

 

Here, we developed a new method that combines κ-Köhler theory with Mie theory to inferpredict 

dry aerosol backscatter profiles from the observations at ambient RH. It is well -known that 

activated CCN are defined as those aerosols that have grown beyond the critical diameter required 
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for spontaneous droplet growth. CCN activation occurs in a supersaturated environment. However, 405 

it has been demonstrated that for uniformly mixed soluble aerosol, CCN activation measurements 

can be used to inferpredict hygroscopic growth of aerosol in subsaturated conditions as well 

(Petters and Kreidenweis, 2007). This widely used concept has become known as κ-Köhler theory 

(Petters and Kreidenweis, 2007). 

 410 

Using κ-Köhler theory, CCN and aerosol size distribution measurements can be combined to 

inferpredict an aerosol hygroscopicity parameter κ (kappa). The critical dry diameter Dp,c is the 

size above which dry aerosols of a certain κ activate to form cloud droplets when exposed to a 

critical supersaturation SSc. Following the work of Moore et al. (., 2011),, Dp,c satisfies the integral 

 415 

𝑁,,@ = E  
A

B',)
𝑛C(log𝐷C)	dlog𝐷C (4) 

 

np(logDp) is the measured aerosol size distribution in the form of dndlogDp, and NCCN is the 

measured CCN concentration at a supersaturation level. Dp,c can then be numerically solved. Since 

CCN concentration is measured at a few different supersaturations, multiple pairs of SSc-Dp,c 420 

values are calculated, and an example of the SSc-Dp,c pairs is shown in Figure 6a. Each pair of  SSc-

Dp,c values can then be numerically solved using κ-Köhler theory to derive a κ value (Petters and 

Kreidenweis, 2007).. 

 

Following κ-Köhler theory, the saturation ratio S over an aqueous solution droplet with diameter 425 

D (also called wet diameter) can be expressed as 

 

𝑆(𝐷) =
𝐷: − 𝐷D:

𝐷: − 𝐷D:(1 − 𝜅)
expP

4𝜎E
F
𝑀G

𝑅𝑇𝜌G𝐷
T (5) 

 

Dd is the dry diameter of the particle. κ is the hygroscopicity parameter. σs/a is the surface tension 430 

of the air-water interface. Mw is the molar mass of water. R is the universal gas constant. T is the 

temperature evaluated at 298.15 K. ρw is the density of water. The κ-Köhler equation relates 

saturation ratio to particle size, and the supersaturation at the peak indicates the activation point of 
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the particle as a CCN. A numerical function was constructed to find the supersaturation at the peak 

of the κ-Köhler equation using binary search, with the particle dry diameter and κ as input 435 

parameters. Thus, the problem becomes finding the κ corresponding to a given Dp,c as the dry 

diameter, to match a specific SSc as the output. The κ is then numerically determined using an 

iterativea root-finding method to match the measured SSc-Dp,c pairs. 
 

Since κ can be considered as log-normally distributed (Su et al., 2010), the geometric mean and 440 

geometric standard deviation can be calculated to represent the average value and the variability 

of κ for the bulk aerosol composition. An example of the geometric mean and geometric standard 

deviation of κ is also shown in Figure 6a. The variation in κ values at different supersaturations 

can be attributed to uncertainties in measurements and the differences in the aerosol chemical 

composition and mixing state across various sizes. Subsequently, the aerosol size growth is 445 

predicted by numerically solving for the wet aerosol diameter at a discrete series of RH values 

(Petters and Kreidenweis, 2007). To determine the wet diameter at each RH value, we solve for 

the point at which the saturation ratio predicted by the κ-Köhler theory matches the specified 

environmental saturation ratio. This is done through an iterative root-finding approach, using the 

dry diameter as the initial guess. 450 

 

Once the aerosol size is known as a function of RH, the Mie scattering theory is then used to 

calculate the aerosol extinction coefficient at each RH value (Prahl, 2023).. The refractive index 

for dry aerosol is assumed to be 1.45 − -0i based on values for dry ammonium sulfate at 532 nm 

(Cotterell et al., 2017). In the absence of detailed aerosol composition data, the refractive index of 455 

ammonium sulfate is frequently adopted as a representative value in aerosol optical calculations, 

as it provides a reasonable approximation for non-absorbing, hygroscopic particles (Zieger et al., 

2013; Ghan and Collins, 2004). In reality, aerosols containing sulfate, nitrate, organic compounds, 

soot, and soil dust were all presented in Houston in varying proportions depending on air mass 

origin (Thompson et al., 2025a; Lei et al., 2025). The refractive index of aerosol at each RH is 460 

calculated as the volume-weighted average of the dry aerosol refractive index and that of water. 

During the field campaign, aerosol size distribution measurements are made after the sample air is 

dried tocollected at RH levels below 30% RH, as measured by an RH sensor. At this RH level,%, 

where aerosols are typically considered dry, based on the efflorescence pointRH of background 
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ammonium sulfate (Onasch et al., 1999). Therefore, a lidar hygroscopic growth correction factor 465 

f(RH) can then be calculated as: 

 

𝑓(𝑅𝐻) = X
𝜎(𝑅𝐻)
𝜎(30%) 		𝑅𝐻 > 30%

1		 𝑅𝐻 ≤ 30%
(6) 𝑓(𝑅𝐻) = X

𝜎(𝑅𝐻)
𝜎(30%) 				𝑅𝐻 > 30%

1				 𝑅𝐻 ≤ 30%
(6) 

 

Following the work of Geisinger, theThe extinction coefficient  σ, rather than the backscatter 470 

coefficient, wasis used here. The extinction coefficient is more stable numerically than the 

backscatter coefficient in the Mie scattering calculations and is less sensitive to uncertainties in 

particle size distribution and refractive index (Geisinger et al., 2017).calculation. This is 

convenient since we already assumed a linear relation between backscatter and extinction in the 

lidar inversion, and it is justifiable based on the work ofon Ghan and Collins (2004),) in which the 475 

influence of RH on backscatter and extinction waswere shown to be similar. In addition, we 

assume a perfectlyperfect internally mixed aerosol distribution, and we apply the same κ across all 

aerosol sizes when predicting aerosol size growth at different RH. To account for the uncertainty 

of κ, we calculate the f(RH) using the geometric mean κ and its value at one geometric standard 

deviation interval. The f(RH) calculated using the κ values in Figure 6a is shown in Figure 6b. The 480 

solid black line represents the f(RH) calculated using the geometric mean κ, and the shaded region 

represents the f(RH) uncertainty calculated using one geometric standard deviation interval of κ. 

The calculated f(RH) is further interpolated using a cubic spline to calculate f(RH) at any RH value. 
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2.5 Deriving the Aerosol, CCN, and INP Vertical Profiles  

 485 

Figure 7 (a) Aerosol and dry aerosol backscatter coefficient profiles are shown as solid 
black and red lines, respectively, with a shaded areasarea showing the corresponding 
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue 
line. (b) The aerosolAerosol profile is shown as a solid black line. CCN profiles are shown 
in different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%.  (c) 490 
INP profiles evaluated at −-20°C and −-25°C. 

To retrieveBased on the analysis above, we can now derive detailed vertical profiles of aerosol, 

CCN, and INP vertical profiles,concentrations observed during the TRACER campaign. Here we 

assume that the surface measurements are representative of the aerosol size distribution, 

composition, and cloud-activating ability aloft. This assumption generallyA caveat of this 495 

approach is that it holds intrue to well-mixed layers but may break down in the presence of elevated 

aerosol cannot be used in cases in which layers, such as of transported smoke or dust, which can 

be identified in  are observed in the NRB. The aerosol backscatter coefficient profile is shown in 

Figure 7a in a black line with a grey-shaded region as the normalized relative backscatter (NRB) 

signal. Assuming that aerosol hygroscopicity at the surface is representative of the entire profile, 500 

theuncertainty range. The dry aerosol backscatter coefficient profile βdry(R) is given by 

 

𝛽+HI(𝑅) =
𝛽!(𝑅)
𝑓(𝑅𝐻)

(7) 

 

Figure 7a shows the aerosol backscatter coefficient profile (black line with gray shading for 505 

uncertainty), the The RH profile (is shown in Figure 7a with a solid blue line), and the resulting . 
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The dry aerosol backscatter coefficient profile (is shown in the red line with the red shading for 

uncertainty). The radiosonde has a relatively small uncertainty in RH measurements, specified-

shaded region as ±5%. Thethe uncertainty in therange. The lidar hygroscopic growth correction 

factor, f(RH), is included in the overall) uncertainty ofis considered and added to the uncertainties 510 

when calculating the dry aerosol backscatter coefficient. Assuming that the aerosol, CCN, and INP 

properties at the surface are representative of the vertical profile, theThe aerosol (Np), CCN (NCCN), 

and INP (NINP) concentration profiles can therefore be estimated as: 

 

𝑁J(𝑅) =
𝛽+HI(𝑅)
𝛽+HI(𝑅/)

∙ 𝑁J(𝑅/) (8𝑎) 515 

𝑁,,@(𝑅, 𝑆𝑆) =
𝛽+HI(𝑅)
𝛽+HI(𝑅/)

∙ 𝑁,,@(𝑅/, 𝑆𝑆) (8𝑏) 

𝑁K@<(𝑅, 𝑇) =
𝛽+HI(𝑅)
𝛽+HI(𝑅/)

∙ 𝑁K@<(𝑅/, 𝑇) (8𝑐) 

 

R0 is the altitude where the surface measurements are collected. βdry(R0) is the dry aerosol 

backscatter coefficient profile at R0. Np, NCCN, and NINP are aerosol, CCN, and INP number 520 

concentrations, respectively. One profile each for aerosol, CCN, and INP is retrieved for each time-

averaging period. Since the MPL and the miniMPLMiniMPL have near-field blind ranges of 250 

m and 100 m, respectively, lidar measurements near the surface are unavailable. To estimate the 

aerosol backscatter coefficient profile within the lidar’s blind zone, we perform a second-degree 

polynomial fit to the dry aerosol backscatter profile from up to 300 m AGL down to the edge of 525 

the blind zone. This fitted curve is then extrapolated into the blind zone. Since the aerosol profile 

is later linearly scaled by the dry backscatter profile, having a physically reasonable estimation of 

the aerosol profile in the blind zone is necessary to ensure that the scaling reflects realistic near-

surface conditions. The extrapolated portions of the dry backscatter coefficient profile within the 

blind zone are shown as dotted lines in Figure 7a.A second-degree polynomial fitting of the dry 530 

aerosol backscatter coefficient profile from the lidar blind range to 300 m above is used to estimate 

the dry aerosol backscatter coefficient profile down to R0, which is assumed to be around 10 m. 

The projected dry aerosol backscatter coefficient profiles within the blind range are shown in 

Figure 7a as dotted lines. The SS is the supersaturation at which the CCN concentration is 
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evaluated, and T is the temperature at which the INP concentration is evaluated. In addition, one 535 

standard error of the time-averaged aerosol and CCN concentration of the time averaging period, 

around one1 to three3 hours, is included in the calculation for aerosol and CCN concentration 

profiles. The aerosol and CCN concentrations evaluated at different supersaturations are shown in 

Figure 7b. INP profiles are shown in Figure 7c. The dry aerosol backscatter coefficient profile 

determines the shape of aerosol, CCN, and INP concentration profiles, while the surface aerosol 540 

measurements determine the amplitude. CCN concentration profiles are presented at different 

supersaturations, and INP concentration profiles are presented at different activation temperatures. 

Presenting CCN and INP profiles this way is useful for modeling applications, as it allows the 

model to compute CCN and INP activation dynamically when the particles are transported to 

conditions supportive of cloud condensation or ice nucleation within the modeled convection (or 545 

other atmospheric processes of interest). 

 

It is important to acknowledge that lidar-derived aerosol profiles may be affected by the artificial 

increase in aerosol backscatter at higher altitudes. As seen in Figure 7a, b, the aerosol backscatter 

coefficient shows a steady increase with height above 4 km. This apparent increase is likely a 550 

systematic artifact related to lidar signal noise at higher altitudes. As a result, the retrieved aerosol 

profile above 4 km should be interpreted with caution. 
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3 Results  

3.1 Case study: Aerosol Profile under Clear Sky ConditionsCorrection for Hygroscopic 555 
Growth in the Boundary Layer 

 

 
Figure 8 (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC, 
with miniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient 560 
profiles are shown as solid black and red lines, respectively, with a shaded area showing the 
corresponding uncertainty interval for each profile. The relative humidity profile is shown 
as a solid blue line. (c) The aerosol profile is shown as a solid black line. CCN profiles are 
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shown in different colors corresponding to supersaturation levels of 0.2% and 0.6%. CCN 
data for 1.2% supersaturation were not available. (d) INP profiles at −15°C, −20°C, and 565 
−25°C. Note that the −20°C INP profile overlaps with the −25°C INP profile. 

We begin with a case study from 31 August 2022, at the coastal Galveston site (16:39–19:00 UTC), 

representing a baseline case under well-mixed atmospheric conditions with minimal cloud 

influence. The NRB time series in Figure 8a shows a persistent layer of high backscatter, visible 

below approximately 1 km AGL. In addition, intermittent layers of high backscatter are observed 570 

between 1 and 3 km. 

 

b shows the cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile 

during the time-averaging period. The relative humidity (RH) profile is relatively uniform below 

8 km, stabilizing around 65%, and the derived aerosol hygroscopicity parameter κ is modest, with 575 

a geometric mean of approximately 0.09 × 2.70±1. This low κ value suggests the aerosol population 

during this period was only weakly hygroscopic. As expected, under these uniform RH and 

composition conditions, the correction for aerosol hygroscopic growth introduces minimal 

differences between the raw and dry backscatter profiles. The similarity between the two profiles 

(b) confirms that, in this case, the lidar backscatter signal is not significantly biased by water 580 

uptake. 

 

c shows the retrieved aerosol profile and CCN profile at different supersaturations. Surface aerosol 

concentrations were (5.65 ± 0.46) × 103 cm−3, decreasing to (1.14 ± 0.57) × 103 cm−3 at 1 km AGL, 

a roughly fivefold reduction with height. CCN concentrations at a supersaturation of 0.2% show a 585 

similar decline, from 329 ± 2 cm−3 at the surface to 67 ± 26 cm−3 at 1 km. d shows the retrieved 

INP profile evaluated at different temperatures. INP concentrations evaluated at −15°C were 0.11 

L−1 at the surface and 0.02 L−1 at 1 km AGL. 
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3.2 Case study: Correction for Hygroscopic Growth in the Boundary Layer 

 590 

Figure 9 (a) NRB time series data collected on 6 September 2022, from 18:30 to 20:30 UTC, 
with miniMPLMiniMPL inland at Hockley, Texas. (b) Aerosol and dry aerosol backscatter 
coefficient profiles are shown as solid black and red lines, respectively, with a shaded area 
showing the corresponding uncertainty interval for each profile. The relative humidity 
profile is shown as a solid blue line. (c) The aerosolAerosol profile is shown as a solid black 595 
line. CCN profiles are shown in different colors corresponding to supersaturation levels of 
0.2%, 0.6%, and 1.2%. (d) INP profiles evaluated at −-20°C and −-25°C. No INP was 
observed at −-15°C. 

This caseAn example from the measurements collected on 6 September 2022 at, during the inland 

site in TAMU deployment at Hockley, Texas (, from 18:30– to 20:30 UTC), demonstrates, 600 

illustrates the importance of applying acorrecting for aerosol hygroscopic growth correction when 

RH varies strongly with altitude.. Figure 8a shows the lidar NRB time -series, with a shallow 

boundary cloud observed around 1.2 km AGL profile. The layer at and below the cloud level height 

can be identified as a convective mixed layer, while the layer above the cloud level can be 

identified as an elevated aerosol layer. Although an elevated aerosol layer exists, it does not 605 
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affectThe cloud mask, which marks the correction for the enhanced scattering from hygroscopic 

growth in the mixed layer. The NRB time series in Figure 8a shows limited temporal variation in 

attenuated backscatter profiles during the and vertical distribution of the cloud, is shown in Fig S2. 

The cloud mask was used to select a cloud-free period. 

 610 

Figure 8blidar profile for aerosol backscatter coefficient profile retrieval. Figure 8b shows the 

cloud-free aerosol backscatter coefficient and the dry aerosol backscatter profile duringcorrected 

for the time-averaging period. Aswater uptake by aerosols as RH increases toward 100% within 

the mixed layer, the correction for hygroscopic growth, applied using the lidar hygroscopicity 

factor f(. As the RH), results in a  increases and approaches 100% in the mixed layer, the dry 615 

aerosol backscatter profile lower thancoefficient corrects for the increased backscatter due to 

aerosol growth. As Fig 8b demonstrates, if the uncorrected one. Without this correction, aerosol 

concentrations aerosol backscatter coefficient were used to estimate aerosol concentration in the 

mixed layer instead of the dry aerosol backscatter coefficient, the aerosol concentration would be 

substantially overestimated. For example, at 1.2 km AGL, aerosol concentration estimates 620 

frominstance, relying on the uncorrected aerosol backscatter coefficient would exceed the 

corrected valueresult in an overestimation of aerosol concentration by a factor of 2.8. 

 

Figure 8c and 9d show retrieved aerosol, CCN, and INP profiles. at 1.2 km AGL. The aerosol 

concentration at the surface is approximately (3.30 ± ±0.09) × )×103 cm−-3 and decreases to 371 ± 625 

±216 cm−-3 at the top of the mixed layer at 1.2 km AGL. The CCN concentration evaluated at a 

supersaturation of 0.2% is 159 ± ±2 cm−-3 at the at surface and 18 ± ±10 cm−-3 at 1.2 km AGL 

(Figure 9d8d). The INP concentration evaluated at −-20°C is around 0.07 L−-1 at the surface level 

and around 3 × ×10−-3 L−-1 at 1 km AGL. No INP was observed at −-15°C. Between 1.2 and 3.2 

km, the dry aerosol backscatter coefficient profile indicates the presence of an elevated aerosol 630 

layer above the mixed layer. The aerosol population in the mixed layer and the elevated aerosol 

layer may differ in terms of aerosol size distribution and chemical composition, making this 

method for retrieving aerosol, CCN, and INP profiles more uncertain in the elevated aerosol layer 

shown in Figure 8. The increase of the dry aerosol backscatter profile as well as the aerosol 

concentration profile between 6 and 8 km is likely a systematic artifact related to the lidar noise at 635 

high altitude.. 
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3.32 Case study: Retrieval of Aerosol Profile with Multiple Cloud Layers 

 

 
Figure 10 (a) NRB time series collected on 26 August 2022, from 16:02 to 18:42 UTC, with 640 
miniMPLMiniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter 
coefficient profiles are shown as solid black and red lines, respectively, with a shaded area 
showing the corresponding uncertainty interval for each profile. The relative humidity 
profile is shown as a solid blue line. Gray dashed lines indicatedemonstrate the cloud level.  
(c) The aerosolAerosol profile is shown as a solid black line. CCN profiles are shown in 645 
different colors corresponding to supersaturation levels of 0.2%, 0.6%, and 1.2%. (d) INP 
profiles at −-15°C, −-20°C, and −-25°C. 
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This caseThe next example, from the measurements collected on 26 August 2022 atduring the 

coastal TAMU deployment in Galveston coastal site (16:02–18:42 UTC) illustrates the , Texas, 

demonstrates the aerosol profile retrieval method’s performance in the presence of multiple cloud 650 

and moisture layers. In Figure 10a, cloud layers around 0.6, 1.5, and 3.6 km AGL can be identified 

as white pixels with high NRB. These cloud layers also match vertical regions of increased RH 

measured by the radiosonde launched around 17:26 UTC (Figure 10b). The high attenuated 

backscatter signal near the cloud levels may reflect the presence of distinct aerosol layers or result 

from higher humidity enhancing aerosol scattering. The NRB time series in Figure 10a shows 655 

some temporal variation in the attenuated backscatter profile, with a layer of high backscatter 

slowly decreasing from around 2 to 1 km AGL. 

 

As shown in Figure 10b, a(Fig. 9b). A peak in the aerosol backscatter coefficient profile is seen 

around 3.6 km AGL, showing a region where aerosols take upaerosol uptake water and grow. in 660 

size (Fig. 9b). This peak is almost completely removed in the dry aerosol backscatter coefficient 

profile in Figure 10b, indicating a successful correction for the hygroscopic growth effect on 

aerosol scattering. This result also demonstrates that the lidar hygroscopic growth correction factor 

derived from surface measurements can also be applied to aerosol aloft. Increased aerosol 

backscatter coefficients around 0.6 and 1.5 km AGL due to hygroscopic growth are also reduced, 665 

resulting in a more realisticshowing an expected aerosol vertical distribution. The dry backscatter 

profile suggestsresults indicate that an elevated, at the surface level, the aerosol layer may be 

present near 1.5 km AGL, while the uncorrected peak at 3.6 km AGLconcentration is likely 

dominated(7.95±0.27)×103 cm-3, and it decreases by humidity-enhanced scattering rather 

thanapproximately 28% at 0.6 km, 50% at 1.5 km, and 79% at 3.6 km. At a supersaturation of 670 

0.2%, the CCN concentrations are 511±10 cm-3 at the surface, 368±73 cm-3 at 0.6 km, 256±86 cm-

3 at 1.5 km, and 107±82 cm-3 at 3.6 km. At a distincttemperature of -15°C, the INP concentrations 

are around 0.05 L-1 at the surface, 0.04 L-1 at 0.6 km, 0.03 L-1 at 1.5 km, and 0.01 L-1 at 3.6 km. 

The correction for the aerosol layerhygroscopic growth leads to the more realistic aerosol, CCN, 

and INP profiles shown in Figure 8c, d, and Figure 9c, d. 675 
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3.3 Case study: Aerosol Profile under Clear Sky Conditions 

 
Figure 10 (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC, with 

MiniMPL in Galveston, Texas. (b) Aerosol and dry aerosol backscatter coefficient profiles are 

shown as solid black and red lines, respectively, with a shaded area showing the corresponding 680 

uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. 

Gray dashed lines demonstrate the cloud level.  (c) The Aerosol profile is shown as a solid black 

line. CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2% 

and 0.6%. CCN data for 1.2% supersaturation  

Figure 10c and 10d show retrieved aerosol, CCN, and INP profiles. At the surface, the aerosol 685 

concentration is (7.95 ± 0.27) × 103 cm−3, and decreases by approximately 28% at 0.6 km, 50% at 

1.5 km, and 79% at 3.6 km AGL. At a supersaturation of 0.2%, the CCN concentrations are 511 ± 

10 cm−3 at the surface, 368 ± 73 cm−3 at 0.6 km, 256 ± 86 cm−3 at 1.5 km, and 107 ± 82 cm−3 at 

3.6 km AGL. At a temperature of −15°C, the INP concentrations are around 0.05 L−1 at the surface, 

0.04 L−1 at 0.6 km, 0.03 L−1 at 1.5 km, and 0.01 L−1 at 3.6 km AGL. The correction for the aerosol 690 

hygroscopic growth leads to the more realistic aerosol, CCN, and INP profiles shown in Figure 

10c, d. The retrieval of aerosol, CCN, and INP concentrations may be less reliable around 1.5 km 

due to the possible presence of an elevated aerosol layer. However, the successful removal of the 

humidity-enhanced scattering peak near 3.6 km is encouraging, suggesting that the applied κ value 

may be reasonable throughout the column. 695 

 

The increase in the dry aerosol backscatter and aerosol concentration between 5 and 7 km is a 

systematic artifact likely caused by high lidar signal noise, as shown in Figure 10a above 5 km. 

The magnitude of this artifact is likely amplified by the high noise level, which is caused by the 
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limited number of cloud-free profiles available for averaging during this period, as compared to 700 

the previous case, where more cloud-free profiles led to reduced noise and less pronounced 

artifacts. 

was not available. (d) INP profiles at -15°C, -20°C and -25°C. Note that the -20°C INP profile 
overlaps with the -25°C INP profile. 

Measurements collected on 31 August 2022, in Galveston, Texas, from 16:39 to 19:00 UTC by 705 

MiniMPL show clear sky conditions in Figure 10a. One of the highest INP concentrations at -15 

°C during the TRACER campaign was measured during this deployment. The RH profile is 

relatively stable below 8 km, at approximately 70%, and the hygroscopicity parameter κ is small, 

around 0.09 × 2.70±1. As expected, with a constant RH profile and in the absence of distinct aerosol 

layers, the shape of the dry aerosol backscatter coefficient profile closely resembles that of the 710 

aerosol backscatter coefficient profile. The aerosol concentration near the surface and at 1 km are 

(5.65±0.46)×103 cm-3 and (1.14±0.57)×103 cm-3. At a supersaturation of 0.2%, the CCN 

concentrations near the surface and at 1 km are approximately 329±2 cm-3 and 67±26 cm-3. At a 

temperature of -15°C, the INP concentrations near the surface and at 1 km are approximately 0.11 

L-1 and 0.02 L-1. 715 
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3.4 Comparison Between Collocated MPL and miniMPLMiniMPL Lidar 

 

 
Figure 11 Comparison of retrieved aerosol backscatter coefficient profiles derived from 720 
miniMPLMiniMPL and ARM AMF1AMF-1 MPL data. (a) Raw co-polarized lidar signal of 
TAMU miniMPL (red solid line) and ARM MPL (blue solid line). (b) Calibrated lidar 
normalized relative backscatter signal of TAMU miniMPL (red solid line) and ARM MPL 
(blue solid line). (c) Retrieved lidarMiniMPL aerosol backscatter coefficient of TAMU 
miniMPL (profile is shown in a solid orange solid line, and area) andthe ARM AMF-1 MPL 725 
(aerosol backscatter coefficient profile is shown in a blue solid line and area). (d. Shaded 
areas show the corresponding uncertainty interval for each profile. (b) Comparison of the 
lidar aerosol backscatter coefficients. interpolated to the same range. The uncertainty 
interval of the retrieved aerosol backscatter coefficient is shown as error bars. 

The TAMU ROAM-V was deployed at the AMF1 (La PorteLaPorte, Texas) site on 1 September 730 

2022, allowing miniMPLMiniMPL and MPL to be collocated and compared directly. The ARM 

MPL deployed at AMF1AMF-1 collects data at a vertical resolution of 15 m and a temporal 

resolution of 10 s (Muradyan et al.,, 2021). During the colocation test, the two lidars were separated 
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horizontally by approximately 30 meters and vertically by less than 10 meters. The NRB data 

fromof both lidars wereare time-averaged between 20:00 and 22:00 UTC. Vertical profiles of the 735 

lidar raw signal, the NRB, and the The aerosol backscatter coefficient, and a comparison of the 

lidar aerosol backscatter coefficient are  profiles are calculated following our method and shown 

in Figure 11, a, b, c, and d, respectively. Figure 11a shows that the raw signals from the two lidars 

differ significantly. However, after applying lidar-specific afterpulse, deadtime, background, and 

range corrections for each lidar, their NRB profiles agree closely (Figure 11b). Figure 11c and d 740 

show that the a and 11b. The MPL and miniMPL NRB andMiniMPL aerosol backscatter 

coefficient profiles follow similar shapes and magnitudes. The miniMPL overestimatesMiniMPL 

aerosol backscatter coefficients between 6 km and 8 km compared to the MPL, suggesting that the 

miniMPL-derived profiles may be less reliable at higher altitudes. This artifact is consistent with 

the spurious high-altitude enhancements discussed earlier and is likely caused by signal noise and 745 

overlap correction uncertainty in the miniMPL retrieval. The miniMPL and MPL profiles exhibit 

a are slightly lower below 2 km, and there also seems to be a slight vertical offset below 4 km, 

which may result from residual errors introduced during the afterpulse, background, or overlap 

corrections. The misalignment below the 2 km. However, most of the differences between the two 

aerosol backscatter profiles generally remainare within the estimated uncertainty bounds, which 750 

primarily arise fromranges. The results show that following our method of smoothing the assumed 

lidar ratioNRB and retrieving the scattering ratio at the reference height. In summary, 

miniMPLaerosol backscatter coefficient, MiniMPL and MPL data are remarkably similarperform 

similarly despite the differences in theirthe lidar designs and specifications. This agreement 

suggests that the MiniMPL, despite being a more compact and less expensive miniMPLcost-755 

effective option, can provide comparable data quality to the more established MPL system. In 

addition, the use of two lidars with comparable outputs enables coordinated deployment and 

consistent analysis across different sites over the same period, and the retrieval results using both 

lidars can be compared directly. 
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3.5 Comparison of aerosol and CCN profiles between Aerosol and Cloud Condensation 760 
Nuclei Profiles at Galveston and La Porte, Texas (LaPorte, TX measurements on 28 August 
2022) 

 
Figure 12 Comparison of lidar measurement of miniMPLMiniMPL deployed at TAMU 
Galveston site and MPL deployed at ARM AMF1AMF-1 site on 28 August 2022, from 765 
16:10 to 18:50 UTC. (a) Aerosol backscatter coefficient profiles. (b) Dry aerosol backscatter 
coefficient profiles. (c) Aerosol concentration profile. (d) CCN concentration profiles at 
0.2% supersaturation. 

A comparison between miniMPLMiniMPL and ARM MPL measurements at different locations 

at the same time on 28 August 2022 is shown in Figure 12. miniMPLMiniMPL was deployed at 770 

SeawolfSea Wolf Park, Galveston, Texas, and the AMF1AMF-1 was located in La PorteLaPorte, 

Texas. The straight-line distance between the two sites is about 46 km. The time-averaging period 

was from 16:10 to 18:50 UTC. As shown in Figure 12b, near the ground surface, the dry aerosol 

backscatter coefficientscoefficient near the surface at the two2 sites are similar. The dry aerosol 

backscatter coefficient at the TAMU Galveston site near the surface is (1.07 ± ±0.57) × )×103 km−-775 
1, and at the AMF1 La PorteAMF-1 LaPorte site, it is (0.89 ± ±0.51) × )×103 km−-1. The dry aerosol 

backscatter coefficient is greater at the AMF1 La PorteAMF-1 LaPorte site at higher altitudes. 

Figure 12c and d show that the aerosol and CCN (SS = 0.2%) concentration at the AMF1 La 

PorteAMF-1 LaPorte site is consistently greater than at the TAMU Galveston site at all vertical 

levels. At the surface, the aerosol concentration is (3.49 ± ±0.34) × )×103 cm−-3 for the TAMU site 780 

and (5.24 ± ±1.26) × )×103 cm−-3 for the ARM site. At 1 km altitude, these concentrations are 313 

± ±169 cm−-3 and (1.78 ± ±0.47) × )×103 cm−-3 for the TAMU and ARM sites, respectively. In 

terms of CCN concentrations evaluated at 0.2% SS, at the surface, the TAMU site has a CCN 
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concentration evaluated at 0.2% supersaturation of 127 ± ±2 cm−-3, while the ARM site has a 

slightly greater concentration of 137 ± ±9 cm−-3. At 1 km altitude, the CCN concentration at the 785 

TAMU site is 11 ± ±5 cm−-3, compared to a substantially greater concentration of 46 ± ±5 cm−-3 at 

the ARM site.  

 

These differences highlight variations in aerosol and CCN distributions between the two locations, 

especially at upper altitudes. The La PorteLaPorte site likely has a greater dry aerosol backscatter 790 

coefficient and aerosol concentration due to surrounding industrial emissions, while the TAMU 

Galveston site is more influenced by the maritime air mass. Despite similar surface aerosol and 

CCN number concentrations, there are clear differences in the aerosol and CCN vertical 

distribution between the two sites, only about 46 km apart. Such variability underscores the 

importance of localized aerosol vertical profile measurements in accurately characterizing aerosol 795 

vertical distributions when assessing their impact on air quality, weather, and climate. It also 

highlights the necessity of deploying multiple measurement sites to capture the spatial 

heterogeneity of aerosol vertical profiles when conducting a field campaign that covers a large 

study area, especially in regions influenced by heterogeneous sources of emissions and complex 

airmass interactions. 800 

4 DiscussionDiscussions and Conclusions 

In this study, we useThis work uses data collected during the TRACER campaign to demonstrate 

a new method of retrieving aerosol, CCN, and INP profiles by integrating mini micropulse lidar 

measurements with radiosonde and ground-based aerosol measurements, including aerosol size 

distributions, CCN activation, and ice nucleation measurements. In the future, these measurements 805 

can be collected routinely to translate lidar backscatter coefficient profiles to long-term aerosol, 

CCN, and INP vertical profiles. Further, our method is not limited to the micropulse lidar and can 

be applied to other single-wavelength elastic or more advanced lidars. 

 

One of the key findings of this study is that correcting aerosol hygroscopic growth is necessary for 810 

retrieving realisticaccurate CCN and INP concentration profiles. We have shown that using lidar-

retrieved backscatter or extinction profiles without correcting for hygroscopic growth can lead to 

a significant overestimationoverestimate of the aerosol concentration near the cloud base. To solve 
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this issue, we introduced a method to quantify aerosol scattering enhancement due to aerosol 

hygroscopic growth. This method for determining the lidar hygroscopic growth correction factor 815 

can be used as a complementary approach to the traditional method of using a collocated 

humidified nephelometer (Ghan et al., 2006).) and can be used when a humidified nephelometer 

is unavailable. 

 

Another key finding is that aerosol and CCN vertical distributions can significantly vary at small 820 

spatial scales, even when similar aerosol and CCN concentrations are measuredcollected at the 

surface, as demonstrated by the comparison between the aerosol vertical profile at the ARM and 

TAMU sitessite on 28 August 2022. This variability highlights the importance of considering 

vertical profiles rather than relying solely on ground- based aerosol measurements when assessing 

aerosol properties and their impacts on cloud formation. It also highlightsunderscores the need for 825 

localized vertical profile measurements to accurately capture the diverse aerosol characteristics in 

different regions, particularly in areas with complex emission sources and air mass interactions. 

Portable lidars, such as the miniMPLMiniMPL lidar, combined with surface aerosol 

measurements, can be highly effective in providing these localized aerosol vertical profile 

measurements. 830 

 

While the method described herein clearly has some distinct advantages, it is subject to several 

limitations. Since the MPL and miniMPLMiniMPL measurements are noisy at upper altitudes, this 

method’s retrieval above the altitude where the lidar signal is smoothed should be used with 

caution and can only serve as a best estimate. In addition, since our method relies on the 835 

assumption that the aerosol size distribution and composition are similar throughout the vertical 

column, the retrieved profiles are the most reliable within the well-mixed boundary layer. At 

altitudes where aerosol properties differ significantly from those at the surface, such as in the 

presence of a transported dust layer in the free troposphere, this method may be less reliable, and 

the results should be interpreted with caution. Despite these limitations, as measurements of CCN 840 

and INP vertical profiles are difficult to obtain and sparse, the results from this method can serve 

as a significant improvement over the arbitrary aerosol profiles often used in model initialization. 
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In conclusion, the integration of MPLmicropulse lidar and ground-based aerosol measurements 

offers a powerful tool for retrieving detailed vertical profiles of aerosols, CCN, and INPs. The 845 

retrieved profiles can serve as inputs to provide realistic aerosol vertical distributions for cloud-

resolving models, facilitating the study of aerosol-cloud interactions and aerosol effects on climate.  
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