

1 Simulation of the seasonal and spatial variability of the 2 concentrations and chemical composition of ultrafine particulate 3 matter over Europe

4
5
6 Konstantinos Mataras^{1*}, Evangelia Siouti^{2*}, David Patoulias² and Spyros N. Pandis^{1,2}

7 ¹Department of Chemical Engineering, University of Patras, Patras, Greece

8 ²Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology Hellas (FORTH), Patras,
9 Greece

10 *These two authors contributed equally to this work.

11 *Correspondence to:* Spyros N. Pandis (spyros@chemeng.upatras.gr)

12 **Abstract.** Ultrafine particles (UFPs) have attracted interest as perhaps the most dangerous fraction of atmospheric PM.
13 This study focuses on the ultrafine particulate matter (PM_{0.1}) mass concentrations and their chemical composition during
14 a summer and winter period in Europe.

15 Predicted levels of PM_{0.1} varied substantially, both in space and in time. The average predicted PM_{0.1} mass
16 concentration was 0.6 $\mu\text{g m}^{-3}$ in the summer, higher than the 0.3 $\mu\text{g m}^{-3}$ predicted in the winter period. PM_{0.1} chemical
17 composition exhibited significant seasonality. In summer, PM_{0.1} was mostly comprised of secondary inorganic matter
18 (38% sulfate and 13% ammonium) and organics (9% primary and 32% secondary). During the winter, the fraction of
19 secondary inorganic matter increased, with sulfate contributing 47% and ammonium 19%, on average. Primary organic
20 matter contribution also increased from 9% in summer to 23% in winter, while secondary organic matter decreased
21 significantly to 6% on average during winter.

22 During summertime, the model performance at 12 sites for daily average ultrafine particle volume (PV_{0.1})
23 concentrations was considered good, with normalized mean error (NME) equal to 46% and normalized mean bias (NMB)
24 equal to 15%. For the winter period, the corresponding values for daily average levels were -27% for NMB and 64% for
25 NME, indicating an average model performance.

26 Correlations between PM_{0.1} and the currently regulated PM_{2.5} (particulate matter with a diameter less than or
27 equal to 2.5 μm) were generally low. Better correlations were observed in cases where the primary component of PM_{0.1}
28 was significant. This suggests that there are significant differences between the dominant sources and processes of PM_{0.1}
29 and PM_{2.5}.

30

31 1. Introduction

32 UFPs dominate atmospheric particle number distribution (Seinfeld and Pandis, 2006). High concentrations of both UFP
33 number and mass are found in urban areas and are a result of human activity, directly emitting particulates or producing
34 them by gas-to-particle conversion processes. Atmospheric particle exposure is one of the most significant risk factors
35 affecting human health (HEI, 2013; EPA, 2019). Ultrafine particles have attracted interest because they may be the most
36 dangerous fraction of atmospheric particulate matter. They can reach the lung alveoli, pass into the bloodstream and from
37 there they can move to many different organs (Schraufnagel, 2020; Sioutas et al., 2005). Their increased specific surface
38 area (total surface area of the particles per unit mass) with decreasing size also enhances their chemical and physical
39 interactions, both with gaseous species outside the body and also with tissues inside the body (Kwon et al., 2020). Some

40 epidemiological studies have noted a positive correlation between UFPs exposure and brain tumor incidence (Weichenthal
41 et al., 2020). However, there are still questions about the links between ultrafine particle exposure and damage to human
42 health (EPA, 2019).

43 Past studies of ultrafine particles have focused on their number concentrations (Baranizadeh et al., 2016;
44 Merikanto et al., 2009; Patoulas et al., 2015, 2018; Wang and Penner, 2009; Yu and Luo, 2009). The comparatively scarce
45 modelling attempts aimed at ultrafine particle mass have mostly been conducted in California and the US (Hu et al.,
46 2014a, b, 2017; Venecek et al., 2019; Yu et al., 2019).

47 In the study by Hu et al. (2014a, b) for the 7-year (2000-2006) period, daily predictions of primary PM_{0.1} from
48 the UCD-P (University of California Davis-Primary) model were evaluated for California. They found good agreement
49 of model predictions with observed PM_{0.1} mass and elemental carbon (EC), with a Pearson correlation coefficient
50 (R>0.92) during these periods (Kuwayama et al., 2013). They reported model difficulties in reproducing observed values
51 of PM_{0.1} > 4 $\mu\text{g m}^{-3}$ or < 1 $\mu\text{g m}^{-3}$. In a subsequent study of PM_{0.1}, Hu et al. (2017) utilized again the UCD/CIT (University
52 of California Davis/California Institute of Technology) model. The authors reported that primary organic matter was the
53 major component (50-90%) of PM_{0.1} organic aerosol (OA) in California, with 9-year average concentrations above 2 μg
54 m^{-3} in major urban areas. They predicted that secondary organics contribute less than 10% to PM_{0.1} OA in these areas,
55 with that contribution increasing to up to 50% in rural areas, with low organic matter content. PM_{0.1} secondary organic
56 aerosol (SOA) concentrations were predicted to be mostly biogenic (64% of SOA for the domain) and between 0.02-0.05
57 $\mu\text{g m}^{-3}$ in the winter and 0.1-0.3 $\mu\text{g m}^{-3}$ in the summer. Underprediction of secondary organic aerosol concentrations was
58 proposed as an explanation of the PM_{0.1} organic mass underprediction. Yu et al. (2019) along with Venecek et al. (2019)
59 considered nucleation along with the rest of the major aerosol processes in a PM_{0.1} study. Venecek et al. (2019)
60 investigated PM_{0.1} concentration and sources during summertime pollution events in several metropolitan areas of the
61 US. Predicted daily average PM_{0.1} levels were generally above 2 $\mu\text{g m}^{-3}$, reaching 5 $\mu\text{g m}^{-3}$ in areas influenced by wildfire
62 events. The PM_{0.1} spatial gradients were much sharper than those of PM_{2.5} due to the dominance of the primary PM_{0.1}.
63 The dominant source of PM_{0.1} was found to be natural gas combustion across all major cities in the US. Yu et al. (2019)
64 studied UFP number as well as mass concentrations and sources in California. Xue et al. (2019) reported that meat cooking
65 was a major source of PM_{0.1} organic carbon across all California cities (13–29%), while nucleation contributed negligibly
66 to UFP mass on an annual scale.

67 Experimental studies investigating ultrafine particles have focused on particle number concentrations and their
68 spatial and temporal differences. The first detailed measurements of UFP mass have been performed in California
69 (Kuwayama et al., 2013; Xue et al., 2018, 2019, 2020a, b; Xue and Kleeman, 2022). In these studies, researchers collected
70 one sample every day or used even longer averaging intervals because of the low UFP mass concentrations. Hughes et al.
71 (1998) reported daily average mass concentrations varying from 0.8 to 1.6 $\mu\text{g m}^{-3}$ in Pasadena, CA. A novel method to
72 measure UFP mass continuously has been recently developed and tested by Argyropoulou et al. (2023, 2024), but has not
73 been applied in field studies yet.

74 Major sources of PM_{0.1} in the US include vehicular emissions (Hu et al., 2014a), biomass (wood burning and
75 meat cooking) burning (Kleeman et al., 2009) but also natural gas combustion (Xue et al., 2018) and aviation in areas
76 close to airports (Venecek et al., 2019). Relatively little is known in areas outside the US about ultrafine particle mass
77 properties other than their number concentrations and size distribution (del Águila et al., 2018; Putaud et al., 2010).

78 The few studies, however, using $PM_{0.1}$ as the exposure metric have shown positive correlations of ultrafine
79 particle organic and trace metal components with negative health effects (Laurent et al., 2016; Ostro et al., 2015). For
80 UFP mass, field studies as well as modelling studies have been largely restricted to California or parts of Asia, which are
81 dominated by primary sources (Phairuang et al., 2022; Xue et al., 2019, 2020b; Zhu et al., 2002). As such, large
82 uncertainties about their health effects still remain (Delfino et al., 2005; EPA, 2019; Ohlwein et al., 2019).

83 In this work, $PM_{0.1}$ mass concentrations as well as their chemical composition were studied during a typical
84 summer (5 June - 8 July 2012) and winter period (1-30 January 2009) for several urban and rural sites in Europe using
85 the PMCAMx-UF (Particulate Matter Comprehensive Air-quality Model with extensions – Ultra-Fine) chemical transport
86 model (CTM). Due to the difficulty of measuring $PM_{0.1}$ mass, $PV_{0.1}$ is used in this study to evaluate the model predictions
87 on an hourly and daily scale.

88

89 **2. Model description**

90 PMCAMx-UF is a Eulerian regional three-dimensional chemical transport model (Jung et al., 2010) that is an extension
91 of the PMCAMx model (Gaydos et al., 2007). The extended Dynamic Model for Aerosol Nucleation (DMANx) module
92 is used in PMCAMx-UF for the better description of ambient ultrafine particulate matter processes (Patoulas et al., 2015).
93 PMCAMx-UF solves the mass conservation equation for each pollutant in the gas, aqueous and particulate phases
94 focusing especially on the aerosol number and mass size distributions and the ultrafine particles.

95 Processes simulated by PMCAMx-UF include transport of pollutants via advection and eddy diffusion, their
96 chemical transformation in the gas, aerosol and aqueous (cloud) phases, their removal from the atmosphere through dry
97 (without water involvement) and wet (with water involvement) processes, their introduction into the atmosphere by direct
98 emission, whether from natural planetary processes or by human activity, and lastly specific physical processes for the
99 particle phase, namely coagulation, condensation/evaporation and nucleation. PMCAMx-UF simulates the temporal
100 variation of the complete aerosol number size distribution, beginning from particles as small as 0.8 nm and up to 10 μm
101 using 41 size bins. At the same time, the mass concentration of 18 major aerosol components is simulated, including
102 inorganics (ammonium, sulfate, metals, nitrate, sodium, chloride), primary and secondary organic aerosol, elemental
103 carbon and aerosol phase water. The secondary organic aerosol species are split into 4 volatility bins for the anthropogenic
104 and another 4 for those of biogenic origin. An extremely low volatility secondary organic aerosol (ELSOA) component
105 was added by Patoulas and Pandis (2022) to simulate the extremely low volatility secondary organic compounds.

106 Gas phase chemistry in PMCAMx-UF is described by the extended Statewide Air Pollution Research Center
107 (SAPRC) mechanism (ENVIRON, 2003; Patoulas and Pandis, 2022), which involves 219 thermochemical and
108 photochemical reactions, 64 gaseous compounds, of which 11 reactivity lumped organic compounds (5 alkanes, 2 olefins,
109 2 aromatics, a mono- and a sesqui-terpene) and 18 free radicals. PMCAMx-UF utilizes the variable sizes resolution
110 (VRSM) aqueous phase chemical module (Fahey and Pandis, 2001). The algorithm for horizontal advection is based on
111 the piecewise parabolic method of Colella and Woodward (1984) and its implementation by Odman and Ingram (1996).
112 Dry deposition is described by a first order kinetic removal rate. For gaseous pollutants, the dry deposition velocity is
113 calculated from the series resistance to impaction model of Wesely (1989). For aerosol species, the gravitational settling
114 velocity is in addition factored in. Its calculation follows the implementation of Slinn and Slinn (1980). Additional
115 information about PMCAMx-UF can be found in Patoulas et al. (2018).

116 Ultrafine particle levels, size distributions, and chemical compositions are shaped by the complex interplay of
117 atmospheric processes such as nucleation, condensation of low-volatility compounds, condensation and evaporation of
118 semivolatile compounds, coagulation, and direct emissions. Nucleation and condensation are critical for the formation
119 and initial growth of new particles, whereas coagulation decreases particle number by removing smaller particles due to
120 collisions with larger ones. Primary emissions, particularly from traffic and other combustion-related activities, are a
121 major source of $PM_{0.1}$, especially in densely populated urban environments. Condensation is also a sink of $PM_{0.1}$ because
122 it can lead to growth of nanoparticles to sizes larger than 100 nm. Xue et al. (2018) highlighted that combustion of natural
123 gas and biogas can significantly contribute to atmospheric ultrafine particles. While CTMs can reasonably capture
124 emissions and large-scale transport, considerable uncertainties persist in simulating nucleation processes, organic aerosol
125 formation, and the removal mechanisms of ultrafine particles. Nucleation is expected to be a minor to negligible source
126 of $PM_{0.1}$ so the corresponding uncertainties in its simulation are expected to have a small effect on the accuracy of $PM_{0.1}$
127 predictions in continental areas. One of the objectives of this study is to obtain some insights into the ability of models
128 like PMCAMx-UF to simulate the ensemble processes that drive $PM_{0.1}$ levels and variability.

129

130 **3. Model application**

131 PMCAMx-UF was applied to a modelling domain spanning the European continental area, covering a 5400x5832 km²
132 area, using a rotated polar stereographic domain projection. This region is divided into 36x36 km² cells resulting in 24300
133 cells in each vertical level. In the vertical axis there are 14 levels, extending to approximately 7.2 km. The ground level,
134 which is the main focus of this study, has a 60 m top boundary height.

135 The two periods examined correspond to 5 June to 8 July 2012 and 1 to 30 January 2009, during the PEGASOS
136 and EUCAARI campaigns respectively. These periods have been selected because the corresponding emission inventories
137 and meteorological inputs have been evaluated and improved in past modeling studies and the PMCAMx model has
138 shown good performance in reproducing the $PM_{2.5}$ mass and composition (Skyllakou et al., 2014; Patoulias et al., 2018;
139 Patoulias and Pandis, 2022. Inputs for this version of PMCAMx-UF for the two periods have been described by Patoulias
140 and Pandis (2022).

141 Meteorological input data for both periods were generated by the Weather Research and Forecasting (WRFv2)
142 model (Skamarock et al., 2005). This model utilizes geospatial time-varying meteorology data as inputs that are a product
143 of the Global Forecast System (GFSv15) of the National Oceanic and Atmospheric Administration (NOAA). WRF model
144 grids correspond to those of the chemical transport model. The original meteorological fields prepared by this older
145 version of WRF have been evaluated in past studies and have been reused here to maintain consistency with these previous
146 applications of PMCAMx and PMCAMx-UF. The more recent versions of WRF that offer improvements in model
147 physics, computational efficiency, grid flexibility, and data assimilation capabilities will be used in future applications.

148 Anthropogenic particulate matter emissions have hourly space resolution and are based on the pan-European
149 anthropogenic particle number emissions inventory and the carbonaceous aerosol inventory, both developed during the
150 European Integrated project on Aerosol, Cloud, Climate, and Air Quality Interactions (EUCAARI) (Kulmala et al., 2011).
151 These datasets include various anthropogenic sources such as ground transportation, shipping, industrial processes,
152 domestic activities, etc. Anthropogenic gas-phase emissions are based on the Global and regional Earth-system
153 Monitoring using satellite and in situ data (GEMS) inventory. Continental natural ecosystem emissions were derived
154 using the Model of Emissions of Gases and Aerosol from Nature (MEGANv2.1) (Guenther et al., 2006). MEGAN requires

155 the meteorological inputs described above, as well as surface area type indicators. Natural marine emissions are based on
156 the model of O'Dowd et al. (2008). Wildfire emissions included in our simulation were taken from the Sofiev et al. (2008a,
157 b) emission inventory. Intermediate volatility organic compound emissions were estimated based on the primary organic
158 aerosol emission rates, with proportionality factors depending on estimated volatility (Patoulas and Pandis, 2022) to
159 maintain consistent inputs with previous studies. Murphy et al. (2023) have shown that it is better to estimate the IVOC
160 emissions based on the total VOC emissions, instead of the POA. This approach will be used in future work.

161 Initial and boundary conditions used in this application were constant and low to minimize their influence on
162 model predictions. The first two days of the summer and winter simulation periods are not included in the analysis. This
163 is a time interval which has been shown to be adequate to exclude most of the influence of initial conditions in previous
164 PMCAMx-UF applications (Patoulas et al., 2018; Patoulas and Pandis, 2022).

165

166 3.1 Measurements

167 Ultrafine particle mass is difficult to measure, primarily due to its low concentration. In order to evaluate hourly model
168 predictions of ultrafine particulate matter concentrations and due to the availability of the corresponding measurements,
169 we use here surface level measurements of particle number size distributions, available through the EBAS database
170 (<https://ebas-data.nilu.no>), during the Pan-European-Gas-AeroSol-climate interaction Study (PEGASOS) and the
171 European Integrated project on Aerosol, Cloud, Climate, and Air Quality Interactions (EUCAARI) (Kulmala et al., 2011)
172 intensive measurement campaigns. The locations of the 12 measurement sites are shown in Figure 1. These include Mace
173 Head (Ireland), Varrio, Hyytiala (Finland), Aspvreten, Vavihill (Sweden), Helsinki (Finland), Waldhof, Melpitz, Dresden,
174 Hohenpeissenberg (Germany), Kosetice (Czech Republic) and Finokalia (Greece). Particle number distribution
175 measurements in each site were made through mobility particle sizers, either scanning (SMPS) or differential (DMPS).
176 The ultrafine particle volume concentrations, $PV_{0.1}$, was then calculated by integrating these distributions up to 100 nm
177 assuming spherical particles. We used this observed $PV_{0.1}$ directly for the model evaluation, because there were no
178 available measurements of the chemical composition of the ultrafine particles, and therefore it was not possible to estimate
179 their density based on the measurements. In contrast, the model provides detailed information on the $PM_{0.1}$ composition,
180 allowing us to calculate its predicted density. As a result, $PV_{0.1}$ was the most appropriate variable for model evaluation in
181 this study. For some sites, there were gaps in the available measurements. The corresponding analysis was based only on
182 the days with available data for both measurements and predictions. As a result, these measurement gaps did not affect
183 the model evaluation and corresponding conclusions.

184 The $PM_{0.1}$ predicted by PMCAMx-UF was converted to $PV_{0.1}$ by estimating the average ultrafine particle density,
185 ρ_{UFP} , based on the predicted particle composition at each point at time:

$$188 \quad PV_{0.1} = \frac{PM_{0.1}}{\rho_{UFP}} \quad (1)$$

$$189 \quad \rho_{UFP} = \frac{\sum_{i=1}^N \rho_i \ PM_{0.1,i}}{PM_{0.1}} \quad (2)$$

190 where N is the total number of components, ρ_i is the density of component i , $PM_{0.1,i}$ is the $PM_{0.1}$ mass concentration of
191 component i , and $PM_{0.1}$ is the total mass concentration.

192 Measurement uncertainties stem from both instrument limitations and the assumption that particles are spherical.
193 On the modeling side, inaccuracies primarily result from the predicted concentrations of PM_{0.1} chemical composition and
194 the corresponding estimation of particle density. Additionally, the use of the 100 nm cutoff to define PM_{0.1} introduces
195 some uncertainty, as this threshold is somewhat arbitrary. However, it was chosen to align with existing definitions and
196 to ensure consistency with previous studies. The U.S. Environmental Protection Agency (EPA, 2025) classifies ultrafine
197 particles as those smaller than 0.1 μm in diameter.

198

199 **4. Results**

200 **4.1 Average spatial variation of PM_{0.1}**

201 The average PM_{0.1} predictions at the ground level during the summertime simulated period are shown in Figure 2. There
202 was considerable spatial variability of PM_{0.1} levels throughout Europe. The mean value over the full domain (0.4 $\mu\text{g m}^{-3}$)
203 was heavily influenced by the fact that a significant part of the domain is over the Atlantic Ocean and Northern Africa,
204 regions with much lower concentrations of PM_{0.1}. Averaging without those parts and considering only the continental
205 regions of the domain, the average predicted PM_{0.1} concentration was equal to 0.6 $\mu\text{g m}^{-3}$.

206 PM_{0.1} was predicted to have higher values, up to 1.2 $\mu\text{g m}^{-3}$, in parts of southern and eastern Europe. High levels
207 were also predicted for major urban areas like Paris, as well as areas with high ship traffic like the North Sea or the
208 western Mediterranean. PM_{0.1} was predicted to be, on average, 51% secondary inorganic matter (38% sulfate and 13%
209 ammonium), 41% organic matter (9% primary and 32% secondary), with smaller contributions from elemental carbon
210 (5%), metal oxides (2%) and trace contributions (<1%) of nitrate, sodium and chloride. Sulfate levels were higher in the
211 North Sea, the Mediterranean, parts of the Middle East and the Strait of Gibraltar, as well as the lower Bay of Biscay.
212 Ammonium spatial patterns mirror those of sulfate. SOA was a major PM_{0.1} contributor in most of eastern and central
213 Europe. Primary organic aerosol (POA) and elemental carbon contributed relatively little mass on the domain scale, with
214 sharp spatial gradients in regions of increased human activity.

215 The average predicted PM_{0.1} concentration and composition for the winter period are shown in Figure 3. The
216 average level over Europe was 0.3 $\mu\text{g m}^{-3}$ considering only continental regions and was lower than during the summer.

217 Wintertime PM_{0.1} was predicted to consist of an average of 66% secondary inorganic material (47% sulphate and
218 19% ammonium), 23% primary matter (9% elemental carbon, 9% organic matter and 5% metals), with small amounts of
219 nitrate, sodium and chloride (<5%). SOA contributed 6% to the mean predicted PM_{0.1}, with higher contribution in
220 northwestern Russia, northern Italy and southern Spain and Portugal. The highest SOA average concentration was 0.1 μg
221 m^{-3} in northwestern Russia. PM_{0.1} in central and western Europe, as well as in key urban areas of the Iberian Peninsula
222 and northern Italy, was mainly composed of primary (emitted) matter. Primary matter concentration was as high as 0.9
223 $\mu\text{g m}^{-3}$ in urban areas. Sulfate, and the associated ammonium, were the major contributors to PM_{0.1} in eastern Europe
224 according to PMCAMx-UF, however with reduced concentration relative to the summer. The PM_{0.1} levels in northwestern
225 and central Europe were lower by around 0.2 $\mu\text{g m}^{-3}$ compared to the summer. In southern Italy, the concentrations were
226 reduced from more than 1 $\mu\text{g m}^{-3}$ to less than 0.4 $\mu\text{g m}^{-3}$. On the other hand, in many urban areas (e.g. Paris) the PM_{0.1}
227 levels were similar or even higher during the winter.

228

229

230

231 **4.2 Predicted PM_{0.1} chemical composition in urban areas**

232 The average predicted chemical composition of PM_{0.1} for selected sites is depicted in Figure 4 for the summer and winter
233 period. During the summer period, sulfate was a major PM_{0.1} component, with its fractional mass contribution varying
234 from 17% to 52% depending on location, while SOA contributed from 18 to 50%. Ammonium (7-16%), primary organics
235 (4-18%), elemental carbon (2-30%) and metals (1-5%) were the remaining contributors. The mass percentage of sodium,
236 chloride and nitrate was in most sites less than 1%. The predicted PM_{0.1} summertime concentration was mostly (52% to
237 91%) secondary (organic or inorganic). A significant fraction of the SOA (40-73%) was predicted to be anthropogenic in
238 all sites, 21-36% was predicted to be biogenic, and 7-25% was predicted to be extremely low volatility secondary organic
239 compounds (Table S3).

240 During the winter period, primary material contributed from 22% to 61% to PM_{0.1} depending on location (Fig. 4). Primary
241 organic aerosol ranged from 10% to 23%. Elemental carbon was predicted to contribute 8% to 31%, while metals from
242 4% to 10% across all sites during this period. Ammonium and sulfate remained a significant fraction of PM_{0.1} (33% to
243 69%), especially in the urban areas in eastern Europe. The sulfate fraction ranged from 24% to 49%, with ammonium
244 contributing from 9% to 20%. The contribution of SOA was limited, up to 9% at the sites examined. The remaining PM_{0.1}
245 components, namely nitrate, chloride and sodium, were predicted to contribute up to 1% in almost all the examined sites.

246 In summer, in the urban area of Athens, the major component of PM_{0.1} was sulfate (33%), followed by SOA
247 (23%), primary organic aerosol (18%) and ammonium (13%). In Paris, elemental carbon had the highest contribution
248 (30%) to PM_{0.1}. Sulfate contributed 20% and SOA 20%. At the rural site of Finokalia, PM_{0.1} consisted of 52% sulfate,
249 23% SOA and 17% ammonium, with smaller contributions of elemental carbon (2%) and primary organic aerosol (4%).

250 In Athens, wintertime PM_{0.1} consisted of sulfate (37%), POA (23%), elemental carbon (15%) and ammonium
251 (13%). The remaining were metals (7%) and SOA (5%). In Paris, elemental carbon was the major PM_{0.1} component with
252 a contribution of 30%, similar to summer, as transportation was its major source. Sulfate contributed 25%, while POA
253 20%. Lower contributions were predicted for ammonium (10%), metals (10%) and SOA (5%). In both Athens and Paris,
254 PM_{0.1} was highly correlated with EC, especially during the periods with high PM_{0.1} concentrations (Fig. S2). This was
255 also the case in other sites like Montseny, Zurich, Ispra, and Birmingham indicating the importance of combustion sources
256 for wintertime PM_{0.1} and the significant contribution of elemental carbon made to PM_{0.1} during the more polluted periods.
257 At the rural site of Finokalia, PM_{0.1} mainly consisted of sulfate (49%) and ammonium (16%), with smaller contributions
258 of primary organic aerosol (10%), elemental carbon (8%), chloride and sodium.

259 The average chemical composition of PM_{2.5} and PM_{0.1} was similar in most areas as they were both dominated
260 by secondary components during the summer period (Fig. S1). SOA was the major component of PM_{2.5} in most sites,
261 contributing between 12% and 45%, with the highest levels in Zurich, Ispra, and Bucharest. Sulfate also played a
262 significant role (13-34%), particularly in Finokalia and Patras. Ammonium contributed between 6% and 15% across all
263 sites. Sulfate contributed a little more to PM_{0.1} than to PM_{2.5} accounting for 30% to 50% of the PM_{0.1}, while SOA and
264 ammonium contributions remained comparable to those in PM_{2.5}.

265 In winter, the composition of PM_{2.5} was in general different from that of PM_{0.1} in several cities, reflecting
266 differing major emission sources and formation mechanisms. POA contributed more to PM_{2.5} (4-38%) than to PM_{0.1} (10-
267 23%), whereas elemental carbon contributed less to PM_{2.5} (2-17%) compared to PM_{0.1} (8-31%) (Fig. S1). At coastal sites
268 like Patras, Finokalia, and Helsinki, secondary inorganic aerosol (including sulfate, nitrate, and ammonium) along with

269 crustal elements and sea salt, dominated the PM_{2.5} composition, accounting for 82-90%. Sulfate concentrations were
270 generally lower PM_{2.5} (17-34%) than in PM_{0.1} fraction (24-49%) during winter.

271

272 **4.3 PMCAMx-UF evaluation**

273 *4.3.1 Summer*

274 During the summer period, PMCAMx-UF predictions showed on average little bias with a NMB equal to 15% for hourly
275 average concentrations (Table 1). The NME, on an hourly level, was on average 62%, a level similar to that of PM_{2.5}
276 predictions of CTMs in Europe. The model performance in this first application was clearly quite encouraging (Fig. S3).
277 NMB and NME hourly metrics in the various stations ranged from -29% to +109% and from +44% to +125%,
278 respectively. The model's performance improved, as expected, for daily average concentrations (Table S1). The NME
279 was reduced to 46%. The NMB remained at the low level of 15%.

280 During the summer, for most locations, model predictions as well as measured values exhibited significant
281 variability (Fig. 5). This spatial and temporal variability is mainly related to the spatial and temporal variability of
282 emission sources, secondary aerosol production and to the variability of meteorological conditions. In most sites, the
283 mean was larger than the median due to short-term elevated concentrations. PMCAMx-UF on average did a reasonable
284 job predicting the observations, with overpredictions and underpredictions of PV_{0.1}, depending on the location. Average
285 concentrations for the full period were captured within 0.1 $\mu\text{m}^3 \text{cm}^{-3}$ for 7 out of 12 of the examined sites, with all the
286 predicted averages being within 0.25 $\mu\text{m}^3 \text{cm}^{-3}$ of measurements. Regarding the urban sites, in Dresden, mean ultrafine
287 particle volume concentration was underpredicted by 0.17 $\mu\text{m}^3 \text{cm}^{-3}$. For Helsinki, the mean predicted PV_{0.1} was quite
288 consistent with the measurements. In rural background areas (Vavihill, Aspvreten, Waldhof and Kosecice), PMCAMx-
289 UF overpredicted PV_{0.1} by 0.13 to 0.25 $\mu\text{m}^3 \text{cm}^{-3}$. In general, predicted concentrations were higher than measurements.
290 Mean predicted PV_{0.1} for all the sites examined was 0.34 $\mu\text{m}^3 \text{cm}^{-3}$ and the corresponding measured value was 0.29 μm^3
291 cm^{-3} .

292 In Dresden, the model predicted a weaker diurnal variation to that observed, but its main weakness was its
293 underprediction of the baseline by around 0.2 $\mu\text{m}^3 \text{cm}^{-3}$ (Fig. 6). A noticeable measured peak at 8:00 LST probably
294 indicates traffic emissions which were not captured in the model, either through omission or due to grid resolution. The
295 model tended overall to capture the hourly variations (Fig. S4), though it missed some high concentration periods on June
296 the 8, 10, 16 and 24.

297 For Helsinki, the average measured diurnal pattern was relatively flat (Fig. 6). Measured values were reproduced
298 well by PMCAMx-UF, with differences of around 0.05 $\mu\text{m}^3 \text{cm}^{-3}$ throughout most of the average day. The detailed time
299 series was also well reproduced (Fig. S4).

300 In Kosecice, for the first half of the day, predictions were far larger than the corresponding measurements, starting
301 the night at +0.1 $\mu\text{m}^3 \text{cm}^{-3}$ and peaking at 05:00-06:00 with a more than +0.2 $\mu\text{m}^3 \text{cm}^{-3}$ difference (Fig. 6). This increase
302 in predicted levels was due to an increase in traffic emissions. For the second half of the day, predicted and measured
303 values were in reasonable agreement. Excluding the first two days, which were influenced by the initial conditions, the
304 model overpredicted nighttime to early morning concentrations in several periods (June 10-12, 16-17, 24 and 26) (Fig.
305 S4). Measured concentrations were rarely higher than those predicted, for example on July 2 and 3, when sharp peaks
306 indicated possible nearby sources. The overprediction could indicate that emissions of UFPs in the area were
307 overestimated.

308 The average diurnal profiles of measured and predicted $PV_{0.1}$ concentrations as well as their corresponding
309 hourly levels for the rest of the 12 sites for the summer period can be found in Figure S4 and Figure S5. PMCAMx-UF
310 predicted well the average diurnal profile of measured $PV_{0.1}$ in Hyytiala, with an average value of $0.25 \mu\text{m}^3 \text{cm}^{-3}$, while
311 there were overpredictions during the whole day for Vavihill, Waldhof and Aspvreten.

312

313 4.3.2 Winter

314 PMCAMx-UF tended to underpredict the winter $PV_{0.1}$ levels with an NMB equal to -30% for hourly averaged values
315 (Table 2). The NME for hourly predictions was higher than during the summer with a value of 72%. For daily average
316 levels, the NMB was -27% and the NME equal to 64% (Table S2). The model overpredicted $PV_{0.1}$ by 0.03 to $0.09 \mu\text{m}^3$
317 cm^{-3} in the sites of Vavihill, Hyytiala, Aspvreten and Varrio.

318 Mean predicted values in 9 out of 12 sites were within $0.1 \mu\text{m}^3 \text{cm}^{-3}$ of the measured mean (Fig. 7). $PV_{0.1}$ was
319 underpredicted in 7 out of 12 sites. Despite the increased frequency of underprediction, major positive deviations between
320 predictions and observations were found in the Varrio and Hyytiala sites, with high model error also in the Aspvreten,
321 Vavihill, Mace Head and Dresden sites. Mean predicted $PV_{0.1}$ was $0.17 \mu\text{m}^3 \text{cm}^{-3}$ for all sites and mean measured $PV_{0.1}$
322 was $0.24 \mu\text{m}^3 \text{cm}^{-3}$.

323 In Dresden, the ultrafine particle volume concentration was seriously underpredicted, $0.27 \mu\text{m}^3 \text{cm}^{-3}$ to $1.22 \mu\text{m}^3$
324 cm^{-3} respectively. Mean ultrafine particle volume concentration for Helsinki was also underpredicted, with a predicted
325 value of $0.18 \mu\text{m}^3 \text{cm}^{-3}$ and a measured value of $0.35 \mu\text{m}^3 \text{cm}^{-3}$. On the other hand, for the remote Hyytiala site in Finland,
326 mean predicted total $PV_{0.1}$ was $0.16 \mu\text{m}^3 \text{cm}^{-3}$, compared to a measured average of $0.07 \mu\text{m}^3 \text{cm}^{-3}$. This suggests that the
327 underpredictions in Helsinki were mostly due to local sources and not to regional underprediction.

328 In Dresden, the measured levels increased by a factor of two early in the morning while the predicted profile
329 remained practically flat (Fig. 8). This suggests strongly the lack of one or more major local sources, probably
330 transportation and residential heating. It could also be partially due to the coarse resolution of the model; local emissions
331 were diluted in the large computational cell of the model covering the area of the city. The corresponding hourly
332 concentrations are shown in Figure S6.

333 For Helsinki, the predicted average diurnal profile was nearly flat (variation less than $0.05 \mu\text{m}^3 \text{cm}^{-3}$) throughout
334 the day, while the measurements peaked at 10:00, remaining near constant during midday and then gradually decreasing
335 (Fig. 8). The hourly concentrations suggested that the model was rarely able to predict observed elevated concentration
336 levels during specific one to two-day periods (Fig. S6). The sources of ultrafine particles during these periods need to be
337 further examined. Errors in the meteorological inputs and especially the mixing height were also a possible explanation
338 of these persistent errors.

339 In Hyytiala, the diurnal average profiles of measured and predicted values were both flat but they differed by
340 approximately $0.1 \mu\text{m}^3 \text{cm}^{-3}$ (Fig. 8). This suggests that the model agreed with observations regarding the relatively low
341 local contributions but it overpredicted the regional background. This could be partially due to the assumed boundary
342 conditions that influenced the Nordic countries more than the rest of Europe due to the choice of modeling domain.
343 Turning our attention to the full period hourly concentrations, substantial deviations became readily apparent (Fig. S7).
344 For the first half of the simulated period, predicted UFP volume concentrations tended to follow measured values, with
345 rapid increases in measured concentrations not generally predicted. These were again possibly indicative of local sources
346 influencing the measurement site. After January 17, the model overpredicted $PV_{0.1}$. The reasons for this overprediction

347 require future analysis. The corresponding hourly $PV_{0.1}$ concentrations as well as their average diurnal profiles for the rest
348 of the 12 sites for this winter period can be found in Figure S6 and Figure S7.

349 Average volume distributions for measured and predicted $PV_{0.1}$ were in general consistent with a monotonically
350 increasing shape (Figure S8). For sites in which PMCAMx-UF was in good agreement with the $PV_{0.1}$, the measured size
351 distributions were also in good agreement for all sizes, suggesting that the good performance of the model was not due to
352 offsetting errors. In most areas where there were discrepancies the predicted size distribution was correct but there were
353 errors in the magnitude. Dresden during the winter was the exception, with the measured volume distribution starting to
354 increase at 15 nm while the predicted one started to rise at 30 nm. This suggests that the model was missing a major
355 ultrafine particle source in this site during the cold period. In all sites the predicted and measured volume distributions
356 suggested that nucleation made a minor contribution to ultrafine particle mass concentrations.

357 The spatial and seasonal variation in $PM_{0.1}$ concentrations is largely driven by emission patterns, which fluctuate
358 across different timescales -from monthly to hourly. The geographic distribution of these emissions, influenced by land-
359 use characteristics across the study area, contributes to regional differences. Weather conditions also have a strong
360 influence, with variables like wind speed and direction, boundary layer height, and solar radiation affecting how particles
361 are dispersed, transported, formed and removed. Additionally, photochemical processes are a key factor, as a substantial
362 portion of $PM_{0.1}$ is produced in the atmosphere from gas-to-particle conversion processes, making chemical reactivity and
363 sunlight-driven transformations major contributors to its variability.

364 The depth of our analysis of the evaluation of PMCAMx-UF for $PM_{0.1}$ is at present limited by the lack of
365 measurements of the chemical composition of $PM_{0.1}$ and the related measurement-based source apportionment studies in
366 Europe. This limits our ability to reach firm conclusions about what the model gets right and where it fails. For a lot of
367 the aspects of $PM_{0.1}$ behavior (e.g., composition and sources) our work presents our present understanding based on model
368 predictions (emissions and atmospheric processes) to motivate and help in the design of future studies.

369

370 **4.4 Predicted links between $PM_{0.1}$ and $PM_{2.5}$**

371 Current regulations are focusing on the reduction of $PM_{2.5}$. It is not clear if these strategies will be effective in the reduction
372 of $PM_{0.1}$ too. One way to address this issue at least as a first step is to examine the temporal correlation between $PM_{0.1}$
373 and $PM_{2.5}$. A correlation would suggest that the sources and processes driving particle mass concentrations in both size
374 ranges are similar, and therefore control strategies that will work for $PM_{2.5}$ will also be effective for $PM_{0.1}$. Low
375 correlations would suggest that different approaches may be needed for the reduction of both fine and ultrafine particle
376 mass.

377 The correlation of predicted $PM_{2.5}$ with $PM_{0.1}$ was examined during the summer and winter period. For the
378 summer period, the mass concentration of fine and ultrafine particles had low correlation in Zurich, Bucharest and
379 Helsinki, with comparatively better correlations in Athens, Birmingham and Paris (Fig. 9). In Helsinki, the two values
380 have a coefficient of determination (R^2) of 0.01. Ultrafine particle mass in Helsinki, as well as in Bucharest and Zurich
381 was mostly secondary inorganic and organic during the summer period. In Athens, Paris and Birmingham, the correlation
382 was significantly better, around 0.4 to 0.6. For Athens, the correlation was driven by wildfire episode (Fig. S9). If this
383 period is excluded the correlation decreases significantly.

384 For the winter period, correlations were high across most major cities examined, with the notable exceptions of
385 Bucharest and Birmingham (Fig. S10). The R^2 for Zurich, Birmingham, Bucharest and Helsinki was less than or equal to
386 0.4, but it was higher for Athens (0.71) and Paris (0.65).

387 For most major cities, an increase in the primary component of $PM_{0.1}$, was accompanied by an increase in its
388 correlation with $PM_{2.5}$. The exceptions were again Birmingham and Bucharest. The predicted R^2 value in both cities seems
389 to be influenced by outliers of substantially elevated $PM_{2.5}$ values. Yu et al. (2019) reported an R^2 between predicted $PM_{2.5}$
390 and $PM_{0.1}$ in a year-long study in California, for all domain cells, of 0.63. In that study, $PM_{0.1}$ was mostly comprised of
391 primary matter from combustion processes. This value is comparable to the highest observed in our study, specifically in
392 Athens and Paris.

393 The correlation between $PM_{0.1}$ and $PM_{2.5}$ was typically weak, but stronger associations were found when the
394 primary component of $PM_{0.1}$ played a significant role. This suggests notable differences in the sources and processes that
395 contribute to $PM_{0.1}$ and $PM_{2.5}$.

396

397 **5. Conclusions**

398 Predicted levels of $PM_{0.1}$ were quite variable in space and time. The average predicted total $PM_{0.1}$ for the continental
399 regions over Europe was $0.6 \mu g m^{-3}$ for the summer and $0.3 \mu g m^{-3}$ for the winter period. On average, sulfate (38%), SOA
400 (32%), ammonium (13%) and POA (8%) were the most significant $PM_{0.1}$ components during the summer. Primary and
401 secondary inorganic matter had an increased mass fraction (16% to 23% and 51% to 66%) during the winter period. The
402 secondary organic matter contribution was quite low (6%) during the winter. The high secondary contribution to $PM_{0.1}$ is
403 rather surprising.

404 PMCAMx-UF showed little bias (15%) in predicting summertime ultrafine volume observations in 12 sites
405 across Europe. During the winter, the model tended to underpredict $PM_{0.1}$ with a NMB of -30% for hourly average values.
406 The model NME for daily average levels was 46% during the summer and 64% during the winter. Using the CTM
407 performance criteria for $PM_{2.5}$, the model performance was considered good for the summer and average for the winter.
408 Missing winter sources and processes need additional investigation. Given that this is the first effort to predict $PM_{0.1}$ in
409 Europe with PMCAMx-UF, the model performance was quite encouraging. Potential model improvements include
410 corrections in emissions especially during the winter, use of higher grid resolution for the major urban areas and revisiting
411 of the boundary conditions over the northern Atlantic. Evaluation of its composition predictions is also needed. Future
412 work will focus on more recent periods, providing a more detailed analysis of not only total $PM_{0.1}$ concentration but also
413 the contribution of individual sources.

414 The predicted lack of correlation between ultrafine and fine particle mass concentration suggests different
415 sources and processes and that future emission reduction strategies will have different effects on $PM_{0.1}$ and $PM_{2.5}$. For
416 example, sources which tend to emit smaller particles will have a larger impact on $PM_{0.1}$ than $PM_{2.5}$. Condensation of
417 secondary material will increase $PM_{2.5}$ but it may decrease $PM_{0.1}$ by growing particles outside the ultrafine particle range.
418 Coagulation is also expected to be a net sink for $PM_{0.1}$ as the small particles in this size range collide with larger particles
419 mainly in accumulation mode. Coagulation has a minor effect on $PM_{2.5}$ because under most conditions it does not transfer
420 mass outside this size range. The analysis of the processes and sources that affect $PM_{0.1}$ will be examined in detail in
421 future work. The main objective of the present work has been to lay the foundation for such a study by demonstrating that

422 we can simulate $PM_{0.1}$ with a reasonable level of accuracy and therefore it makes sense to use the corresponding CTM
423 for more detailed process analysis and source attribution.

424

425 **Code and Data Availability.** The model code and data used in this study are available from the authors upon request
426 (spyros@chemeng.upatras.gr).

427

428 **Author Contributions.** KM carried out the simulations, the analysis, ES wrote the final manuscript with support from SNP,
429 KM and DP, SNP supervised and coordinated the work.

430

431 **Competing Interests.** The authors declare no competing financial interest.

432

433 **Acknowledgements.** This work was supported by «Atmospheric nanoparticles, air quality and human health»,
434 NANOSOMs (11504) and the EU H2020 RI-URBANS (grant 101036245) project.

435

436 **References**

437 del Águila, A., Sorribas, M., Lyamani, H., Titos, G., Olmo, F. J., Arruda-Moreira, G., Yela, M., and Alados-Arboledas,
438 L.: Sources and physicochemical characteristics of submicron aerosols during three intensive campaigns in
439 Granada (Spain), *Atmos. Res.*, 213, 398–410, <https://doi.org/10.1016/j.atmosres.2018.06.004>, 2018.

440 Argyropoulou, G., Patoulias, D., and Pandis, S. N.: Exploring the potential for continuous measurement of ultrafine
441 particle mass concentration ($PM_{0.1}$) based on measurements of particle number concentration above 50 nm (N_{50}),
442 *Aerosol Science and Technology*, 57, 1117–1127, <https://doi.org/10.1080/02786826.2023.2249075>, 2023.

443 Argyropoulou, G. A., Kaltsonoudis, C., Patoulias, D., and Pandis, S. N.: Novel method for the continuous mass
444 concentration measurement of ultrafine particles ($PM_{0.1}$) with a water-based condensation particle counter
445 (CPC), *Aerosol Science and Technology*, 1–12, <https://doi.org/10.1080/02786826.2024.2368196>, 2024.

446 Baranizadeh, E., Murphy, N. B., Julin, J., Falahat, S., Reddington, L. C., Arola, A., Ahlm, L., Mikkonen, S., Fountoukis,
447 C., Patoulias, D., Minikin, A., Hamburger, T., Laaksonen, A., Pandis, N. S., Vehkamäki, H., Lehtinen, E. J. K.,
448 and Riipinen, I.: Implementation of state-of-the-art ternary new-particle formation scheme to the regional
449 chemical transport model PMCAMx-UF in Europe, *Geosci. Model. Dev.*, 9, 2741–2754,
450 <https://doi.org/10.5194/GMD-9-2741-2016>, 2016.

451 Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, *J. Comput.*
452 *Phys.*, 54, 174–201, [https://doi.org/10.1016/0021-9991\(84\)90143-8](https://doi.org/10.1016/0021-9991(84)90143-8), 1984.

453 Delfino, R. J., Sioutas, C., and Malik, S.: Potential role of ultrafine particles in associations between airborne particle
454 mass and cardiovascular health, *Environ Health Perspect*, 113, 934, <https://doi.org/10.1289/EHP.7938>, 2005.

455 ENVIRON: Environ: User's guide to the comprehensive air quality model with extensions (CAMx), version 4.02, Novato,
456 CA, 2003.

457 Environmental Protection Agency (EPA), United States: Integrated science assessment (ISA) for particulate matter,
458 Washington, DC: US Environmental Protection Agency, 2019.

459 Environmental Protection Agency (EPA), United States: Particle pollution exposure, US Environmental Protection
460 Agency, 2025.Fahey, K. M. and Pandis, S. N.: Optimizing model performance: variable size resolution in cloud
461 chemistry modeling, *Atmos. Environ.*, 35, 4471–4478, [https://doi.org/10.1016/S1352-2310\(01\)00224-2](https://doi.org/10.1016/S1352-2310(01)00224-2), 2001.

462 Gaydos, T. M., Pinder, R., Koo, B., Fahey, K. M., Yarwood, G., and Pandis, S. N.: Development and application of a
463 three-dimensional aerosol chemical transport model, *PMCAMx*, *Atmos. Environ.*, 41, 2594–2611,
464 <https://doi.org/10.1016/j.atmosenv.2006.11.034>, 2007.

465 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene
466 emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), *Atmos. Chem. Phys.*, 6,
467 3181–3210, <https://doi.org/10.5194/ACP-6-3181-2006>, 2006.

468 HEI Report: Review panel on ultrafine particles, Understanding the health effects of ambient ultrafine particles HEI
469 Perspectives 3Health Effects Institute, Boston, MA, 122, 2013.

470 Hu, J., Zhang, H., Chen, S., Ying, Q., Wiedinmyer, C., Vandenbergh, F., and Kleeman, M. J.: Identifying $PM_{2.5}$ and
471 $PM_{0.1}$ sources for epidemiological studies in California, *Environ. Sci. Technol.*, 48, 4980–4990, <https://doi.org/10.1021/ES404810Z>, 2014a.

472 Hu, J., Zhang, H., Chen, S. H., Wiedinmyer, C., Vandenbergh, F., Ying, Q., and Kleeman, M. J.: Predicting primary
473 $PM_{2.5}$ and $PM_{0.1}$ trace composition for epidemiological studies in California, *Environ. Sci. Technol.*, 48, 4971–
474 4979, 2014b.

475 Hu, J., Jathar, S., Zhang, H., Ying, Q., Chen, S. H., Cappa, C. D., and Kleeman, M. J.: Long-term particulate matter
476 modeling for health effect studies in California - Part 2: Concentrations and sources of ultrafine organic aerosols,
477 *Atmos. Chem. Phys.*, 17, 5379–5391, <https://doi.org/10.5194/ACP-17-5379-2017>, 2017.

478 Hughes, L. S., Cass, G. R., Gone, J., Ames, M., and Olmez, I.: Physical and chemical characterization of atmospheric
479 ultrafine particles in the Los Angeles area, *Environ. Sci. Technol.*, 32, 1153–1161, 1998.

480 Jung, J. G., Fountoukis, C., Adams, P. J., and Pandis, S. N.: Simulation of in situ ultrafine particle formation in the eastern
481 United States using PMCAMx-UF, *J. Geophys. Res.*, 115, <https://doi.org/10.1029/2009JD012313>, 2010.

482 Kleeman, M. J., Riddle, S. G., Robert, M. A., Jakober, C. A., Fine, P. M., Hays, M. D., Schauer, J. J., and Hannigan, M.
483 P.: Source apportionment of fine ($PM_{1.8}$) and ultrafine ($PM_{0.1}$) airborne particulate matter during a severe winter
484 pollution episode, *Environ. Sci. Technol.*, 43, 272–279, 2009.

485 Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J. L., Facchini, M. C., Hansson, H. C., Hov,
486 O'Dowd, C. D., Pöschl, U., Wiedensohler, A., Boers, R., Boucher, O., De Leeuw, G., Denier Van Der Gon, H.
487 A. C., Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C.,
488 Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S.,
489 Artaxo, P., Baars, H., Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M., Burkhardt, J. F., Canonaco, F.,
490 Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S., Fischer, M., Fjaeraa, A. M.,
491 Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger, T., Harrison, R. M., Herrmann, H., Hoffmann,
492 T., Hoose, C., Hu, M., Hyvärinen, A., Hörrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M.,
493 Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J. E.,
494 Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V., Makkonen, R.,
495 Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W. T., Nemitz, E., O'Donnell,
496 D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar, J. J., Pio, C., Plass-Duelmer, C., Prévôt, A. S. H., Pryor,
497

498 S., Reddington, C. L., Roberts, G., Rosenfeld, D., Schwarz, J., Seland, O., et al.: General overview: European
499 Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol
500 research from nano to global scales, *Atmos. Chem. Phys.*, 11, 13061–130143, <https://doi.org/10.5194/ACP-11-13061-2011>, 2011.

502 Kuwayama, T., Ruehl, C. R., and Kleeman, M. J.: Daily trends and source apportionment of ultrafine particulate mass
503 (PM_{0.1}) over an annual cycle in a typical California city, *Environ. Sci. Technol.*, 47, 13957–13966, 2013.

504 Kwon, H. S., Ryu, M. H., and Carlsten, C.: Ultrafine particles: unique physicochemical properties relevant to health and
505 disease, *Experimental & Molecular Medicine* 2020 52:3, 52, 318–328, <https://doi.org/10.1038/s12276-020-0405-1>, 2020.

507 Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN,
508 *Atmos. Chem. Phys.*, 9, 8601–8616, <https://doi.org/10.5194/ACP-9-8601-2009>, 2009.

509 Odman, M. and Ingram, C.: Multiscale Air Quality Simulation Platform (MAQSIP): Source code documentation and
510 validation, 1996.

511 O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and Facchini, M. C.: A combined organic-
512 inorganic sea-spray source function, *Geophys. Res. Lett.*, 35, <https://doi.org/10.1029/2007GL030331>, 2008.

513 Ohlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., and Hoffmann, B.: Health effects of ultrafine particles: a systematic
514 literature review update of epidemiological evidence, *Int. J. Public Health*, 64, 547–559,
515 <https://doi.org/10.1007/S00038-019-01202-7>, 2019.

516 Patoulas, D.: Simulation of the formation and growth of atmospheric nanoparticles. Diss. University of Patras, 2017.

517 Patoulas, D. and Pandis, S. N.: Simulation of the effects of low-volatility organic compounds on aerosol number
518 concentrations in Europe, *Atmos. Chem. Phys.*, 22, 1689–1706, <https://doi.org/10.5194/ACP-22-1689-2022>,
519 2022.

520 Patoulas, D., Fountoukis, C., Riipinen, I., and Pandis, S. N.: The role of organic condensation on ultrafine particle growth
521 during nucleation events, *Atmos. Chem. Phys.*, 15, 6337–6350, <https://doi.org/10.5194/ACP-15-6337-2015>,
522 2015.

523 Patoulas, D., Fountoukis, C., Riipinen, I., Asmi, A., Kulmala, M., and Pandis, S. N.: Simulation of the size-composition
524 distribution of atmospheric nanoparticles over Europe, *Atmos. Chem. Phys.*, 18, 13639–13654,
525 <https://doi.org/10.5194/ACP-18-13639-2018>, 2018.

526 Phairuang, W., Inerb, M., Hata, M., and Furuuchi, M.: Characteristics of trace elements bound to ambient nanoparticles
527 (PM_{0.1}) and a health risk assessment in southern Thailand, *J. Hazard. Mater.*, 425, 127986, 2022.

528 Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson,
529 H. C., Harrison, R. M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A. M., Kasper-Giebl, A., Kiss, G.,
530 Kousa, A., Kuhlbusch, T. A. J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C.,
531 Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G.,
532 ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., and Raes, F.: A European aerosol phenomenology – 3:
533 Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe,
534 *Atmos. Environ.*, 44, 1308–1320, <https://doi.org/10.1016/J.ATMOSENV.2009.12.011>, 2010.

535 Schraufnagel, D. E.: The health effects of ultrafine particles, *Exp. Mol. Med.*, 52, 311–317,
536 <https://doi.org/10.1038/S12276-020-0403-3>, 2020.

537 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics of Air Pollution- From Air Pollution to Climate
538 Change, 2nd Edition, John Wiley & Sons, 2006.

539 Sioutas, C., Delfino, R. J., and Singh, M.: Exposure assessment for atmospheric ultrafine particles (UFPs) and
540 implications in epidemiologic research, *Environ. Health Perspect.*, 113, 947–955,
541 <https://doi.org/10.1289/EHP.7939>, 2005.

542 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers,
543 J. G.: A Description of the Advanced Research WRF Version 2, Technical Report, 113,
544 <https://doi.org/10.5065/D6DZ069T>, 2005.

545 Slinn, S. A. and Slinn, W. G. N.: Predictions for particle deposition on natural waters, *Atmos. Environ.*, 14, 1013–1016,
546 [https://doi.org/10.1016/0004-6981\(80\)90032-3](https://doi.org/10.1016/0004-6981(80)90032-3), 1980.

547 Sofiev, M., Lanne, M., Vankevich, R., Prank, M., Karppinen, A., and Kukkonen, J.: Impact of wild-land fires on European
548 air quality in 2006–2008, *WIT Transactions on Ecology and the Environment*, 119, 353–361,
549 <https://doi.org/10.2495/FIVA080351>, 2008a.

550 Sofiev, M., Vankevich, R., Lanne, M., Koskinen, J., and Kukkonen, J.: On integration of a fire assimilation system and a
551 chemical transport model for near-real time monitoring of the impact of wild-land fires on atmospheric
552 composition and air quality, *WIT Transactions on Ecology and the Environment*, 119, 343–351,
553 <https://doi.org/10.2495/FIVA080341>, 2008b.

554 Venecek, M. A., Yu, X., and Kleeman, M. J.: Predicted ultrafine particulate matter source contribution across the
555 continental United States during summertime air pollution events, *Atmos. Chem. Phys.*, 19, 9399–9412,
556 <https://doi.org/10.5194/ACP-19-9399-2019>, 2019.

557 Wang, M. and Penner, J. E.: Aerosol indirect forcing in a global model with particle nucleation, *Atmos. Chem. Phys.*, 9,
558 239–260, <https://doi.org/10.5194/acp-9-239-2009>, 2009.

559 Weichenthal, S., Olaniyan, T., Christidis, T., Lavigne, E., Hatzopoulou, M., Van Ryswyk, K., Tjepkema, M., and Burnett,
560 R.: Within-city spatial variations in ambient ultrafine particle concentrations and incident brain tumors in adults,
561 *Epidemiology*, 31, 177–183, 2020.

562 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models,
563 *Atmos. Environ.*, 23, 1293–1304, [https://doi.org/10.1016/0004-6981\(89\)90153-4](https://doi.org/10.1016/0004-6981(89)90153-4), 1989.

564 Xue, J., Li, Y., Peppers, J., Wan, C., Kado, N. Y., Green, P. G., Young, T. M., and Kleeman, M. J.: Ultrafine particle
565 emissions from natural gas, biogas, and biomethane combustion, *Environ. Sci. Technol.*, 52, 13619–13628, 2018.

566 Xue, J., Xue, W., Sowlat, M. H., Sioutas, C., Lolinc, A., Hasson, A., and Kleeman, M. J.: Seasonal and annual source
567 appointment of carbonaceous ultrafine particulate matter ($PM_{0.1}$) in polluted California cities, *Environ. Sci. Technol.*, 53, 39–49, 2019.

569 Xue, W. and Kleeman, M. J.: Comparison of size-resolved PM elements measured using aluminum foil and Teflon
570 impaction substrates: Implications for ultrafine particle source apportionment and future sampling networks in
571 California, *Sci. Total Environ.*, 838, 156523, <https://doi.org/10.1016/j.scitotenv.2022.156523>, 2022.

572 Xue, W., Xue, J., Shirmohammadi, F., Sioutas, C., Lolinc, A., Hasson, A., and Kleeman, M. J.: Day-of-week patterns
573 for ultrafine particulate matter components at four sites in California, *Atmos. Environ.*, 222, 117088,
574 <https://doi.org/10.1016/j.atmosenv.2019.117088>, 2020a.

575 Xue, W., Xue, J., Mousavi, A., Sioutas, C., and Kleeman, M. J.: Positive matrix factorization of ultrafine particle mass
576 (PM_{0.1}) at three sites in California, *Sci. Total Environ.*, 715, 136902,
577 <https://doi.org/10.1016/j.scitotenv.2020.136902>, 2020b.

578 Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to
579 aerosol and CCN number concentrations, *Atmos. Chem. Phys.*, 9, 7691–7710, <https://doi.org/10.5194/ACP-9-7691-2009>, 2009.

581 Yu, X., Venecek, M., Kumar, A., Hu, J., Tanrikulu, S., Soon, S. T., Tran, C., Fairley, D., and Kleeman, M. J.: Regional
582 sources of airborne ultrafine particle number and mass concentrations in California, *Atmos. Chem. Phys.*, 19,
583 14677–14702, <https://doi.org/10.5194/acp-19-14677-2019>, 2019.

584 Zhu, Y., Hinds, W. C., Kim, S., and Sioutas, C.: Concentration and size distribution of ultrafine particles near a major
585 highway, *J. Air. Waste. Manage. Assoc.*, 52, 1032–1042, <https://doi.org/10.1080/10473289.2002.10470842>,
586 2002.

587

588

589
590**Table 1.** PMCAMx-UF hourly evaluation metrics of PV_{0.1} during the period of 5 June - 8 July 2012 for the 12 measurement sites.

Station	Mean Predicted ($\mu\text{m}^3 \text{ cm}^{-3}$)	Mean Observed ($\mu\text{m}^3 \text{ cm}^{-3}$)	NMB (%)	NME (%)
Dresden	0.42	0.59	-29	45
Kosetice	0.37	0.24	54	82
Hohenpeissenberg	0.22	0.27	-19	49
Mace Head	0.05	0.06	-5	81
Finokalia	0.39	0.36	6	47
Vavihill	0.47	0.28	66	82
Helsinki	0.44	0.48	-9	44
Melpitz	0.41	0.33	21	61
Hyttiala	0.22	0.23	-3	61
Waldhof	0.50	0.31	63	81
Aspvreten	0.48	0.23	109	125
Varrio	0.10	0.10	-8	68

591

592

593

594

595

596

597

598

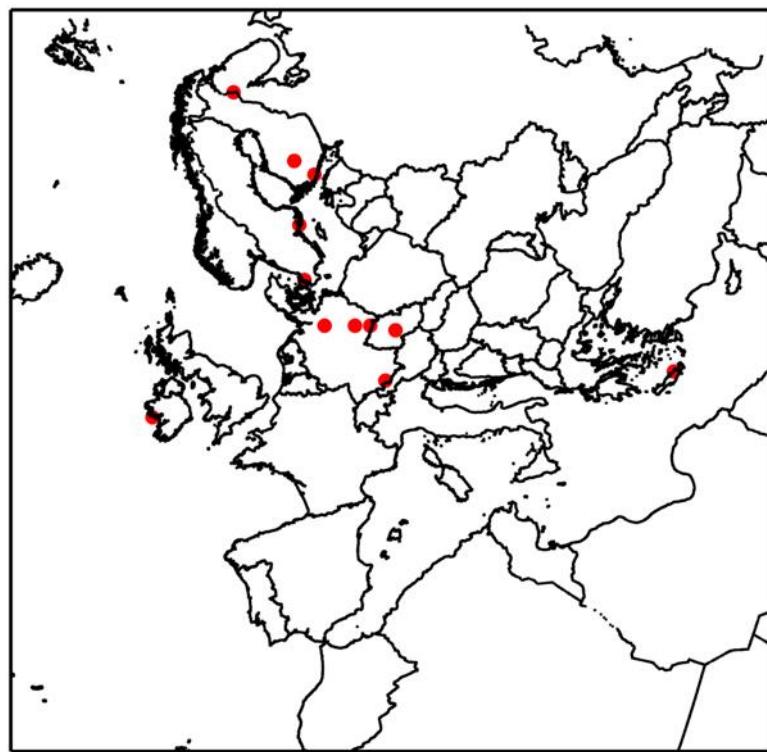
599

600

601

602

603


604

605

606

Table 2. PMCAMx-UF hourly evaluation metrics of $PV_{0.1}$ during the period of 1-30 January 2009 for the 12 measurement sites.

Station	Mean Predicted ($\mu\text{m}^3 \text{ cm}^{-3}$)	Mean Observed ($\mu\text{m}^3 \text{ cm}^{-3}$)	NMB (%)	NME (%)
Dresden	0.27	1.22	-78	78
Kosetice	0.24	0.46	-47	56
Hohenpeissenberg	0.16	0.18	-16	51
Mace Head	0.02	0.11	-78	82
Finokalia	0.07	0.14	-48	65
Vavihill	0.25	0.20	27	83
Helsinki	0.18	0.35	-50	66
Melpitz	0.27	0.28	-6	52
Hyttiala	0.16	0.07	130	187
Waldhof	0.27	0.27	3	53
Aspvreten	0.11	0.08	33.5	114
Varrio	0.09	0.02	399	436

610
611
612
613
614

Figure 1. Map of the European modelling domain indicating (red dots) the 12 measurement sites with available particle number distribution measurements for both simulation periods.

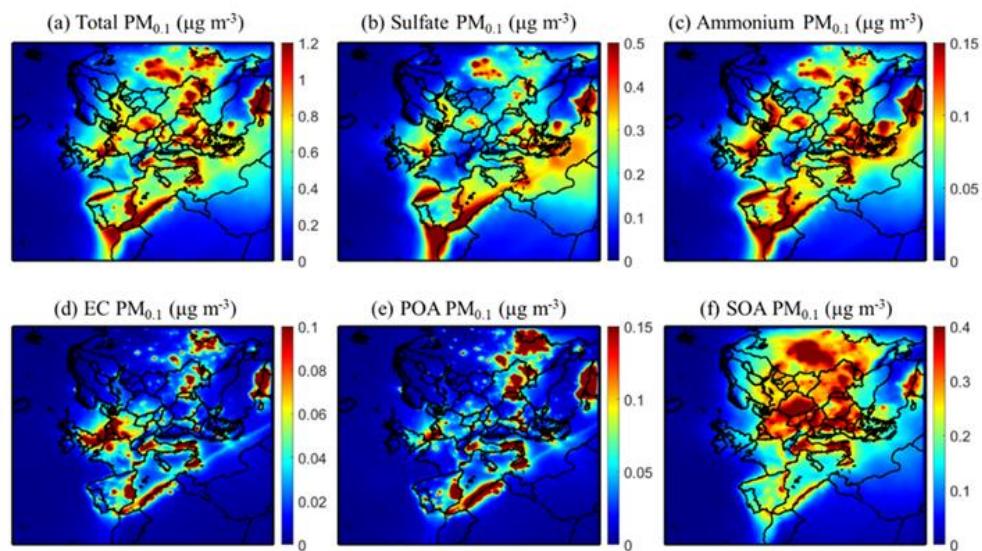
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

632

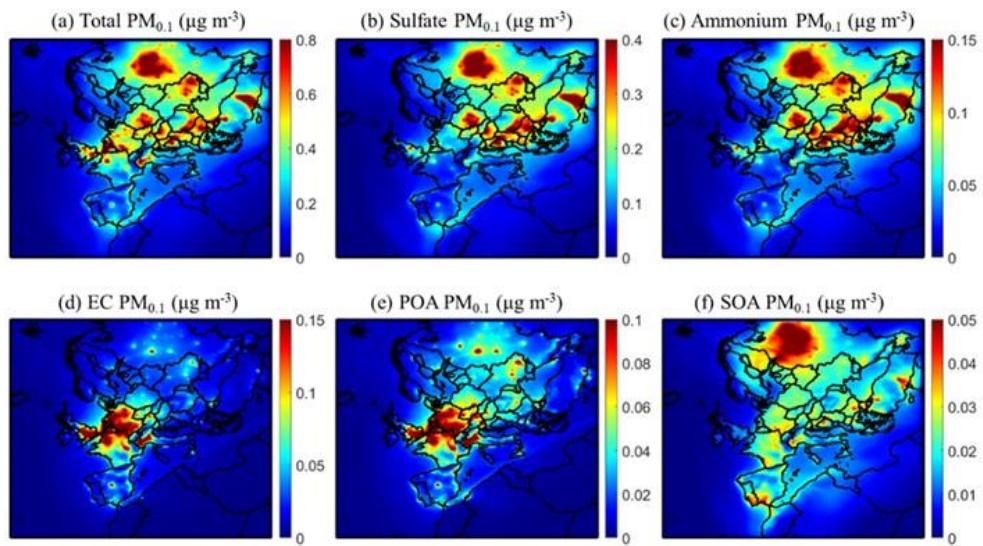
633

634

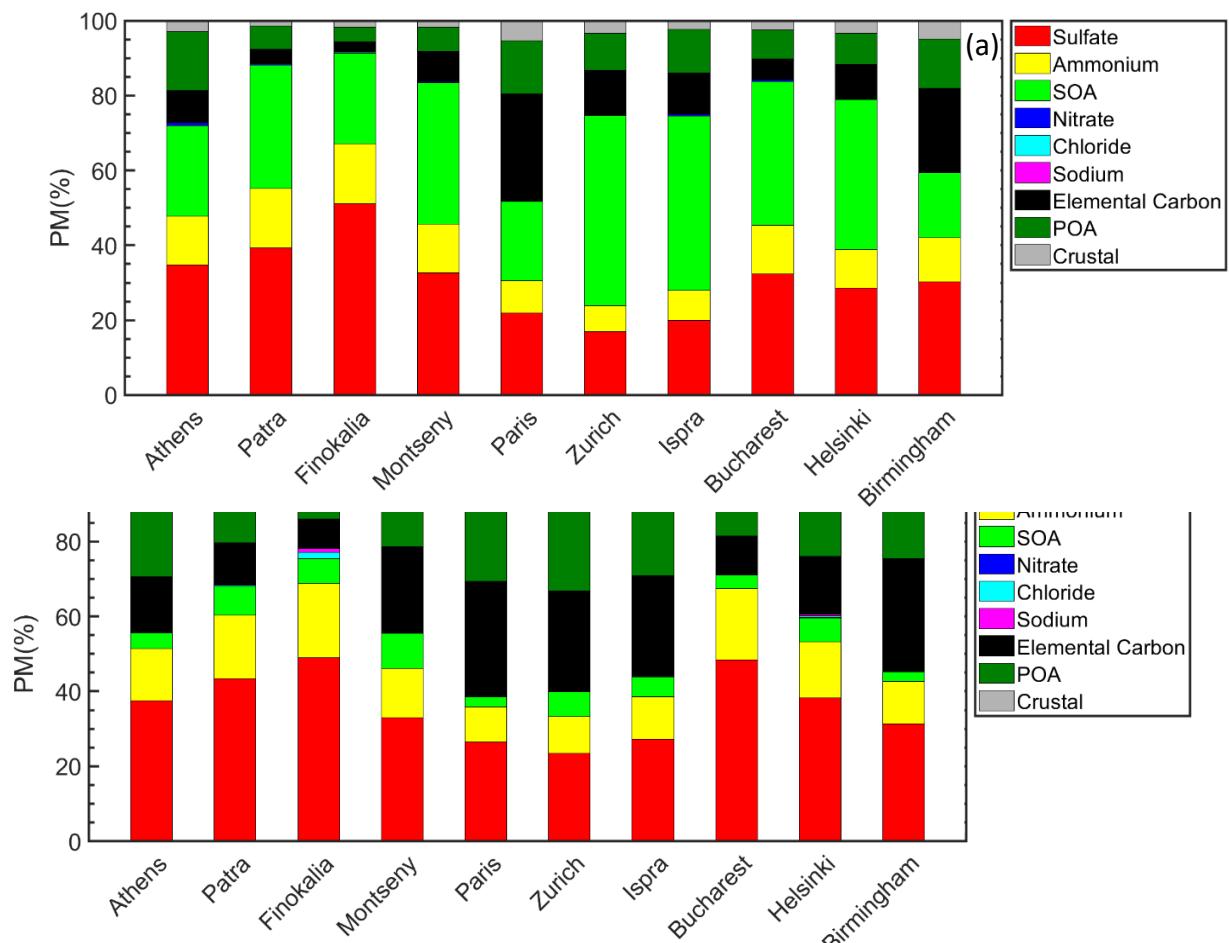
635

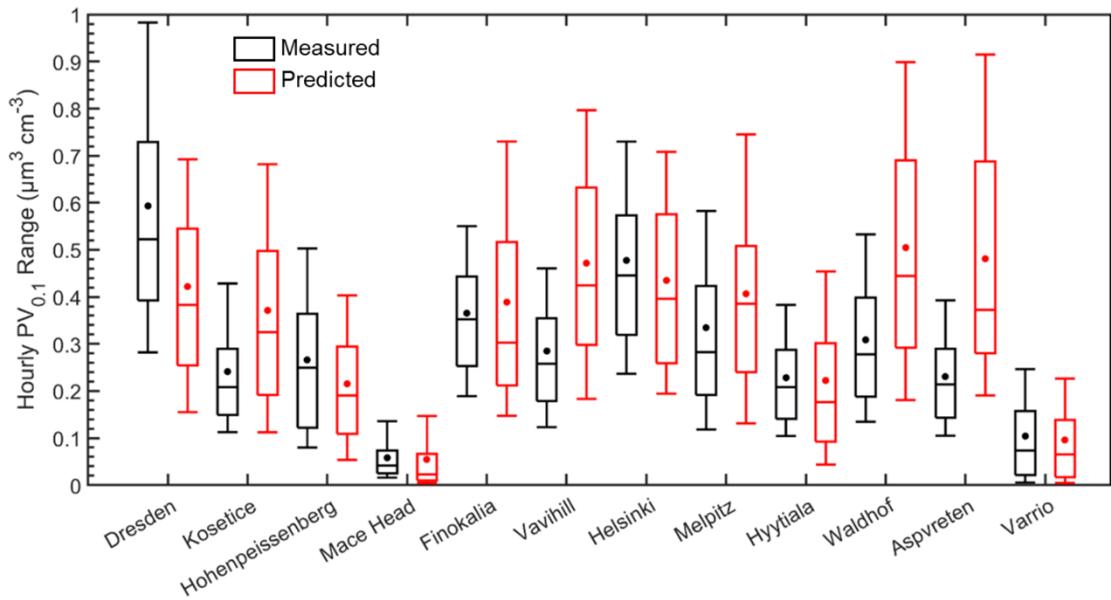

636

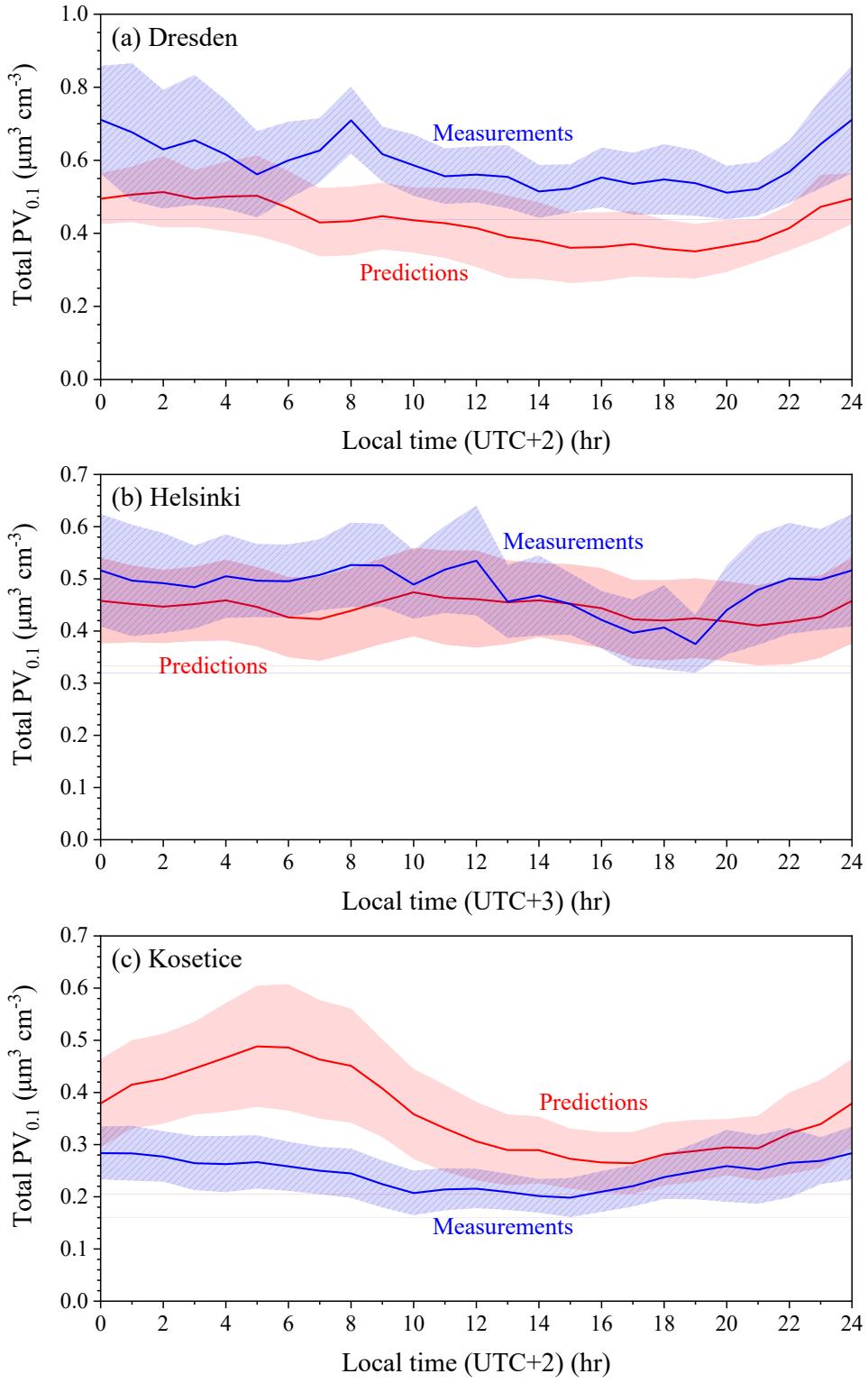
637

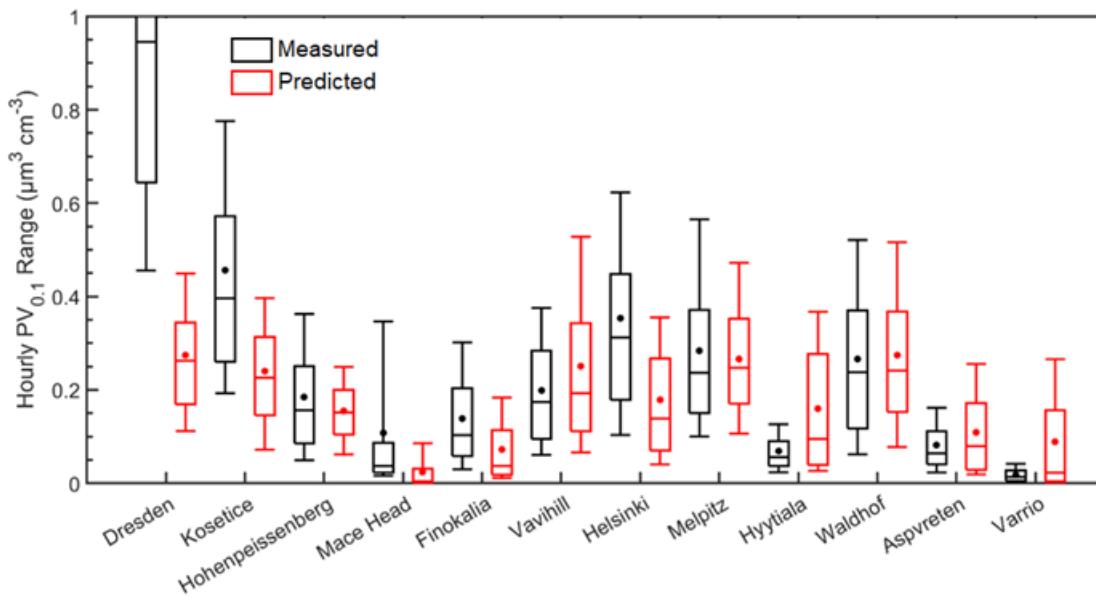

638

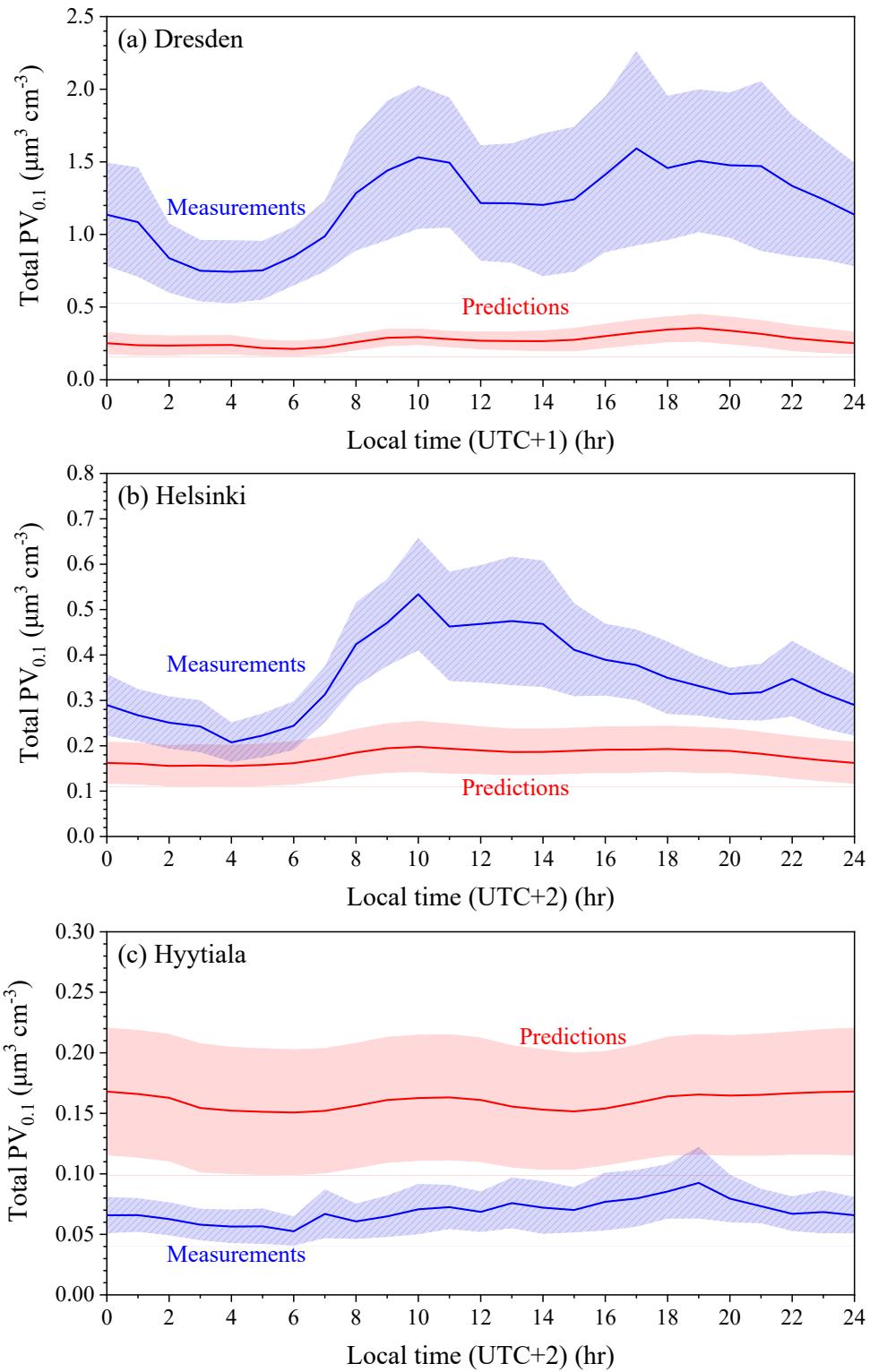
639


640


641 **Figure 2.** Average predicted ground level PM_{0.1} mass concentrations (µg m⁻³) of (a) total PM_{0.1}, (b) PM_{0.1} sulfate, (c)
 642 PM_{0.1} ammonium, (d) PM_{0.1} elemental carbon, (e) PM_{0.1} primary organic aerosol and (f) PM_{0.1} secondary organic aerosol
 643 during 5 June - 8 July 2012.
 644


Figure 3. Average predicted ground level $\text{PM}_{0.1}$ mass concentrations ($\mu\text{g m}^{-3}$) of (a) total $\text{PM}_{0.1}$, (b) $\text{PM}_{0.1}$ sulfate, (c) $\text{PM}_{0.1}$ ammonium, (d) $\text{PM}_{0.1}$ elemental carbon, (e) $\text{PM}_{0.1}$ primary organic aerosol and (f) $\text{PM}_{0.1}$ secondary organic aerosol during 1 - 30 January 2009.


683 **Figure 4.** Predicted chemical composition of ultrafine particles in the areas studied during the (a) summer and (b) winter
684 period. POA (dark green) and SOA (green) stand for primary and secondary organic aerosol.


Figure 5. Distributions of predicted (red) and measured (black) hourly ground-level UFP volume (in $\mu\text{m}^3 \text{cm}^{-3}$) during 5 June - 8 July 2012, in the 12 sites examined. Stars and lines inside each box designate the mean and the median value of the PV_{0.1} distribution. Box top and bottom lines indicate the upper (75%) and lower (25%) quartiles. The upper and lower extended lines (whiskers) are for the 90th and the 10th UFP volume distribution percentiles.

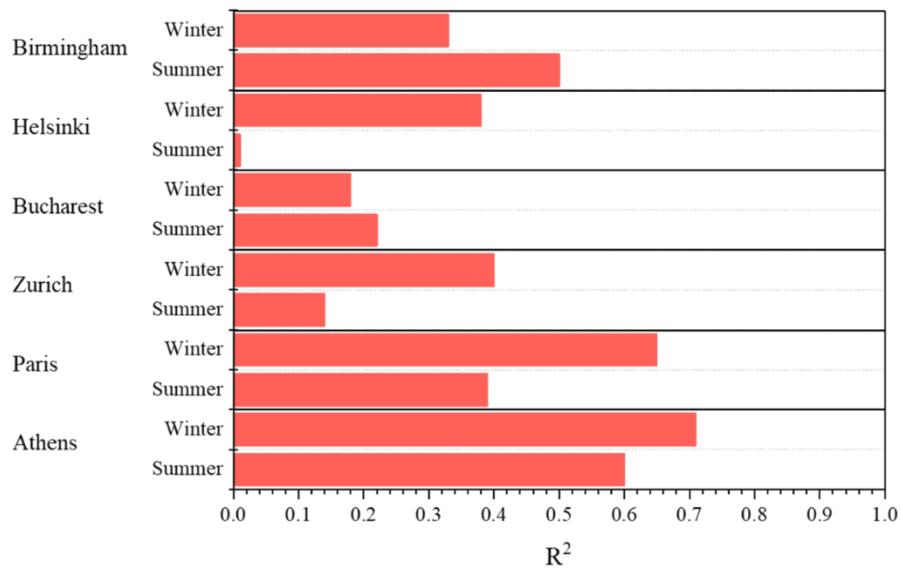

Figure 6. Average diurnal profiles of predicted and measured total volume concentrations ($\mu\text{m}^3 \text{cm}^{-3}$) in (a) Dresden, (b) Helsinki and (c) Kosecice for the period of 5 June - 8 July 2012. The shaded regions reflect plus or minus one standard deviation of the mean.

Figure 7. Distributions of predicted (red) and measured (black) ground-level UFP volume during 1-30 January 2009, in the 12 sites examined. Stars and lines inside each box designate the mean and the median value of the $PV_{0.1}$ distribution. Box top and bottom lines indicate the upper (75%) and lower (25%) quartiles. The upper and lower extended lines (whiskers) are for the 90th and the 10th UFP volume distribution percentiles.

Figure 8. Average diurnal profiles of predicted and measured total volume concentrations ($\mu\text{m}^3 \text{cm}^{-3}$) in (a) Dresden, (b) Helsinki and (c) Hyttiala for the period of 1-30 January 2009. The shaded regions reflect plus or minus one standard deviation of the mean.

821
822 **Figure 9.** R^2 values (square of the samples Pearson's correlation coefficient) between $PM_{0.1}$ and $PM_{2.5}$ for Athens, Paris,
823 Zurich, Bucharest, Helsinki and Birmingham during the summer and winter periods.
824
825
826
827
828
829